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 A B S T R A C T

The paper presents a new iterative algorithm based on Mann-type subgradient extragradient 
method to solve pseudomonotone variational inequalities and fixed point problems of quasi-
nonexpansive mappings in real Hilbert spaces. Our algorithm, employing inertial technique in 
each iteration, significantly enhances its convergence. We prove a strong convergence theorem 
under suitable conditions imposed on the operators and parameters, without prior knowledge of 
the Lipschitz constant. The efficacy and validity of the proposed method are confirmed through 
several numerical experiments.

. Introduction

In this work, let  be a real Hilbert space with the inner product ⟨⋅, ⋅⟩ and the induced norm ‖ ⋅ ‖. Assume that 𝐶 is a nonempty 
losed convex subset of . The main purpose of this paper is to construct a new iterative algorithm which has a faster convergence 
ate than other existing related algorithms to find a common solution of variational inequality problems and fixed point problems. 
ext, recall that the variational inequality problem (for short, VIP) is defined as finding 𝑥∗ ∈ 𝐶 such that 

⟨𝐹𝑥∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀ 𝑥 ∈ 𝐶, (1)

here 𝐹 ∶ 𝐶 →  is a nonlinear operator. Let VI(𝐶, 𝐹 ) denote the set of all solutions of VIP. In recent years, numerical methods 
f variational inequalities have attracted extensive attention, many numerical iterative methods have been constructed for solving 
ariational inequality problems and related optimization problems(see [1–14]and references therein). It is clear that a simple method 
or solving VIP is the following gradient projection method: 

𝑥0 ∈ , 𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝜏𝐹𝑥𝑛), ∀ 𝑛 ≥ 0, (2)

here 𝜏 is a parameter that satisfies certain conditions and 𝑃𝐶 is the metric projection from  onto 𝐶. However, the operator 𝐹  is 
trongly monotone and Lipschitz continuous for guaranteeing the convergence of the sequence generated by (2).
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In order to weaken the stronger assumption of the operator mentioned above, Korpelevich [15] proposed the following 
extragradient method in the Euclidean space:

⎧

⎪

⎨

⎪

⎩

𝑥0 ∈ 𝐶,

𝑡𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜏𝐹𝑥𝑛),

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝜏𝐹 𝑡𝑛),

where 𝜏 ∈ (0, 1
𝐿 ), the associated mapping 𝐹  is monotone and 𝐿-Lipschitz continuous. More precisely, the sequence {𝑥𝑛} generated 

by the above algorithm converges weakly to an element of VI(𝐶, 𝐹 ). It is noted that this method needs us to compute twice the 
projections onto 𝐶 in each iteration, and this will take a lot of computation time in numerical experiments.

Afterwards, many authors have created many methods to overcome this disadvantage (see [16–22] and references therein). For 
instance, Censor et al. [23] proposed subgradient extragradient method as follows:

⎧

⎪

⎨

⎪

⎩

𝑡𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜏𝐹𝑥𝑛),

𝑇𝑛 = {𝑥 ∈  ∣ ⟨𝑥𝑛 − 𝜏𝐹𝑥𝑛 − 𝑡𝑛, 𝑥 − 𝑡𝑛⟩ ≤ 0},

𝑥𝑛+1 = 𝑃𝑇𝑛 (𝑥𝑛 − 𝜏𝐹 𝑡𝑛),

where 𝜏 ∈ (0, 1
𝐿 ) and the algorithm achieved a weakly convergent conclusion. In addition, it should be noted that the closed convex 

set 𝐶 is replaced by a specific constructible half-space in the second projection of the above algorithm. In this way, this method 
significantly reduces the difficulty of calculations in numerical experiments. Furthermore, this method was further extended to 
equilibrium problems and other optimization problems(see, for examples, [24–29]).

Let 𝑇 ∶  →  be a nonlinear mapping. A point 𝑥 ∈  is called a fixed point of mapping  if 𝑇𝑥 = 𝑥. The set of all fixed points 
of 𝑇  is denoted by Fix(𝑇 ):

Fix(𝑇 ) ∶= {𝑥 ∈  ∣ 𝑇𝑥 = 𝑥}.

It is well known that variational inequality problems can be transformed into fixed point problems in Hilbert space. Very 
recently, many iterative methods have been proposed for finding a common element of VIP and fixed point problem in Hilbert 
spaces(see [30–34]and references therein). For example, Thong and Hieu [35] introduced a algorithm 1 as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝑛 = 𝑥𝑛 + 𝛼𝑛(𝑥𝑛 − 𝑥𝑛−1),

𝑡𝑛 = 𝑃𝐶 (𝑤𝑛 − 𝜏𝑛𝐹𝑤𝑛),

𝑧𝑛 = 𝑃𝑇𝑛 (𝑤𝑛 − 𝜏𝑛𝐹 𝑡𝑛),

𝑇𝑛 ∶= {𝑥 ∈  ∣ ⟨𝑤𝑛 − 𝜏𝑛𝐹𝑤𝑛 − 𝑡𝑛, 𝑥 − 𝑡𝑛⟩ ≤ 0},

𝑥𝑛+1 = (1 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛,

where 𝜏𝑛 is chosen to be the largest 𝜏 ∈ {𝜆, 𝜆𝑙, 𝜆𝑙2,…} satisfying
𝜏‖𝐹𝑤𝑛 − 𝐹 𝑡𝑛‖ ≤ 𝜇‖𝑤𝑛 − 𝑡𝑛‖.

The sequence {𝑥𝑛} generated by Algorithm 1 converges weakly to 𝑧 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ) when 𝐹 ∶  →  is monotone and 
𝐿-Lipschitz continuous mapping. Note that two identical stepsizes are used in Algorithm 1, which may affect the convergence speed 
of the algorithm. In order to ensure the convergence of Algorithm 1, its correlation mapping is required to be monotonic. It is well 
known that the monotonicity can deduce the pseudo-monotone, but not vice versa.

Inspired by the above ideas, this paper prove a strong convergence theorem under several suitable conditions imposed on the 
operators and parameters. It should be emphasized that the proposed algorithm adopts two linearly related step sizes to improve the 
convergence performance of the algorithm. Meanwhile, we also give several practical numerical examples to illustrate the efficiency 
of the presented algorithm.

2. Preliminaries

In a real Hilbert space , it is clear that
‖𝛼𝑥 + 𝛽𝑡 + 𝛾𝑧‖2 = 𝛼‖𝑥‖2 + 𝛽‖𝑡‖2 + 𝛾‖𝑧‖2 − 𝛼𝛽‖𝑥 − 𝑡‖2

− 𝛼𝛾‖𝑥 − 𝑧‖2 − 𝛽𝛾‖𝑡 − 𝑧‖2

and

‖𝑥 + 𝑡‖2 ≤ ‖𝑥‖2 + 2 ⟨𝑡, 𝑥 + 𝑡⟩

for every 𝑥, 𝑡, 𝑧 ∈  and 𝛼, 𝛽, 𝛾 ∈ [0, 1] with 𝛼 + 𝛽 + 𝛾 = 1.
For every point 𝑥 ∈ , it is obvious that there exists a unique nearest point in 𝐶, which is denoted by 𝑃𝐶𝑥 satisfying

‖𝑥 − 𝑃𝐶𝑥‖ ≤ ‖𝑥 − 𝑡‖, ∀ 𝑡 ∈ 𝐶.

We call 𝑃  the metric projection.
𝐶

2 
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Now we recall some useful definitions and facts. A mapping 𝑇 ∶  →  is called to be:
𝐿-Lipschitz continuous with a constant 𝐿 > 0 if

‖𝑇𝑥 − 𝑇 𝑡‖ ≤ 𝐿‖𝑥 − 𝑡‖, ∀ 𝑥, 𝑡 ∈ .

if 𝐿 ∈ (0, 1), then 𝑇  is called a contraction. nonexpansive if
‖𝑇𝑥 − 𝑇 𝑡‖ ≤ ‖𝑥 − 𝑡‖, ∀ 𝑥, 𝑡 ∈ .

quasi-nonexpansive if Fix(𝑇 ) ≠ ∅,

‖𝑇𝑥 − 𝑝‖ ≤ ‖𝑥 − 𝑝‖, ∀ 𝑥 ∈ , 𝑝 ∈ Fix(𝑇 ).

monotone if
⟨𝑇𝑥 − 𝑇 𝑡, 𝑥 − 𝑡⟩ ≥ 0, ∀ 𝑥, 𝑡 ∈ .

pseudo-monotone if
⟨𝑇𝑥, 𝑡 − 𝑥⟩ ≥ 0 ⇒ ⟨𝑇 𝑡, 𝑡 − 𝑥⟩ ≥ 0, ∀ 𝑥, 𝑡 ∈ .

We say that 𝑇  is sequentially weakly continuous if for every sequence {𝑥𝑛} satisfying 𝑥𝑛 ⇀ 𝑥, then we obtain 𝑇𝑥𝑛 ⇀ 𝑇𝑥. The 
following lemmas are very important for proving our main results.

Lemma 1 ([36]). Let  be a real Hilbert space and 𝐶 be a nonempty closed convex subset of . Let 𝑧 ∈ 𝐶 and 𝑥 ∈ , we have
𝑧 = 𝑃𝐶𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑧 − 𝑡⟩ ≥ 0, ∀ 𝑡 ∈ 𝐶.

Lemma 2 ([36]). Suppose that 𝐶 is a closed and convex subset in a real Hilbert space  and given 𝑥 ∈ . We get
(1) ‖𝑃𝐶𝑥 − 𝑃𝐶 𝑡‖2 ≤ ⟨𝑃𝐶𝑥 − 𝑃𝐶 𝑡, 𝑥 − 𝑡⟩, ∀ 𝑡 ∈ ,
(2) ‖𝑃𝐶𝑥 − 𝑡‖2 ≤ ‖𝑥 − 𝑡‖2 − ‖𝑥 − 𝑃𝐶𝑥‖2, ∀ 𝑡 ∈ 𝐶.

Lemma 3 ([37]). Let 𝐶 be a nonempty closed convex subset of a real Hilbert space  and 𝐹 ∶ 𝐶 →  be a pseudo-monotone and 
continuous operator. Then, 𝑡∗ ∈ 𝑉 𝐼(𝐶, 𝐹 ) if and only if

⟨𝐹 𝑡, 𝑡 − 𝑡∗⟩ ≥ 0, ∀ 𝑡 ∈ 𝐶.

Lemma 4 ([38]). Let {𝑏𝑛} be a sequence of positive real numbers such that there exists a subsequence {𝑏𝑛𝑖} of {𝑏𝑛} satisfying 𝑏𝑛𝑖 < 𝑏𝑛𝑖+1
for all 𝑖 ∈ N. Then there exists an increasing sequence {𝑚𝑘} of N satisfying lim𝑘→∞ 𝑚𝑘 = ∞, at the same time, for all sufficiently large 
number 𝑘 ∈ N, we have

𝑏𝑚𝑘
≤ 𝑏𝑚𝑘+1 and 𝑏𝑘 ≤ 𝑏𝑚𝑘+1.

Lemma 5 ([39]). Let {𝑥𝑛} be a nonnegative real sequence such that
𝑥𝑛+1 ≤ (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝛽𝑛, ∀ 𝑛 ≥ 0,

where {𝛼𝑛} and {𝛽𝑛} satisfy the following conditions:
(𝑎) {𝛼𝑛} ⊂ [0, 1], ∑∞

𝑛=1 𝛼𝑛 = ∞,
(𝑏) lim sup𝑛→∞ 𝛽𝑛 ≤ 0.
Then lim𝑛→∞ 𝑥𝑛 = 0.

Lemma 6 ([40]). Assume that 𝐹 ∶  →  is a monotone and 𝐿-Lipschitz continuous operator. Let 𝑇 = 𝑃𝐶 (𝐼 − 𝜌𝐹 ), 𝜌 > 0. Suppose that 
{𝑥𝑛} is a sequence in  such that 𝑥𝑛 ⇀ 𝑥 and 𝑥𝑛 − 𝑇𝑥𝑛 → 0, then 𝑥 ∈ VI(𝐶, 𝐹 ) = Fix(𝑇 ).

3. Main results

In this section, we introduce a modified Mann-type subgradient extragradient method for solving the problem (VIP) and the 
fixed point problem of a nonexpansive mapping. Now we provide the following assumptions.

Condition 1. 𝐶 is a nonempty closed and convex subset of a real Hilbert space .

Condition 2. The mapping 𝐹 ∶  →  is pseudo-monotone, 𝐿-Lipschitz continuous on  and sequentially weakly continuous on 
bounded subsets of 𝐶.

Condition 3. The solution set VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ) ≠ ∅.
3 
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Let {𝛼𝑛} and {𝛽𝑛} be two real sequences in (0, 1) satisfying {𝛽𝑛} ⊂ (𝑎, 𝑏) ⊂ (0, 1 − 𝛼𝑛) for some 𝑎, 𝑏 > 0 and assume that

lim
𝑛→∞

𝛼𝑛 = 0,
∞
∑

𝑛=1
𝛼𝑛 = ∞.

Let {𝜃𝑛} ∈ (0, 𝜃) from some 𝜃 > 0 such that lim𝑛→∞
𝜃𝑛
𝛼𝑛
‖𝑥𝑛 − 𝑥𝑛−1‖ = 0.

Next we introduce our algorithm.

 
Algorithm 2 

Initialization: Take 𝜏0 > 0, 𝜇 ∈ (0, 1), 𝜂 ∈ (𝜇, 1]. Let 𝑥0, 𝑥1 ∈  be arbitrary.
Iterative Steps: Calculate 𝑥𝑛+1 as follows:
Step 1. Given the iterates 𝑥𝑛−1 and 𝑥𝑛(𝑛 ≥ 1). Set

𝑤𝑛 = 𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1).

Step 2. Compute

𝑡𝑛 = 𝑃𝐶 (𝑤𝑛 −
𝜏𝑛
𝜂
𝐹𝑤𝑛),

𝑧𝑛 = 𝑃𝑇𝑛 (𝑤𝑛 − 𝜏𝑛𝐹 𝑡𝑛),

where 𝑇𝑛 ∶= {𝑥 ∈  ∣ ⟨𝑤𝑛 −
𝜏𝑛
𝜂 𝐹𝑤𝑛 − 𝑡𝑛, 𝑥 − 𝑡𝑛⟩ ≤ 0} and

𝜏𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min

{

𝜇
‖

‖

𝑤𝑛 − 𝑡𝑛‖‖
2 + ‖

‖

𝑧𝑛 − 𝑡𝑛‖‖
2

2 ⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩
, 𝜏𝑛

}

, if ⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ > 0,

𝜏𝑛, otherwise.
(3)

Step 3. Compute
𝑥𝑛+1 = (1 − 𝛼𝑛 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛.

Set 𝑛 ∶= 𝑛 + 1 and go to Step 1.

The following lemmas are quite helpful to obtain the convergence of our proposed algorithm. 

Lemma 7.  Assume that Conditions  1–3 hold. The sequence {𝜏𝑛} generated by (3) is a non-increasing sequence and
lim
𝑛→∞

𝜏𝑛 = 𝜏 ≥ min{𝜏0,
𝜇
𝐿
}.

Proof.  From (3), we have 𝜏𝑛 ≥ min{𝜏0,
𝜇
𝐿 } for all 𝑛 ∈ N. In fact, since 𝐹  is 𝐿-Lipschitz continuous on , we obtain ‖𝐹𝑤𝑛 − 𝐹 𝑡𝑛‖ ≤

𝐿‖𝑤𝑛 − 𝑡𝑛‖. Hence, if ⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ > 0, we get

𝜇
‖𝑤𝑛 − 𝑡𝑛‖2 + ‖𝑧𝑛 − 𝑡𝑛‖2

2⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩
≥ 𝜇

‖𝑤𝑛 − 𝑡𝑛‖‖𝑧𝑛 − 𝑡𝑛‖
‖𝐹𝑤𝑛 − 𝐹 𝑡𝑛‖‖𝑧𝑛 − 𝑡𝑛‖

= 𝜇
‖𝑤𝑛 − 𝑡𝑛‖

‖𝐹𝑤𝑛 − 𝐹 𝑡𝑛‖

≥ 𝜇
𝐿
,

which together with (3) yields 
𝜏𝑛 ≥ min{𝜏0,

𝜇
𝐿
}. (4)

Therefore, it is obvious that the sequence {𝜏𝑛} is non-increasing and lower bounded. Therefore lim𝑛→∞ 𝜏𝑛 = 𝜏 ≥ min{𝜏0,
𝜇
𝐿 }. This 

completes the proof. □

Lemma 8.  Assume that Conditions  1–3 hold. Let {𝑧𝑛}, {𝑤𝑛} and {𝑡𝑛} be the sequences generated by Algorithm 2. Then
‖𝑧𝑛 − 𝑝‖2

≤ ‖𝑤𝑛 − 𝑝‖2 − (𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2 − (𝜂 −

𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2

− (1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖
2, ∀ 𝑝 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ). (5)
4 
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Proof.  By Lemma  2, we obtain
‖𝑧𝑛 − 𝑝‖2

= ‖𝑃𝑇𝑛 (𝑤𝑛 − 𝜏𝑛𝐹 𝑡𝑛) − 𝑝‖2

≤ ‖𝑤𝑛 − 𝜏𝑛𝐹 𝑡𝑛 − 𝑝‖2 − ‖𝑤𝑛 − 𝜏𝑛𝐹 𝑡𝑛 − 𝑧𝑛‖
2

= ‖𝑤𝑛 − 𝑝‖2 + 𝜏2𝑛‖𝐹 𝑡𝑛‖
2 − 2𝜏𝑛⟨𝑤𝑛 − 𝑝, 𝐹 𝑡𝑛⟩ − ‖𝑤𝑛 − 𝑧𝑛‖

2

− 𝜏2𝑛‖𝐹 𝑡𝑛‖
2 + 2𝜏𝑛⟨𝑤𝑛 − 𝑧𝑛, 𝐹 𝑡𝑛⟩

= ‖𝑤𝑛 − 𝑝‖2 − ‖𝑤𝑛 − 𝑧𝑛‖
2 − 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑝⟩

= ‖𝑤𝑛 − 𝑝‖2 − ‖𝑤𝑛 − 𝑧𝑛‖
2 − 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛 + 𝑡𝑛 − 𝑝⟩

= ‖𝑤𝑛 − 𝑝‖2 − ‖𝑤𝑛 − 𝑧𝑛‖
2 − 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ − 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑡𝑛 − 𝑝⟩. (6)

Since 𝑡𝑛 ∈ 𝐶 and 𝑝 ∈ VI(𝐶, 𝐹 ), we obtain
⟨𝐹𝑝, 𝑡𝑛 − 𝑝⟩ ≥ 0.

Since 𝐹  is a pseudo-monotone operator, we have 
⟨𝐹 𝑡𝑛, 𝑡𝑛 − 𝑝⟩ ≥ 0. (7)

Hence, we obtain 
‖𝑧𝑛 − 𝑝‖2 ≤ ‖𝑤𝑛 − 𝑝‖2 − ‖𝑤𝑛 − 𝑧𝑛‖

2 − 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩. (8)

For ‖𝑤𝑛 − 𝑧𝑛‖2 + 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩, we have
‖𝑤𝑛 − 𝑧𝑛‖

2 + 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

= ‖𝑤𝑛 − 𝑡𝑛 + 𝑡𝑛 − 𝑧𝑛‖
2 + 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

= ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2 + 2⟨𝑤𝑛 − 𝑡𝑛, 𝑡𝑛 − 𝑧𝑛⟩ + 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

= ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2 + 2⟨𝑡𝑛 −𝑤𝑛 + 𝜏𝑛𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

= 2⟨𝑡𝑛 −𝑤𝑛 +
𝜏𝑛
𝜂
𝐹𝑤𝑛 −

𝜏𝑛
𝜂
𝐹𝑤𝑛 +

𝜏𝑛
𝜂
𝐹 𝑡𝑛 −

𝜏𝑛
𝜂
𝐹 𝑡𝑛 + 𝜏𝑛𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

+ ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2

= ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2 + 2⟨𝑡𝑛 −𝑤𝑛 +
𝜏𝑛
𝜂
𝐹𝑤𝑛, 𝑧𝑛 − 𝑡𝑛⟩

−
2𝜏𝑛
𝜂

⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ + 2𝜏𝑛(1 −
1
𝜂
)⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩. (9)

Since 𝑡𝑛 = 𝑃𝐶 (𝑤𝑛 −
𝜏𝑛
𝜂 𝐹𝑤𝑛) and 𝑧𝑛 ∈ 𝑇𝑛, we obtain

⟨𝑤𝑛 −
𝜏𝑛
𝜂
𝐹𝑤𝑛 − 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ ≤ 0.

It follows that
‖𝑤𝑛 − 𝑧𝑛‖

2 + 2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

≥ ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2 −
2𝜏𝑛
𝜂

⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

+ 2𝜏𝑛(1 −
1
𝜂
)⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩. (10)

Thus, we have
2𝜏𝑛
𝜂

⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

≥ ‖𝑤𝑛 − 𝑡𝑛‖
2 + ‖𝑡𝑛 − 𝑧𝑛‖

2 − ‖𝑤𝑛 − 𝑧𝑛‖
2 −

2𝜏𝑛
𝜂

⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩,

that is,
2𝜏𝑛⟨𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩

≥ 𝜂‖𝑤𝑛 − 𝑡𝑛‖
2 + 𝜂‖𝑡𝑛 − 𝑧𝑛‖

2 − 𝜂‖𝑤𝑛 − 𝑧𝑛‖
2 − 2𝜏𝑛⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩. (11)

Substituting (11) into (8), we have
‖𝑧𝑛 − 𝑝‖2

≤ ‖𝑤 − 𝑝‖2 − (1 − 𝜂)‖𝑤 − 𝑧 ‖

2 − 𝜂‖𝑤 − 𝑡 ‖2
𝑛 𝑛 𝑛 𝑛 𝑛
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− 𝜂‖𝑧𝑛 − 𝑡𝑛‖
2 + 2𝜏𝑛⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩. (12)

By the definition of {𝜏𝑛}, it is clear that 

2⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ ≤
𝜇

𝜏𝑛+1
‖𝑤𝑛 − 𝑡𝑛‖

2 +
𝜇

𝜏𝑛+1
‖𝑧𝑛 − 𝑡𝑛‖

2. (13)

Indeed, if ⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ ≤ 0, then the inequality (13) holds. Otherwise, from (3), we get

𝜏𝑛+1 ≤ 𝜇
‖𝑤𝑛 − 𝑡𝑛‖2 + ‖𝑧𝑛 − 𝑡𝑛‖2

2⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩
,

which implies
2⟨𝐹𝑤𝑛 − 𝐹 𝑡𝑛, 𝑧𝑛 − 𝑡𝑛⟩ ≤

𝜇
𝜏𝑛+1

‖𝑤𝑛 − 𝑡𝑛‖
2 +

𝜇
𝜏𝑛+1

‖𝑧𝑛 − 𝑡𝑛‖
2.

Therefore, the inequality (13) holds. Combining (12) and (13), we have
‖𝑧𝑛 − 𝑝‖2

≤ ‖𝑤𝑛 − 𝑝‖2 − (𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2

− (𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2 − (1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖

2.

This completes the proof. □

By using Lemmas  6 and 8, we can obtain the following results. Its proof is similar to Lemma 3.3 of Thong et al. [41], we omit 
the details. 

Lemma 9 ([41]). Assume that Conditions  1–3 hold. Let {𝑤𝑛} be a sequence generated by Algorithm 2. If there exists a subsequence {𝑤𝑛𝑘}
converges weakly to 𝑧 ∈  and lim𝑘→∞ ‖𝑤𝑛𝑘 − 𝑡𝑛𝑘‖ = 0, then 𝑧 ∈ VI(𝐶, 𝐹 ).

Now we state the main results of this section. 

Theorem 1.  Assume that Conditions  1–3 hold and the sequence {𝜃𝑛} is chosen such that

lim
𝑛→∞

𝜃𝑛
𝛼𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖ = 0.

Then the sequence {𝑥𝑛} generated by Algorithm 2 converges strongly to an element 𝑝 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ), where ‖𝑝‖ = min{‖𝑧‖ ∶ 𝑧 ∈
VI(𝐶, 𝐹 ) ∩ Fix(𝑇 )}.

Proof.  We divide the proof into four claims.

Claim 1. We prove that the sequence {𝑥𝑛} is bounded. Indeed, by Lemma  9, there exists a 𝑁1 ∈ N such that 

‖𝑧𝑛 − 𝑝‖ ≤ ‖𝑤𝑛 − 𝑝‖, ∀ 𝑛 ≥ 𝑁1 and 𝑝 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ). (14)

It follows that for all 𝑛 ⩾ 𝑁1

‖𝑥𝑛+1 − 𝑝‖ = ‖(1 − 𝛼𝑛 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝑝‖

= ‖(1 − 𝛼𝑛 − 𝛽𝑛)(𝑤𝑛 − 𝑝) + 𝛽𝑛(𝑇 𝑧𝑛 − 𝑝) − 𝛼𝑛𝑝‖

≤ ‖(1 − 𝛼𝑛 − 𝛽𝑛)(𝑤𝑛 − 𝑝) + 𝛽𝑛(𝑇 𝑧𝑛 − 𝑝)‖ + 𝛼𝑛‖𝑝‖

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖ + 𝛽𝑛‖𝑇 𝑧𝑛 − 𝑝‖ + 𝛼𝑛‖𝑝‖

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖ + 𝛽𝑛‖𝑧𝑛 − 𝑝‖ + 𝛼𝑛‖𝑝‖

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖ + 𝛽𝑛‖𝑤𝑛 − 𝑝‖ + 𝛼𝑛‖𝑝‖

≤ (1 − 𝛼𝑛)‖𝑤𝑛 − 𝑝‖ + 𝛼𝑛‖𝑝‖. (15)

It follows from the definition of {𝑤𝑛
} that

‖𝑤𝑛 − 𝑝‖ = ‖𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1) − 𝑝‖

≤ ‖𝑥𝑛 − 𝑝‖ + 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖

≤ ‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛 ⋅
𝜃𝑛
𝛼𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖. (16)

Since 

lim
𝜃𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖ = 0, (17)

𝑛→∞ 𝛼𝑛
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there exist constants 𝑀1 > 0 and 𝑁2 > 0 such that 𝜃𝑛𝛼𝑛 ‖𝑥𝑛 − 𝑥𝑛−1‖ ≤ 𝑀1 for all 𝑛 ≥ 𝑁2. By (16), we have 

‖𝑤𝑛 − 𝑝‖ ≤ ‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1. (18)

Let 𝑁 = max{𝑁1, 𝑁2} and for any 𝑛 ≥ 𝑁 , substituting (18) into (15), we obtain
‖𝑥𝑛+1 − 𝑝‖

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖ + (1 − 𝛼𝑛)𝛼𝑛𝑀1 + 𝛼𝑛‖𝑝‖

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀2

≤ max{‖𝑥𝑛 − 𝑝‖,𝑀2}

≤ ⋯

≤ max{‖𝑥𝑁 − 𝑝‖,𝑀2},

where 𝑀2 = 𝑀1 + ‖𝑝‖. This implies that the sequence {𝑥𝑛} is bounded. Hence, the sequences {𝑧𝑛} and {𝑤𝑛} are also bounded. In the rest 
of the proof, we may assume, without loss of generality, 𝑁 = 1.

Claim 2. 
𝛽𝑛(𝜂 −

𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2 + 𝛽𝑛(𝜂 −

𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2

+ 𝛽𝑛(1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖
2 + 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖

2

≤ ‖𝑥𝑛 − 𝑝‖2 − ‖𝑥𝑛+1 − 𝑝‖2 + 𝛼𝑛𝑀4, (19)

for some 𝑀4 > 0. Indeed, since 𝑇  is quasi-nonexpansive mapping, we have
‖𝑥𝑛+1 − 𝑝‖2

= ‖(1 − 𝛼𝑛 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝑝‖2

= ‖(1 − 𝛼𝑛 − 𝛽𝑛)(𝑤𝑛 − 𝑝) + 𝛽𝑛(𝑇 𝑧𝑛 − 𝑝) − 𝛼𝑛𝑝‖
2

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖2 + 𝛽𝑛‖𝑇 𝑧𝑛 − 𝑝‖2

+ 𝛼𝑛‖𝑝‖
2 − 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖

2

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖2 + 𝛽𝑛‖𝑧𝑛 − 𝑝‖2

+ 𝛼𝑛‖𝑝‖
2 − 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖

2. (20)

From (18), we have
‖𝑤𝑛 − 𝑝‖2 ≤ (‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀1)2

= ‖𝑥𝑛 − 𝑝‖2 + 𝛼𝑛(2𝑀1‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀
2
1 )

≤ ‖𝑥𝑛 − 𝑝‖2 + 𝛼𝑛𝑀3, (21)

where 𝑀3 = sup𝑛≥1(2𝑀1‖𝑥𝑛 − 𝑝‖ + 𝛼𝑛𝑀2
1 ). Combining (5), (20) and (21), we obtain

‖𝑥𝑛+1 − 𝑝‖2

≤ (1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖2 + 𝛽𝑛‖𝑤𝑛 − 𝑝‖2 − 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖
2

− 𝛽𝑛(𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2 − 𝛽𝑛(1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖

2

− 𝛽𝑛(𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2 + 𝛼𝑛‖𝑝‖

2

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖2 − 𝛽𝑛(𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2

− 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖
2 − 𝛽𝑛(𝜂 −

𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2

− 𝛽𝑛(1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖
2 + 𝛼𝑛‖𝑝‖

2 + 𝛼𝑛𝑀3,

which implies

𝛽𝑛(𝜂 −
𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑤𝑛 − 𝑡𝑛‖
2 + 𝛽𝑛(𝜂 −

𝜇𝜏𝑛
𝜏𝑛+1

)‖𝑡𝑛 − 𝑧𝑛‖
2

+ 𝛽𝑛(1 − 𝜂)‖𝑧𝑛 −𝑤𝑛‖
2 + 𝛽𝑛(1 − 𝛼𝑛 − 𝛽𝑛)‖𝑤𝑛 − 𝑇 𝑧𝑛‖

2

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖2 − ‖𝑥𝑛+1 − 𝑝‖2 + 𝛼𝑛‖𝑝‖
2 + 𝛼𝑛𝑀3

≤ ‖𝑥𝑛 − 𝑝‖2 − ‖𝑥𝑛+1 − 𝑝‖2 + 𝛼𝑛𝑀4,

where 𝑀 = 𝑀 + ‖𝑝‖2.
4 3
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Claim 3. 

‖𝑥𝑛+1 − 𝑝‖2

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖2

+ 𝛼𝑛[2𝛽𝑛‖𝑤𝑛 − 𝑇 𝑧𝑛‖‖𝑥𝑛+1 − 𝑝‖ +
𝑀𝜃𝑛
𝛼𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖ + 2⟨𝑝, 𝑝 − 𝑥𝑛+1⟩], (22)

where 𝑀 = sup𝑛≥1(2‖𝑤𝑛 − 𝑝‖). Indeed, by the definition of {𝑤𝑛}, we get

‖𝑤𝑛 − 𝑝‖2 = ‖𝑥𝑛 + 𝜃𝑛(𝑥𝑛 − 𝑥𝑛−1) − 𝑝‖2

≤ ‖𝑥𝑛 − 𝑝‖2 + 2𝜃𝑛⟨𝑥𝑛 − 𝑥𝑛−1, 𝑤𝑛 − 𝑝⟩

≤ ‖𝑥𝑛 − 𝑝‖2 + 2𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖‖𝑤𝑛 − 𝑝‖

≤ ‖𝑥𝑛 − 𝑝‖2 + 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖𝑀. (23)

It follows that

‖𝑥𝑛+1 − 𝑝‖2

= ‖(1 − 𝛼𝑛 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝑝‖2

= ‖(1 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝛼𝑛𝑤𝑛 − 𝑝‖2

= ‖(1 − 𝛼𝑛)[(1 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝑝] − 𝛼𝑛𝛽𝑛(𝑤𝑛 − 𝑇 𝑧𝑛) − 𝛼𝑛𝑝‖
2

≤ (1 − 𝛼𝑛)2‖(1 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇 𝑧𝑛 − 𝑝‖2

+ 2⟨𝛼𝑛𝛽𝑛(𝑤𝑛 − 𝑇 𝑧𝑛) + 𝛼𝑛𝑝, 𝑝 − 𝑥𝑛+1⟩

= (1 − 𝛼𝑛)2‖(1 − 𝛽𝑛)(𝑤𝑛 − 𝑝) + 𝛽𝑛(𝑇 𝑧𝑛 − 𝑝)‖2 + 2𝛼𝑛⟨𝑝, 𝑝 − 𝑥𝑛+1⟩

+ 2𝛼𝑛⟨𝛽𝑛(𝑤𝑛 − 𝑇 𝑧𝑛), 𝑝 − 𝑥𝑛+1⟩

≤ (1 − 𝛼𝑛)[(1 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖ + 𝛽𝑛‖𝑇 𝑧𝑛 − 𝑝‖]2 + 2𝛼𝑛⟨𝑝, 𝑝 − 𝑥𝑛+1⟩

+ 2𝛼𝑛𝛽𝑛‖𝑤𝑛 − 𝑇 𝑧𝑛‖‖𝑝 − 𝑥𝑛+1‖

≤ (1 − 𝛼𝑛)[(1 − 𝛽𝑛)‖𝑤𝑛 − 𝑝‖2 + 𝛽𝑛‖𝑧𝑛 − 𝑝‖2]

+ 𝛼𝑛[2𝛽𝑛‖𝑤𝑛 − 𝑇 𝑧𝑛‖‖𝑥𝑛+1 − 𝑝‖ + 2⟨𝑝, 𝑝 − 𝑥𝑛+1⟩]

≤ (1 − 𝛼𝑛)‖𝑤𝑛 − 𝑝‖2 + 𝛼𝑛[2𝛽𝑛‖𝑤𝑛 − 𝑇 𝑧𝑛‖‖𝑥𝑛+1 − 𝑝‖ + 2⟨𝑝, 𝑝 − 𝑥𝑛+1⟩]. (24)

By (23) and (24), we have

‖𝑥𝑛+1 − 𝑝‖2

≤ (1 − 𝛼𝑛)‖𝑥𝑛 − 𝑝‖2 + 𝛼𝑛[2𝛽𝑛‖𝑤𝑛 − 𝑇 𝑧𝑛‖‖𝑥𝑛+1 − 𝑝‖

+
𝑀𝜃𝑛
𝛼𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖ + 2⟨𝑝, 𝑝 − 𝑥𝑛+1⟩].

Claim 4.  Finally, we prove that the sequence 𝑥𝑛 → 𝑝 as 𝑛 → ∞. In fact, we consider two possible cases.
Case 1 There exists a 𝑛0 ∈ N satisfying {‖𝑥𝑛+1 − 𝑝‖2 ≤ ‖𝑥𝑛 − 𝑝‖2},∀ 𝑛 ≥ 𝑛0. Therefore, lim𝑛→∞ ‖𝑥𝑛 − 𝑝‖ exists. Noticing the conditions 

lim𝑛→∞ 𝛼𝑛 = 0, {𝛽𝑛} ⊂ (𝑎, 𝑏) ⊂ (0, 1 − 𝛼𝑛) and lim𝑛→∞(𝜂 − 𝜇𝜏𝑛
𝜏𝑛+1

) = 𝜂 − 𝜇 > 0, from (19) we obtain 

lim
𝑛→∞

‖𝑤𝑛 − 𝑡𝑛‖ = 0, (25)

lim
𝑛→∞

‖𝑡𝑛 − 𝑧𝑛‖ = 0, (26)

and 

lim
𝑛→∞

‖𝑤𝑛 − 𝑇 𝑧𝑛‖ = 0. (27)

Combining (25) and (26), we have 

‖𝑤𝑛 − 𝑧𝑛‖ ≤ ‖𝑤𝑛 − 𝑡𝑛‖ + ‖𝑡𝑛 − 𝑧𝑛‖ → 0, (28)

as 𝑛 → ∞. By (27) and (28), we get 

‖𝑇 𝑧𝑛 − 𝑧𝑛‖ ≤ ‖𝑇 𝑧𝑛 −𝑤𝑛‖ + ‖𝑤𝑛 − 𝑧𝑛‖ → 0, (29)

as 𝑛 → ∞. By the definition of {𝑤𝑛}, we get 

‖𝑤𝑛 − 𝑥𝑛‖ = 𝜃𝑛‖𝑥𝑛 − 𝑥𝑛−1‖ = 𝛼𝑛 ⋅
𝜃𝑛

‖𝑥𝑛 − 𝑥𝑛−1‖ → 0, (30)

𝛼𝑛
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as 𝑛 → ∞. Using (28) and (30), we obtain 
‖𝑧𝑛 − 𝑥𝑛‖ ≤ ‖𝑧𝑛 −𝑤𝑛‖ + ‖𝑤𝑛 − 𝑥𝑛‖ → 0. (31)

On the other hand, by lim𝑛→∞ 𝛼𝑛 = 0, we have 
‖𝑥𝑛+1 −𝑤𝑛‖ ≤ 𝛽𝑛‖𝑇 𝑧𝑛 −𝑤𝑛‖ + 𝛼𝑛‖𝑤𝑛‖ → 0, (32)

as 𝑛 → ∞. Combining (30) and (32), we obtain 
‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ ‖𝑥𝑛+1 −𝑤𝑛‖ + ‖𝑤𝑛 − 𝑥𝑛‖ → 0, (33)

as 𝑛 → ∞. Since {𝑥𝑛} is bounded, we assume that there exists a subsequence {𝑥𝑛𝑖} of {𝑥𝑛} such that 𝑥𝑛𝑖 ⇀ 𝑞 and
lim sup
𝑛→∞

⟨𝑝, 𝑝 − 𝑥𝑛⟩ = lim sup
𝑖→∞

⟨𝑝, 𝑝 − 𝑥𝑛𝑖 ⟩ = ⟨𝑝, 𝑝 − 𝑞⟩.

It follows from Lemma  9 and (25) that 𝑞 ∈ VI(𝐶, 𝐹 ). From (31), we have 𝑧𝑛𝑖 ⇀ 𝑞. By Lemma  6 and (31), we obtain 𝑞 ∈ Fix(𝑇 ). Hence we 
have 𝑞 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ). Since 𝑞 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 ) and ‖𝑝‖ = min{‖𝑧‖ ∶ 𝑧 ∈ VI(𝐶, 𝐹 ) ∩ Fix(𝑇 )}, that is 𝑝 = 𝑃VI(𝐶,𝐹 )∩Fix(𝑇 )0, we have

lim sup
𝑛→∞

⟨𝑝, 𝑝 − 𝑥𝑛⟩ = ⟨𝑝, 𝑝 − 𝑞⟩ ≤ 0.

By (33), we obtain
lim sup
𝑛→∞

⟨𝑝, 𝑝 − 𝑥𝑛+1⟩ ≤ 0.

Hence, by Claim  3 and Lemma  5, we have lim𝑛→∞ ‖𝑥𝑛 − 𝑝‖2 = 0; that is lim𝑘→∞ 𝑥𝑛 = 𝑝.
Case 2 There exists a subsequence {‖𝑥𝑛𝑖 − 𝑝‖2} of {‖𝑥𝑛 − 𝑝‖2} satisfying ‖𝑥𝑛𝑖 − 𝑝‖2 < ‖𝑥𝑛𝑖+1 − 𝑝‖2,∀ 𝑖 ∈ N. By Lemma  4, there exists a 

non-decreasing sequence {𝑚𝑘} of N such that lim𝑘→∞ 𝑚𝑘 = ∞ and we have
‖𝑥𝑚𝑘

− 𝑝‖2 ≤ ‖𝑥𝑚𝑘+1
− 𝑝‖2 and ‖𝑥𝑘 − 𝑝‖2 ≤ ‖𝑥𝑚𝑘+1

− 𝑝‖2.

By Claim  2, we have

𝛽𝑚𝑘
(𝜂 −

𝜇𝜏𝑚𝑘

𝜏𝑚𝑘+1
)‖𝑤𝑚𝑘

− 𝑡𝑚𝑘
‖

2 + 𝛽𝑚𝑘
(𝜂 −

𝜇𝜏𝑚𝑘

𝜏𝑚𝑘+1
)‖𝑡𝑚𝑘

− 𝑧𝑚𝑘
‖

2

+ 𝛽𝑚𝑘
(1 − 𝜂)‖𝑧𝑚𝑘

−𝑤𝑚𝑘
‖

2 + 𝛽𝑚𝑘
(1 − 𝛼𝑚𝑘

− 𝛽𝑚𝑘
)‖𝑤𝑚𝑘

− 𝑇 𝑧𝑚𝑘
‖

2

≤ ‖𝑥𝑚𝑘
− 𝑝‖2 − ‖𝑥𝑚𝑘+1 − 𝑝‖2 + 𝛼𝑚𝑘

𝑀4

≤ 𝛼𝑚𝑘
𝑀4.

Thus, we obtain
lim
𝑘→∞

‖𝑤𝑚𝑘
− 𝑡𝑚𝑘

‖ = 0,

lim
𝑘→∞

‖𝑡𝑚𝑘
− 𝑧𝑚𝑘

‖ = 0,

and

lim
𝑘→∞

‖𝑤𝑚𝑘
− 𝑇 𝑧𝑚𝑘

‖ = 0.

In a similar way, we have
lim sup
𝑘→∞

‖𝑥𝑚𝑘+1 − 𝑥𝑚𝑘
‖ = 0,

and

lim sup
𝑘→∞

⟨𝑝, 𝑝 − 𝑥𝑚𝑘+1⟩ ≤ 0.

According to Claim  3, we obtain
‖𝑥𝑚𝑘+1 − 𝑝‖2

≤ (1 − 𝛼𝑚𝑘
)‖𝑥𝑚𝑘

− 𝑝‖2 + 𝛼𝑚𝑘
[2𝛽𝑚𝑘

‖𝑤𝑚𝑘
− 𝑇 𝑧𝑚𝑘

‖‖𝑥𝑚𝑘+1 − 𝑝‖

+
𝑀𝜃𝑚𝑘

𝛼𝑚𝑘

‖𝑥𝑚𝑘
− 𝑥𝑚𝑘−1‖ + 2⟨𝑝, 𝑝 − 𝑥𝑚𝑘+1⟩]

≤ (1 − 𝛼𝑚𝑘
)‖𝑥𝑚𝑘+1 − 𝑝‖2 + 𝛼𝑚𝑘

[2𝛽𝑚𝑘
‖𝑤𝑚𝑘

− 𝑇 𝑧𝑚𝑘
‖‖𝑥𝑚𝑘+1 − 𝑝‖

+
𝑀𝜃𝑚𝑘

𝛼𝑚𝑘

‖𝑥𝑚𝑘
− 𝑥𝑚𝑘−1‖ + 2⟨𝑝, 𝑝 − 𝑥𝑚𝑘+1⟩].

This implies that
‖𝑥 − 𝑝‖2
𝑘
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Fig. 1. Numerical results for Example  1.

≤ ‖𝑥𝑚𝑘+1 − 𝑝‖2

≤ 2𝛽𝑚𝑘
‖𝑤𝑚𝑘

− 𝑇 𝑧𝑚𝑘
‖‖𝑥𝑚𝑘+1 − 𝑝‖ +

𝑀𝜃𝑚𝑘

𝛼𝑚𝑘

‖𝑥𝑚𝑘
− 𝑥𝑚𝑘−1‖

+ 2⟨𝑝, 𝑝 − 𝑥𝑚𝑘+1⟩.

Hence, we have lim𝑘→∞ ‖𝑥𝑘 − 𝑝‖2 = 0; that is lim𝑘→∞ 𝑥𝑘 = 𝑝. This completes the proof. □

Remark 1.  We note that the condition in our theorem is implemented easily in the numerical computation since the value of 
‖

‖

𝑥𝑛 − 𝑥𝑛−1‖‖ is known before choosing 𝜃𝑛. In fact, the parameter 𝜃𝑛 can be chosen such that 

𝜃𝑛 =

{

min{ 𝜖𝑛
‖

‖

𝑥𝑛−𝑥𝑛−1‖‖
, 𝜃},  if 𝑥𝑛 ≠ 𝑥𝑛−1,

𝜃,  otherwise , (34)

where 𝜃 is a constant such that 0 < 𝜃 < 1 and {𝜖𝑛} is a positive sequence such that lim𝑛→∞
𝜖𝑛
𝛼𝑛

= 0.

4. Numerical experiments

In this section, we provide several numerical examples to demonstrate the efficiency of our algorithm compared to some known 
ones. All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250S CPU @1.60 GHz computer with RAM 
8.00 GB. We apply the formula (34) to select the inertial parameter {𝜃𝑛} in the proposed Algorithm 2. 

Example 1.  Define the linear operator 𝐹 ∶ R𝑚 → R𝑚 (𝑚 = 20) by 𝐹 (𝑥) = 𝑀𝑥+𝑞, here 𝑞 ∈ R𝑚 and 𝑀 = 𝑁𝑁𝖳+𝑄+𝐷, 𝑁 is an 𝑚×𝑚
matrix, 𝑄 is a 𝑚×𝑚 skew-symmetric matrix, and 𝐷 is a 𝑚×𝑚 diagonal matrix with its diagonal entries being nonnegative (therefore 
𝑀 is positive symmetric definite). The feasible set 𝐶 is defined by 𝐶 =

{

𝑥 ∈ R𝑚 ∶ −2 ≤ 𝑥𝑖 ≤ 5, 𝑖 = 1,… , 𝑚
}

. It can by seen easily 
that 𝐹  is monotone and Lipschitz continuous with constant 𝐿 = ‖𝑀‖. Now all entries of 𝑁,𝑄 are generated randomly in [−2, 2], 
𝐷 is generated randomly in [0, 2] and 𝑞 = 𝟎. It is easy to check that the solution of the variational inequality problem is 𝑥∗ = {𝟎}. 
Take 𝜃 = {0.9, 0.6, 0.3, 0}, 𝜖𝑛 = 100∕(𝑛 + 1)2, 𝜏0 = 1, 𝜇 = 0.4, 𝜂 = 0.9, 𝛼𝑛 = 1∕(𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛) and 𝑇 = 𝐼 for our Algorithm 2. 
The maximum number of iterations 500 is used as a stopping criterion. Fig.  1 shows the numerical behavior 𝐷𝑛 = ‖𝑥𝑛 − 𝑥∗‖ of our 
Algorithm 2 with different parameter 𝜃.

Example 2.  Next, let us consider the variational inequality problem with

𝐹 (𝑥) =

(
(

𝑥21 +
(

𝑥2 − 1
)2
)

(

1 + 𝑥2
)

−𝑥31 − 𝑥1
(

𝑥2 − 1
)2

)

and 𝐶 ∶=
{

𝑥 ∈ R2 ∶ −10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, 2
}

. This problem has a unique solution 𝑥∗ = (0,−1)𝖳. Note that the mapping 𝐹  is pseudo-
monotone rather than monotone (see [42, Example 6.7]). Take 𝜃 = 0.6, 𝜖𝑛 = 1∕(10𝑛 + 1)2, 𝜏0 = 0.1, 𝜇 = 0.1, 𝜂 ∈ {0.4, 0.6, 0.8, 1}, 
𝛼𝑛 = 1∕(10𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛) and 𝑇 = 𝐼 for our Algorithm 2. The maximum number of iterations 500 is used as a stopping 
criterion. Fig.  1 shows the numerical behavior 𝐷𝑛 = ‖𝑥𝑛 − 𝑥∗‖ of our Algorithm 2 with different parameter 𝜂.
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Fig. 2. Numerical results for Example  2.

Example 3.  In this example, let  = 𝐿2([0, 1]) with inner product ⟨𝑥, 𝑦⟩ ∶= ∫ 1
0 𝑥(𝑡)𝑦(𝑡)d𝑡 and norm ‖𝑥‖ ∶= (∫ 1

0 |𝑥(𝑡)|2d𝑡)1∕2,∀𝑥, 𝑦 ∈ . 
Define 𝐶 ∶= {𝑥 ∈  ∶ ‖𝑥‖ ≤ 1}. Let 𝐹 ∶ 𝐶 →  be defined by

(𝐹𝑥)(𝑡) = ∫

1

0
(𝑥(𝑡) − 𝐺(𝑡, 𝑠)𝑔(𝑥(𝑠))) d𝑠 + ℎ(𝑡), 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐶,

where

𝐺(𝑡, 𝑠) = 2𝑡𝑠e𝑡+𝑠

e
√

e2 − 1
, 𝑔(𝑥) = cos 𝑥 , ℎ(𝑡) = 2𝑡e𝑡

e
√

e2 − 1
.

It is obvious that 𝐹  is monotone and 𝐿-Lipschitz continuous with 𝐿 = 2. The projection on 𝐶 is inherently explicit, that is,

𝑃𝐶 (𝑥) =

{ 𝑥
‖𝑥‖ ,  if ‖𝑥‖ > 1 ;
𝑥,  if ‖𝑥‖ ≤ 1 .

Through a straightforward calculation, we know that the solution of the variational inequality problem is 𝑥∗(𝑡) = 0. We compare the 
proposed Algorithm 2 with some known algorithms in the literature [42–44]. The parameters of all algorithms are set as follows.

• In our Algorithm 2, we set 𝛼𝑛 = 1∕(𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛), 𝜇 = 0.4, 𝜏0 = 1, 𝜃 = 0.3, 𝜖𝑛 = 100∕(𝑛 + 1)2, 𝜂 = 0.9 and 𝑇 = 𝐼 .
• In the Algorithm 3.1 proposed by Thong and Hieu [43], we take 𝛼𝑛 = 1∕(𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛), 𝜇 = 0.4 and 𝜏0 = 1.
• In the Algorithm 3.1 introduced by Thong and Gibali [44], we choose 𝛼𝑛 = 1∕(𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛), 𝜆 = 0.5, 𝑙 = 0.5, 𝜇 = 0.4
and 𝛾 = 1.5.

• In the Algorithm 4.3 offered by Shehu et al. [42], we select 𝛼𝑛 = 1∕(𝑛 + 1), 𝜆𝑛 = 0.5∕𝐿 and 𝛾 = 1.5.

The maximum number of iterations 50 is used as a common stopping criterion. With four types of initial points, the numerical 
behavior 𝐷𝑛 = ‖𝑥𝑛(𝑡) − 𝑥∗(𝑡)‖ of all algorithms is described in Fig.  3.

Example 4.  Let  = 𝐿2([0, 1]) be an infinite-dimensional Hilbert space with inner product ⟨𝑥, 𝑦⟩ ∶= ∫ 1
0 𝑥(𝑡)𝑦(𝑡)d𝑡 and norm 

‖𝑥‖ ∶= (∫ 1
0 |𝑥(𝑡)|2d𝑡)1∕2. Let 𝑟, 𝑅 be two positive real numbers such that 𝑅∕(𝑘 + 1) < 𝑟∕𝑘 < 𝑟 < 𝑅 for some 𝑘 > 1. Take the 

feasible set as 𝐶 = {𝑥 ∈  ∶ ‖𝑥‖ ≤ 𝑟}. The operator 𝐹 ∶  →  is given by
𝐹 (𝑥) = (𝑅 − ‖𝑥‖)𝑥, ∀𝑥 ∈  .

Note that the operator 𝐹  is pseudo-monotone rather than monotone (see [45, Example 4.2]). For the experiment, we choose 𝑅 = 1.5, 
𝑟 = 1, 𝑘 = 1.1. The solution of this variational inequality problem is 𝑥∗(𝑡) = 0. We compare the proposed Algorithm 2 with the 
Algorithm 2 presented by Thong and Vuong [46]. The parameters of our Algorithm 2 are the same as in Example  3. For Thong and 
Vuong’s Algorithm 2, we take 𝛼𝑛 = 1∕(𝑛 + 1), 𝛽𝑛 = 0.9(1 − 𝛼𝑛), 𝛾 = 0.5, 𝑙 = 0.5 and 𝜇 = 0.4. The maximum number of iterations 50 is 
used as a common stopping criterion. The numerical behavior 𝐷𝑛 = ‖𝑥𝑛(𝑡) − 𝑥∗(𝑡)‖ of all algorithms with two different initial points 
is shown in Fig.  4.

Example 5.  Assume that all images have 𝑑 ∶= 𝑚×𝑛 pixels and each pixel value is known to be within the range [0, 255]. We define 
𝐶 = [0, 255]𝑚×𝑛(⊆ R𝑚×𝑛), i.e., 𝐶 is the set of all 𝑚× 𝑛 matrixs whose entries belong to [0, 255]. The image restoration problem can be 
modeled as follows: 

𝑦 = 𝐵𝑥̄ + 𝜀, (35)
11 
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Fig. 3. Numerical results for Example  3.

Fig. 4. Numerical results for Example  4.

where 𝑦 ∈ R𝑚×1 is the observed image, 𝐵 ∈ 𝐶 is the blurring matrix, 𝜀 is a noise term and 𝑥̄ ∈ 𝐶 ′ = [0, 255]𝑛×1(⊆ R𝑛×1) is an original 
image. To solve problem (35), we aim to approximate the original image by transforming (35) to the following least squares (LS) 
problem: 

min
𝑥

1
2
‖𝐵𝑥 − 𝑦‖22, (36)

where ‖ ⋅‖2 is the Euclidean norm and {𝑥 ∈ 𝐶 ′ ∣ ‖𝑥‖2 ≤ 255
√

𝑛}. The minimization (36) can be expressed as a variational inequality 
problem by setting 𝐹 ∶= 𝐵𝑇 (𝐵𝑥− 𝑦), where the operator 𝐹  is monotone and Lipschitz continuous with 𝐿 = ‖𝐵𝑇𝐵‖. To measure the 
quality of restored images, we use the signal-to-noise ratio (SNR) in decibels (dB) as follows:

SNR = 20 log10
‖𝑥‖2

‖𝑥 − 𝑥‖2
,

Clearly, a large SNR value means that we have restored a better image.
In this example, we make comparison of Algorithm 2 (shortly, Our Alg. 2) with Algorithm 3.1 proposed by Thong and Hieu [43] 

(shortly, TH Alg. 3.1) and Algorithm 2 proposed by Thong and Vuong [46] (shortly, TV Alg. 2). We use the grey test images 
Cameraman (256 × 256) and Pout (291 × 240), which are degraded by Gaussian 7 × 7 blur kernel with standard deviation 4.
12 
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Fig. 5. Example  5. Cameraman: top left: original image; top right: blurred image; bottom left: restored image by Our Alg. 2 with SNR = 33.5640; bottom 
middle: restored image by TH Alg. 3.1 with SNR = 32.3471; bottom right: restored image by TV Alg. 2 with SNR = 29.5493.

Table 1
Numerical comparison of SNR (dB) values for Example  5.
 Image n Our Alg. 2 TH Alg. 3.1 TV Alg. 2 
 SNR (dB) SNR (dB) SNR (dB)  
 Cameraman 100 30.7119 29.2645 25.8182  
 500 32.7899 31.4801 28.6072  
 1000 33.5640 32.3471 29.5493  
 Pout 100 36.6234 34.3334 28.4976  
 500 39.2881 37.4563 32.6913  
 1000 40.1085 38.5739 33.8318  

The parameters of all algorithms are set as follows.
– In Our Alg. 2, we set 𝛼𝑛 = 1∕(3600𝑛 + 1), 𝛽𝑛 = 0.999 − 𝛼𝑛, 𝜇 = 0.4, 𝜏0 = 0.57, 𝜃 = 0.606, 𝜖𝑛 = 9500∕(𝑛2 + 1), 𝜂 = 1 and 𝑇 = 𝐼 .
– In TH Alg. 3.1, we take 𝛼𝑛 = 1∕(3600𝑛 + 1), 𝛽𝑛 = 0.999 − 𝛼𝑛, 𝜇 = 0.4 and 𝜏0 = 0.57.
– In TV Alg. 2, we choose 𝛼𝑛 = 1∕(3600𝑛 + 1), 𝛽𝑛 = 0.999 − 𝛼𝑛, 𝑙 = 0.1, 𝜇 = 0.4 and 𝛾 = 0.57.

Figs.  5 and 6 show the original, blurred and restored images by using Our Alg. 2, TH Alg. 3.1 and TV Alg. 2. Also, Fig.  7 shows the 
graph of SNR against number of iterations for each test image using the algorithms. Moreover, we report the SNR values for each 
algorithms in Table  1.

Example 6.  In this example, we consider the recovery of original signal from a noisy signal. The model for signal processing is 
shown below:

𝑦 = 𝐵𝑥 + 𝜀,

where 𝐵 ∈ R𝑚×𝑛 is a bounded linear operator, 𝑥 ∈ R𝑛 is the original signal with 𝑘 non-zero elements, 𝑦 ∈ R𝑚 is the obtained noisy 
observation and 𝜀 is the noisy data. We can convert this model into a variational inequality problem by setting 𝐹 = 𝐵𝑇 (𝐵𝑥 − 𝑦)
and 𝐶 = {𝑥 ∈ R𝑛 ∣ ‖𝑥‖1 ≤ 𝑡}. In our numerical experiments, the matrix 𝐵 and 𝜀 are randomly generated by the MATLAB function 
𝐵 = randn(𝑚, 𝑛) and 𝜀 = 10−3randn(𝑚, 1), respectively. The original signal 𝑥 contains 𝑘 (𝑘 ≪ 𝑛) non-zero elements randomly created 
±1 spikes. We use the mean square error defined as MSE = 1

𝑛 ‖𝑥
∗ − 𝑥‖2 to measure the precision of the error between the signal 

𝑥∗ recovered by the algorithm and the original signal 𝑥. The recovery procedure for all algorithms starts with the initial signal 
𝑥0 = 𝑥1 = 𝟎 and stops iterating when the MSE < 10−6 is satisfied. In our test, we set 𝑛 = 1024, 𝑚 = 512, 𝑘 = {40, 60, 80, 100} and 
choose 𝑡 = 𝑘.

In this test, we compare the proposed Algorithm 2 with the Algorithm 3.1 of Tan et al. [47] (shortly, TLC Alg. 3.1) and the 
Algorithm 3.11 of Jolaoso [48] (shortly, Jolaoso Alg. 3.11). The parameters of these algorithms are set as follows.
13 
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Fig. 6. Example  5. Pout: top left: original image; top right: blurred image; bottom left: restored image by Our Alg. 2 with SNR = 40.1085; bottom middle: 
restored image by TH Alg. 3.1 with SNR = 38.5739; bottom right: restored image by TV Alg. 2 with SNR = 33.8318.

Fig. 7. SNR for Example  5.

Table 2
Numerical results for all algorithms at different sparsity 𝑘 in Example  6 (𝑛 = 2014, 𝑚 = 512).
 Algorithms 𝑘 = 40 𝑘 = 60 𝑘 = 80 𝑘 = 100

 CPU(𝑠) Iter. CPU(𝑠) Iter. CPU(𝑠) Iter. CPU(𝑠) Iter.  
 Our Alg. 2 0.1557 151 0.2415 263 0.3916 388 0.8721 948  
 Jolaoso Alg. 3.11 1.3877 156 2.9914 294 4.6115 479 11.1500 1181 
 TLC Alg. 3.1 1.6788 168 3.0333 310 4.5972 467 11.3533 1220 

– In Our Alg. 2, we set 𝛼𝑛 = 0.01∕(𝑛 + 1), 𝛽𝑛 = 0.99(1 − 𝛼𝑛), 𝜇 = 0.9, 𝜏0 = 0.006, 𝜃 = 0.3, 𝜖𝑛 = 100∕(𝑛 + 1)2, 𝜂 = 1 and 𝑇 = 𝐼 .
– In TLC Alg. 3.1, we take 𝛼𝑛 = 0.01∕(𝑛 + 1), 𝛽𝑛 = 0.8(1 − 𝛼𝑛), 𝜃 = 0.3, 𝜖𝑛 = 100∕(𝑛 + 1)2, 𝛿 = 1.5, 𝑙 = 0.5, 𝜇 = 0.6 and 𝛾 = 2.
– In Jolaoso Alg. 3.11, we choose 𝛼𝑛 = 0.5∕(𝑛 + 1), 𝜃 = 0.3, 𝜖𝑛 = 100∕(𝑛 + 1)2, 𝛿 = 1.5, 𝑓 (𝑥) = 0.9𝑥, 𝑙 = 0.5, 𝜇 = 0.6 and 𝛾 = 2.

Fig.  8 shows the recovery results of our Algorithm 2 for different sparsity signals. Table  2 lists the computation time (in seconds)
and the number of iterations required by the proposed algorithm and the compared methods under different sparsity conditions.
14 
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Fig. 8. Signals with different sparsity recovered by our Algorithm 2 in Example  6.

Remark 2.  We have the following observations for Examples  1–6.
1. As can be seen in Fig.  1, our proposed algorithm with inertial terms converges faster than our algorithm without inertial. 
Moreover, our algorithm applies two different stepsizes in each iteration, which converges faster than the algorithm that uses 
two identical stepsizes (see Fig.  2).

2. It can be seen from Figs.  3 and 4 that our proposed algorithm has a faster convergence speed than some known algorithms 
in the literature [42–44,46] and that these results are not related to the choice of initial values. Moreover, as shown in Fig. 
4, our proposed algorithm has higher accuracy and less execution time than the Armijo-type algorithm proposed by Thong 
and Vuong [46]. Therefore, the algorithm proposed in this paper is efficient and robust.

3. It is worth noting that the operator 𝐹  in Example  4 is pseudo-monotone rather than monotone. In this case, the algorithms 
introduced in the literature [43,44] for solving monotone variational inequality problems will not be available. On the 
other hand, the Lipschitz constant of the operator 𝐹  in Examples  2 and 4 are both unknown. In these cases, the fixed-step 
Algorithm 4.3 suggested by Shehu et al. [42] will not be available due to the fact that the algorithm requires the prior 
information of the Lipschitz constant of the mapping. Thus, the adaptive algorithm presented in this paper has a broader 
range of applications.

4. Table  1 shows that our Algorithm 2 is more efficient for restoring the degraded image than other comparison algorithms. 
Meanwhile, Table  2 also demonstrates that the algorithm proposed in this paper outperforms the results in [47,48].
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