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ABSTRACT
This paper introduces and analyzes twonovel iterative algorithms for
addressing the monotone bilevel split equilibrium problem in real
Hilbert spaces. The problem encompasses a general system of vari-
ational inequalities and a common fixed point problem involving a
countable family of uniformly Lipschitzian pseudocontractive map-
pings alongside an asymptotically nonexpansivemapping. Our algo-
rithms are predicated on a novel subgradient extragradient implicit
method that utilizes the strong monotonicity of one bifunction at
the upper-level equilibrium and themonotonicity of another bifunc-
tion at the lower level. We establish strong convergence results for
the proposed algorithms under mild conditions. A detailed example
demonstrates the practicality and effectiveness of our methods.
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1. Introduction

The theory of variational inequalities has been extensively applied in recent decades to
address a wide range of problems encountered in various !elds such as engineering, eco-
nomics, mathematical programming, optimization, and !nance. In particular, variational
inequality problems (VIP) have become indispensable tools for modelling and solving
problems involving equilibrium, optimization, and game theory, among others. The con-
cept of variational inequalities is rooted in the study of !xed-point theory and monotone
operator theory, providing a natural and uni!ed framework for tackling these diverse
problems.

Let H denote a real Hilbert space with the inner product 〈·, ·〉 and the induced norm
‖ · ‖. A self-mappingA is de!ned onH, and we consider a nonempty closed convex subset
C ofH. The classical variational inequality problem (VIP) seeks to identify a point b ∈ C
that satis!es the following inequality:

〈Ab, d − b〉 ≥ 0, ∀d ∈ C.
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The solution set of the VIP is denoted by VI(C,A). This problem is of great importance in
optimization, where the goal is often to !nd equilibrium points or to solve constrained
optimization problems. The mapping A can often represent a gradient or an operator
describing the relationship between the decision variable and the system’s constraints.
Therefore, solving the VIP can lead to the identi!cation of optimal solutions in various
applied settings, such as resource allocation problems, tra"c equilibrium, and market
equilibrium models.

In addition to the VIP, !xed point theory plays a crucial role in modelling a variety of
real-world problems. Fixed-point problems (FPP) are fundamental in the study of iterative
processes, where the goal is to !nd a point x ∈ H such that T(x) = x for a given mapping
T. This can be used to represent problems where the system’s behaviour at each step is
in#uenced by its state at the previous step, which is common in economics, game theory,
and engineering. Let Fix(T)denote the set of!xedpoints of themappingT. These problems
often arise in optimization and equilibrium theory, where the search for a !xed point of
a mapping corresponds to !nding a steady state or equilibrium condition of the system
under study.

The theory of equilibrium problems (EP) provides a powerful and cohesive framework
for addressing a diverse array of real-world challenges that encompass VIPs, FPPs, comple-
mentarity problems, and Nash equilibrium problems. In an equilibrium problem, we seek
to !nd a point d ∈ C that satis!es the following condition involving a bifunction!:

!(d, b) ≥ 0, ∀b ∈ C.

Here, ! : H × H → R ∪ {+∞} is a bifunction that typically models the interactions
between di$erent agents or components of a system. It is often used to capture the con-
straints and interactions within an equilibrium system, such asmarket forces, optimization
constraints, or the behaviour of agents in a game. The condition!(d, d) = 0 for all d ∈ C
ensures that the equilibrium condition holds when the system is in balance. EPs general-
ize many classical problems in optimization and equilibrium theory, and their solutions
correspond to points where the system’s components are in a stable state or equilibrium.

One of the most e$ective methods for solving VIPs is the extragradient method intro-
duced by Korpelevich [1]. This method, for any initial point f0 ∈ C, generates a sequence
{fn} according to the following iterative scheme:

bn = PjC(fn − "Afn), fn+1 = PjC(fn − "Abn), ∀n ≥ 1,

where PjC denotes the metric projection of H onto C, A is an L-Lipschitz continuous
operator, and " ∈ (0, 1L ). The sequence {fn} weakly converges to an element of VI(C,A).
Extensive research on the extragradient method has highlighted its e$ectiveness and led to
numerous extensions and improvements in various settings [2–14]. The convergence rate
and convergence behaviour are crucial characteristics of any iterative algorithm. While
weak convergence is often satisfactory in !nite-dimensional spaces, strong convergence
is often more desirable in in!nite-dimensional settings. Furthermore, the extragradient
method has been successfully applied to a variety of other optimization problems, includ-
ing saddle-point problems, variational inequalities in machine learning, and network
equilibrium models. In these contexts, the extragradient method’s robustness and ability
to handle large-scale problems with complex constraints have made it a preferred choice.
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The algorithm’s #exibility in adapting to di$erent types of mappings, such as monotone
or non-monotone operators, has contributed to its widespread adoption across multiple
domains, including economics, optimization, and game theory.

Let B1,B2 : H → H be two nonlinear mappings. The general system of variational
inequality problem (GSVI) aims to !nd (d∗, b∗) ∈ C × C such that

{
〈µ1B1b∗ + d∗ − b∗, d − d∗〉 ≥ 0, ∀d ∈ C
〈µ2B2d∗ + b∗ − d∗, b − b∗〉 ≥ 0, ∀b ∈ C,

(1)

where µ1,µ2 ∈ (0,∞) are constants. Notably, when B1 = B2 = A and d∗ = b∗, the
GSVI (1) reduces to the aforementionedVIP. Importantly, problem (1) can be reformulated
as a FPP, enabling the application of !xed point techniques for its solution.

Let # denote the set of common solutions to the GSVI (1) for two inverse-strongly
monotone operators B1 and B2, as well as the common !xed point problem (CFPP) for a
countable family of "-uniformly Lipschitzian pseudocontractivemappings {Zn}∞n=1 and an
asymptotically nonexpansive mapping Z0. In 2019, Ceng and Wen [4] proposed a novel
hybrid extragradient-like implicit method to identify an element in #. Starting from an
arbitrary initial point f1 ∈ C, this method generates a sequence {fn} through the following
iterative process:






un = χnfn + (1 − χn)Znun,
dn = PjC(un − µ2B2un),
rn = PjC(dn − µ1B1dn),
fn+1 = PjC[αng(fn) + (I − αnρF)Zn

0 rn], ∀n ≥ 1,

whereI is the identity operator, and g : C → C is a ξ -contractionwith ξ ∈ [0, 1). Ceng and
Wen [4] proved the strong convergence of {fn} to an element g∗ ∈ #. Recently, He et al. [15]
investigated the monotone bilevel equilibrium problem (MBEP), which is constrained by
the GSVI and CFPP. Speci!cally, they considered a strongly monotone equilibrium prob-
lem EP((,)), where ( is the common solution set of another monotone equilibrium
problem EP(C,*), the GSVI, and the CFPP. By leveraging the subgradient extragradient
implicit scheme, He et al. [15] developed two iterative algorithms to solve the MBEP. They
established strong convergence theorems for these algorithms under suitable assumptions.

LetH1 andH2 be realHilbert spaces, withC ⊂ H1 andQ ⊂ H2. LetK : H1 → H2 be a
bounded linear operator, and A, F : H1 → H1 and B : H2 → H2 be nonlinear mappings.
The bilevel split variational inequality problem (BSVIP), as introduced in [16], seeks a
point g∗ ∈ ( such that

〈Fg∗, z − g∗〉 ≥ 0, ∀z ∈ (,
where( denotes the solution set of the split variational inequality problem (SVIP) de!ned
as

( := {z ∈ VI(C,A) : Kz ∈ VI(Q,B)}.
Censor et al. [17] proposed a method for solving the SVIP with the following iterative
procedure:

fn+1 = PjC(I − λA)(fn + ρK∗(PjQ(I − λB) − I)Kfn), ∀n ≥ 1,
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where A and B are inverse-strongly monotone mappings. Under suitable conditions, They
demonstrated that fn converges weakly to g∗ ∈ (. It is worth noting that the VIP can be
reformulated as a FPP. Consequently, we can now rephrase the BSVIP as follows. Let A :
H1 → H1 be L-Lipschitzian and quasimonotone, F : H1 → H1 be κ-Lipschitzian and η-
stronglymonotone, andZ : H2 → H2 be a δ-demimetricmappingwith δ ∈ (−∞, 1). The
problem seeks g∗ ∈ ( satisfying:

〈Fg∗, z − g∗〉 ≥ 0, ∀z ∈ (,

where ( is now de!ned as: ( := {z ∈ VI(C,A) : Kz ∈ Fix(Z)}. This particular BSVIP
is often referred to as the bilevel split quasimonotone variational inequality problem
(BSQVIP).

This paper explores the use of a novel subgradient extragradient implicit method to
solve the monotone bilevel split equilibrium problem (MBSEP), which is subject to the
GSVI and CFPP constraints. In this context, the CFPP involves !nding a common !xed
point for a countable family of uniformly Lipschitzian pseudocontractive mappings along
with an asymptotically nonexpansivemapping. Our proposedmethod leverages the strong
monotonicity of one bifunction at the upper-level equilibrium,while also incorporating the
monotonicity of another bifunction at the lower level. Under relatively mild conditions,
we establish strong convergence results for the algorithms we introduce. An illustrative
example is provided to demonstrate the applicability and feasibility of the methods.

The paper is structured as follows: In Section 2, we introduce the basic concepts and
tools that will be used throughout the study. Section 3 is devoted to proving the strong
convergence of the proposed algorithms. Section 4 discusses the application of our main
theorems to approximate a common solution to theGSVI, VIP, and split feasibility problem
(SFP). In Section 5, we present an illustrative example that highlights the applicability and
practical implementation of the proposed methods. Finally, we conclude with a summary
in the last section.

2. Preliminaries

We denote strong convergence by the symbol → and weak convergence by the symbol⇀.
Given a sequence {fn} ⊂ H, the weak ω-limit set of {fn}, denoted by ωw(fn), is de!ned as
follows:

ωw(fn) = {x ∈ H : fnl ⇀ x for some subsequence {fnl} ⊂ {fn}}.

A normal cone to C at a point b ∈ C is de!ned as the set:

NC(b) = {w ∈ H : 〈w, d − b〉 ≤ 0, ∀d ∈ C}.

Similarly, the subdi$erential of a convex function g : C → R ∪ {+∞} at a point b ∈ C is
de!ned by:

∂g(b) = {w ∈ H : g(d) − g(b) ≥ 〈w, d − b〉, ∀d ∈ C}.

De!nition 2.1: A bifunction! : C × C → R is said to be:
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(i) χ-strongly monotone if there exists χ > 0 such that!(b, d) +!(d, b) ≤ −χ‖b −
d‖2, ∀b, d ∈ C;

(ii) monotone if!(b, d) +!(d, b) ≤ 0, ∀b, d ∈ C;
(iii) Lipschitz-type continuous with constants c1, c2 > 0 if

!(b, d) +!(d,w) ≥ !(b,w) − c1‖b − d‖2 − c2‖d − w‖2, ∀b, d,w ∈ C.

De!nition 2.2: An operatorQ : C → H is said to be:

(i) L-Lipschitz continuous if there exists L>0 such that ‖Qd − Qb‖ ≤ L‖d −
b‖, ∀d, b ∈ C;

(ii) χ-strongly monotone if there exists χ > 0 such that 〈Qd − Qb, d − b〉 ≥ χ‖d −
b‖2, ∀d, b ∈ C;

(iii) α-inverse-strongly monotone if there exists α > 0 such that 〈Qd − Qb, d − b〉 ≥
α‖Qd − Qb‖2, ∀d, b ∈ C;

(iv) monotone if 〈Qd − Qb, d − b〉 ≥ 0, ∀d, b ∈ C.
(v) pseudomonotone if 〈Qd, b − d〉 ≥ 0 ⇒ 〈Qb, b − d〉 ≥ 0, ∀b, d ∈ C;
(vi) quasimonotone if 〈Qd, b − d〉 > 0 ⇒ 〈Qb, b − d〉 ≥ 0, ∀b, d ∈ C;
(vii) δ-demicontractive if there exists δ ∈ [0, 1) such that ‖Qb − d‖2 ≤ ‖b − d‖2 +

δ‖b − Qb‖2, ∀b ∈ C, d ∈ Fix(Q) 0= ∅;
(viii) δ-demimetric if there exists δ ∈ (−∞, 1) such that 〈b − Qb, b − d〉 ≥ 1−δ

2 ‖b −
Qb‖2, ∀b ∈ C, d ∈ Fix(Q) 0= ∅.

De!nition 2.3: AmappingT : C → C is classi!ed as asymptotically nonexpansive if there
exists a sequence {θn}∞n=1 ⊂ [0,∞) such that limn→∞ θn = 0 and the following inequality
holds for all d, b ∈ C and n ≥ 1:

θn‖d − b‖ + ‖d − b‖ ≥ ‖Tnd − Tnb‖.

If θn = 0 for all n ≥ 1, the mapping T is referred to as nonexpansive.

De!nition 2.4 ([18]): Let Z : C → C be a self-mapping. The operator (I − Z) is said
to be demiclosed at zero if, for any sequence {bn} in C such that bn ⇀ b ∈ C and (I −
Z)bn → 0, then (I − Z)b = 0.

De!nition 2.5 ([4]): Let {Zn}∞n=1 be a sequence of continuous pseudocontractive self-
mappings on a nonempty, closed, and convex setC in a real Hilbert spaceH. The sequence
{Zn}∞n=1 is called a countable family of "-uniformly Lipschitzian pseudocontractive self-
mappings onC if there exists a constant " > 0 such that eachZn is "-Lipschitz continuous.

For every point b ∈ H, there exists a unique nearest point in C, denoted by PjCb, such
that ‖b − PjCb‖ ≤ ‖b − d‖ for all d ∈ C. Recall the following properties of the metric
projection for all b, d ∈ H (see [18]):

(i) 〈b − d,PjCb − PjCd〉 ≥ ‖PjCb − PjCd‖2;
(ii) d = PjCb ⇐⇒ 〈b − d,w − d〉 ≤ 0forallw ∈ C;
(iii) ‖b − d‖2 ≥ ‖b − PjCb‖2 + ‖d − PjCb‖2;
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(iv) ‖b − d‖2 = ‖b‖2 − ‖d‖2 − 2〈b − d, d〉;
(v) ‖sb + (1 − s)d‖2 = s‖b‖2 + (1 − s)‖d‖2 − s(1 − s)‖b − d‖2.

Lemma 2.6: Let Q : H → H be an α-inverse-strongly monotone mapping. Then, for any
µ ≥ 0, we have

‖(I − µQ)d − (I − µQ)b‖2 ≤ ‖d − b‖2 − µ(2α − µ)‖Qd − Qb‖2, ∀d, b ∈ H.

In particular, if 0 ≤ µ ≤ 2α, then (I − µQ) is nonexpansive.

Using Lemma 2.6, we immediately acquire the following lemma.

Lemma 2.7 ([6]): Let B1 : H → H and B2 : H → H be α-inverse-strongly monotone and
χ-inverse-strongly monotone mappings, respectively. Let the mapping G : H → C be de!ned
as G := PjC(I − µ1B1)PjC(I − µ2B2). If 0 < µ1 ≤ 2α and 0 < µ2 ≤ 2χ , then G : H →
C is nonexpansive.

Lemma 2.8 ([19]): Let C be a nonempty, closed, and convex subset of a Banach space X. If
Z : C → C is a continuous and strong pseudocontractionmapping, then there exists a unique
!xed point of Z in C.

Lemma 2.9 ([3, Theorem 2.1.3]): Let g : C → R ∪ {+∞} be a subdi"erentiable function.
Then, û is a solbtion to the convex minimization problem: min{g(b) : b ∈ C} if and only if
0 ∈ ∂g(b̂) + NC(b̂).

Lemma 2.10 ([6]): For given d∗, b∗ ∈ C, the pair (d∗, b∗) is a solution of the problem
GSVI (1) if and only if d∗ ∈ Fix(G), where G := PjC(I − µ1B1)PjC(I − µ2B2) and b∗ =
PjC(d∗ − µ2B2d∗).

Lemma 2.11 ([20]): Let C be a nonempty, closed, and convex subset of a Banach space X.
Let {Zn}∞n=1 be a sequence of self-mappings on C such that

∑∞
n=1 sup{‖Zn+1b − Znu‖ :

b ∈ C} < ∞. Then, for each d ∈ C, the sequence {Znd} converges strongly to a point in C.
De!ne Z : C → C by Zd = limn→∞ Znd for all d ∈ C, then limn→∞ sup{‖Zb − Znu‖ :
b ∈ C} = 0.

Lemma 2.12 ([21]): Let C be a nonempty, closed, and convex subset of a Banach space X
admitting a weakly continuous duality mapping. If Z : C → C is an asymptotically non-
expansive mapping with nonempty !xed-point set, denoted by Fix(Z), then the operator
(I − Z) is demiclosed at zero. In other words, if {dn} is a sequence in C such that dn converges
weakly to d ∈ C and (I − Z)dn converges strongly to 0, then (I − Z)d = 0.

Lemma 2.13 ([22]): Suppose {!k} is a real sequence that does not decrease at in!nity,
meaning that there exists a subsequence {!km} ⊂ {!k} satisfying!km < !km+1 for all m ≥
1. De!ne the integer sequence {ψ(k)}k≥k0 as follows: ψ(k) = max{m ≤ k : !m < !m+1},
where k0 ≥ 1 is an integer such that the set {m ≤ k0 : !m < !m+1} is nonempty. Then, the
following properties hold:

(i) ψ(k0) ≤ ψ(k0 + 1) ≤ · · · and ψ(k) → ∞;
(ii) !ψ(k) ≤ !ψ(k)+1 and!k ≤ !ψ(k)+1, ∀k ≥ k0.
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3. Main results

In the rest of this paper, let H1 and H2 denote two real Hilbert spaces. Consider a
nonempty, closed, and convex feasible set C ⊂ H1. To address the MBSEP with GSVI and
CFPP constraints, we make the following assumptions:

(A1) Z0 : H1 → C is an asymptotically nonexpansive mapping, with associated
sequence {θn}. {Zk}∞k=1 is a countable family of "-uniformly Lipschitzian pseu-
docontractive self-mappings on C. Z is a δ-demimetric self-mapping on H2
such that I − Z is demiclosed at zero, where δ ∈ (−∞, 1). K : H1 → H2 is a
non-zero bounded linear operator with adjoint K∗. Let B1,B2 : H1 → H1 be α-
inverse-strongly monotone and χ-inverse-strongly monotone mappings, respec-
tively. De!ne G : H1 → C as G = PjC(I − µ1B1)PjC(I − µ2B2), where µ1 ∈
(0, 2α) and µ2 ∈ (0, 2χ).

(A2)
∑∞

k=1 supp∈D ‖Zk+1p − Zkp‖ < ∞ for any bounded subset D ⊂ C. De!ne S̃ by
S̃u = limk→∞ Zku for all u ∈ C, such that Fix(̃S) = ⋂∞

k=1 Fix(Zk).
(A3) ) : C × C → R ∪ {+∞} and* : H1 × H1 → R ∪ {+∞} are two bifunctions.We

impose the following assumptions on* and ):
Ass*:
(*1) The set # = Fix(G) ∩( ∩ (

⋂∞
k=0 Fix(Zk)) is nonempty, where ( := {z ∈

Sol(C,*) : Kz ∈ Fix(Z)}.
(*2) The bifunction * is monotone and Lipschitz continuous with constants

c1, c2 > 0, and* is weakly continuous in the sense that if un ⇀ u and υn ⇀ υ,
then limn→∞*(un,υn) = *(u,υ).

Ass) :
()1) The bifunction ) is ν-strongly monotone and weakly continuous.
()2) For every k ∈ {1, . . . ,m}, there exist mappings )̂k, γ̃k : C × C → H1 such

that:
(i) )̂k(b, d) + )̂k(d, b) = 0 and ‖)̂k(b, d)‖ ≤ "̂k‖b − d‖ for all b, d ∈ C;
(ii) γ̃k(b, b) = 0 and ‖γ̃k(b, d) − γ̃k(m, p)‖ ≤ "̃k‖(b − d) − (m − p)‖ for all

b, d,m, p ∈ C;
(iii) )(b, d) + )(d,w) ≥ )(b,w) + ∑m

k=1〈)̂k(b, d), γ̃k(d,w)〉 for all b, d,w ∈
C.

()3) For any sequence {υn} ⊂ C such that υn → υ, we have lim sup
n→∞

|)(υ,υn)|
‖υn − υ‖ <

+∞.
(A4) We select sequences {ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1) and {αn}, {σn} ⊂ (0,∞) that sat-

isfy the following conditions:
(H1) χn + ρn + ξn = 1 for all n ≥ 1, and 0 < lim infn→∞ χn,

0 < lim infn→∞ ξn.
(H2) 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 1, and 0 < lim infn→∞ ζn ≤

lim supn→∞ ζn < 1.
(H3)

∑∞
n=1 σn = ∞, limn→∞ σn = 0, limn→∞ θn/σn = 0, and

∑∞
n=1 θn < ∞.

(H4) {αn} ⊂ (α,α) ⊂ (0,min{ 1
2c1 ,

1
2c2 }) and limn→∞ αn = α̃, where c1 and c2

are the Lipschitz constants of*.
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(H5) The inequality 2σnν − σ 2
nϒ

2 < 1 holds, where 0 < λ < min{ν,ϒ}, and
0 < σn < min{1λ , 2ν−2λ

ϒ2−λ2 ,
2ν
ϒ2 }, with ν being the stronglymonotone constant

of ) and ϒ = ∑m
k=1 "̂k"̃k.

The MBSEP with the GSVI and CFPP constraints is formulated as follows:

Findg∗ ∈ # = Fix(G) ∩( ∩
( ∞⋂

k=0
Fix(Zk)

)

, such that x∗ ∈ Sol(#,)),

where( := {z ∈ Sol(C,*) : Kz ∈ Fix(Z)}.
Now, we propose a novel subgradient extragradient implicit approach, as shown in

Algorithm 1.

Algorithm 1
Initialization:Given f1 ∈ C andϑ ≥ 0 arbitrarily. Let {ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1), and
{αn}, {σn} ⊂ (0,∞) be such that hypotheses (H1)–(H5) hold.
Iterative Steps: Calculate fn+1 as follows:
Step 1. Compute






un = ζnfn + (1 − ζn)Znun,

rn = argmin
{
αn*(un, y) + 1

2
‖y − un‖2 : y ∈ C

}
.

(2)

Step 2. Choose wn ∈ ∂2*(un, rn), and compute





Cn = {υ ∈ H1 : 〈un − αnwn − rn,υ − rn〉 ≤ 0} ,

vn = argmin
{
αn*(rn, z) + 1

2
‖z − un‖2 : z ∈ Cn

}
.

(3)

Step 3. Compute tn = vn − ϑnK∗(I − Z)Kvn, where for any !xed ε > 0, ϑn is chosen
to be the bounded sequence satisfying

0 < ε ≤ ϑn ≤ (1 − δ)‖(I − Z)Kvn‖2
‖K∗(I − Z)Kvn‖2

− ε if (I − Z)Kvn 0= 0. (4)

Otherwise, set ϑn = ϑ ≥ 0.
Step 4. Compute






qn = PjC(dn − µ2B2dn),
pn = PjC(qn − µ1B1qn),
dn = χnfn + ρnpn + ξnZn

0 tn.

Step 5. Compute fn+1 = argmin{σn)(dn, t) + 1
2‖t − dn‖2 : t ∈ C}.

Step 6. Set n := n + 1 and return to Step 1.
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Remark 3.1: Suppose the bifunction ) satis!es the condition Ass)()2). Then, for all
u,υ,w ∈ C:

)(u,υ) + )(υ,w) ≥ )(u,w) +
m∑

k=1
〈)̂k(u,υ), γ̃k(υ,w)〉

≥ )(u,w) −
m∑

k=1
"̂k"̃k‖u − υ‖‖υ − w‖

≥ )(u,w) − 1
2
ϒ‖u − υ‖2 − 1

2
ϒ‖υ − w‖2,

where ϒ = ∑m
k=1 "̂k"̃k. Thus, ) is Lipschitz continuous with constants c1 = c2 = 1

2ϒ .

We are now in a position to state and prove the !rst main result of this paper.

Theorem 3.1: Let the sequence {fn} be generated by Algorithm 1, and suppose that the con-
ditions (A1)-(A4) hold. The sequence {fn} converges strongly to the unique solution g∗ of the
problem EP(#,)), provided that Zn

0 fn − Zn+1
0 fn → 0.

Proof: By Lemma 2.7, it follows that G is nonexpansive. Therefore, using Lemma 2.8 and
Banach’s contractionmapping principle, we deduce from the sequences {ζn}, {ρn} ⊂ (0, 1)
that for each n ≥ 1, the following hold:

(i) ∃un ∈ C such that un = ζnfn + (1 − ζn)Znun, and
(ii) ∃dn ∈ C such that dn = χnfn + ρnGdn + ξnZn

0 tn.

We claim that the stepsize ϑn de!ned in (4) is well-de!ned. Indeed, it is su"cient to
show that ‖K∗(I − Z)Kvn‖2 0= 0. Take an arbitrary !xed point p ∈ #. Since Z is a δ-
demimetric mapping, we have

‖vn − p‖‖K∗(I − Z)Kvn‖ ≥ 〈vn − p,K∗(I − Z)Kvn〉

= 〈Kvn − Kp, (I − Z)Kvn〉 ≥ 1 − δ

2
‖(I − Z)Kvn‖2.

When (I − Z)Kvn 0= 0, it follows that ‖(I − Z)Kvn‖2 > 0.As a result, we have ‖K∗(I −
Z)Kvn‖2 > 0. Since limn→∞ θn/σn = 0, we assume that θn ≤ 1

2λσn for all n ≥ 1. In what
follows, we divide the remainder of the proof into few claims below.

Claim 1.We show that the following inequality holds:

‖tn − p‖2 ≤ ‖un − p‖2 − ε2‖K∗(I − Z)Kvn‖2 − (1 − 2αnc1)‖rn − un‖2

− (1 − 2αnc2)‖vn − rn‖2, ∀n ≥ 1.
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Indeed, by Lemma 2.9, we know that for rn there existswn ∈ ∂2*(un, rn) such that αnwn +
rn − un ∈ −NC(rn). This leads to the inequality

〈αnwn + rn − un, x − rn〉 ≤ 0, ∀x ∈ C.

From the de!nition of wn ∈ ∂2*(un, rn), it follows that

αn[*(un, x) −*(un, rn)] ≥ 〈αnwn, x − rn〉, ∀x ∈ H1. (5)

Adding the last two inequalities, we get

αn[*(un, x) −*(un, rn)] + 〈rn − un, x − rn〉 ≥ 0, ∀x ∈ C. (6)

It follows from vn ∈ Cn and the de!nition of Cn that 〈un − αnwn − rn, vn − rn〉 ≤ 0, and
hence

αn〈wn, vn − rn〉 ≥ 〈un − rn, vn − rn〉. (7)

Substituting x = vn into (5), we obtain αn[*(un, vn) −*(un, rn)] ≥ αn〈wn, vn − rn〉.
Adding this inequality to (7), we conclude that

αn[*(un, vn) −*(un, rn)] ≥ 〈un − rn, vn − rn〉. (8)

By Lemma 2.9, we know that for vn there exist hn ∈ ∂2*(rn, vn) and <n ∈ NCn(vn) such
that

αnhn + vn − un + <n = 0,

which leads to the inequality

αn〈hn, y − vn〉 ≥ 〈un − vn, y − vn〉, ∀y ∈ Cn,

and

*(rn, y) −*(rn, vn) ≥ 〈hn, y − vn〉, ∀y ∈ H1.

Substituting y = p ∈ C ⊂ Cn into the last two inequalities and adding them, we obtain

αn[*(rn, p) −*(rn, vn)] ≥ 〈un − vn, p − vn〉.

By the monotonicity of*, the fact that p ∈ Sol(C,*), and that rn ∈ C, we conclude that

*(rn, p) ≤ −*(p, rn) ≤ 0.

Thus,

−αn*(rn, vn) ≥ 〈un − vn, p − vn〉.
Note that the Lipschitz-type continuity of* implies

*(un, rn) +*(rn, vn) ≥ *(un, vn) − c1‖un − rn‖2 − c2‖rn − vn‖2.

Therefore, it follows that

〈un − vn, vn − p〉 ≥ αn*(rn, vn)
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≥ αn[*(un, vn) −*(un, rn)] − αnc1‖un − rn‖2 − αnc2‖rn − vn‖2.

This, together with (8), yields

〈un − vn, vn − p〉 ≥ 〈un − rn, vn − rn〉 − αnc1‖un − rn‖2 − αnc2‖rn − vn‖2.

Accordingly, applying the equality

〈υ, u〉 = 1
2
(‖υ + u‖2 − ‖υ‖2 − ‖u‖2), ∀υ, u ∈ H1 (9)

to the terms 〈un − vn, vn − p〉 and 〈rn − un, vn − rn〉 in the last inequality, we obtain

‖vn − p‖2 ≤ ‖un − p‖2 − (1 − αnc1)‖rn − un‖2 − (1 − αnc2)‖vn − rn‖2, ∀n ≥ 1.
(10)

Furthermore, we have

‖tn − p‖2 = ‖vn − ϑnK∗(I − Z)Kvn − p‖2

= ‖vn − p‖2 − 2ϑn〈vn − p,K∗(I − Z)Kvn〉 + ϑ2
n‖K∗(I − Z)Kvn‖2

= ‖vn − p‖2 − 2ϑn〈K(vn − p), (I − Z)Kvn〉 + ϑ2
n‖K∗(I − Z)Kvn‖2.

Since the operator Z is δ-demimetric, it follows that

‖tn − p‖2 ≤ ‖vn − p‖2 − ϑn(1 − δ)‖(I − Z)Kvn‖2 + ϑ2
n‖K∗(I − Z)Kvn‖2

= ‖vn − p‖2 + ϑn[ϑn‖K∗(I − Z)Kvn‖2 − (1 − δ)‖(I − Z)Kvn‖2]. (11)

From the stepsize ϑn in (4), we have ϑn + ε ≤ (1−δ)‖(I−Z)Kvn‖2
‖K∗(I−Z)Kvn‖2 if and only if

ϑn‖K∗(I − Z)Kvn‖2 − (1 − δ)‖(I − Z)Kvn‖2 ≤ −ε‖K∗(I − Z)Kvn‖2.

This is equivalent to

ϑn(ϑn‖K∗(I − Z)Kvn‖2 − (1 − δ)‖(I − Z)Kvn‖2) ≤ −ϑnε‖K∗(I − Z)Kvn‖2.
(12)

Using 0 < ε ≤ ϑn from (4), we derive −ε2 ≥ −ϑnε, thus obtaining

−ϑnε‖K∗(I − Z)Kvn‖2 ≤ −ε2‖K∗(I − Z)Kvn‖2. (13)

By combining (11), (12), and (13), we arrive at

‖tn − p‖2 ≤ ‖vn − p‖2 − ϑnε‖K∗(I − Z)Kvn‖2

≤ ‖vn − p‖2 − ε2‖K∗(I − Z)Kvn‖2. (14)

Therefore, substituting (10) into (14), we establish the desired claim.
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Claim 2.We show that the following inequality holds for all x ∈ C:

‖fn+1 − x‖2 ≤ ‖dn − x‖2 − ‖fn+1 − dn‖2 + 2σn[)(dn, x) − )(dn, fn+1)].

To prove this, we note that fn+1 minimizes the function σn)(dn, x) + 1
2‖x − dn‖2 over the

set C. Therefore, there exists mn ∈ ∂2)(dn, fn+1), the subdi$erential of ) with respect to
its second argument, such that

0 ∈ σnmn + fn+1 − dn + NC(fn+1),

whereNC(fn+1)denotes the normal cone toC at fn+1. By using the de!nitions of the normal
cone and the subgradient, we derive the following inequalities for all x ∈ C:

〈σnmn + fn+1 − dn, x − fn+1〉 ≥ 0,

and

σn[)(dn, x) − )(dn, fn+1)] ≥ 〈σnmn, x − fn+1〉.
Adding these two inequalities, we obtain

2σn[)(dn, x) − )(dn, fn+1)] + 2〈fn+1 − dn, x − fn+1〉 ≥ 0, ∀x ∈ C. (15)

Next, we substitute υ = fn+1 − dn and u = x − fn+1 into (9), leading to:

2σn[)(dn, x) − )(dn, fn+1)] + ‖dn − x‖2 − ‖fn+1 − dn‖2 − ‖fn+1 − x‖2 ≥ 0, ∀x ∈ C.

This inequality directly establishes the desired claim.
Claim 3.We demonstrate that if g∗ is a solution to theMBSEP with the GSVI and CFPP

constraints, then

‖fn+1 − g∗
n‖ ≤ ηn‖dn − g∗‖2 ≤ (1 − λσn)‖dn − g∗‖,

where g∗
n = argmin{σn)(g∗, v) + 1

2‖v − g∗‖2 : v ∈ C}, ηn =
√
1 − 2σnν + σ 2

nϒ
2, 0 <

λ < min{ν,ϒ}, 0 < σn < min{1λ , 2ν−2λ
ϒ2−λ2 }, and ϒ = ∑m

k=1 "̂k"̃k. By applying similar rea-
soning to that utilized in (15), we obtain

σn[)(g∗, x) − )(g∗, g∗
n)] + 〈g∗

n − g∗, x − g∗
n〉 ≥ 0, ∀x ∈ C. (16)

By substituting x = g∗
n ∈ C into (15) and x = fn+1 ∈ C into (16), we derive the inequalities

σn[)(dn, g∗
n) − )(dn, fn+1)] + 〈fn+1 − dn, g∗

n − fn+1〉 ≥ 0,

and

σn[)(g∗, fn+1) − )(g∗, g∗
n)] + 〈g∗

n − g∗, fn+1 − g∗
n〉 ≥ 0.

Adding these two inequalities yields

0 ≤ 2σn[)(dn, g∗
n) − )(dn, fn+1) + )(g∗, fn+1) − )(g∗, g∗

n)]

+ 2〈fn+1 − dn − g∗
n + g∗, g∗

n − fn+1〉
= 2σn[)(dn, g∗

n) − )(dn, fn+1) + )(g∗, fn+1) − )(g∗, g∗
n)] + ‖dn − g∗‖2
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− ‖fn+1 − dn − g∗
n + g∗‖2 − ‖fn+1 − g∗

n‖2, (17)

where the last equality follows directly from (9). Utilizing the assumption Ass)()2), we
derive the following inequalities:

)(dn, g∗
n) − )(g∗, g∗

n) ≤ )(dn, g∗) −
m∑

k=1
〈)̂k(dn, g∗), γ̃k(g∗, g∗

n)〉,

and

)(g∗, fn+1) − )(dn, fn+1) ≤ )(g∗, dn) −
m∑

k=1
〈)̂k(g∗, dn), γ̃k(dn, fn+1)〉.

Thus, we can conclude that

)(dn, g∗
n) − )(dn, fn+1) + )(g∗, fn+1) − )(g∗, g∗

n)

≤ )(dn, g∗) + )(g∗, dn) −
m∑

k=1
〈)̂k(dn, g∗), γ̃k(g∗, g∗

n)〉

−
m∑

k=1
〈)̂k(g∗, dn), γ̃k(dn, fn+1)〉.

Using Assumptionz Ass)()1) and Ass)()2), which states that )(υ, u) + )(u,υ) ≤
−ν‖υ − u‖2 for all υ, u ∈ C, we derive the following:

)(dn, g∗
n) − )(dn, fn+1) + )(g∗, fn+1) − )(g∗, g∗

n)

≤ −ν‖dn − g∗‖2 +
m∑

k=1
〈)̂k(dn, g∗), γ̃k(dn, fn+1) − γ̃k(g∗, g∗

n)〉

≤ −ν‖dn − g∗‖2 +
m∑

k=1
"̂k"̃k‖dn − g∗‖‖(dn − fn+1) − (g∗ − g∗

n)‖

= −ν‖dn − g∗‖2 +ϒ‖dn − g∗‖‖dn − fn+1 − g∗ + g∗
n‖. (18)

Combining (17) and (18), we obtain:

0 ≤ (1 − 2σnν)‖dn − g∗‖2 + 2σnϒ‖dn − g∗‖‖dn − fn+1 − g∗ + g∗
n‖

− ‖fn+1 − dn − g∗
n + g∗‖2 − ‖fn+1 − g∗

n‖2

= (1 − 2σnν)‖dn − g∗‖2 −
(
‖fn+1 − dn − g∗

n + g∗‖ − σnϒ‖dn − g∗‖
)2

+ σ 2
nϒ

2‖dn − g∗‖2 − ‖fn+1 − g∗
n‖2

≤ (1 − 2σnν + σ 2
nϒ

2)‖dn − g∗‖2 − ‖fn+1 − g∗
n‖2.

From the range of λ and σn, we have 0 ≤ ηn < 1 − λσn. This establishes the desired claim.
Let us further review how we obtain ηn =

√
1 − 2σnν + σ 2

nϒ
2. By combining inequal-

ities (17) and (18), we get the following

0 ≤ (1 − 2σnν)‖dn − g∗‖2 + 2σnϒ‖dn − g∗‖‖dn − fn+1 − g∗ + g∗
n‖
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− ‖fn+1 − dn − g∗
n + g∗‖2 − ‖fn+1 − g∗

n‖2

≤ · · ·
≤

(
1 − 2σnν + σ 2

nϒ
2) ‖dn − g∗‖2 − ‖fn+1 − g∗

n‖2.

This leads to the following estimate

‖fn+1 − g∗
n‖ ≤ ηn‖dn − g∗‖,

where ηn :=
√
1 − 2σnν + σ 2

nϒ
2. Given that 0 < λ < min{ν,ϒ} and 0 < σn <

min{1λ , 2ν−2λ
ϒ2−λ2 }, we obtain

0 ≤ ηn =
√
1 − 2σnν + σ 2

nϒ
2 < 1 − λσn.

Claim 4.We demonstrate that the sequence {fn} is bounded. Speci!cally, we de!ne

X := C, Y := [0, 1], G := C, s := σn, ∀x ∈ Y ,

W(z, s) := −s)(g∗, z) − 1
2
‖z − g∗‖2, ∀(z, s) ∈ X × Y .

It follows that

M(σn) = argmax{W(z, σn) : z ∈ C}

= argmin{σn)(g∗, z) + 1
2
‖z − g∗‖2 : z ∈ C} = {g∗

n}.

It is important to note thatM is continuous and that limn→∞ g∗
n = g∗. Given the continuity

of) onC, we have limn→∞ )(g∗, g∗
n) = )(g∗, g∗) = 0. In accordance withAss)()3), there

exists a constant M̂(g∗) > 0 such that

|)(g∗, g∗
n)| ≤ M̂(g∗)‖g∗

n − g∗‖, ∀n ≥ 1.

Substituting x = g∗ into (16) and utilizing )(g∗, g∗) = 0, we derive

−σn)(g∗, g∗
n) + 〈g∗

n − g∗, g∗ − g∗
n〉 ≥ 0,

which implies

‖g∗
n − g∗‖2 ≤ −σn)(g∗, g∗

n) ≤ σnM̂(g∗)‖g∗
n − g∗‖, ∀n ≥ 1.

This result assures that

‖g∗
n − g∗‖ ≤ σnM̂(g∗), ∀n ≥ 1.

Furthermore, invoking Lemma 2.6, it can be established that I − µ1B1 and I − µ2B2
are nonexpansive mappings for µ1 ∈ (0, 2α) and µ2 ∈ (0, 2χ). We denote y∗ = PjC(I −
µ2B2)g∗. Consequently, by applying Lemma 2.10, we obtain g∗ = PjC(I − µ1B1)y∗ =
Gg∗. Given that each mapping Zn : C → C is a pseudocontraction, we derive

‖un − g∗‖2 = ζn〈fn − g∗, un − g∗〉 + (1 − ζn)〈Znun − g∗, un − g∗〉
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≤ ζn‖fn − g∗‖‖un − g∗‖ + (1 − ζn)‖un − g∗‖2,
which leads to

‖un − g∗‖ ≤ ‖fn − g∗‖, ∀n ≥ 1. (19)

It follows from (10), (14), and (19) that

‖tn − g∗‖ ≤ ‖vn − g∗‖ ≤ ‖un − g∗‖ ≤ ‖fn − g∗‖, ∀n ≥ 1. (20)

Considering the nonexpansivity ofG and the asymptotic nonexpansivity ofZ0, we deduce
from (20) that

‖dn − g∗‖2

= χn〈fn − g∗, dn − g∗〉 + ρn〈Gdn − g∗, dn − g∗〉 + ξn〈Zn
0 tn − g∗, dn − g∗〉

≤ χn‖fn − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2 + ξn(1 + θn)‖tn − g∗‖‖dn − g∗‖
≤ χn(1 + θn)‖fn − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2 + ξn(1 + θn)‖fn − g∗‖‖dn − g∗‖
= (1 − ρn)(1 + θn)‖fn − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2,

which immediately leads to ‖dn − g∗‖ ≤ (1 + θn)‖fn − g∗‖, ∀n ≥ 1. Therefore,

‖fn+1 − g∗‖
≤ ‖fn+1 − g∗

n‖ + ‖g∗
n − g∗‖ ≤ (1 − λσn)‖dn − g∗‖ + ‖g∗

n − g∗‖
≤ (1 − λσn)(1 + θn)‖fn − g∗‖ + σnM̂(g∗)

≤ [1 − λσn + θn]‖fn − g∗‖ + σnM̂(g∗)

≤ [1 − λσn + 1
2
λσn]‖fn − g∗‖ + σnM̂(g∗)

≤ max
{
‖fn − g∗‖, 2M̂(g∗)

λ

}
.

By induction, we conclude that ‖fn − g∗‖ ≤ max{‖f1 − g∗‖, 2M̂(g∗)
λ }, ∀n ≥ 1. Conse-

quently, the sequence {fn} is bounded, and similarly, the sequences {pn}, {qn}, {rn}, {dn},
{un}, {vn}, and {tn} are also bounded.

Claim 5. We demonstrate that if fn − un → 0 and un − rn → 0, then ωw(fn) ⊂
Sol(C,*). To illustrate this, let us consider an arbitrary !xed element z̃ ∈ ωw(fn). Then,
there exists a subsequence {fnk} ⊂ {fn} such that fnk ⇀ z̃. Given that fn − un → 0 and
un − rn → 0, we obtain

‖fnk − rnk‖ ≤ ‖fnk − unk‖ + ‖unk − rnk‖ → 0, (k → ∞).

Thus, it follows from fnk ⇀ z̃ that unk ⇀ z̃ and rnk ⇀ z̃. Since {rn} ⊂ C, and rnk ⇀ z̃, with
C being weakly closed, we conclude that z̃ ∈ C. Employing (6), we have

αnk*(unk , x) ≥ αnk*(unk , rnk) + 〈rnk − unk , rnk − x〉, ∀x ∈ C.

Taking the limit as k → ∞ and using the conditions that limn→∞ αn = α̃ > 0,*(̃z, z̃) =
0, the boundedness of {rnk}, and the weak continuity of *, we deduce that α̃*(̃z, x) ≥
0, ∀x ∈ C. This demonstrates that z̃ ∈ Sol(C,*).
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Claim 6.We demonstrate that fn → g∗, a unique solution of theMBSEPwith GSVI and
CFPP constraints. To begin, we de!ne5n = ‖fn − g∗‖2. By acknowledging the nonexpan-
sivity of the operator G and the asymptotic nonexpansivity of Z0, we derive the following
inequality:

‖dn − g∗‖2 = χn〈fn − g∗, dn − g∗〉 + ρn〈Gdn − g∗, dn − g∗〉 + ξn〈Zn
0 tn − g∗, dn − g∗〉

≤ χn
2

[
‖fn − g∗‖2 + ‖dn − g∗‖2 − ‖fn − dn‖2

]
+ ρn‖dn − g∗‖2

+ ξn
2

[
‖Zn

0 tn − g∗‖2 + ‖dn − g∗‖2 − ‖Zn
0 tn − dn‖2

]

= χn
2

‖fn − g∗‖2 + 1 + ρn
2

‖dn − g∗‖2 + ξn
2

‖Zn
0 tn − g∗‖2

− χn
2

‖fn − dn‖2 − ξn
2

‖Zn
0 tn − dn‖2

≤ χn
2

‖fn − g∗‖2 + 1 + ρn
2

‖dn − g∗‖2 + ξn(1 + θn)2

2
‖tn − g∗‖2

− χn
2

‖fn − dn‖2 − ξn
2

‖Zn
0 tn − dn‖2.

That is

‖dn − g∗‖2 ≤ χn
2

‖fn − g∗‖2 + 1 + ρn
2

‖dn − g∗‖2 + ξn
2

‖tn − g∗‖2 + θnM̃
2

− χn
2

‖fn − dn‖2 − ξn
2

‖Zn
0 tn − dn‖2,

where supn≥1(2 + θn)‖fn − g∗‖2 ≤ M̃ for some M̃ > 0. This leads to the conclusion that

‖dn − g∗‖2 ≤ 1
1 − ρn

[
χn‖fn − g∗‖2 + ξn‖tn − g∗‖2

+θnM̃ − χn‖fn − dn‖2 − ξn‖Zn
0 tn − dn‖2

]
. (21)

By the results presented in Claims 1 and 2, we can deduce from Equations (20) and (21)
that

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 − ‖fn+1 − dn‖2 + 2σn[)(dn, g∗) − )(dn, fn+1)]

≤ 1
1 − ρn

[χn‖fn − g∗‖2 + ξn‖tn − g∗‖2 + θnM̃ − χn‖fn − dn‖2 − ξn‖Zn
0 tn − dn‖2]

− ‖fn+1 − dn‖2 + 2σn[)(dn, g∗) − )(dn, fn+1)]

≤ 1
1 − ρn

{χn‖fn − g∗‖2 + ξn[‖un − g∗‖2 − ε2‖K∗(I − Z)Kvn‖2 − (1 − 2αnc1)

× ‖rn − un‖2 − (1 − 2αnc2)‖vn − rn‖2] + θnM̃ − χn‖fn − dn‖2

− ξn‖Zn
0 tn − dn‖2} − ‖fn+1 − dn‖2 + 2σn[)(dn, g∗) − )(dn, fn+1)].

Hence,

‖fn+1 − g∗‖2 ≤ ‖fn − g∗‖2 − ξn
1 − ρn

[ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2
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+ (1 − 2αnc2)‖vn − rn‖2] + θnM̃
1 − ρn

− 1
1 − ρn

[χn‖fn − dn‖2 + ξn‖Zn
0 tn − dn‖2]

− ‖fn+1 − dn‖2 + σnK, (22)

where supn≥1{2|)(dn, g∗) − )(dn, fn+1)|} ≤ K for some K>0. In the following, we
demonstrate the convergence of the sequence {5n} to zero from two distinct perspectives.

Aspect 1. Let us assume that there exists an integer n0 ≥ 1 such that the sequence {5n}
is non-increasing. Consequently, we have limn→∞ 5n = ! < +∞ and limn→∞(5n −
5n+1) = 0. From Equation (22), one can derive the following inequality:

ξn
[
ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2 + (1 − 2αnc2)‖vn − rn‖2

]

+ χn‖fn − dn‖2 + ξn‖Zn
0 tn − dn‖2 + ‖fn+1 − dn‖2

≤ ξn
1 − ρn

[
ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2 + (1 − 2αnc2)‖vn − rn‖2

]

+ 1
1 − ρn

[
χn‖fn − dn‖2 + ξn‖Zn

0 tn − dn‖2
]
+ ‖fn+1 − dn‖2

≤ 5n − 5n+1 + θnM̃
1 − ρn

+ σnK.

Since σn → 0, θn → 0, 5n − 5n+1 → 0, 0 < lim infn→∞ χn, 0 < lim infn→∞ ξn, 0 <
lim infn→∞(1 − ρn), 0 < ε, and {αn} ⊂ (α,α) ⊂ (0,min{ 1

2c1 ,
1
2c2 }), we have

lim
n→∞ ‖K∗(I − Z)Kvn‖ = lim

n→∞ ‖fn − dn‖ = lim
n→∞ ‖Zn

0 tn − dn‖ = 0, (23)

lim
n→∞ ‖rn − un‖ = lim

n→∞ ‖vn − rn‖ = lim
n→∞ ‖fn+1 − dn‖ = 0. (24)

Next, we demonstrate that ‖dn − pn‖ → 0 as n → ∞. To this end, we de!ne y∗ =
PjC(g∗ − µ2B2g∗). It follows from the de!nitions of qn and pn that pn = Gdn. By applying
Lemma 2.6, we have the following inequality:

‖qn − y∗‖2 ≤ ‖dn − g∗‖2 − µ2(2χ − µ2)‖B2dn − B2g∗‖2, (25)

‖pn − g∗‖2 ≤ ‖qn − y∗‖2 − µ1(2α − µ1)‖B1qn − B1y∗‖2. (26)

Substituting (25) into (26), and utilizing (20) and (21), we obtain

‖pn − g∗‖2 ≤ ‖dn − g∗‖2 − µ2(2χ − µ2)‖B2dn − B2g∗‖2

− µ1(2α − µ1)‖B1qn − B1y∗‖2

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− µ2(2χ − µ2)‖B2dn − B2g∗‖2

− µ1(2α − µ1)‖B1qn − B1y∗‖2. (27)

Furthermore, by substituting (27) into (22) and referencing (20), we derive

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 + σnK
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≤ χn‖fn − g∗‖2 + ρn‖pn − g∗‖2 + ξn‖Zn
0 tn − g∗‖2 + σnK

≤ χn(1 + θn)
2‖fn − g∗‖2 + ρn‖pn − g∗‖2 + ξn(1 + θn)

2‖tn − g∗‖2 + σnK

≤ (1 − ρn)[1 + θn(2 + θn)]‖fn − g∗‖2 + ρn[‖fn − g∗‖2 + θnM̃
1 − ρn

− µ2(2χ − µ2)‖B2dn − B2g∗‖2 − µ1(2α − µ1)‖B1qn − B1y∗‖2] + σnK

≤ ‖fn − g∗‖2 + θnM̃ + ρnθnM̃
1 − ρn

− ρn[µ2(2χ − µ2)‖B2dn − B2g∗‖2

+ µ1(2α − µ1)‖B1qn − B1y∗‖2] + σnK,

Therefore,

‖fn+1 − g∗‖2 ≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− ρn[µ2(2χ − µ2)‖B2dn − B2g∗‖2

+ µ1(2α − µ1)‖B1qn − B1y∗‖2] + σnK,

which consequently yields

ρn[µ2(2χ − µ2)‖B2dn − B2g∗‖2 + µ1(2α − µ1)‖B1qn − B1y∗‖2]

≤ 5n − 5n+1 + θnM̃
1 − ρn

+ σnK.

Given that σn → 0, θn → 0,5n − 5n+1 → 0, lim infn→∞ ρn > 0 and lim infn→∞(1 −
ρn) > 0, we deduce from µ2 ∈ (0, 2χ) and µ1 ∈ (0, 2α) that

lim
n→∞ ‖B2dn − B2g∗‖ = lim

n→∞ ‖B1qn − B1y∗‖ = 0. (28)

On the other hand, it can be observed that

‖pn − g∗‖2 ≤ 〈qn − y∗, pn − g∗〉 + µ1〈B1y∗ − B1qn, pn − g∗〉

≤ 1
2
[‖qn − y∗‖2 + ‖pn − g∗‖2 − ‖qn − pn + g∗ − y∗‖2]

+ µ1‖B1y∗ − B1qn‖‖pn − g∗‖.

This leads to the conclusion that

‖pn − g∗‖2 ≤ ‖qn − y∗‖2 − ‖qn − pn + g∗ − y∗‖2 + 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖.
(29)

In a similar manner, we derive that

‖qn − y∗‖2 ≤ ‖dn − g∗‖2 − ‖dn − qn + y∗ − g∗‖2 + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖.
(30)

By combining (29) and (30), we can infer from (20) and (21) that

‖pn − g∗‖2 ≤ ‖dn − g∗‖2 − ‖dn − qn + y∗ − g∗‖2 − ‖qn − pn + g∗ − y∗‖2
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+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− ‖dn − qn + y∗ − g∗‖2 − ‖qn − pn + g∗ − y∗‖2

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖. (31)

Substituting (31) into (22), we !nd from (20) that

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 + σnK

≤ χn(1 + θn)
2‖fn − g∗‖2 + ρn‖pn − g∗‖2 + ξn(1 + θn)

2‖tn − g∗‖2 + σnK

≤ (1 − ρn)[1 + θn(2 + θn)]‖fn − g∗‖2 + ρn[‖fn − g∗‖2 + θnM̃
1 − ρn

− ‖dn − qn + y∗ − g∗‖2 − ‖qn − pn + g∗ − y∗‖2 + 2µ1‖B1y∗ − B1qn‖
× ‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖] + σnK

≤ ‖fn − g∗‖2 + θnM̃ + ρnθnM̃
1 − ρn

− ρn[‖dn − qn + y∗ − g∗‖2

+ ‖qn − pn + g∗ − y∗‖2] + 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖
+ 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖] + σnK

= ‖fn − g∗‖2 + θnM̃
1 − ρn

− ρn[‖dn − qn + y∗ − g∗‖2 + ‖qn − pn + g∗ − y∗‖2]

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖ + σnK.

This thus results in

ρn[‖dn − qn + y∗ − g∗‖2 + ‖qn − pn + g∗ − y∗‖2] ≤ 5n − 5n+1 + θnM̃
1 − ρn

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖ + σnK.

We can conclude from (28) that

lim
n→∞ ‖dn − qn + y∗ − g∗‖ = lim

n→∞ ‖qn − pn + g∗ − y∗‖ = 0.

As a result, we obtain

‖dn − Gdn‖ = ‖dn − pn‖ ≤ ‖dn − qn + y∗ − g∗‖ + ‖qn − pn + g∗ − y∗‖
→ 0, (n → ∞). (32)

Noting that un = ζnfn + (1 − ζn)Znun, from (20) and the pseudocontractiveness of Zn,
we arrive at

‖un − g∗‖2 = ζn〈fn − g∗, un − g∗〉 + (1 − ζn)〈Znun − g∗, un − g∗〉
≤ ζn〈fn − g∗, un − g∗〉 + (1 − ζn)‖un − g∗‖2,
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which consequently leads to

‖un − g∗‖2 ≤ 〈fn − g∗, un − g∗〉 = 1
2
[‖fn − g∗‖2 + ‖un − g∗‖2 − ‖fn − un‖2].

Hence, it follows that ‖un − g∗‖2 ≤ ‖fn − g∗‖2 − ‖fn − un‖2. This together with (20),
(21), and (22) implies that

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 + σnK

≤ χn‖fn − g∗‖2 + ρn‖dn − g∗‖2 + ξn(1 + θn)
2‖tn − g∗‖2 + σnK

≤ χn‖fn − g∗‖2 + ρn[‖fn − g∗‖2 + θnM̃
1 − ρn

]

+ ξn(1 + θn)
2[‖fn − g∗‖2 − ‖fn − un‖2] + σnK

≤ (1 + θn)
2‖fn − g∗‖2 + ρnθnM̃

1 − ρn
− ξn(1 + θn)

2‖fn − un‖2 + σnK

≤ ‖fn − g∗‖2 + θnM̃ + ρnθnM̃
1 − ρn

− ξn(1 + θn)
2‖fn − un‖2 + σnK

= ‖fn − g∗‖2 + θnM̃
1 − ρn

− ξn(1 + θn)
2‖fn − un‖2 + σnK.

Thus, it follows that ξn(1 + θn)2‖fn − un‖2 ≤ 5n − 5n+1 + θnM̃
1−ρn + σnK. Hence limn→∞

‖fn − un‖ = 0. It is noteworthy that

(1 − ζn)‖Znun − un‖ = ζn‖fn − un‖ ≤ ‖fn − un‖ → 0, (n → ∞).

Utilizing lim infn→∞(1 − ζn) > 0, we establish

lim
n→∞ ‖Znun − un‖ = lim

n→∞ ‖fn − un‖ = 0. (33)

Employing (23) and (24), we obtain

‖fn − fn+1‖ ≤ ‖fn − dn‖ + ‖dn − fn+1‖ → 0, (n → ∞),

‖vn − un‖ ≤ ‖vn − rn‖ + ‖rn − un‖ → 0, (n → ∞),
(34)

and

‖tn − fn‖ ≤ ‖tn − vn‖ + ‖vn − un‖ + ‖un − fn‖
= ϑn‖K∗(I − Z)Kvn‖ + ‖vn − un‖ + ‖un − fn‖ → 0, (n → ∞). (35)

By combining (23) and (32), we have

‖fn − Gfn‖ ≤ ‖fn − dn‖ + ‖dn − Gdn‖ + ‖Gdn − Gfn‖
≤ 2‖fn − dn‖ + ‖dn − Gdn‖ → 0, (n → ∞). (36)

We assert that ‖fn − Z fn‖ → 0 as n → ∞, where Z := (2I − Z̃)−1. It is evident that
Z̃ : C → C is pseudocontractive and "-Lipschitzian, de!ned by Z̃x = limn→∞ Znx for
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all x ∈ C. We also claim that limn→∞ ‖Z̃ fn − fn‖ = 0. By utilizing the boundedness of the
sequence {fn} and denoting D = conv{fn : n ≥ 1} (the closed convex hull of the set {fn :
n ≥ 1}), we infer from the assumptions that

∑∞
n=1 supx∈D ‖Zn+1x − Znx‖ < ∞. Con-

sequently, by invoking Lemma 2.11, we obtain limn→∞ supx∈D ‖Znx − Z̃x‖ = 0, which
further implies that limn→∞ ‖Znfn − Z̃ fn‖ = 0. This, combining with (33) yields

‖fn − Z̃ fn‖ ≤ ‖fn − un‖ + ‖un − Znun‖ + ‖Znun − Znfn‖ + ‖Znfn − Z̃ fn‖
≤ (1 + ")‖fn − un‖ + ‖un − Znun‖ + ‖Znfn − Z̃ fn‖ → 0, (n → ∞).

(37)

Noting that Z := (2I − Z̃)−1, we establish that Z is nonexpansive and that Fix(Z) =
Fix(Z̃) = ⋂∞

n=1 Fix(Zn) as a consequence of Theorem 6 of [23]. From (37), it follows that

‖fn − Z fn‖ = ‖ZZ−1fn − Z fn‖ ≤ ‖Z−1fn − fn‖
= ‖(2I − Z̃)fn − fn‖ = ‖fn − Z̃ fn‖ → 0 (n → ∞). (38)

By combining (23) and (35), we acquire

‖Zn
0 fn − fn‖ ≤ ‖Zn

0 fn − Zn
0 tn‖ + ‖Zn

0 tn − dn‖ + ‖dn − fn‖
≤ (1 + θn)‖fn − tn‖ + ‖Zn

0 tn − dn‖ + ‖dn − fn‖ → 0 (n → ∞).

This, together with the condition ‖Zn
0 fn − Zn+1

0 fn‖ → 0, implies that

‖fn − Z0fn‖ ≤ ‖fn − Zn
0 fn‖ + ‖Zn

0 fn − Zn+1
0 fn‖ + ‖Zn+1

0 fn − Z0fn‖
≤ (2 + θ1)‖fn − Zn

0 fn‖ + ‖Zn
0 fn − Zn+1

0 fn‖ → 0 (n → ∞). (39)

Next, we demonstrate that limn→∞ ‖fn − g∗‖ = 0. Indeed, since the sequences {dn} and
{fn} are bounded, there exists a subsequence {dnk} ⊂ {dn} such that dnk ⇀ z̃ ∈ C, and

lim inf
n→∞ [)(g∗, dn) + )(dn, fn+1)] = lim

k→∞
[)(g∗, dnk) + )(dnk , fnk+1)]. (40)

From (23) and (24), it follows that fnk ⇀ z̃ and fnk+1 ⇀ z̃. Consequently, by the result
stated in Claim 5, we conclude that z̃ ∈ Sol(C,*). We note thatG andZ are nonexpansive,
and that Z0 is asymptotically nonexpansive. Given that (I − G)fn → 0, (I − Z)fn → 0,
and (I − Z0)fn → 0 (due to (36), (38), and (39)), we can invoke Lemma 2.12 to deduce
that z̃ ∈ Fix(G), z̃ ∈ Fix(Z) = Fix(Z̃) = ⋂∞

k=1 Fix(Zk), and z̃ ∈ Fix(Z0). As a result, we
have z̃ ∈ Fix(G) ∩ Sol(C,*) ∩ ⋂∞

k=0 Fix(Zk). Additionally, we demonstrate that K̃z ∈
Fix(Z). Speci!cally, utilizing the δ-demimetric nature ofZ , it from (23) follows that

1 − δ

2
‖(I − Z)Kvn‖2 ≤ 〈(I − Z)Kvn,K(vn − g∗)〉

≤ ‖K∗(I − Z)Kvn‖‖vn − g∗‖ → 0, (n → ∞). (41)

Observing that vn − fn → 0 and fnk ⇀ z̃, we conclude that vnk ⇀ z̃. SinceK is a bounded
linear operator, it is readily apparent that K is weakly continuous on H1. Thus, we
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obtain Kvnk ⇀ K̃z. Based on the assumption regarding Z , we know that I − Z is demi-
closed at zero. Consequently, from (41) we infer that K̃z ∈ Fix(Z). Hence, it follows
that z̃ ∈ Fix(G) ∩( ∩ ⋂∞

k=0 Fix(Zk) = #, where( = {z ∈ Sol(C,*) : Kz ∈ Fix(Z)}. In
terms of (40), we have

lim inf
n→∞ [)(g∗, dn) + )(dn, fn+1)] = )(g∗, z̃) ≥ 0. (42)

Given that ) is ν-strongly monotone, from fn − dn → 0 (due to (23)), it follows that

lim sup
n→∞

[)(g∗, dn) + )(dn, g∗)] ≤ lim sup
n→∞

(−ν‖dn − g∗‖2) = −ν!. (43)

By combining (42) and (43), we arrive at

lim sup
n→∞

[
)(dn, g∗) − )(dn, fn+1)

]

× lim sup
n→∞

[
)(dn, g∗) + )(g∗, dn) − )(g∗, dn) − )(dn, fn+1)

]

≤ lim sup
n→∞

[)(dn, g∗) + )(g∗, dn)] + lim sup
n→∞

[−)(g∗, dn) − )(dn, fn+1)]

= lim sup
n→∞

[)(dn, g∗) + )(g∗, dn)] − lim inf
n→∞ [)(g∗, dn) + )(dn, fn+1)] ≤ −ν!.

Next, to achieve the objective, it is su"cient to demonstrate that ! = 0. Conversely, we
assume that ! > 0. Without loss of generality, we can assume the existence of n0 ≥ 1 such
that:

)(dn, g∗) − )(dn, fn+1) ≤ −ν!
2
, ∀n ≥ n0.

This condition, in conjunction with (22), guarantees that for all n ≥ n0,

‖fn+1 − g∗‖2 ≤ ‖fn − g∗‖2 − ξn
1 − ρn

[
ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2

+(1 − 2αnc2)‖vn − rn‖2
]
+ θnM̃

1 − ρn
− 1

1 − ρn

[
χn‖fn − dn‖2 + ξn‖Zn

0 tn − dn‖2
]

− ‖fn+1 − dn‖2 + 2σn[)(dn, g∗) − )(dn, fn+1)]

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

+ 2σn[)(dn, g∗) − )(dn, fn+1)]

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− σnν!.

This thus establishes that for all n ≥ n0,

5n − 5n0 ≤ M̃
n−1∑

k=n0

θk
1 − ρk

− ν!
n−1∑

k=n0

σk. (44)
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Given that
∑∞

k=1 σk = ∞,
∑∞

k=1 θk < ∞, and 0 < lim infn→∞(1 − ρn), as well as
limn→∞ 5n = !, we take the limit in (44) as n → ∞ to obtain:

−∞ < ! − 5n0 = lim
n→∞(5n − 5n0) ≤ lim

n→∞



M̃
n−1∑

k=n0

θk
1 − ρk

− ν!
n−1∑

k=n0

σk



 = −∞.

This leads to a contradiction. Therefore, we conclude that limn→∞ 5n = 0 and conse-
quently fn → g∗ ∈ Sol(#,)), where g∗ is the unique solution to the problem EP(#,)).

Aspect 2. Suppose that there exists a sequence {5nk} ⊂ {5n} such that 5nk < 5nk+1
for all k ∈ N. We de!ne the mapping φ : N → N by φ(n) := max{k ≤ n : 5k < 5k+1}. By
applying Lemma 2.13, we obtain:

5φ(n) ≤ 5φ(n)+1, and 5n ≤ 5φ(n)+1.

Using similar reasoning as presented in (24) and (34), we can infer that:

lim
n→∞ ‖rφ(n) − uφ(n)‖ = lim

n→∞ ‖vφ(n) − rφ(n)‖ = lim
n→∞ ‖fφ(n)+1 − dφ(n)‖ = 0, (45)

lim
n→∞ ‖fφ(n) − fφ(n)+1‖ = 0. (46)

Since the sequence {dn} is bounded, there exists a subsequence of {dφ(n)}, which we will
still denote by {dφ(n)}, such that dφ(n) ⇀ z̃. Subsequently, utilizing the same reasoning as
in Aspect 1, we deduce that z̃ ∈ #. From dφ(n) ⇀ z̃ and (45), we conclude that fφ(n)+1 ⇀
z̃. Given the assumption on {αn}, it follows that 1 − 2αφ(n)c1 > 0 and 1 − 2αφ(n)c2 > 0.
Thus, from (22), we can infer that

2σφ(n)[)(dφ(n), fφ(n)+1) − )(dφ(n), g∗)]

≤ 5φ(n) − 5φ(n)+1 − ξφ(n)
1 − ρφ(n)

[
ε2‖K∗(I − Z)Kvφ(n)‖2

+(1 − 2αφ(n)c1)‖rφ(n) − uφ(n)‖2 + (1 − 2αφ(n)c2)‖vφ(n) − rφ(n)‖2
]
+ θφ(n)M̃

1 − ρφ(n)

− 1
1 − ρφ(n)

[
χφ(n)‖fφ(n) − dφ(n)‖2 + ξφ(n)‖Zφ(n)

0 tφ(n) − dφ(n)‖2
]

− ‖fφ(n)+1 − dφ(n)‖2

≤ θφ(n)M̃
1 − ρφ(n)

,

which leads to the conclusion that

)(dφ(n), fφ(n)+1) − )(dφ(n), g∗) ≤ θφ(n)
σφ(n)

· M̃
2(1 − ρφ(n))

. (47)

Note that ) is ν-strongly monotone on C. Hence, we obtain

ν‖dφ(n) − g∗‖2 ≤ −)(dφ(n), g∗) − )(g∗, dφ(n)). (48)
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By combining (47) and (48), we derive from Ass)()1) and z̃ ∈ # that

ν lim sup
n→∞

‖dφ(n) − g∗‖2 = lim sup
n→∞

[
− θφ(n)
σφ(n)

· M̃
2(1 − ρφ(n))

+ ν‖dφ(n) − g∗‖2
]

≤ lim sup
n→∞

[
−)(dφ(n), fφ(n)+1) − )(g∗, dφ(n))

]

= −)(̃z, z̃) − )(g∗, z̃) ≤ 0.

Thus, it follows that lim supn→∞ ‖fφ(n) − g∗‖2 ≤ 0, leading to

lim
n→∞ ‖fφ(n) − g∗‖2 = 0.

From (46), we can express

‖fφ(n)+1 − g∗‖2 − ‖fφ(n) − g∗‖2

= 2〈fφ(n)+1 − fφ(n), fφ(n) − g∗〉 + ‖fφ(n)+1 − fφ(n)‖2

≤ 2‖fφ(n)+1 − fφ(n)‖‖fφ(n) − g∗‖ + ‖fφ(n)+1 − fφ(n)‖2 → 0 (n → ∞).

Given that 5n ≤ 5φ(n)+1, it follows that

‖fn − g∗‖2 ≤ ‖fφ(n)+1 − g∗‖2

≤ ‖fφ(n) − g∗‖2 + 2‖fφ(n)+1 − fφ(n)‖‖fφ(n) − g∗‖ + ‖fφ(n)+1 − fφ(n)‖2.

Consequently, from (46), we conclude that fn → g∗ as n → ∞. This completes the proof.
!

In the case when {Zk}∞k=1 is a countable family of 1-uniformly Lipschitzian pseudo-
contractive self-mappings on C, we propose another iterative algorithm through a new
subgradient extragradient implicit approach.

Theorem 3.2: Let the sequence {fn} be generated by Algorithm 2, and assume that the con-
ditions Ass*–Ass) hold for bifunctions ) and *. Then, under hypotheses (H1)-(H5), the
sequence {fn} converges strongly to the unique solution g∗ of the problem EP(#,)) provided
that Zn

0 fn − Zn+1
0 fn → 0.

Proof: According to Lemma 2.7, it follows that G is nonexpansive. Thus, employing
Banach’s contraction mapping principle, we derive from the sequence {ρn} ⊂ (0, 1) that
for all n ≥ 1, there exists dn ∈ C such that

dn = χnun + ρnGdn + ξnZn
0 tn.

Let us arbitrarily select a !xed point p ∈ # = Fix(G) ∩( ∩ ⋂∞
k=0 Fix(Zk). Given that

limn→∞ θn/σn = 0, wemay assume that θn ≤ 1
2λσn,∀n ≥ 1.Wewill divide the remainder

of the proof into several claims presented below.
Claims 1–3.We demonstrate that the results in Claims 1–3 of the proof of Theorem 3.1

continue to hold. Indeed, by utilizing the same inferences as those in the proof of
Theorem 3.1, we derive the required results.
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Algorithm 2
Initialization:Given f1 ∈ C and ϑ ≥ 0 arbitrarily. Let {ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1) and
{αn}, {σn} ⊂ (0,∞) such that hypotheses (H1)-(H5) hold.
Iterative Steps: Calculate fn+1 as follows:
Step 1. Compute un and rn by (2).
Step 2. Choose wn ∈ ∂2*(un, rn), and compute Cn and vn according to (3).
Step 3. Compute tn = vn − ϑnK∗(I − Z)Kvn, where for any !xed ε > 0, ϑn is chosen
to be the bounded sequence satisfying (4); otherwise set ϑn = ϑ ≥ 0.
Step 4. Compute






qn = PjC(dn − µ2B2dn),
pn = PjC(qn − µ1B1qn),
dn = χnun + ρnpn + ξnZn

0 tn.

Step 5. Compute fn+1 = argmin{σn)(dn, t) + 1
2‖t − dn‖2 : t ∈ C}.

Step 6. Again set n := n + 1 and return to Step 1.

Claim 4.We establish that the sequence {fn} is bounded. Speci!cally, by employing rea-
soning analogous to that in the proof of Theorem 3.1, we assert that the relationship (20)
remains valid. Noting the nonexpansivity of G and the asymptotic nonexpansivity of Z0,
we infer from (20) that

‖dn − g∗‖2 = χn〈un − g∗, dn − g∗〉 + ρn〈Gdn − g∗, dn − g∗〉 + ξn〈Zn
0 tn − g∗, dn − g∗〉

≤ χn‖un − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2 + ξn(1 + θn)‖tn − g∗‖‖dn − g∗‖
≤ χn(1 + θn)‖fn − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2

+ ξn(1 + θn)‖fn − g∗‖‖dn − g∗‖
= (1 − ρn)(1 + θn)‖fn − g∗‖‖dn − g∗‖ + ρn‖dn − g∗‖2,

which immediately implies that ‖dn − g∗‖ ≤ (1 + θn)‖fn − g∗‖. Consequently, we have

‖fn+1 − g∗‖ ≤ ‖fn+1 − d∗
n‖ + ‖d∗

n − g∗‖ ≤ (1 − λσn)‖dn − g∗‖ + ‖d∗
n − g∗‖

≤ (1 − λσn)(1 + θn)‖fn − g∗‖ + σnM̂(g∗) ≤ max
{
‖fn − g∗‖, 2M̂(g∗)

λ

}
.

By induction, we conclude that ‖fn − g∗‖ ≤ max{‖f1 − g∗‖, 2M̂(g∗)
λ }, ∀n ≥ 1. Therefore,

the sequence {fn} is bounded, as are the sequences {pn}, {qn}, {rn}, {dn}, {un}, {vn}, and
{tn}.

Claim 5. We demonstrate that if fn − un → 0 and un − rn → 0, then ωw(fn) ⊂
Sol(C,*). In fact, by applying the same reasoning as in the proof of Theorem 3.1, we obtain
the desired result.

Claim6.We establish that fn → g∗, which is a unique solution of theMBSEPwithGSVI
and CFPP constraints.



26 LU-CHUAN CENG ET AL.

To that end, we de!ne 5n = ‖fn − g∗‖2. By observing the nonexpansivity of G and the
asymptotic nonexpansivity ofZ0, we obtain

‖dn − g∗‖2 = χn〈un − g∗, dn − g∗〉 + ρn〈Gdn − g∗, dn − g∗〉 + ξn〈Zn
0 tn − g∗, dn − g∗〉

≤ χn
2

‖un − g∗‖2 + 1 + ρn
2

‖dn − g∗‖2 + ξn
2

‖tn − g∗‖2 + θnM̃
2

− χn
2

‖un − dn‖2 − ξn
2

‖Zn
0 tn − dn‖2,

where supn≥1(2 + θn)‖fn − g∗‖2 ≤ M̃ for some M̃ > 0. This ensures that

‖dn − g∗‖2 ≤ 1
1 − ρn

[χn‖un − g∗‖2 + ξn‖tn − g∗‖2 + θnM̃ − χn‖un − dn‖2

− ξn‖Zn
0 tn − dn‖2]. (49)

By the results presented in Claims 1 and 2, we derive from Equations (20) and (49) that

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 − ‖fn+1 − dn‖2 + 2σn[)(dn, g∗) − )(dn, fn+1)]

≤ ‖fn − g∗‖2 − ξn
1 − ρn

[ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2

+ (1 − 2αnc2)‖vn − rn‖2] + θnM̃
1 − ρn

− 1
1 − ρn

× [χn‖un − dn‖2 + ξn‖Zn
0 tn − dn‖2] − ‖fn+1 − dn‖2 + σnK, (50)

where supn≥1{2|)(dn, g∗) − )(dn, fn+1)|} ≤ K for some K>0. Finally, we establish the
convergence of the sequence {5n} to zero in the following two respects.

Aspect 1. Suppose there exists an integer n0 ≥ 1 such that the sequence {5n} is
non-increasing. Under these conditions, it follows that limn→∞ 5n = ! < +∞ and that
limn→∞(5n − 5n+1) = 0. From Equation (50), one obtains:

ξn
1 − ρn

[ε2‖K∗(I − Z)Kvn‖2 + (1 − 2αnc1)‖rn − un‖2 + (1 − 2αnc2)‖vn − rn‖2]

+ 1
1 − ρn

[χn‖un − dn‖2 + ξn‖Zn
0 tn − dn‖2] + ‖fn+1 − dn‖2

≤ 5n − 5n+1 + θnM̃
1 − ρn

+ σnK.

Since σn → 0, θn → 0,5n − 5n+1 → 0, 0 < lim infn→∞ χn, 0 < lim infn→∞ ξn and 0 <
lim infn→∞(1 − ρn), we deduce from 0 < ε and {αn} ⊂ (α,α) ⊂ (0,min{ 1

2c1 ,
1
2c2 }) that

lim
n→∞ ‖K∗(I − Z)Kvn‖ = lim

n→∞ ‖un − dn‖ = lim
n→∞ ‖Zn

0 tn − dn‖ = 0, (51)

lim
n→∞ ‖rn − un‖ = lim

n→∞ ‖vn − rn‖ = lim
n→∞ ‖fn+1 − dn‖ = 0. (52)

Next, we aim to demonstrate that limn→∞ ‖fn − g∗‖ = 0. Indeed, by employing analogous
reasoning to that presented in (27), we obtain

‖pn − g∗‖2 ≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− µ2(2χ − µ2)‖B2dn − B2g∗‖2
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− µ1(2α − µ1)‖B1qn − B1y∗‖2,

which together with (50) arrives at

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 + σnK

≤ χn‖un − g∗‖2 + ρn‖pn − g∗‖2 + ξn‖Zn
0 tn − g∗‖2 + σnK

≤ χn(1 + θn)
2‖fn − g∗‖2 + ρn‖pn − g∗‖2 + ξn(1 + θn)

2‖tn − g∗‖2 + σnK

≤ (1 − ρn)[1 + θn(2 + θn)]‖fn − g∗‖2 + ρn[‖fn − g∗‖2 + θnM̃
1 − ρn

− µ2(2χ − µ2)‖B2dn − B2g∗‖2 − µ1(2α − µ1)‖B1qn − B1y∗‖2] + σnK

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− ρn[µ2(2χ − µ2)‖B2dn − B2g∗‖2

+ µ1(2α − µ1)‖B1qn − B1y∗‖2] + σnK,

which hence leads to

ρn[µ2(2χ − µ2)‖B2dn − B2g∗‖2 + µ1(2α − µ1)‖B1qn − B1y∗‖2]

≤ 5n − 5n+1 + θnM̃
1 − ρn

+ σnK.

We conclude from µ2 ∈ (0, 2χ) and µ1 ∈ (0, 2α) that

lim
n→∞ ‖B2dn − B2g∗‖ = lim

n→∞ ‖B1qn − B1y∗‖ = 0. (53)

On the other hand, applying the same reasoning as in Equation (31), we obtain

‖pn − g∗‖2 ≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− ‖dn − qn + y∗ − g∗‖2 − ‖qn − pn + g∗ − y∗‖2

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖,

which combined with (50) yields

‖fn+1 − g∗‖2 ≤ ‖dn − g∗‖2 + σnK

≤ χn(1 + θn)
2‖un − g∗‖2 + ρn‖pn − g∗‖2 + ξn(1 + θn)

2‖tn − g∗‖2 + σnK

≤ (1 − ρn)[1 + θn(2 + θn)]‖fn − g∗‖2 + ρn[‖fn − g∗‖2 + θnM̃
1 − ρn

− ‖dn − qn + y∗ − g∗‖2 − ‖qn − pn + g∗ − y∗‖2 + 2µ1‖B1y∗ − B1qn‖
× ‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖] + σnK

≤ ‖fn − g∗‖2 + θnM̃
1 − ρn

− ρn[‖dn − qn + y∗ − g∗‖2 + ‖qn − pn + g∗ − y∗‖2]

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖ + σnK.
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This leads to

ρn[‖dn − qn + y∗ − g∗‖2 + ‖qn − pn + g∗ − y∗‖2] ≤ 5n − 5n+1 + θnM̃
1 − ρn

+ 2µ1‖B1y∗ − B1qn‖‖pn − g∗‖ + 2µ2‖B2g∗ − B2dn‖‖qn − y∗‖ + σnK.

We obtain from (53) that limn→∞ ‖dn − qn + y∗ − g∗‖ = limn→∞ ‖qn − pn + g∗ −
y∗‖ = 0. Consequently,

‖dn − Gdn‖ = ‖dn − pn‖ ≤ ‖dn − qn + y∗ − g∗‖ + ‖qn − pn + g∗ − y∗‖
→ 0 (n → ∞). (54)

Applying the analogous reasoning to that of (33), we obtain limn→∞ ‖Znfn − un‖ =
limn→∞ ‖fn − un‖ = 0, which hence leads to

‖fn − Znfn‖ ≤ ‖fn − un‖ + ‖un − Znfn‖ → 0 (n → ∞).

Concurrently, (51) and (52) imply that

‖fn − dn‖ ≤ ‖fn − un‖ + ‖un − dn‖ → 0 (n → ∞), (55)

and hence

‖fn − fn+1‖ ≤ ‖fn − dn‖ + ‖dn − fn+1‖ → 0 (n → ∞).

We assert that ‖Z0fn − fn‖ → 0 and ‖Gfn − fn‖ → 0 as n → ∞. Notably, by acknowledg-
ing the nonexpansivity of G, we can infer from Equations (54) and (55) that

‖Gfn − fn‖ ≤ ‖Gfn − Gdn‖ + ‖Gdn − dn‖ + ‖dn − fn‖
≤ 2‖fn − dn‖ + ‖Gdn − dn‖ → 0 (n → ∞).

We infer from (51), (52), and (55) that

‖vn − fn‖ ≤ ‖vn − rn‖ + ‖rn − un‖ + ‖un − fn‖ → 0 (n → ∞),

‖tn − fn‖ ≤ ‖tn − vn‖ + ‖vn − fn‖ = ϑn‖K∗(I − Z)Kvn‖ + ‖vn − fn‖
→ 0 (n → ∞),

and hence

‖Zn
0 fn − fn‖ ≤ ‖Zn

0 fn − Zn
0 tn‖ + ‖Zn

0 tn − dn‖ + ‖dn − fn‖
≤ (1 + θn)‖fn − tn‖ + ‖Zn

0 tn − dn‖ + ‖dn − fn‖ → 0 (n → ∞).

Using the same reasoning as in (39), we obtain

lim
n→∞ ‖fn − Z0fn‖ = 0.

Furthermore, employing the same reasoning as presented in Aspect 1 of the proof of
Theorem 3.1, we establish that limn→∞ 5n = 0. Consequently, it follows that fn → g∗ ∈
Sol(#,)), where g∗ denotes the unique solution of the problem EP(#,)).
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Aspect 2. Suppose there exists a subsequence {5nk} ⊂ {5n} such that 5nk < 5nk+1 for
all k ∈ N. We de!ne the mapping φ : N → N by φ(n) := max{k ≤ n : 5k < 5k+1}. In
the remainder of the proof, we will utilize the same reasoning as presented in Aspect 2 of
the proof of Theorem 3.1 to derive the desired result. This concludes the proof. !

Our algorithms are more general and re!ned than the existing ones, as they address the
solution of theMBSEP under GSVI and CFPP constraints. The theoretical results obtained
in this paper extend and improve upon those found in [4, 15]. In comparison to the!ndings
presented in Ceng and Wen [4], and He et al. [15], our results o$er improvements and
extensions in several key aspects.

(i) The accelerated subgradient extragradientmethod is particularity useful for solving
the more general problem that is MBSEP with GSVI and CFPP constraints. Specif-
ically, the original iterative step dn = vn − ϑnK∗(I − Z)Kvn is transformed into
the composite Mann implicit iteration dn = χnfn + ρnGdn + ξnZn

0 tn, where tn =
vn − ϑnK∗(I − Z)Kvn. Additionally, the original hybrid deepest-descent step
fn+1 = ρnfn + ((1 − ρn)I − χnρF)dn is developed into the projection iteration
fn+1 = argmin{σn)(dn, t) + 1

2‖t − dn‖2 : t ∈ C}.
(ii) The hybrid extragradient-like implicit approach for approximating an element

of Fix(G) ∩ (
⋂∞

k=0 Fix(Zk)) developed in [4] has been extended to create a new
subgradient extragradient implicit approach for solving the MBSEP with GSVI
and CFPP constraints. Furthermore, it was demonstrated in [4] that fn → g∗ ∈
Fix(G) ∩ (

⋂∞
k=0 Fix(Zk)). In this paper, we show that fn → g∗ ∈ Fix(G) ∩( ∩

(
⋂∞

k=0 Fix(Zk)), where g∗ is a solution of EP(#,)).
(iii) The problem of !nding an element of the MBEP with the GSVI and CFPP

constraints in [15] is expanded to formulate the MBSEP with the same GSVI
and CFPP constraints. The subgradient extragradient implicit rule from [15]
is generalized to establish a novel subgradient extragradient implicit approach
for addressing the MBSEP with the GSVI and CFPP constraints. For instance,
the original Mann implicit iteration given by un = ζnfn + (1 − ζn)Wnun (with
Wn being nonexpansive) in [15] is re!ned into the new Mann implicit iteration
un = ζnfn + (1 − ζn)Znun (where Zn is an "-uniformly Lipschitzian pseudocon-
traction). Similarly, the original Mann implicit iteration dn = χnfn + ρnGdn +
ξnZn

0 vn with vn = argmin{αn*(rn, z) + 1
2‖z − un‖2 : z ∈ Cn} is transformed into

the composite Mann implicit iteration dn = χnfn + ρnGdn + ξnZn
0 tn with tn =

vn − ϑnK∗(I − Z)Kvn.

4. Applicability and implementability

De!ne mappings B1,B2 : H1 → H1 as α-inverse-strongly monotone and χ-inverse-
strongly monotone, respectively. Furthermore, de!ne G : H1 → C as G := PjC(I −
µ1B1)PjC(I − µ2B2) for µ1 ∈ (0, 2α) and µ2 ∈ (0, 2χ). Let Z0 : H1 → C be an asymp-
totically nonexpansive mapping with a sequence {θn}, and let Zn = Z1 : C → C be a
nonexpansive mapping for all n ≥ 1. Assume that K : H1 → H2 is a non-zero bounded
linear operator with adjoint K∗, and that Z is a δ-demimetric self-mapping on H2 such
that I − Z is demiclosed at zero, where δ ∈ (−∞, 1). Let# = Fix(G) ∩( ∩ VI(C,A) 0=
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Algorithm 3
Initialization:Given f1 ∈ C and ϑ ≥ 0 arbitrarily. Let {ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1) and
{αn}, {σn} ⊂ (0,∞) such that hypotheses (H1)-(H5) hold.
Iterative Steps: Calculate fn+1 as follows:
Step 1. Compute

{
un = ζnfn + (1 − ζn)Z1un,
rn = PjC(un − αnAun).

Step 2. Choose wn = Aun, and compute
{
Cn = {υ ∈ H1 : 〈un − αnwn − rn,υ − rn〉 ≤ 0},
vn = PjCn(un − αnArn).

Step 3. Compute tn = vn − ϑnK∗(I − Z)Kvn, where for any !xed ε > 0, ϑn is chosen
to be the bounded sequence satisfying (3); otherwise set ϑn = ϑ ≥ 0.
Step 4. Compute






qn = PjC(dn − µ2B2dn),
pn = PjC(qn − µ1B1qn),
dn = χnfn + ρnpn + ξnZn

0 tn.

Step 5. Compute fn+1 = argmin{σn)(dn, t) + 1
2‖t − dn‖2 : t ∈ C}.

Step 6. Set n := n + 1 and return to Step 1.

∅ where ( = {z ∈ ⋂1
i=0 Fix(Zi) : Kz ∈ Fix(Z)}. Assume that A satis!es the following

conditions:

(B1) A is monotone.
(B2) A is weakly to strongly continuous, i.e. for all {un} ⊂ H1, it holds that un ⇀ u ⇒

Aun → Au.
(B3) A is L-Lipschitz continuous for some constant L>0.

Let bifunction ) and the positive sequences {αn}, {σn}, {ζn}, {χn}, {ρn}, and {ξn}
as de!ned in Algorithm 1. We de!ne the bifunction * : H1 × H1 → R as follows:
*(u,υ) := 〈Au,υ − u〉, ∀u, υ ∈ H1. It is readily veri!ed that the bifunction* satis!es
the conditions Ass*(*1)-Ass*(*2) and is Lipschitz continuous with constants c1 = c2 =
L
2 . Thus, the subgradient extragradient implicit Algorithm 1 simpli!es to the following
Algorithm 3 for solving the GSVI, VIP, and SFP.

Using Theorem 3.1, we can immediately derive the following result.

Theorem 4.1: Let the sequence {fn} be generated by Algorithm 3. Then {fn} converges
strongly to the unique solution g∗ of the problem EP(#,)) provided thatZn

0 fn − Zn+1
0 fn →

0.
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Algorithm 4
Initialization:Given f1 ∈ C and ϑ ≥ 0 arbitrarily. Let {ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1) and
{αn}, {σn} ⊂ (0,∞) such that hypotheses (H1)-(H5) hold.
Iterative Steps: Calculate fn+1 as follows:
Step 1–Step 3 are the same as Algorithm 3.
Step 4. Compute






qn = PjC(dn − µ2B2dn),
pn = PjC(qn − µ1B1qn),
dn = χnun + ρnpn + ξnZn

0 tn.

Step 5. Compute fn+1 = argmin{σn)(dn, t) + 1
2‖t − dn‖2 : t ∈ C}.

Step 6. Set n := n + 1 and return to Step 1.

Similarly, the subgradient extragradient implicit Algorithm 2 can be reduced to the
following Algorithm 4 for solving the GSVI, VIP, and SFP.

Using Theorem 3.2, we derive the following result.

Theorem 4.2: Let the sequence {fn} be generated by Algorithm 4. Then {fn} converges
strongly to the unique solution g∗ of the problem EP(#,)) provided thatZn

0 fn − Zn+1
0 fn →

0.

5. Numerical illustration

This section showcases a set of numerical experiments aimed at evaluating the perfor-
mance of the proposed methods through a representative example. The main goal is to
o$er practical insights into the parameter selection process for the algorithms under con-
sideration. The proposed algorithmswere implemented usingMATLAB and executed on a
machine equippedwith an Intel(R) Core(TM) i5-6200CPU@2.30GHz and 8GB of RAM.

Example 5.1: In this example, the proposed Algorithms 1 and 2 are applied to solve
the GSVI, VIP, and SFP. Let C = [−2, 2] and H1 = H2 := H = R. De!ne the map-
pingsZ1 : C → C,Z0 : H → C,A : H → H, Bk : H → H (k = 1, 2), )̂1, γ̃1 : C × C →
H, ) : C × C → R, as well as Z ,K : H → H, as follows:

Z1(u) = sin u, Z0(u) = 5
6
sin u, A(u) = u + sin u, Bk(u) = u + 1

2
sin u,

)(u,υ) = 〈u + 1
2
sin u,υ − u〉, )̂1(u,υ) = u − υ + 1

2
(sin u − sinυ),

γ̃1(u,υ) = u − υ, Z(u) = 1
5
u + 3

5
sin(u), , K(υ) = υ.

According to the above de!nition, we have

(1) Z1 is nonexpansive with Fix(Z1) = {0}, and Z0 is asymptotically nonexpansive
with θn = (5/6)n for all n ≥ 1, such that ‖Zn+1

0 fn − Zn
0 fn‖ → 0 as n → ∞.
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(2) The set Fix(Z0) = {0} is well known. Furthermore, the operator A is monotone
and L-Lipschitz continuous with L = 2. It can be veri!ed that c1 = c2 = L

2 = 1 and
0 ∈ VI(C,A).

(3) For k = 1, 2, the operator Bk is 2
9 -inverse-strongly monotone. Note that G(0) =

PjC(I − 1
3B1)PjC(I − 1

3B2)0 = 0, and thus 0 ∈ Fix(G).
(4) K is a bounded linear operator onH. It is clear thatZ is a δ-demicontractive map-

ping with δ = 1
5 , and Fix(Z) = {0}. In fact, Z is δ-strictly pseudocontractive with

δ = 1
5

Note that ( = {z ∈ ⋂1
k=0 Fix(Zk) : K(z) ∈ Fix(Z)} = {0}. Therefore, # = Fix(G) ∩

( ∩ VI(C,A) = {0} 0= ∅. Observe that 0 < 1
5 = ε ≤ ϑn ≤ (1−δ)‖(I−Z)K(vn)‖2

‖K∗(I−Z)K(vn)‖2 − ε = 3
5 , if

(I − Z)K(vn) 0= 0, and ϑn = ϑ = 1
5 otherwise. Hence, we set ϑn = 1

5 for all n ≥ 1.
Moreover, it is readily known that:

(a) ) is ν-strongly monotone with ν = 1
2 ;

(b) For "̂1 = 3
2 and "̃1 = 1, the mappings )̂1 and γ̃1 satisfy the following proper-

ties: )̂1(u,υ) + )̂1(υ, u) = 0, ‖)̂1(u,υ)‖ ≤ "̂1‖u − υ‖, γ̃1(u, u) = 0, ‖γ̃1(u,υ) −
γ̃1(x, y)‖ = "̃1‖(u − υ) − (x − y)‖, and

)(u,υ) + )(υ,w) =
〈
u + 1

2
sin u,υ − u

〉
+

〈
υ + 1

2
sin υ,w − υ

〉

=
〈
u + 1

2
sin u,w − u

〉
+

〈
u − υ + 1

2
(sin u − sinυ),υ − w

〉

= )(u,w) + 〈)̂1(u,υ), γ̃1(υ,w)〉
≥ )(u,w) − "̂1"̃1‖u − υ‖‖υ − w‖

≥ )(u,w) − 1
2
ϒ‖u − υ‖2 − 1

2
ϒ‖υ − w‖2,

where ϒ = "̂1"̃1 = 3
2 .

(c) For any sequence {υn} ⊂ C such that υn → υ, we have: lim supn→∞
|)(υ,υn)|
‖υn−υ‖ =

lim supn→∞
|〈υ+ 1

2 sin υ,υn−υ〉|
‖υn−υ‖ ≤ ‖υ + 1

2 sinυ‖ ≤ 5
2 < +∞.

Let

µ1 = µ2 = 1
3
, ζn = λ = 2

9
, α = 1

6
, α = 3

7
, αn = 1

3
, χn = 1

3(n + 1)
+ 1

6
,

ρn = 3n + 2
3(n + 1)

− 1
3
, ξn = 1

6
, and σn = 1

3(n + 1)
.
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Note that limn→∞ θn/σn = 0,
∑∞

n=1 θn < ∞. In addition, it is evident that the sequences
{ζn}, {χn}, {ρn}, {ξn} ⊂ (0, 1) and {αn}, {σn} ⊂ (0,∞) satisfy the hypotheses (H1)-(H4).
Next, we verify that (H5) holds as well. Indeed, observe that

2σnν − σ 2
nϒ

2 = 1
3(n + 1)

(
1 − 3

4
· 1
n + 1

)
< 1,

0 < λ = 2
9

<
1
2

= min
{
1
2
,
3
2

}
= min{ν,ϒ},

and

0 < σn = 1
3(n + 1)

≤ 1
6

<
1620
6417

= 1 − 4
9

9
4 − 4

81
= min

{
9
2
,
1 − 4

9
9
4 − 4

81
,
1
9
4

}

= min
{
1
λ
,
2υ − 2λ
ϒ2 − λ2

,
2ν
ϒ2

}
.

In this case, Algorithm 3 can be reformulated as follows:






un = 2
9
fn + 7

9
Z1un,

rn = PjC(un − 1
3
Aun),

vn = PjCn(un − 1
3
Arn),

tn = vn − 1
5
(I − Z)vn,

dn =
(

1
3(n + 1)

+ 1
6

)
fn +

(
3n + 2
3(n + 1)

− 1
3

)
pn + 1

6
Zn
0 tn,

qn = PjC

(
dn − 1

3
B2dn

)
,

pn = PjC

(
qn − 1

3
B1qn

)
,

fn+1 = argmin
{

1
3(n + 1)

)(dn, t) + 1
2
‖t − dn‖2 : t ∈ C

}
,

where Cn is chosen as in Algorithm 3 for each n ≥ 1.
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On the other hand, Algorithm 4 can be reformulated as follows:






un = 2
9
fn + 7

9
Z1fn,

rn = PjC(un − 1
3
Aun),

vn = PjCn(un − 1
3
Arn),

tn = vn − 1
5
(I − Z)vn,

dn =
(

1
3(n + 1)

+ 1
6

)
un +

(
3n + 2
3(n + 1)

− 1
3

)
pn + 1

6
Zn
0 tn,

qn = PjC

(
dn − 1

3
B2dn

)
,

pn = PjC

(
qn − 1

3
B1qn

)
,

fn+1 = argmin
{

1
3(n + 1)

)(dn, t) + 1
2
‖t − dn‖2 : t ∈ C

}
,

where Cn is chosen as in Algorithm 4 for each n ≥ 1.
Next, we present a series of numerical experiments based on Example 5.1 to evaluate

the performance of Algorithm 3 and Algorithm 4. The performance is assessed in terms
of execution time (t, in seconds) and the number of iterations (n) required for convergence.
Speci!cally, we aim to examine how the performance of our algorithms is in#uenced by
variations in the following parameters:

(i) Di$erent initial values of f1;
(ii) Di$erent values of the sequence {ζn} ⊂ (0, 1).
(iii) Di$erent values of {αn} such that 0 < αn < min{ 1

2c1 ,
1
2c2 } = 1

2 ;
(iv) Di$erent values of {ϑn} such that 1

5 ≤ ϑn ≤ 3
5 ;

(v) Di$erent values of µ1 ∈ (0, 2α) such that 0 < µ1 < 4
9 ;

(vi) Di$erent combinations of the sequences {χn}, {ρn}, and {ξn}, where each sequence
belongs to (0, 1) and satis!es Conditions (H1)–(H2).

In all numerical experiments, the stopping criterion is set to En = ‖fn+1 − fn‖ ≤ 10−6.
Unless otherwise speci!ed in the individual experiments, the default values for the param-
eters and sequences are as follows:

f1 = 2, ζn = 2
9
, αn = 1

3
, ϑn = 1

5
, χn = 1

3(n + 1)
+ 1

6
,

ρn = 3n + 2
3(n + 1)

− 1
3
, ξn = 1

6
, µ1 = µ2 = 1

3
, σn = 1

3(n + 1)
.

Experiment 1. (Impact of the chosen initial point f1). Table 1 summarizes the numerical
results obtained for six distinct values of f1.
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Table 1. Numerical data for Experiment 1.

Algorithm 3 Algorithm 4

f1 n t n t

−1.87 46 0.653 50 0.666
−1.23 45 0.561 49 0.660
−0.54 42 0.510 47 0.566
0.79 43 0.533 48 0.576
1.46 45 0.550 49 0.588
1.92 46 0.550 50 0.609

Table 2. Numerical data for Experiment 2.

Algorithm 3 Algorithm 4

ζn n t n t

0.05 45 0.544 42 0.525
0.25 46 0.548 45 0.571
0.45 47 0.585 46 0.585
0.65 47 0.551 47 0.596
0.85 47 0.588 47 0.570
0.95 48 0.598 48 0.633

Table 3. Numerical data for Experiment 3.

Algorithm 3 Algorithm 4

αn n t n t

0.05 84 0.669488 82 0.655022
0.15 49 0.382301 47 0.412077
0.25 42 0.333577 41 0.331343
0.35 48 0.394391 47 0.390338
0.45 82 0.653176 80 0.622670
0.48 121 0.943851 116 0.913177

Based on the data presented in Table 1, we have: (i) Both the number of iterations
and CPU time demonstrate minimal sensitivity to changes in f1. This indicates that Algo-
rithms 3 and 4 exhibit relative stability with respect to this parameter. (ii) For a majority of
f1 values, the iteration count (n) for Algorithm 4 is slightly higher than that of Algorithm 3.
The CPU time (t) follows a similar trend, generally decreasing as f1 increases.

Experiment 2. (Impact of the chosen parameter ζn). Table 2 presents the numerical results
obtained for six distinct values of ζn.

Based on the numerical data in Table 2, we obatin: (i) Both algorithms exhibit sta-
ble iteration counts as ζn increases. Algorithm 3 generally requires more iterations than
Algorithm 4 for smaller values of ζn. (ii) Generally, lower values of ζn appear more
advantageous for both algorithms in terms of achieving reduced CPU time and iteration
counts.

Experiment 3. (Impact of the chosen parameter αn). Table 3 gives numerical results for six
distinct values of αn.

The data inTable 3 reveal the following trends regarding the impact ofαn on the iteration
count n and CPU time t for both algorithms: (i) For both Algorithms 3 and 4, the iteration
count n decreases as αn increases from 0.05 to 0.25, reaching a minimum of 42 iterations
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Table 4. Numerical data for Experiment 4.

Algorithm 3 Algorithm 4

ϑn n t n t

0.20 46 0.373672 45 0.358463
0.35 46 0.369676 44 0.351850
0.45 45 0.376370 44 0.348053
0.50 45 0.376668 43 0.328172
0.55 45 0.371132 43 0.335943
0.60 44 0.346172 43 0.326724

Table 5. Numerical data for Experiment 5.

Algorithm 3 Algorithm 4

µ1 n t n t

0.05 46 0.578 45 0.513
0.12 46 0.592 45 0.583
0.23 46 0.553 45 0.567
0.30 46 0.586 45 0.561
0.37 46 0.584 45 0.568
0.42 46 0.581 45 0.566

for Algorithm 3 and 41 iterations for Algorithm 4 at αn = 0.25. The CPU time t exhibits a
similar trend. (ii) In both algorithms, αn = 0.25 consistently results in the lowest iteration
count and CPU time, making it the most e"cient choice for convergence.
Experiment 4. (Impact of the chosen parameter ϑn). Numerical results for six distinct
values of ϑn are presented in Table 4.

Based on the numerical data in Table 4, we have: (i) For Algorithm 3, the performance
remains largely una$ected by variations in ϑn, both in terms of the number of iterations
and CPU time. (ii) For Algorithm 4, higher values of ϑn lead to a reduction in the number
of iterations and faster convergence in terms of CPU time. This suggests that the range
ϑn ≥ 0.50 is optimal for Algorithm 4, as it results in faster execution and a lower number
of iterations.
Experiment 5. (Impact of the chosen parameter µ1). Numerical results for six di$erent
values of µ1 are displayed in Table 5.

Based on Table 5, we obtain: (i) Both Algorithms 3 and 4 maintain a stable iteration
count across all tested values of µ1. (ii) In terms of CPU time, Algorithm 4 generally
performs slightly faster thanAlgorithm3,with the lowest CPU time observed atµ1 = 0.05.
Experiment 6. (Impact of the chosen sequences χn, ρn, and ξn). Table 6 presents the
numerical results obtained for ten distinct sets of values for χn, ρn, and ξn.

Based on the numerical results presented in Table 6, several key observations can be
made regarding the behaviour and performance of the proposed algorithms under vary-
ing values of the parameters {χn}, {ρn}, and {ξn}: (i) The numerical experiments indicate
that a balanced approach to selecting the sequences {χn}, {ρn}, and {ξn} is key to optimizing
the convergence rate of the proposed algorithms. The optimal sequences typically involve
values that are moderate or gradually decreasing, which allows the algorithms to achieve
both stability and e"ciency. (ii) The most e"cient sequences for achieving faster conver-
gence are as follows: {χn} should have moderate, slowly decreasing values around 1

4 or 1
3 ;
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Table 6. Numerical data corresponding to Experiment 6.

Algorithm 3 Algorithm 4

Case χn ρn ξn n t n t

c1
1
2

+ 1
4k

1
3

1
6

− 1
4k

77 0.991 73 0.991

c2
1
4

+ 1
4(k + 1)

1
2

− 1
4(k + 1)

1
4

50 0.607 48 0.688

c3
1
3

+ 1
6k

1
3

− 1
6k

1
3

51 0.618 49 0.631

c4
1
3

+ 1
3k

1
3

− 1
6k

1
3

− 1
6k

53 0.655 51 0.624

c5
1
5

2
5

2
5

41 0.502 41 0.518

c6
1
4

− 1
12(k + 1)

1
2

1
4

+ 1
12(k + 1)

48 0.549 47 0.638

c7
1
2

+ 1
4k

1
4

1
4

− 1
4k

70 0.826 67 0.753

c8
3
10

+ 1
10k

3
10

− 1
10k

4
10

47 0.537 45 0.518

c9
1
4

+ 1
8k

1
2

− 1
8k

1
4

49 0.575 48 0.572

c10
1
3

+ 1
6(k + 1)

1
2

− 1
6(k + 1)

1
6

58 0.707 57 0.715

{ρn} should maintain stable values between 1
3 and 1

2 ; and {ξn} should hold !xed or stable
values around 1

4 or 1
3 . This conclusion is supported by the best-performing cases, such as

case c5.

6. Conclusions

In this article, we have introduced two novel iterative algorithms based on the subgradient
extragradient implicit approach to solve the monotone bilevel split equilibrium problem
(MBSEP), which incorporates the generalized split variational inequality (GSVI) and com-
mon !xed point problem (CFPP) constraints. Our approach leverages the subgradient
projection onto a constructible half-space, circumventing the need for a second mini-
mization over a closed convex set typically required in traditional methods. Additionally,
by employing Mann’s implicit iteration scheme, we have developed a new methodology
for tackling the GSVI and CFPP within the context of bilevel optimization. This has led
to the derivation of iterative algorithms that can e"ciently solve the generalized varia-
tional inequality (GSVI), variational inequality problem (VIP), and split feasibility problem
(SFP), thus extending the scope of applicability of extragradient methods to a wider range
of equilibrium problems. Through rigorous theoretical analysis, we have established strong
convergence results for the proposed algorithms under suitable conditions.

The current approaches primarily addressmonotone bilevel split equilibrium problems.
However, futurework could focus on extending the proposed algorithms to non-monotone
settings, where the equilibrium conditions are not guaranteed to satisfy monotonicity.
This would require the development of new convergence analysis techniques and the
exploration of alternative strategies for non-monotone equilibrium problems. Potential
strategies include adapting the algorithms to handle weakly monotone or quasimonotone
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operators, which could be achieved by modifying the projection steps or incorporating
relaxed conditions for convergence. Furthermore, dual inertial methods or other alterna-
tive minimization techniques could be integrated to improve convergence in the absence
of strict monotonicity.

In conclusion, the methods presented in this work lay a strong foundation for solving
complex bilevel equilibrium problems. Future advancements could further expand their
applicability and e"ciency, particularly in challenging real-world contexts. These include
the potential adaptation to non-monotone problems and the incorporation of additional
techniques to handle a broader range of equilibrium conditions.
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