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ABSTRACT
In this paper, we investigate the Tseng’s extragradient algorithm for non-
Lipschitzian variational inequalities with pseudomonotone vector fields on
Hadamard manifolds. The convergence analysis of the proposed algorithm
is discussed under mild assumptions. Two experiments are provided to illus-
trate the asymptotical behavior of the algorithm. The results presented in
this paper generalize some known results presented in the literature.
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1. Introduction

The theory of variational inequalities has important applications in many fields, such as machine
learning, network equilibrium problems, image reconstruction, signal restoration and so on. It
has been extensively studied in finite or infinite dimensional linear spaces; see, e.g. [1–5] and the
references therein.

Recently, in many practical applications, the natural structure of the data is modeled as constrained
optimization problems, where the constraints are non-linear and non-convex. More specially, the con-
straints are Riemannian manifolds, see [6–8]. Many issues in nonlinear analysis, such as fixed point
problems, variational inequality problems, and optimization problems have been magnified from
the linear setting to nonlinear systems because the problems cannot be posted in linear spaces and
require a manifold structure. Therefore, the extension of the concepts and techniques in variational
inequalities and related topics from Euclidian spaces to Riemannian manifolds is natural. Indeed, the
generalizations of optimization methods from Euclidean spaces to Riemannian manifolds also have
some important advantages; see, e.g. [9–12].

In 2003, Németh [13] studied the variational inequality on Hadamard manifolds, which consists
of finding x ∈ C such that

〈Ax, exp−1
x y〉 ≥ 0, ∀y ∈ C, (1)
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where C is a nonempty convex and closed set in Hadamard manifold M, A : C → TM is a vec-
tor field, that is, Ax ∈ TxM for each x ∈ C, and exp−1 is the inverse of the exponential map. One
denotes (1) by VI(C, A) and it’s the solution set by �, which is assumed to be nonempty. Variational
inequality problem (1) on the Hadamard manifolds is an extension of the Hartman Stampacchia vari-
ational inequality in Euclidean spaces. More precisely, if M = R

n, then the vector field A : C → TM
collapses to the operator A : C → R

n. So problem (1) is reduced to the problem of finding x ∈ C such
that 〈A(x), y − x〉 ≥ 0, ∀y ∈ C. Actually, in the recent years, some algorithms to solve the variational
inequalities which involve monotone operators have been extended from the framework of Hilbert
spaces to the more general framework of the Riemannian manifolds; see, e.g. [14–16]. To the best
of our knowledge, the more focused algorithms are Korpelevich’s method [17] and proximal point
algorithm [18]. Recall that Tseng [19] introduced the Tseng’s extragradient method for solving pseu-
domonotone variational inequalities in finite and infinite dimensional linear spaces. It is known that
the research on pseudomonotone variational inequalities is limited due to the conditions imposed on
operators and the nonlinearity of manifolds.

Motivated by the results described above, the aim of this paper is to present an extragradient
algorithm for variational inequalities associated with pseudomonotone vector fields in Hadamard
manifolds and to study the convergence properties of the extragradient algorithm. We first incorpo-
rate the Tseng’s extragradient method with a suitable linesearch to remove the dependence on the
Lipschitz continuity modulus of A when choosing stepsize λ. In particular, we weaken the Lipschitz
continuity of A to the uniform continuity, which is crucial when the operator is not Lipschitz contin-
uous or the Lipschitz modulus is difficult to estimate in advance. To the best of our knowledge, this
result has not been studied in Hadamard manifolds before. It is worth mentioning that our results
can be seen as a generalization of the corresponding results presented by Thong and Vuong [20] in
real Hilbert spaces.

The rest of this paper is presented by dividing several sections. In Section 2, we present some basic
definitions and fundamental results from manifolds which will be needed in the sequel. In Section 3,
we propose a Tseng’s extragradient method for finding the solutions of the variational inequality
problem (1) in the setting of Hadamard manifolds and study the convergence of the sequences gen-
erated by the proposed algorithm. In Section 4, we give two numerical experiments to illustrate the
performance of the proposed algorithm. Finally, Section 5 concludes the paper with a brief summary.

2. Preliminaries

Let M be a finite dimensional differentiable manifold. The set of all tangents at x ∈ M is called
a tangent space of M at x ∈ M, which forms a vector space of the same dimension as M and is
denoted by TxM. The tangent bundle of M is denoted by TM = ⋃

x∈M TxM, which is naturally
a manifold. We denote by 〈·, ·〉x the scalar product on TxM with the associated norm ‖ · ‖x, where
the subscript x is sometimes omitted. A differentiable manifold M with a Riemannian metric 〈·, ·〉
is called a Riemannian manifold. Let γ : [a, b] → M be a piecewise differentiable curve joining x =
γ (a) to y = γ (b) in M, we can define the length of l(γ ) = ∫ b

a ‖γ ′(t)‖dt. The minimal length of all
such curves joining x to y is called the Riemannian distance and it is denoted by d(x, y).

Let ∇ be the Levi–Civita connection associated with the Riemannian metric. Let γ be a smooth
curve in M. A vector field X is said to be parallel along γ iff ∇γ ′X = 0. If γ ′ is parallel along γ , i.e.
∇γ ′γ ′ = 0, then γ is said to be geodesic, and in this case, ‖γ ′‖ is a constant. Furthermore, if ‖γ ′‖ = 1,
then γ is called normalized. A geodesic joining x to y in M is said to be minimal if its length equals
d(x, y). Let γ : R → M be a geodesic and Pγ [., .] denote the parallel transport along γ with respect
to V, which is defined by Pγ [γ (a),γ (b)](v) = V(γ (b)) for all a, b ∈ R and v ∈ Tγ (a)M, where V is the
unique vector field satisfying ∇γ ′(t)V = 0 and V(γ (a)) = v. Then, for any a, b ∈ R, Pγ ,[γ (b),γ (a)] is an
isometry from Tγ (a)M to Tγ (b)M. We will write Py,x instead of Pγ ,[y,x] in the case that γ is a minimal
geodesic joining x to y if this will avoid any confusion.
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A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from x are defined
for all −∞ < t < +∞. By the Hopf–Rinow Theorem [21], we know that if M is complete, then any
pair of points in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete metric
space and bounded closed subsets are compact. If M is a complete Riemannian manifold, then the
exponential map expx : TxM → M at x is defined by expx v = γv(1, x) for each v ∈ TxM, where
γ (·) = γv(·, x) is the geodesic starting at x with velocity v, that is, γ (0) = x and γ ′(0) = v. It is
easy to see that expx tv = γv(t, x) for each real number t. Note that the mapping expx is differen-
tiable on TxM for any x ∈ M. By the inverse mapping theorem, there exists an inverse exponential
map exp−1

x : M → TxM. Moreover, the geodesic is the unique shortest path with ‖ exp−1
x y‖ =

‖ exp−1
y x‖ = d(x, y), where d(x, y) is the geodesic distance between x and y in M. For further details,

we refer [21].
A complete simply connected Riemannian manifold of nonpositive sectional curvature is called a

Hadamard manifold. If M is a Hadamard manifold, then exp−1
x : M → TxM is a diffeomorphism

for every x ∈ M and if x, y ∈ M, then there exists a unique minimal geodesic joining x to y. The rest
of the paper, one always assumes that M is a Hadamard manifold. The following result is known and
will be useful.

Proposition 2.1 ([21]): Let M be a Hadamard manifold and p ∈ M. Then expp : TpM → M is a
diffeomorphism, and for any two points p, q ∈ M, there exists a unique normalized geodesic joining p
to q, which is, in fact, a minimal geodesic.

This proposition yields that M is diffeomorphic to space R
n. Thus one sees that M has the same

topology and differential structure as R
n. Moreover, Hadamard manifolds and Euclidean spaces have

some similar geometrical properties, and one of the most important proprieties is illustrated in the
following proposition.

Proposition 2.2 ([21]): Let �(p1, p2, p3) be a geodesic triangle in a Hadamard manifold M. For each
i = 1, 2, 3( mod 3), let γi : [0, li] → M denote the geodesic joining pi to pi+1. Let li = L(γi) and αi :=
∠(γ ′

i (0), −γ ′
i−1(li−1)) be the angle between tangent vectors γ ′

i (0) and γ ′
i−1(li−1). Then

(i) α1 + α2 + α3 ≤ π ;
(ii) l2i + l2i+1 − 2lili+1 cos αi+1 ≤ l2i−1;
(iii) li+1 cos αi+2 + li cos αi ≥ li+2.

In terms of the distance and the exponential map, Proposition 2.2 (ii) and (iii) can be rewritten as

d2(pi, pi+1) + d2(pi+1, pi+2) − 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 ≤ d2(pi−1, pi) (2)

and

d2(pi, pi+1) ≤ 〈exp−1
pi

pi+2, exp−1
pi

pi+1〉 + 〈exp−1
pi+1

pi+2, exp−1
pi+1

pi〉,
since 〈exp−1

pi+1
pi, exp−1

pi+1
pi+2〉 = d(pi, pi+1) d(pi+1, pi+2) cos αi+1. For further detail, one refers to

[22].

Lemma 2.3 ([23]): Let {xn} be a sequence in M such that xn → x0 ∈ M. Then the following assertions
hold.

(i) For any y ∈ M, we have exp−1
xn

y → exp−1
x0

y and exp−1
y xn → exp−1

y x0.
(ii) If vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M.
(iii) Given un, vn ∈ TxnM and u0, v0 ∈ Tx0M, if un → u0 and vn → v0, then 〈un, vn〉 →

〈u0, v0〉.
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(iv) For any u ∈ Tx0M, the function A : M → TM defined by A(x) = Px.x0u for each x ∈ M is
continuous on M.

The following inequality is crucial in convergence analysis of our algorithm.

Lemma 2.4 ([24]): Let �(p, q, r) be a geodesic triangle in Hadamard manifold M. Then there exists
a triangle �(p̄, q̄, r̄) (p̄, q̄, r̄ ∈ R

2) for �(p, q, r) such that d(p, q) = ‖p̄ − q̄‖, d(q, r) = ‖q̄ − r̄‖, and
d(r, p) = ‖r̄ − p̄‖.

The triangle �(p̄, q̄, r̄) is called the comparison triangle of the geodesic triangle �(p, q, r), which
is unique up to the isometry of M.

The next result describes the relationships between a geodesic triangle and its comparison triangle
involving distances between points.

Lemma 2.5 ([25]): Let �(p, q, r) be a geodesic triangle in a Hadamard manifold M and �(p̄, q̄, r̄) be
its comparison triangle.

(i) Let α, β , γ (respectively, ᾱ, β̄ , γ̄ ) be the angles of �(p, q, r) (respectively, �(p̄, q̄, r̄)) at the vertices
p, q, r (respectively, p̄, q̄, r̄). Then, the following inequalities hold: ᾱ ≥ α, β̄ ≥ β , and γ̄ ≥ γ .

(ii) Let z be a point on the geodesic joining p to q and z̄ be its comparison point in the interval [p̄, q̄].
Suppose that d(z, p) = ‖z̄ − p̄‖ and d(z, q) = ‖z̄ − q̄‖. Then d(z, r) ≤ ‖z̄ − r̄‖.

Given C, a nonempty subset of M, one uses XM to denote the set of all univalued vector fields
A : M → TM such that A(x) ∈ TxM for each x ∈ M, and uses D(A) to denote the domain of A,
which is defined by D(A) = {x ∈ M : A(x) 
= ∅}.
Definition 2.6 ([26, 27]): Let M be a Hadamard manifold. A vector field A ∈ XM is said to be

(i)monotone if, for any x, y ∈ M, 〈Ax, exp−1
x y〉 ≤ 〈Ay, − exp−1

y x〉;
(ii)pseudomonotone if, for any x, y ∈ M, 〈Ax, exp−1

x y〉 ≥ 0 ⇒ 〈Ay, exp−1
y x〉 ≤ 0.

The notion of the uniform continuity (cf. [5]) for operators in Banach spaces is extended in the
following definition to the setting of Hadamard manifolds.

Definition 2.7: A vector field A ∈ XM is said to be uniformly continuous if, for all ε > 0, there
exists δ > 0 such that, for all x, y ∈ M, d(x, y) < δ ⇒ d(Ax, Ay) < ε.

Let PC denote the projection onto C ⊂ M defined by

PC(p) = {p0 ∈ C : d(p, p0) ≤ d(p, q), ∀q ∈ C}, ∀p ∈ M.

The next result gives a characterization of projection PC.

Lemma 2.8 ([28]): Given q ∈ M, there exists a unique projection PC(q). Then, the following inequality
holds: 〈exp−1

PC(q) q, exp−1
PC(q) p〉 ≤ 0, ∀p ∈ C.

The following lemmas are useful for the convergence of our proposed algorithm.

Lemma 2.9: For x ∈ M and α ≥ β > 0, the following inequalities hold:

d(x, PC(expx(−αAx)))

α
≤ d(x, PC(expx(−βAx)))

β

and

d(x, PC(expx(−βAx))) ≤ d(x, PC(expx(−αAx))).
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Proof: Suppose xα = PC(expx(−αAx)) and xβ = PC(expx(−βAx)). From Lemma 2.8, it follows that
〈
xα − expx(−αAx)

α
, exp−1

xα
xβ

〉
≥ 0,

〈
xβ − expx(−βAx)

β
, exp−1

xβ
xα

〉
≥ 0.

Adding the inequalities yields

0 ≤ 〈exp−1
xα

x
α

−
exp−1

xβ
x

β
, exp−1

xβ
xα〉

≤
‖ exp−1

xα
x‖‖ exp−1

xβ
xα‖

α
−

‖ exp−1
xβ

x‖‖ exp−1
xβ

xα‖
β

.

In view of Lemma 2.4, one obtains that

0 ≤ 1
α

d(x, xα)(d(x, xβ) − d(x, xα)) − 1
β

d(x, xβ)(d(x, xβ) − d(x, xα))

= −d2(x, xα) − α

β
d2(x, xβ) + d(x, xα) d(x, xβ) + α

β
d(x, xα) d(x, xβ).

Hence,

0 ≥ (d(x, xα) − α

β
d(x, xβ))(d(x, xα) − d(x, xβ)),

It follows that

d(x, xα) − α

β
d(x, xβ) ≤ 0.

As was to be shown. �

Lemma 2.10: Suppose the function A : M → TM is uniformly continuous on bounded subsets of M
and U is a bounded subset of M. Then A(U) is bounded.

The proof is trivial. We omit it here.

Definition 2.11 ([22]): Let X be a complete metric space and C ∈ X be a nonempty set. A sequence
{xn} ⊂ X is called Fejér convergent to C if, for all y ∈ C and n ≥ 0, d(xn+1, y) ≤ d(xn, y).

Lemma 2.12 ([23]): Let X be a complete metric space and let C ∈ X be a nonempty set. Let xn ⊂ X be
Fejér convergent to C and suppose that any cluster point of {xn} belongs to C. Then {xn} converges to a
point in C.

3. Main results

In this section, we introduce a Tseng’s extragradient algorithm for the variational inequality problem
in Hadamard manifolds. Next, we make the following conditions:

(C1) The solution set of VI(C, A) (1) is nonempty, that is, � 
= ∅.
(C2) C is a nonempty convex and closed subset of Hadamard manifold M, A : C → TM is a vector

field, that is, A(x) ∈ TxM for each x ∈ C, and exp−1 is the inverse of exponential map.
(C3) The mapping A is a pseudomonotone and uniformly continuous on bounded subsets of M.

The following lemmas will be useful in the proof of the convergence.
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Lemma 3.1: Assume that conditions (C2) − (C3) hold. Then Armijo-line-search rule (3) is well-
defined and λn ≤ γ .

Proof: If xn ∈ �, then xn = PC(expxn
(−γ Axn)). Therefore, (3) holds with m = 0. If xn /∈ �, then,

for all m,

γ lm d(Axn.APC(expxn
(−γ lmAxn))) > μ d(xn, PC(expxn

(−γ lmAxn))), (4)

which is equivalent to

d(Axn, APC(expxn
(−γ lmAxn))) > μ

d(xn, PC(expxn
(−γ lmAxn)))

γ lm
. (5)

One next considers two possibilities of xn. First, if xn ∈ C, then one obtains from the continuity of A
and PC that

lim
m→∞ d(xn, PC(expxn

(−γ lmAxn))) = 0.

From the uniform continuity of operator A on bounded subsets of M, one asserts that

lim
m→∞ d(Axn, APC(expxn

(−γ lmAxn))) = 0. (6)

Using (5) and (6), one has

lim
m→∞

d(xn, PC(expxn
(−γ lmAxn)))

γ lm
= 0. (7)

Setting zm = PC(expxn
(−γ lmAxn)), one gets

〈exp−1
xn

zm + γ lmAxn, exp−1
zm

x〉 ≥ 0, ∀x ∈ C.

This is equivalent to

〈exp−1
xn

zm

γ lm
, exp−1

zm
x〉 + 〈Axn, exp−1

zm
x〉 ≥ 0, ∀x ∈ C. (8)

Taking the limit m → ∞ in (8), one obtains 〈Axn, exp−1
xn

x〉 ≥ 0, ∀x ∈ C, which implies that xn ∈ �.
This is a contradiction. Then, if xn /∈ C, then

lim
m→∞ d(xn, PC(expxn

(−γ lmAxn))) = d(xn, PC(xn)) > 0 (9)

and

lim
m→∞ γ lm d(Axn, APC(expxn

(−γ lmAxn))) = 0. (10)

From (4), (9) and (10), one gets a contradiction. So λn is well defined and obviously, λn ≤ γ . �

Lemma 3.2: Let {xn} be a sequence generated by Algorithm 1. Then, for every p ∈ �, it holds that

d2(xn+1, p) ≤ d2(xn, p) − (1 − μ2) d2(yn, xn),

and the sequence {xn} is bounded.
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Algorithm 1 (A Tseng’s extragradient algorithm)
Initialization: Give γ > 0, l ∈ (0, 1), μ ∈ (0, 1) and let x0 ∈ M be an arbitrary starting point. Set
n = 0.
Iterative Steps: Given the current iterate xn ∈ M, calculate xn+1 as follows:
Step 1. Compute

yn = PC(expxn
(−λnAxn)),

where λn = γ lmn and mn is the smallest non-negative integer m satisfying

γ lm d(Axn, Ayn) ≤ μ d(xn, yn). (1)

If yn = xn, then stop and xn is a solution of variational inequality (1). Otherwise,
Step 2. Compute

xn+1 = expyn
(λn(Axn − Ayn)).

Set n := n + 1 and return to Step 1.

Proof: From the definition of yn, one deduces from Lemma 2.8 that

〈exp−1
xn

yn + λnAxn, exp−1
p yn〉 ≥ 0,

which is equivalent to

〈exp−1
xn

yn, exp−1
p yn〉 ≤ −λn〈Axn, exp−1

p yn〉. (11)

Since p ∈ �, one has 〈Ap, exp−1
p yn〉 ≥ 0. Also, from the pseudomonotonicity of A on M, it follows

that

〈Ayn − Axn, exp−1
p yn〉 = 〈Ayn, exp−1

p yn〉 − 〈Axn, exp−1
p yn〉

≥ −〈Axn, exp−1
p yn〉. (12)

Let �(xn, yn, p) ⊆ M be a geodesic triangle with vertices xn, yn, and p, and let �(xn, yn, p̄) ⊆ R
2 be

a comparison triangle. By utilizing Lemma 2.4, one concludes that

d(xn, p) = d(xn, p̄), d(yn, p) = d(yn, p̄), d(xn, yn) = d(xn, yn).

From xn+1 = expyn
(λn(Axn − Ayn)), the comparison point of xn+1 is yn + λn(Axn − Ayn). By use of

Lemma 2.5, one has

d2(xn+1, p) ≤ d2(xn+1, p̄) = ‖yn + λn(Axn − Ayn) − p̄‖2

= ‖yn − p̄‖2 + λ2
n‖Axn − Ayn‖2 + 2λn〈Axn − Ayn, yn − p̄〉

= ‖yn − xn‖2 + ‖xn − p̄‖2 + 2〈yn − xn, xn − p̄〉
+ λ2

n‖Axn − Ayn‖2 + 2λn〈Axn − Ayn, yn − p̄〉
= ‖xn − p̄‖2 + ‖yn − xn‖2 − 2〈yn − xn, yn − xn〉 + 2〈yn − xn, yn − p̄〉

+ λ2
n‖Ayn − Axn‖2 + 2λn〈Axn − Ayn, yn − p̄〉

= ‖xn − p̄‖2 − ‖yn − xn‖2 + λ2
n‖Ayn − Axn‖2

+ 〈2yn − 2xn + 2λnAxn − 2λnAyn, yn − p̄〉
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≤ d2(xn, p) − d2(yn, xn) + λ2
n‖Ayn − Axn‖2

+ 〈2yn − 2xn + 2λnAxn − 2λnAyn, yn − p̄〉. (13)

In the geodesic triangle �(Axn, Ayn, xn+1) and its comparison triangle �(Axn, Ayn, xn+1), using
Lemma 2.4 again, we have ‖Axn − Ayn‖ = d(Axn, Ayn). From (13), we obtain

d2(xn+1, p) ≤ d2(xn, p) − d2(yn, xn) + λ2
n d2(Ayn, Axn)

+ 〈2yn − 2xn + 2λnAxn − 2λnAyn, yn − p̄〉. (14)

In view of the geodesic triangle �(a, b, c) and its comparison triangle �(ā, b̄, c̄), one sets a =
2 exp−1

xn
yn − 2λn(Ayn − Axn) and b = exp−1

p yn. The comparison point ā = 2yn − 2xn + 2λnAxn −
2λnAyn and b̄ = yn − p̄. Let β and β̄ denote the angles at c and c̄, respectively. Then by use of
Lemma 2.5 (i), we have β̄ ≥ β , so cos β̄ ≤ cos β . Using Proposition 2.2 and Lemma 2.4, we get

〈ā, b̄〉 = ‖ā‖‖b̄‖ cos β̄ ≤ ‖ā‖‖b̄‖ cos β = ‖a‖‖b‖ cos β = 〈a, b〉,

and hence

〈2yn − 2xn + 2λnAxn − 2λnAyn, yn − p̄〉 ≤ 〈2 exp−1
xn

yn − 2λn(Ayn − Axn), exp−1
p yn〉. (15)

Combining (14) and (15) yields that

d2(xn+1, p) ≤ d2(xn, p) − d2(yn, xn) + λ2
n d2(Ayn, Axn)

+ 〈2yn − 2xn + 2λnAxn − 2λnAyn, yn − p̄〉
≤ d2(xn, p) − d2(yn, xn) + λ2

n d2(Ayn, Axn)

+ 〈2 exp−1
xn

yn − 2λn(Ayn − Axn), exp−1
p yn〉

≤ d2(xn, p) − d2(yn, xn) + λ2
n d2(Ayn, Axn)

− 2λn〈Ayn − Axn, exp−1
p yn〉 + 2〈exp−1

xn
yn, exp−1

p yn〉. (16)

Due to (11), (12) and (16), it follows that

d2(xn+1, p) ≤ d2(xn, p) − d2(yn, xn) + λ2
n d2(Ayn, Axn)

+ 2λn〈Axn, exp−1
p yn〉 − 2λn〈Axn, exp−1

p yn〉
= d2(xn, p) − d2(yn, xn) + λ2

n d2(Ayn, Axn). (17)

From (3) and (17), we claim that

d2(xn+1, p) ≤ d2(xn, p) − d2(yn, xn) + μ2 d2(yn, xn)

= d2(xn, p) − (1 − μ2) d2(yn, xn). (18)

This implies that d(xn+1, p) ≤ d(xn, p). So, {xn} is bounded. �

We are now ready to show the main result regarding convergence of the proposed algorithm.

Theorem 3.3: Let {xn} be the sequence generated by Algorithm 1. Assume that conditions (C1)−(C3)

hold. Then {xn} is convergent to a solution of problem VI(C, A) (1).



2380 J. FAN ET AL.

Proof: From Lemma 3.2 and Definition 2.11, we know that {xn} is Fejér convergent to �. Let x∗ be
a cluster point of xn. Then there exists a subsequence {xnk} such that limk→∞ xnk = x∗. Also, adding
μ ∈ (0, 1) and (18) yields that

(1 − μ2) d2(yn, xn) ≤ d2(xn, p) − d2(xn+1, p),

which implies that limn→∞ d(xn, yn) = 0. So the sequence {yn} is bounded and ynk → x∗ . Since
ynk = PC(expxnk

(−λnAxnk)), it holds

〈exp−1
xnk

ynk + λnkAxnk , exp−1
ynk

x〉 ≥ 0, ∀x ∈ C,

that is,
1

λnk

〈exp−1
ynk

xnk , exp−1
ynk

x〉 ≤ 〈Axnk , exp−1
ynk

x〉. (19)

Let �(ynk , xnk , x) be a geodesic triangle. By use of (2), we have

〈exp−1
ynk

xnk , exp−1
ynk

x〉 ≥ 1
2

(d2(ynk , xnk) + d2(ynk , x) − d2(xnk , x)). (20)

From (19) and (20), we have

1
2λnk

(d2(ynk , xnk) + d2(ynk , x) − d2(xnk , x)) ≤ 〈Axnk , exp−1
ynk

x〉. (21)

Following Lemma 2.12, it remains to prove that every weak limit point of xn belongs to �. Now,
passing to the limit, we show that

〈Ax∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ C, (22)

by considering two possible cases on sequence {λn}.
Case 1. Assume that limk→∞ λnk > 0. Since {xnk} is a bounded sequence, and A is uniformly

continuous on bounded subsets of M, one asserts from Lemma 2.10 that {Axnk} is bounded. Taking
k → ∞ in (21), we get

〈Ax∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ C.

Case 2. Assume that limk→∞ λnk = 0. Setting znk = PC(expxnk
(−λnk l

−1Axnk)), we have λnk l
−1 >

λnk . Applying Lemma 2.9, we obtain d(xnk , znk) ≤ 1/ld(xnk , ynk) → 0 as k → ∞. Then, znk → x∗,
which implies that {znk} is bounded. Using Lemma 2.10 again, one concludes that

lim
k→∞

d(Axnk , Aznk) = 0. (23)

From (3), we get

λnk l
−1 d(Axnk , APC(expxnk

(−λnk l
−1Axnk))) > μ d(xnk , PC(expxnk

(−λnk l
−1Axnk))).

That is,
1
μ

d(Axnk , Aznk) >
d(xnk , znk)

λnk l−1 . (24)

According to (23) and (24), we obtain

lim
k→∞

d(xnk , znk)

λnk l−1 = 0.
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In view of znk = PC(expxnk
(−λnk l

−1Axnk)) and Lemma 2.8, one arrives at

〈exp−1
xnk

znk + λnk l
−1Axnk , exp−1

znk
x〉 ≥ 0, ∀x ∈ C. (25)

Let �(znk , xnk , x) be a geodesic triangle. It follows from (2) that

〈exp−1
znk

xnk , exp−1
znk

x〉 ≥ 1
2

(d2(znk , xnk) + d2(znk , x) − d2(xnk , x)). (26)

By use of (25) and (26), we have

1
2λnk l−1 (d2(znk , xnk) + d2(znk , x) − d2(xnk , x)) ≤ 〈Axnk , exp−1

znk
x〉. (27)

Taking the limit k → ∞ in (27), we get

〈Ax∗, exp−1
x∗ x〉 ≥ 0, ∀x ∈ C.

Therefore, inequality (22) is proved. So, we have x∗ ∈ �. By use of Lemma 2.12, one completes the
proof immediately. �

Remark 3.4: If M = H, a real Hilbert space, and A is pseudomonotone, then Algorithm 1 is reduced
to the algorithm proposed by Thong and Vuong [[20], Algorithm 1].

4. Numerical examples

In this section, we provide two numerical examples in the setting of Hadamard manifolds to illustrate
the convergence behavior of Algorithm 1. All the programs were implemented in MATLAB 2018a on
a Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz computer with RAM 8.00 GB.

Let R++ = {x ∈ R : x > 0} and M = (R++, 〈·, ·〉) be the Riemannian manifold with the Rieman-
nian metric

〈u, v〉 := 1
x2 uv, for x ∈ M, and ∀u, v ∈ TxM,

where TxM denotes the tangent plane at x ∈ M. For all x ∈ M, the tangent plane TxM at x equals
to R.

The Riemannian distance d : M × M → R+ is given by

d(x, y) := | ln(x/y)|, ∀x, y ∈ M.

Then M is a Hadamard manifold. Let γ [0, 1] → M be a geodesic starting from x = γ (0) with
velocity v = γ ′(0) ∈ TxM defined by γ (s) := x e(v/x)s. Therefore,

expx sv = x e(v/x)s.

Furthermore, for any x, y ∈ M, we get

y = expx

(
d(x, y)

exp−1
x y

d(x, y)

)
= x e

exp−1
x y

x d(x,y)
d(x,y) = x e

exp−1
x y
x .

Thus the inverse of exponential map is exp−1
x y = x ln(y/x).
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Example 4.1: Let C = [1, 2] be a closed geodesic convex subset of M. We consider the single-valued
vector field A : M → TM defined by

A(x) = −x, for all x ∈ C.

It is easy to see that A is pseudomonotone on C. Indeed, for any x, y ∈ C, if 〈A(x), exp−1
x y〉 =

1/x2(−x) · x ln(y/x) ≥ 0, that is, ln(y/x) ≤ 0. Consequently, we can get 〈A(y), exp−1
y x〉 =

1/y2(−y) · y ln(x/y) = − ln(x/y) ≤ 0.
Let x∗ be the solution set of variational inequality (1). Then, x ∈ x∗ if and only if

〈
A(x), exp−1

x y
〉 ≥ 0, for all y ∈ C.

Equivalently,
1
x2 (−x) · x ln

(
y/x

) ≥ 0, for all y ∈ [1, 2].

This is equivalent to x = 2. Hence, x∗ = 2. In Algorithm 1, we set γ = l = μ = 0.5. We test the
numerical behavior of Algorithm 1 with two different initial point x0. The numerical results are
reported in Table 1 and Figure 1. One can see that the algorithm converges to 2 after a few iterations.

Example 4.2: In this example, let C = [1, +∞) be a closed geodesic convex subset of M and A :
C → R be a single-valued vector field defined by

A(x) := x ln x, ∀x ∈ C.

Note that A is pseudomonotone on C. Indeed, for any x, y ∈ C, if 〈A(x), exp−1
x y〉 = 1/x2 · x ln x ·

x ln(y/x) ≥ 0, we have ln(y/x) ≥ 0. Thus we get immediately that 〈Ay, exp−1
y x〉 = 1/y2 · y ln y ·

y ln(x/y) ≤ 0.
Clearly, variational inequality (1) has a unique solution. Indeed,

〈
A

(
x∗)

, exp−1
x∗ y

〉 = 1
x∗2 · x∗ ln x∗ · x∗ ln

( y
x∗

)
, ∀y ∈ C

Table 1. The numerical result for Example 4.1.

Iterate n
xn with initial
guest x0 = 1

xn with initial
guest x0 = 1.5

0 1 1.5
1 2.0072 2.2663
2 1.9964 1.8712
3 2.0018 2.0655
4 1.9991 1.9675
5 2.0004 2.0163
6 1.9998 1.9919
7 2.0001 2.0041
8 1.9999 1.9980
9 2.0000 2.0010
10 2.0000 1.9995
11 2.0000 2.0003
12 2.0000 1.9999
13 2.0000 2.0001
14 2.0000 2.0000
15 2.0000 2.0000
16 2.0000 2.0000
17 2.0000 2.0000
18 2.0000 2.0000
19 2.0000 2.0000



APPLICABLE ANALYSIS 2383

Figure 1. Iterative process of Example 4.1.

Table 2. The numerical result for Example 4.2.

Iterate n
xn with initial
guest x0 = 3

xn with initial
guest x0 = 6

0 3 6
1 2.0514 5.8658
5 1.6046 3.9438
9 1.3535 2.3305
13 1.2698 1.7534
17 1.2072 1.4417
21 1.1599 1.2943
25 1.1314 1.2256
29 1.1154 1.1738
33 1.1015 1.1384
37 1.0893 1.1215
41 1.0786 1.1068
45 1.0692 1.0939
49 1.0639 1.0826

= ln x∗ ln
( y

x∗
)

≥ 0, ∀y ∈ C

⇔ x∗ = 1.

Therefore, solution set of variational inequality problem (1) is 1. We choose γ = l = μ = 0.5 in
Algorithm 1. Table 2 and Figure 2 show that the numerical behavior of Algorithm 1 with two dif-
ferent initial point x0. We see that the iteration point converges to 1, which verifies the effectiveness
of our algorithm.
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Figure 2. Iterative process of Example 4.2.

5. Concluding remarks

In this paper, we investigated the convergence of the Tseng’s extragradient algorithm for pseu-
domonotone variational inequalities and provided a class of conditions of well-definedness for this
algorithm in Hadamard manifolds. Our results were illustrated by several numerical experiments.
To devise more effective algorithms for problem (1) on Hadamard manifolds, we will consider the
geometric structure of manifolds in the future. Moreover, it is also of interest to do some numer-
ical experiments and comparisons with other algorithms for practical problems on Riemannian
manifolds.
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