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ABSTRACT
An inertial shadow Douglas-Rachford splitting algorithm for
finding zeros of the sum of monotone operators is proposed in
Hilbert spaces. Moreover, a three-operator splitting algorithm
for solving a class of monotone inclusion problems is also con-
cerned. The weak convergence of the algorithms is investigated
under mild assumptions. Some numerical experiments are
implemented to illustrate our main convergence results.
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1. Introduction and preliminaries

Throughout this paper, H is assume to be a real Hilbert space with inner
product h�, �i and induced norm jj � jj: Let A : H¶H be a set-valued oper-
ator on H. DðAÞ :¼ fx 2 H : Ax 6¼ Øg stands for the domain of A and
RðAÞ :¼ fAz : z 2 DðAÞg stands for the range of A. Recall that operator A :
H¶H is said to be monotone iff hx0 � y0, x� yi � 0 for all x0 2 Ax and
y0 2 Ay: Recall that operator A : H¶H is maximal iff the graph, G(A), of
A is not in the graph of other monotone operators properly. For a mono-
tone operator, one also knows that it is maximal iff hx0 � y0, x� yi � 0,
where x0 2 Ax and y, y0 2 H, implies y0 2 Ay: For each positive real number
r, one can define the resolvent operator, JrA : RðId þ rAÞ ! DðAÞ of A, by
JrA :¼ ðId þ rAÞ� 1, where Id is the identity operator on H. In this paper, the
zero set of A is denoted by A� 1ð0Þ, that is, A� 1ð0Þ :¼ fx 2 DðAÞ : 0 2 Axg:
Consider the following inclusion problem, which consists of

finding x 2 H such that 0 2 ðAþ BÞðxÞ, (1.1)

where A : H¶H is a set-valued maximally monotone operator and B :
H ! H is a single-valued monotone operator, i.e., hBðxÞ�BðyÞ, x� yi � 0,
(x, y 2 H) and L-Lipschitz continuous, i.e., jjBðxÞ�BðyÞjj � Ljjx� yjj,
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(L> 0). The solution set of (1.1) is denoted by ðAþ BÞ� 1ð0Þ: This problem
includes, as special cases, convex programming problems, split feasibility
problems and minimization problems; see, e.g., [1–5]. Several real world
problems from the areas of signal recovery, image processing, network
communications, location theory, etc, can be formulated as (1.1); see, for
instance, [6–8]. Splitting algorithms are efficient and powerful for dealing
with problem (1.1). Among them, forward-backward and Douglas-Rachford
splitting methods are two fundamental algorithms for solving monotone
inclusion problems; see, e.g., [9–13] and the references therein.
In this paper, we focus our attention on the Douglas-Rachford algorithm

[14], which was first formulated for solving linear equations and general-
ized to monotone inclusions in [15] later. The algorithm is of the form in
a real Hilbert space H

ðDRÞ xnþ1 ¼ JrAð2JrB� IdÞxn þ ðId� JrBÞxn,
where Id is the identity on H. Recently, many authors studied this algo-
rithm and its variants; see, e.g., [16–22]. The Douglas-Rachford method
generates a fixed point sequence as follows

xnþ1 ¼ Id þ RkARkB

2

� �
xn, (1.2)

where RkB ¼ 2JkB� Id denotes the reflected resolvent of monotone operator
kB. The iteration (1.2) can be viewed as a discretization of the continuous
time dynamical system

_xðtÞ ¼ JkAð2JkBðxðtÞÞ� xðtÞÞ� JkBðxðtÞÞ, (1.3)

where the discretizations _xðtÞ� xnþ1� xn and xðtÞ� xn are used. Denote
zðtÞ ¼ JkBðxðtÞÞ,

yðtÞ ¼ xðtÞ� zðtÞ 2 kBðzðtÞÞ,
and

_xðtÞ ¼ _zðtÞ þ _yðtÞ:
By using these identities in (1.3), we obtain

_zðtÞ þ zðtÞ ¼ JkAðzðtÞ� yðtÞÞ� _yðtÞ,
yðtÞ 2 kBðzðtÞÞ:

�
(1.4)

Recently, Csetnek, Malitsky and Tam [23] proposed the following
shadow Douglas-Rachford splitting algorithm by considering different dis-
cretizations of dynamical system (1.4):

ðSDRÞ xnþ1 ¼ JkAðxn � kBðxnÞÞ� kðBðxnÞ�Bðxn� 1ÞÞ: (1.5)

This algorithm naturally arises from a nonstandard discretization of a
continuous dynamical system associated with the Douglas-Rachford
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splitting algorithm (1.2), which converges to a solution of (1.1) weakly
whenever k 2 0, 1

3L

� �
with L being the Lipschitz constant of B.

In [24], Moudafi and Oliny introduced the following inertial proximal
point algorithm for solving the monotone inclusion problem of the sum of
two monotone operators:

wn ¼ xn þ anðxn� xn� 1Þ,
xnþ1 ¼ JkAðwn � kBðxnÞÞ:

�
(1.6)

They obtained a weak convergence theorem provided that 0< k< 2=L,
where L is the Lipschitz constant of B.
Inspired and motivated by the mentioned results above, we introduce

inertial shadow Douglas-Rachford splitting algorithms by incorporating the
inertial terms (1.6) in the shadow Douglas-Rachford splitting algorithm
(1.5) to solve inclusion problem (1.1) in the framework of Hilbert spaces.
We obtain the weak convergence of the algorithms and give some numer-
ical experiments to support our main results.
The rest of this paper is organized as follows. In Section 2, we propose

an inertial shadow Douglas-Rachford splitting algorithm for solving inclu-
sion problems and show its convergence. In Section 3, we propose a variant
which solves three-operator inclusion problems. Finally, in Section 4,
numerical experiments are provided to support our algorithms.

2. Two-operator splitting

In this section, we consider the problem of finding a point x 2 H such that

0 2 ðAþ BÞðxÞ,
where A : H ! H is set-valued maximal monotone, and B : H ! H is sin-
gle-valued monotone and L-Lipschitz (but not necessarily cocoercive, that
is, cjjBx�Byjj2 � hx� y,Bx�Byi, 8x, y 2 H, where c is a positive real
constant). We next give the inertial shadow Douglas-Rachford splitting
algorithm

ðISDRÞ wn ¼ xn þ anðxn� xn� 1Þ,
xnþ1 ¼ JkAðwn� kBðxnÞÞ� kðBðxnÞ�Bðxn� 1ÞÞ,

�
(2.1)

where ðanÞ is non-decreasing with a1 ¼ 0 and 0 � an � a< 1 for
each n � 1:
The following lemmas will be useful in the proof of the conver-

gence analysis.

Lemma 2.1. ([23]) Suppose that A : H¶H and B : H¶H are maximally
monotone operators. Let k> 0. Then the set-valued operator on H�H
defined by
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x
y

� �
2 kA

ðkBÞ� 1

� �
þ 0 Id

� Id 0

� �� �
x
y

� �
,

is demiclosed. That is, its graph is a sequentially closed set in the weak-strong
topology.

Lemma 2.2. ([25]) Let C be a nonempty set and ðxnÞ � H be a sequence in
H such that the following two conditions hold:

a. limn!þ1 jjxn� xjj, for any x 2 C, exists;
b. every sequential weak cluster point of ðxnÞn2N is in C.
Then ðxnÞn2N converges to a point in C weakly.
To analyze our algorithm, we also need the following tool.

Lemma 2.3. Let A : H¶H be a maximally monotone operator. Let ðwnÞ be
given by (2.1) and let ðynÞ � H be an arbitrary sequence. Let x0, x� 1 2 H
and ðxnÞ be a sequence defined by

xnþ1 ¼ JAðwn � ynÞ� ðyn � yn� 1Þ, 8n 2 N: (2.2)

Then, for all x 2 H and y 2 �AðxÞ, one has
jjxnþ1 � xjj2 þ 2hyn � y, xnþ1� xi þ jjyn� yjj2
� jjxn� xjj2 þ 2hyn� 1� y, xn� xi þ jjyn� 1� yjj2 � jjxnþ1 � xnjj2
� 3jjyn� yn� 1jj2 þ 4hyn� yn� 1, xn� xnþ1i� 2anhxn� x, x� xnþ1i
� 2anhx� xn� 1, x� xnþ1i þ 2anhxn� 1� xn, yn� 1� yni
� 2hy� yn, x� xni: (2.3)

Proof. By utilizing the definition of the resolvent and (2.2), one has

xnþ1 þ ðyn� yn� 1Þ�wn þ yn 2 �Aðxnþ1 þ ðyn� yn� 1ÞÞ: (2.4)

Since x 2 H, � y 2 AðxÞ and A is monotone, one concludes that

hxnþ1 þ ðyn� yn� 1Þ�wn þ yn� y, x� xnþ1�ðyn� yn� 1Þi � 0,

which can be equivalently rewritten as

0 � hxnþ1� xn, x� xnþ1i þ hxnþ1� xn, yn� 1� yni þ hyn� yn� 1, x� xnþ1i
þ hyn � yn� 1, yn� 1� yni þ anhxn� 1� xn, x� xnþ1i þ anhxn� 1� xn, yn� 1� yni
þ hyn � y, x� xnþ1i þ hyn � y, yn� 1� yni: (2.5)

To simplify (2.5), one notes that

2hxnþ1�xn,x�xnþ1i ¼ jjxn�xjj2�jjxnþ1�xnjj2�jjxnþ1�xjj2,
2hyn�yn�1,y�yni ¼ jjyn�1�yjj2�jjyn�yn�1jj2�jjyn�yjj2,
hyn�yn�1,x�xnþ1Þi ¼ hyn�yn�1,xn�xnþ1iþ hyn�1�y,xn�xiþ hy�yn,xn�xi:
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Combing these formulas with (2.5) gives the inequality

jjxnþ1� xjj2 þ 2hyn� y, xnþ1� xi þ jjyn� yjj2
� jjxn � xjj2 þ 2hyn� 1� y, xn� xi þ jjyn� 1� yjj2� jjxnþ1� xnjj2
� 3jjyn� yn� 1jj2 þ 4hyn� yn� 1, xn� xnþ1i� 2anhxn� x, x� xnþ1i
� 2anhx� xn� 1, x� xnþ1i þ 2anhxn� 1� xn, yn� 1� yni
� 2hy� yn, x� xni:

The proof is complete. w

We are now ready to present our main convergence theorem.

Theorem 2.1. Let A : H¶H be a set-valued maximally monotone operator
and let B : H ! H be a single-valued monotone and L-Lipschitz with
ðAþ BÞ� 1ð0Þ 6¼ ;. Let x0, x� 1 2 H, e> 0, and k 2 ½e, 1� 3ðaþ1Þe

3ðaþ1ÞL 	. Then the
sequence ðxnÞ generated by the Algorithm ISDR (2.1) converges to a point in
ðAþ BÞ� 1ð0Þ weakly.

Proof. Let x 2 ðAþ BÞ� 1ð0Þ and set

y ¼ kBðxÞ 2 � kAðxÞ:
Since (2.1) is one of the form specified by (2.2), one applies Lemma 2.3

to the monotone operator kA with yn ¼ kBðxnÞ to deduce that (2.3) holds.
Since B is monotone, we have hyn� y, xn � xi � 0: Hence

jjxnþ1�xjj2þ2hyn�y,xnþ1�xiþjjyn�yjj2
�jjxn�xjj2þ2hyn�1�y,xn�xiþjjyn�1�yjj2�jjxnþ1�xnjj2
�3jjyn�yn�1jj2þ4hyn�yn�1,xn�xnþ1i�2anhxn�x,x�xnþ1i
�2anhx�xn�1,x�xnþ1iþ2anhxn�1�xn,yn�1�yni: (2.6)

Next, one estimates the inner product in (2.6). Using the Lipschitzness of
B, one arrives at

2hyn� 1� y, xn � xi � kLðjjxn� 1� xjj2 þ jjxn� xjj2Þ,
2anhxn� 1� xn, yn� 1� yni � ankLðjjxn� 1� xnjj2 þ jjxn� 1� xnjj2Þ,
2hxnþ1� xn, yn� 1� yni � kLðjjxnþ1� xnjj2 þ jjxn� 1� xnjj2Þ: (2.7)

Using Young’s inequality, one can estimate

2anhxn� x, x� xnþ1i � jjxn� xjj2 þ a2njjx� xnþ1jj2,
2anhxn� 1� x, x� xnþ1i � jjxn� 1� xjj2 þ a2njjx� xnþ1jj2,
2hyn� yn� 1, xn� xnþ1i � 3jjyn� yn� 1jj2 þ 1

3
jjxnþ1� xnjj2:

(2.8)

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 1631



Combining (2.7), (2.8) and 0 � an � a< 1, one asserts that

ð1þ kLÞjjxnþ1� xjj2 þ ðk2L2 þ kLþ 1Þjjxn � xjj2 þ 2
3
� kL

� �
jjxnþ1� xnjj2

� ð1þ kLÞjjxn� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� 1� xjj2 þ ð2aþ 1ÞkLjjxn� 1� xnjj2:
(2.9)

Since k 2 ½e, 1� 3ðaþ1Þe
3ðaþ1ÞL 	, one concludes that

ð1þkLÞjjxnþ1�xjj2þðk2L2þkLþ1Þjjxn�xjj2þ
�

2aþ1
3ðaþ1Þþ e

�
jjxnþ1�xnjj2

�ð1þkLÞjjxn�xjj2þðk2L2þkLþ1Þjjxn�1�xjj2þ 2aþ1
3ðaþ1Þjjxn�1�xnjj2,

(2.10)

which further yields

ð1þkLÞjjxnþ1�xjj2þðk2L2þkLþ1Þjjxn�xjj2

þ 2aþ1
3ðaþ1Þjjxnþ1�xnjj2þ e

Xn
i¼0

jjxiþ1�xijj2

�ð1þkLÞjjx0�xjj2þðk2L2þkLþ1Þjjx�1�xjj2þ 2aþ1
3ðaþ1Þ jjx�1�x0jj2:

(2.11)

From this, it follows that ðxnÞ is bounded and that jjxnþ1� xnjj ! 0 as n
goes to the infinity. Borrowing the Lipschitz continuity of B, one derives
that jjynþ1� ynjj ! 0 as n goes to the infinity. Setting zn ¼ xn þ yn� 1, one
also has that jjznþ1� znjj ! 0: Since zn ¼ ðId þ kBÞðxnÞ þ ðyn� 1� ynÞ, one
finds that

xn ¼ JkBðzn �ðyn� 1� ynÞÞ:
Since ðxnÞ is bounded, jjynþ1� ynjj ! 0 and JkB is nonexpansive, it then

follows that the sequence ðznÞ is also bounded. Let �x and �z be sequential
weak cluster points of bounded sequences ðxnÞ and ðznÞ, respectively. Due
to (2.11), one sees that the following limit exists

lim
n!1

�
ð1þkLÞjjxnþ1�xjj2þðk2L2þkLþ1Þjjxn�xjj2þ 2aþ1

3ðaþ1Þjjxnþ1�xnjj2
�
:

(2.12)

Since ðxnÞ is bounded, jjxnþ1� xnjj ! 0, it then follows that limit (2.12)
is equal to limn!1 jjxn � xjj2: From (2.4), one has
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� znþ1�zn
znþ1�zn

� �
2 kA

ðkBÞ�1

� �
þ 0 Id

� Id 0

� �� �
znþ1�znþxn

znþ1�xnþ1�anðxn�xn�1Þ
� �

:

(2.13)

Using Lemma 2.1, one finds that its graph is demiclosed. Thus, by taking the
limit along a subsequence of ðxnÞ which converges to �x in (2.13), one deduces
that 0 2 ðAþ BÞð�xÞ: Since the cluster point �x of ðxnÞ was chosen arbitrarily,
sequence ðxnÞ is weakly convergent by Lemma 2.2 and the proof is complete. w

3. Three-operator splitting

In this section, we consider the following inclusion problem of finding x 2
H such that

0 2 ðAþ Bþ CÞðxÞ, (3.1)

where operators A, B, C satisfy the following assumption:

Assumption 3.1. Throughout this section the following hold:

i. Operator A : H¶H is set-valued maximal monotone.
ii. Operator B : H ! H is single-valued monotone and L1-Lipschitz.
iii. Operator C : H ! H is 1=L2-cocoercive, i.e., hCðxÞ�CðyÞ, x� yi �

1
L2
jjCðxÞ�CðyÞjj2, ( 1L2 > 0).

This problem (3.1) could be solved by using the two-operator splitting
algorithm in Section 2, that is, we consider the two operators: A and ðBþ
CÞ, where ðBþ CÞ is L-Lipschitz continuous with L ¼ L1 þ L2: Then,
according to Theorem 2.1, the stepsize k should satisfy

k<
1

3ðaþ 1ÞL ¼ 1
3ðaþ 1ÞL1 þ 3ðaþ 1ÞL2 :

In this section, we give a modification of k as k< 2
3L2þ3ð2aþ3ÞL1 : Then,

our modified ISDR algorithm for solving the monotone inclusion described
above is as follows

wn ¼ xn þ anðxn� xn� 1Þ,
xnþ1 ¼ JkAðwn � kðBþ CÞðxnÞÞ� kðBðxnÞ�Bðxn� 1ÞÞ:

�
(3.2)

The following lemma, which play an important role in the convergence
analysis of iteration 3.2, could be derived from [26, Lemma 5.1]. For the
sake of completeness, we still give the proof.

Lemma 3.1. Let x 2 ðAþ Bþ CÞ� 1ð0Þ, and x0, x� 1 2 H. Let ðxnÞ be a
sequence defined by (3.2). Suppose k 2 ð0, 2

3L2þð6aþ9ÞL1Þ and k2L1L2< 1. Then
there exists an e> 0 such that, for all n 2 N,
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ð1þ kLÞjjxnþ1� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� xjj2 þ ðð2þ 2aÞkL1 þ eÞjjxnþ1� xnjj2
� ð1þ kLÞjjxn� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� 1 � xjj2 þ ð2þ 2aÞkL1jjxn� 1 � xnjj2:

Proof. Borrowing the definition of the resolvent and (3.2), one obtains that

xnþ1þkðBðxnÞ�Bðxn�1ÞÞ�wnþkðBðxnÞþCðxnÞÞ2�Aðxnþ1þkðBðxnÞ�Bðxn�1ÞÞÞ:

Since 0 2 ðAþ Bþ CÞðxÞ, one has �ðBþ CÞðxÞ 2 AðxÞ: Combining
this with the monotonicity of A yields that

hxnþ1� xn þ kðBðxnÞ�Bðxn� 1ÞÞ� anðxn� xn� 1Þ þ kðBðxnÞ þ CðxnÞÞ� kðBþ CÞðxÞ,
x� xnþ1� kðBðxnÞ�Bðxn� 1ÞÞi � 0:

It follows that

hxnþ1� xn þ kðBðxnÞ�Bðxn� 1ÞÞ� anðxn � xn� 1Þ þ kðBðxnÞ�BðxÞÞ þ kðCðxnÞ�CðxÞÞ,
x� xnþ1� kðBðxnÞ�Bðxn� 1ÞÞi � 0,

which we can rewrite as

0 �hxnþ1� xn, x� xnþ1i þ hxnþ1� xn, kðBðxn� 1Þ�BðxnÞÞi
þ hkðBðxnÞ�Bðxn� 1ÞÞ, x� xnþ1i þ hkðBðxnÞ�Bðxn� 1ÞÞ, kðBðxn� 1Þ�BðxnÞÞi
þ anhxn� 1� xn, x� xnþ1i þ anhxn� 1� xn, kðBðxn� 1Þ�BðxnÞÞi
þ hkðBðxnÞ�BðxÞÞ, x� xnþ1i þ hkðBðxnÞ�BðxÞÞ, kðBðxn� 1Þ�BðxnÞÞi
þ hkðCðxnÞ�CðxÞÞ, x� xni þ hkðCðxnÞ�CðxÞÞ, xn� xnþ1i
þ hkðCðxnÞ�CðxÞÞ, kðBðxn� 1Þ�BðxnÞÞi:

(3.3)

Using the 1=L2-cocoercivity of C, one has

hCðxnÞ�CðxÞ, x� xni � � 1
L2

jjCðxnÞ�CðxÞjj2,

and

hCðxnÞ�CðxÞ, xn� xnþ1i � 1
2L2

jjCðxnÞ�CðxÞjj2 þ L2
2
jjxnþ1� xnjj2:

In view of the Lipschitzness of B, one obtains

2hkðCðxnÞ�CðxÞÞ, kðBðxn� 1Þ�BðxnÞÞi � kL1jjxn� 1� xnjj2 þ k3L1jjCðxnÞ�CðxÞjj2

� kL1jjxn� 1� xnjj2 þ k
L2

jjCðxnÞ�CðxÞjj2,

which together with (3.3) deduces that
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ð1þ kLÞjjxnþ1� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� xjj2 þ 2
3
� kL1� kL2

� �
jjxnþ1� xnjj2

� ð1þ kLÞjjxn� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� 1 � xjj2 þ ð2aþ 2ÞkL1jjxn� 1� xnjj2:

Put e :¼ 2
3 � kL1� kL2
� ��ð2aþ 2ÞkL1 ¼ 2

3 � kðL2 þ ð2aþ 3ÞL1Þ> 0: It
follows that

ð1þ kLÞjjxnþ1� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� xjj2 þ ðð2þ 2aÞkL1 þ eÞjjxnþ1� xnjj2
� ð1þ kLÞjjxn� xjj2 þ ðk2L2 þ kLþ 1Þjjxn� 1 � xjj2 þ ð2þ 2aÞkL1jjxn� 1 � xnjj2:

The proof is complete. w

The following theorem is main result of the three-operator splitting
scheme in this section.

Theorem 3.1. Consider Algorithm (3.2) under Assumption 3.1 and assume
ðAþ Bþ CÞ� 1ð0Þ 6¼ ;. Suppose that x0, x� 1 2 H and k 2 ð0, 2

3L2þð6aþ9ÞL1Þ.
Then the sequence ðxnÞ generated by modified ISDR algorithm (3.2) con-
verges to a point in ðAþ Bþ CÞ� 1ð0Þ weakly.

Proof. From (3.1) and Theorem 2.1, one can conclude the proof immedi-
ately. So, we omit the details. w

Now, we present a corollary of Theorem 3.2. Let K be a nonempty closed
convex subset of H, B : H ! H be a monotone and Lipschitz continuous
operator, and C : H ! H be a cocoercive operator. Then, we consider the
following variational inequality problem of two-operator sum form:

Find x
 2 K such that hðBþ CÞðx
Þ, x� x
i � 0, 8x 2 K: (VIP1)

Denote by NK the normal cone of K. The problem (VIP1) is equivalent
to the following variational inclusion problem:

Find x
 2 H such that 0 2 ðNK þ Bþ CÞðx
Þ:
Note that the operator NK is maximally monotone. Moreover, JkNKðxÞ ¼

PKðxÞ for all x 2 H: Thus, the following corollary follows directly from
Theorem 3.1.

Corollary 3.1. Let K be a nonempty closed convex subset of H. Let B : H !
H be a monotone and L1-Lipschitz continuous operator and C : H ! H be a
1=L2-cocoercive operator. Assume that ðNK þ Bþ CÞ� 1ð0Þ 6¼ ;, x0, x� 1 2 H
and k 2 ð0, 2

3L2þð6aþ9ÞL1Þ. Let ðxnÞ be the sequence generated by the following
manner:

xnþ1 ¼ PKðwn� kðBþ CÞðxnÞÞ� kðBðxnÞ�Bðxn� 1ÞÞ: (3.4)

Then, the sequence ðxnÞ converges weakly to a solution of problem (VIP1).
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4. Numerical experiments

In order to evaluate the performance of the proposed algorithms, this sec-
tion reports four numerical experiments (convex minimization, convex
feasibility, signal processing, and variational inequality problem) to illus-
trate the convergence of the Algorithm ISDR (2.1) and the Algorithm (3.4).
Moreover, we compare the suggested algorithms with the Algorithm SDR
(1.5) and the Algorithm (5.2) proposed by Malitsky and Tam [26]. The
codes were written in Matlab R2018a and run on a PC Desktop Intel(R)
Core(TM) i5-8250M CPU@1.60GHz 1.8GHz, RAM 8.00GB.

4.1. Convex minimization problems

Let f and g be two convex, lower semi-continuous functions such that f is
differentiable with L-Lipschitz continuous gradient, and the proximal map
of g can be computed. The convex minimization problem consists of find-
ing x0 2 H such that

f ðx0Þ þ gðx0Þ � f ðxÞ þ gðxÞ, 8x 2 H:

It is known that the convex minimization problem is a special case of
the inclusion problem (1.1), which consists of finding x0 2 H such that

0 2 rf ðx0Þ þ @gðx0Þ,
where rf is a gradient of f and @g is a subdifferential of g.

Example 4.1. Consider the following minimization problem:

min
x2R3

jjxjj22 þ ð3, 5, � 1Þxþ 9þ jjxjj1,

where x ¼ ðx1, x2, x3Þ 2 R3: Set f ðxÞ ¼ jjxjj22 þ ð3, 5, � 1Þx and gðxÞ ¼ jjxjj1:
Thus, rhðxÞ ¼ 2xþ ð3, 5, � 1Þ and

ðI þ @gÞ� 1x ¼ ðmaxfjx1j � r, 0gsignðx1Þ, maxfjx2j � r, 0gsignðx2Þ,
maxfjx3j � r, 0gsignðx3ÞÞ:

We solve this problem by Algorithm SDR and Algorithm ISDR.
We choose k ¼ 1

4 , an ¼ 0:3: x0 and x1 are generated in (0, 1) randomly.
From Figure 1, we see that our algorithm converges more efficiently.

4.2. Convex feasibility problems

Let H1 and H2 be two real Hilbert spaces. Let T : H1 ! H2 be a
bounded and linear operator, and let T
 be the adjoint of T. Let C � H1

and Q � H2 be nonempty, convex, and closed sets. The split feasibility
problem (SFP) is formulated as follows:

1636 J. FAN ET AL.

mailto:CPU.60	GHz


find a point x 2 C such that Tx 2 Q:

Take Ax :¼ r 1
2 kTx � PQTxk2
	 


¼ T
ðI � PQÞTx and B ¼ @iC (the
indicator function), where PQ is the metric projection onto Q. Thus, SFP
has an inclusion structure. It can be seen that A is Lipschitz continuous
with module L ¼ jjTjj2 and B is maximally monotone; see, e.g., [27].

Example 4.2. Consider H ¼ L2ð½0, 2p	Þ with

hf , gi ¼
ð2p
0
f ðtÞgðtÞdt,

and the associated norm given as

jjf jj2 :¼
ð2p
0
jf ðtÞj2dt

 !1
2

, 8f , g 2 L2ð 0, 2p½ 	Þ:

Consider the half-space

C ¼ x 2 L2ð 0, 2p½ 	 : hx, ui � 1g,
�

and

Q ¼ x 2 L2ð 0, 2p½ 	Þ : jjx � wjj2 � 4
� �

,

where u : ½0, 2p	 ! R, u(t) ¼ 1 for all t 2 ½0, 2p	, and f : ½0, 2p	 !
R, wðtÞ ¼ sin ðtÞ for all t 2 ½0, 2p	: The set C and Q are nonempty, convex,
and closed sets in L2ð½0, 2p	Þ: Suppose that T : L2ð½0, 2p	Þ ! L2ð½0, 2p	Þ is
defined by ðTxÞðtÞ :¼ xðtÞ with ðT
xÞðtÞ ¼ xðtÞ and jjTjj ¼ 1: The problem
in this example is to:

find x
 2 C such that Tx
 2 Q: (4.1)

Figure 1. Comparison of Algorithms SDR and Algorithm ISDR in Example 4.1.
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Since ðTxÞðtÞ ¼ xðtÞ, 8x 2 L2ð½0, 2p	Þ, (4.1) is actually a convex feasibility
problem of the form:

find x
 2 C \ Q:

Problem (4.1) can be translate to a inclusion formulation of AþB, where

Ax :¼ r 1
2 kTx � PQTxk2
	 


¼ T
ðI � PQÞTx and B ¼ @iC: It is clear that

A is 1-Lipschitz continues and B is maximal monotone.
In the specific calculation process, we use the following formula for the

projections onto set C and set Q, respectively (see [27]),

PCðzÞ ¼
1� Ð 2p

0 zðtÞdt
4p2

þ z,
ð2p
0
zðtÞdt> 1,

z,
ð2p
0
zðtÞdt � 1:

8>>><
>>>:

For w 2 L2ð½0, 2p	, one also has

PQðwÞ¼
sin þ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ 2p

0 jwðtÞ� sinðtÞj2dt
q ðw� sinÞ,

ð2p
0
jwðtÞ� sinðtÞj2dt>16,

w,
ð2p
0
jwðtÞ� sinðtÞj2dt� 16:

8>>>><
>>>>:

We compare our proposed Algorithm ISDR with Algorithm SDR and
Algorithm YMDR (1.11) proposed in [26] via different initial points x0 and
x1. We use the stopping criterion

En ¼ 1
2
kPC xnð Þ � xnk22 þ

1
2
kPQ T xnð Þ� � � T xnð Þk22<�,

where e ¼ 10� 4: Other parameters are chosen as k ¼ 0:25 and an ¼ 0:3:
The results are presented in Table 1, Figures 2 and 3.

Remark 4.1.
� The numerical results of Example 4.2 illustrate that Algorithm ISDR is

efficient, easy to implement, and, most importantly, very fast.

Table 1. Comparison between proposed Algorithm ISDR, Algorithm SDR and Algorithm YMDR.
Algorithm ISDR Algorithm SDR Algorithm YMDR

Cases Initial points Iter. Time(s) Iter. Time(s) Iter. Time(s)

I x0 ¼ t2
10 , x1 ¼ t2

10 14 10.81 20 42.64 20 18.89
II x0 ¼ t2

10 , x1 ¼ et
2 31 91.19 43 118.69 43 113.46

III x0 ¼ t2
10 , x1 ¼ t4

24 þ et
10 28 126.51 39 163.77 39 176.61

IV x0 ¼ t2
10 , x1 ¼ t4þ3t3þtþ4

13 30 123.42 41 191.91 41 233.2
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� Our proposed algorithm ISDR is consistent in the sense that the choice
of initial points does not affect the required number of iterations
needed to achieve desired results.

� By comparing our Algorithm ISDR with Algorithm SDR and Algorithm
YMDR, we see from the same expected outcome that our algorithm
is better.

4.3. Signal processing problems

Digital signal reconstruction is one of the earliest problems in the file res-
toration, the astronomical imaging, the medical and some other applica-
tions. Many problems in signal processing and image recovery can be
formulated as a linear inverse problem, which is modeled as

b ¼ Az þ v, (4.2)

where b 2 Rj is the noisy measurement, A 2 Rj�i models the acquisition
device, z 2 Ri is the original signal to be reconstructed and v 2 Rj is the
additive noise. In this example, we restrict our attention to recover an

Figure 2. Comparison Algorithm ISDR, Algorithm SDR and Algorithm YMDR.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 1639



approximation of the signal z. The LASSO problem is particular case of the
linear problems of type (4.2) as

min
x2Ri

1
2
jjAx� bjj2 þ kjjxjj1, (4.3)

where jjxjj1 is a regularizer, the l1-norm is defined as jjxjj1 ¼
P

n xnj j and
the parameter k is related to the level of noise jjvjj: By substituting AðxÞ ¼
1
2 jjAx� bjj2 and BðxÞ ¼ kjjxjj1, we can see that problem (4.3) is reduced to

find x 2 Ri such that 0 2 ð@BþrAÞðxÞ:
We see that A is a smooth function satisfying rAðxÞ ¼ A
ðAx� bÞ and

rA is L-Lipschitz continuous with L ¼ kA
Ak: The proximal operator of
BðxÞ ¼ kjjxjj1 is given as

proxcBðxÞk ¼ max 0, 1 � kc
xkj j

� �
xk:

Example 4.3. In this example, our aim is to recover a sparse signal z 2
R

400 with 16 non zero elements. The purpose of our model is to solve b ¼

Figure 3. Comparison Algorithm ISDR, Algorithm SDR and Algorithm YMDR.

1640 J. FAN ET AL.



Az þ v, where v is a realization of Gaussian white noise with the variance
is 10� 2: The problem can be rewritten as

min
x2R400

1
2
jjAx� bjj22 þ kjjxjj1:

We take the regularization parameter k ¼ 0:5, the step size c ¼ 0:2=L
and the maximum number of iterations is 5� 104: The corresponding
parameters in SDR and ISDR are the same as in Example 4.1. Figures 4
and 5 illustrate the recovery results.
The recovery sparse signal (with 16 nonzero elements) z from noise

observation vector b by Algorithm SDR and Algorithm ISDR are given in
Figure 4. In Figure 5, we present the discrepancy of the term 1

2 jjAx� bjj2:
In science and engineering, signal to noise ratio (SNR) is the ratio of signal
power to the noise power, which is a measure that compares the level of a
desired signal to the level of background noise. SNR often expressed in
decibels such that it is defined as follows:

SNRðdBÞ ¼ 10 log 10
Psignal
Pnoise

� �
,

where Psignal is Power of signal, Pnoise is Power of noise. The numerical
results show that SNR ¼ 6:7781828138452ðdBÞ in Algorithm SDR and
SNR ¼ 6:7781828138454ðdBÞ in Algorithm ISDR. These images and data
illustrate that both methods are effective in solving the problem, but the
Algorithm ISDR is more efficient than Algorithm SDR.

4.4. Variational inclusion problems

Next, we present a numerical example involving three operators to demon-
strate the Algorithm (3.4) proposed in Section 3.

Figure 4. Comparison of Algorithm SDR and Algorithm ISDR for recovery of a sparse k¼ 16 signal.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 1641



Example 4.4. Consider our problem in Rmðm ¼ 10, 20Þ with AðxÞ ¼ NKðxÞ
(multi-valued part), BðxÞ ¼ FðxÞ (nonlinear component), and CðxÞ ¼
Mxþ q (linear component), where the polyhedral convex set K is defined
as K ¼ x 2 Rm : Gx � ff g, F(x) is the proximal mapping of the function
gðxÞ ¼ 1

4 jjxjj4, that is

FðxÞ ¼ argminy2Rm

jjyjj4
4

þ 1
2
jjy � xjj2

� �
,

and M 2 Rm�m (a symmetric semidefinite matrix) with its entries created
randomly in ð� 2, 2Þ, q 2 Rm with its entries in ð� 2, 2Þ: It is easy to
verify that operator B is monotone and Lipschitz continuous with constant

Figure 5. Comparison of Algorithm SDR and Algorithm ISDR for 1
2 jjAx� bjj2:

Figure 6. Numerical results for Example 4.4.
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L1 ¼ 1, and operator C is monotone and Lipschitz continuous with con-
stant L2 ¼ jjMjj: We use the proposed Algorithm (3.4) to solve this prob-
lem and compare it with the Algorithm (5.2) proposed by Malitsky and
Tam [26]. Our parameter settings are as follows. In our Algorithm (3.4),
select the inertia parameter a ¼ 0:6 and the stepsize k ¼ 1:9

3L2þð6aþ9ÞL1 , and
set the stepsize k ¼ 1

4L1þL2
in the Algorithm (5.2) proposed by Malitsky and

Tam. Since we do not know the exact solution of the problem, we use
Dn ¼ jjxnþ1� xnjj to measure the iterative error of n-th step. Set the stop
criterion to the maximum number of iterations 500 and the initial values
x� 1 ¼ x0: Figure 6(a) and (b) show the numerical behavior of all the algo-
rithms in different dimensions, respectively. From the results obtained, we
can see that our proposed Algorithm (3.4) is efficient and robust.
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