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Abstract. In this paper, we propose a new inertial viscosity iterative algo-

rithm for solving the variational inequality problem with a pseudo-monotone

operator and the fixed point problem involving a nonexpansive mapping in
real Hilbert spaces. The advantage of the proposed algorithm is that it can

work without the prior knowledge of the Lipschitz constant of the mapping.

The strong convergence of the sequence generated by the proposed algorithm
is proved under some suitable assumptions imposed on the parameters. Some

numerical experiments are given to support our main results.

1. Introduction. Let C be a nonempty closed convex subset of a real Hilbert
space H with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let A : H → H
be a nonlinear operator. The aim of this paper is to study the classical variational
inequality problem which is to find a point x∗ ∈ C such that

〈Ax∗, y − x∗〉 ≥ 0, ∀ y ∈ C. (1)

The solution set of (1) is denoted by V I(C,A). In recent years, variational inequal-
ity theory has become an important tool in solving many problems appeared in
some fields such as in transportation, economics, engineering mechanics, and many
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others ([23, 24, 16, 48, 40]). Many iterative methods have been constructed by au-
thors for solving variational inequalities and their related optimization problems(see
[25, 47, 7, 8, 9, 21, 29, 30, 35, 36, 41, 3, 4, 5, 13, 15, 34, 18, 42, 43, 38, 26, 37] and the
references therein). For examples, Korpelevich[25] introduced the following double
projection method in Euclidean space: x0 ∈ C,

yn = PC(xn − λAxn),
xn+1 = PC(xn − λAyn),

here λ ∈ (0, 1
L ), A is monotone and L-Lipschitz continuous. It is noted that this

method requires us to calculate two projections onto the closed convex subset C in
each iteration. This may affect the efficiency if C is a general closed convex set in
numerical experiments. To overcome this drawback, Censor et al. [7] studied the
subgradient extragradient method: yn = PC(xn − λAxn),

Tn = {w ∈ H : 〈xn − λAxn − yn, w − yn〉 ≤ 0},
xn+1 = PTn(xn − λAyn),∀n ≥ 0,

where λ ∈ (0, 1
L ). We observe that the second projection onto C is replaced by a

projection onto a specific constructible half-space. On the other hand, Tseng [47]
proposed the following method for finding a zero of the sum of two maximal mono-
tone operators: {

yn = PC(xn − λAxn),
xn+1 = yn − λ(Ayn −Axn),∀n ≥ 0,

where λ ∈ (0, 1
L ). Very recently, Gibali, Thong and Tuan [19] proposed the following

viscosity projection type algorithm for monotone and Lipschitz continuous operator
in Hilbert spaces:

Algorithm 1

Initialization: Given λ > 0, l ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2). Let x0 ∈ C be
arbitrary.
Iterative Steps: Given the current iterative xn, calculate the next iterative xn+1

as follows:
Step 1. Compute

yn = PC(xn − τnAxn),

where τn is chosen to be the largest τ ∈
{
λ, λl, λl2, · · ·

}
satisfying

τ ‖Axn −Ayn‖ ≤ µ ‖xn − yn‖ .

If xn = yn, then stop and yn is a solution of V I(C,A). Otherwise
Step 2. Compute

zn = xn − γηndn,
where

ηn := (1− µ)
‖xn − yn‖2

‖dn‖2
,

and

dn := xn − yn − τn(Axn −Ayn).
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Step 3. Compute

xn+1 = αnf(xn) + (1− αn)zn.

Set n := n+ 1 and go to Step 1,

where f : H → H is a contraction and αn ∈ [0, 1] satisfies limn→∞ αn = 0 and∑∞
n=1 αn = ∞. Recently, the inertial methods have been studied by some authors

(see[2, 1, 28, 14, 39] and the references therein). For instance, Alvarez and Attouch
[2] proposed the following inertial proximal method for finding zero of a maximal
monotone operator:

xn+1 = JAλn
(xn + θn(xn − xn−1)),

where JAλn
is the resolvent of A with parameter λn, θn satisfies 0 ≤ θn ≤ θ, θ ∈ (0, 1).

On the other hand, it is clear that the variational inequality problem (1) is
equivalent to the following fixed point problem: find a point x∗ ∈ C such that

x∗ = PC(x∗ − λAx∗),

where λ is positive real number. Let T : H → H be a nonlinear mapping. We
denoted by F (T ) the set of fixed points of T . There are some iterative algorithms
for finding a common element of F (T ) and the solution set V I(C,A) in Hilbert
spaces or more general Banach spaces. For example, Nadezhkina and Takahashi[31]
proposed the following iterative process: x0 ∈ C,

yn = PC(xn − λnAxn),
xn+1 = (1− αn)xn + αnTPC(xn − λnAyn),

where A : C → H is monotone, L-Lipschitz continuous and T : C → C is nonex-
pansive, {λn} ⊂ [a, b] for some a, b ∈ (0, 1k ) and {αn} ⊂ [c, d] for some c, d ∈ (0, 1).
Moreover, they proved that the sequence {xn} generated by above proposed algo-
rithm converges weakly to z = limk→∞ PF (T )∩V I(C,A)(xk).

In this paper, we study the classical variational inequality problem (1) for
Lipschitz-continuous and pseudomonotone operators and fixed point problems of
a nonexpansive mapping in a real Hilbert space. Precisely, we introduce a new
inertial viscosity algorithm and obtain a strong convergence theorem under some
suitable assumptions imposed on the parameters. Finally, we give some numerical
examples to illustrate the performance of the proposed algorithm.

2. Preliminaries. In what follows, the weak convergence of {xn} to x is denoted
by xn ⇀ x as n→∞, and the strong convergence of {xn} to x is written as xn → x
as n → ∞. The fixed point set of T is denoted by F (T ), that is F (T ) := {x ∈
C |Tx = x}. For each x, y, z ∈ H, it is well known that

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, (2)

and
‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

− αγ‖x− z‖2 − βγ‖y − z‖2,
(3)

where α, β, γ ∈ [0, 1] with α+ β + γ = 1.
Now, we recall the following concepts. Let T : H → H be an operator.
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(a) The operator T is called L-Lipschitz continuous with L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H.
If L = 1, then the operator T is called nonexpansive and if L ∈ (0, 1), T is
called a contraction.

(b) The operator T is called monotone if

〈Tx− Ty, x− y〉 ≥ 0, ∀x, y ∈ H.
(c) The operator T is called pseudomonotone if

〈Tx, y − x〉 ≥ 0⇒ 〈Ty, x− y〉 ≤ 0, ∀x, y ∈ H.
(d) The operator T is called sequentially weakly continuous if for each sequence
{xn} satisfying xn ⇀ x, then we have that Txn ⇀ Tx.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that ‖x − PCx‖ ≤ ‖x − y‖, ∀y ∈ C. PC is called the metric projection of H
onto C. It is known that PC is nonexpansive.

The following lemmas are very useful for proving our main results.

Lemma 2.1 ([17]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Given x ∈ H and z ∈ C. Then z = PCx⇔ 〈x− z, z − y〉 ≥ 0, ∀ y ∈ C.

Lemma 2.2 ([27]). Let {an} be a sequence of nonnegative real numbers such that
there exists a subsequence {anj

} of {an} such that anj
< anj+1 for all j ∈ N. Then

there exists a nondecreasing sequence {mk} of N such that limk→∞mk = ∞ and
the following properties are satisfied by all (sufficiently large) number k ∈ N :

amk
≤ amk+1, ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that an ≤ an+1.

Lemma 2.3 ([49]). Let {an} be a sequence of nonnegative real numbers such that:

an+1 ≤ (1− αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that
(i)
∑∞
n=0 αn =∞,

(ii) lim supn→∞ bn ≤ 0.
Then limn→∞ an = 0.

Lemma 2.4 ([32]). Let T : H → H be a nonexpansive mapping and H be a real
Hilbert space. Let {xn} be a sequence in H and x be a point in H. Suppose that
xn ⇀ x and xn − Txn → 0 as n→∞. Then x ∈ F (T ).

Lemma 2.5 ([22]). Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2

is uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then A(M) is bounded.

Lemma 2.6 ([46]). For x ∈ H and α ≥ β > 0, the following inequalities hold:

‖x− PC(x− αAx)‖
α

≤ ‖x− PC(x− βAx)‖
β

,

‖x− PC(x− βAx)‖ ≤ ‖x− PC(x− αAx)‖ .
Lemma 2.7 ([11],Lemma 2.1). Consider the V I(C,A) with C being a nonempty
closed convex subset of a real Hilbert space H and A : C → H being pseudomonotone
and continuous. Then, x∗ is an element of V I(C,A) if and only if

〈Ax, x− x∗〉 ≥ 0,∀x ∈ C.
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3. Main results. In this section, let T : H → H be a nonexpansive mapping,
f : H → H be a contraction with a constant ρ ∈ [0, 1) and let {βn} and {γn} be
two sequences in [0, 1) such that βn + γn < 1 and {αn} be a sequence in [0, 1).
In order to obtain the convergence of our proposed method, we need the following
assumptions.

Condition 3.1 The feasible set C is nonempty closed and convex.
Condition 3.2 The operator A : H → H is uniformly continuous, pseudomono-

tone on H and sequentially weakly continuous on C.
Condition 3.3 V I(C,A) ∩ F (T ) 6= ∅.
Now, we introduce the following algorithm.

Algorithm 3.1

Initialization: Given λ > 0, l ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2). Let x0, x1 ∈ H be
arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Set wn = xn + αn(xn − xn−1) and compute

yn = PC(wn − τnAwn),

where τn is chosen to be the largest τ ∈ {λ, λl, λl2, ...} satisfying

τ ‖Awn −Ayn‖ ≤ µ‖wn − yn‖. (4)

If yn = wn or Ayn = 0, then stop and yn is an element of V I(C,A). Otherwise, go
to Step 2.
Step 2. Compute

zn = wn − γηndn,
where

dn := wn − yn − τn(Awn −Ayn),

and

ηn := (1− µ)
‖wn − yn‖2

‖dn‖2
.

Step 3. Compute

xn+1 = βnf(xn) + γnxn + (1− βn − γn)Tzn.

Set n := n+ 1 and go to Step 1.

The following lemmas are very important for proving our main results in this
section.

Lemma 3.1. Assume that Conditions 3.1–3.3 hold, then Armijo line search rule
(4) is well defined.

Proof. When wn ∈ V I(C,A), then we have wn = PC(wn−λAwn). We deduce that
wn = yn and (4) holds. Now we consider the situation wn /∈ V I(C,A) and assume
that the contrary of (4) holds, then we have for all m

λlm ‖Awn −APC(wn − λlmAwn)‖ > µ‖wn − PC(wn − λlmAwn)‖. (5)

It follows that

‖APC(wn − λlmAwn)−Awn‖ > µ
‖PC(wn − λlmAwn)− wn‖

λlm
. (6)
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We consider two cases of wn. First, if wn ∈ C, since PC is continuous, we have

lim
m→∞

‖wn − PC(wn − λlmAwn)‖ = 0. (7)

By the fact that the uniform continuity of the mapping A on H, we obtain

lim
m→∞

‖Awn −APC(wn − λlmAwn)‖ = 0. (8)

It follows from (6) and (8) that

lim
m→∞

‖wn − PC(wn − λlmAwn)‖
λlm

= 0. (9)

Let tm = PC(wn − λlmAwn), by Lemma 2.1, we have

〈tm − wn + λlmAwn, x− tm〉 ≥ 0, ∀x ∈ C,
which implies

〈 tm − wn
λlm

, x− tm〉+ 〈Awn, wn − tm〉+ 〈Awn, x− wn〉 ≥ 0, ∀x ∈ C. (10)

Taking the limit m→∞ in (10) and using (7) and (9), we get

〈Awn, x− wn〉 ≥ 0, ∀x ∈ C,
which implies that wn ∈ V I(C,A). This is a contradiction.

Second, if wn /∈ C, then we obtain

lim
m→∞

‖wn − PC(wn − λlmAwn)‖ = ‖wn − PCwn‖ > 0, (11)

and
lim
m→∞

λlm ‖Awn −APC(wn − λlmAwn)‖ = 0. (12)

From (5), (11) and (12), we obtain a contradiction. This finishes the proof.

Lemma 3.2. Assume that Conditions 3.1–3.3 hold. Let {wn} and {yn} be two
sequences generated by Algorithm 3.1. If there exists a subsequence {wnk

} of {wn}
such that {wnk

} converges weakly to z ∈ H and limk→∞ ‖wnk
− ynk

‖ = 0, then
z ∈ V I(C,A).

Proof. By wnk
⇀ z as k →∞, limk→∞ ‖wnk

− ynk
‖ = 0 and {yn} ⊂ C, we obtain

z ∈ C. From ynk
= PC(wnk

− τnk
Awnk

), we have

〈wnk
− τnk

Awnk
− ynk

, x− ynk
〉 ≤ 0, ∀x ∈ C,

which implies

1

τnk

〈wnk
− ynk

, x− ynk
〉 ≤ 〈Awnk

, x− ynk
〉 , ∀x ∈ C,

or equivalently

1

τnk

〈wnk
− ynk

, x− ynk
〉+ 〈Awnk

, ynk
− wnk

〉 ≤ 〈Awnk
, x− wnk

〉 , ∀x ∈ C. (13)

Now we show that
lim inf
k→∞

〈Awnk
, x− wnk

〉 ≥ 0. (14)

We consider two possible cases. Firstly, suppose lim infk→∞ τnk
> 0. Since {wnk

}
is a bounded sequence and A is uniformly continuous on H, it follows from Lemma
2.5 that {Awnk

} is bounded. Taking k → ∞ in (13) and by the boundedness of
{ynk
}, we have

lim inf
k→∞

〈Awnk
, x− wnk

〉 ≥ 0.
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Secondly, we assume that lim infk→∞ τnk
= 0. Put

tnk
= PC(wnk

− τnk
l−1Awnk

),

we have τnk
l−1 > τnk

. By Lemma 2.6, we have

‖wnk
− tnk

‖ ≤ 1

l
‖wnk

− ynk
‖ → 0, as k →∞.

Therefore tnk
⇀ z ∈ C, thus we get that {tnk

} is bounded. Noticing that A is
uniformly continuous on H, we have

‖Awnk
−Atnk

‖ → 0, as k →∞. (15)

By the Armijo linesearch rule (4), we have

τnk
l−1
∥∥APC(wnk

− τnk
l−1Awnk

)−Awnk

∥∥
> µ

∥∥wnk
− PC(wnk

− τnk
l−1Awnk

)
∥∥ ,

which implies

1

µ

∥∥APC(wnk
− τnk

l−1Awnk
)−Awnk

∥∥ > ∥∥wnk
− PC(wnk

− τnk
l−1Awnk

)
∥∥

τnk
l−1

. (16)

From (15) and (16), we have

lim
k→∞

∥∥wnk
− PC(wnk

− τnk
l−1Awnk

)
∥∥

τnk
l−1

= 0.

By the definition of tnk
and Lemma 2.1, we get〈

wnk
− τnk

l−1Awnk
− tnk

, x− tnk

〉
≤ 0, ∀x ∈ C,

which implies that

1

τnk
l−1
〈wnk

− tnk
, x− tnk

〉+ 〈Awnk
, tnk

− wnk
〉

≤ 〈Awnk
, x− wnk

〉 , ∀x ∈ C.
(17)

Taking the limit k →∞ in (17), we have

lim inf
k→∞

〈Awnk
, x− wnk

〉 ≥ 0.

It implies that the inequality (14) holds. On the other hand, we observe

〈Aynk
, x− ynk

〉
= 〈Aynk

−Awnk
, x− wnk

〉+ 〈Awnk
, x− wnk

〉+ 〈Aynk
, wnk

− ynk
〉 .

(18)

By the uniformly continuity of A on H and limk→∞ ‖wnk
− ynk

‖ = 0, we have

lim
k→∞

‖Awnk
−Aynk

‖ = 0.

From (14) and (18), we obtain

lim inf
k→∞

〈Aynk
, x− ynk

〉 ≥ 0.

Finally, we show that z ∈ V I(C,A). Indeed, we choose a sequence {εk} of
positive numbers decreasing and tending to 0 as k → ∞. For every k, we denote
Nk the smallest positive integer such that〈

Aynj
, x− ynj

〉
+ εk ≥ 0, ∀j ≥ Nk.
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Furthermore, for each k, since {yNk
} ⊂ C, we can assume that AyNk

6= 0 (otherwise,

yNk
belongs to V I(C,A)) and let gNk

=
AyNk

‖AyNk‖
2 , thus we have 〈AyNk

, gNk
〉 = 1

for each k. Therefore we get

〈AyNk
, x+ εkgNk

− yNk
〉 ≥ 0.

Noticing the fact that A is pseudo-monotone, we obtain

〈A(x+ εkgNk
), x+ εkgNk

− yNk
〉 ≥ 0,

which implies

〈Ax, x− yNk
〉

≥ 〈Ax−A(x+ εkgNk
), x+ εkgNk

− yNk
〉 − 〈Ax, εkgNk

〉 .
(19)

Next we prove that limk→∞ εkgNk
= 0. In fact, it follows from wnk

⇀ z as k →∞
and limk→∞ ‖wnk

− ynk
‖ = 0 that yNk

⇀ z as k → ∞. Since A is sequentially
weakly continuous on C, then {AyNk

} converges weakly to Az. We can assume
that Az 6= 0(otherwise, z already belongs to V I(C,A)). Since the norm mapping is
sequentially weakly lower semicontinuous, we get

0 < ‖Az‖ ≤ lim inf
k→∞

‖Aynk
‖ .

By {yNk
} ⊂ {ynk

} and εk → 0 as k →∞, we have

0 ≤ lim sup
k→∞

‖εkgNk
‖ = lim sup

k→∞
(

εk
‖Aynk

‖
)

≤ lim supk→∞ εk
lim infk→∞ ‖Aynk

‖
= 0.

It implies that limk→∞ εkgNk
= 0. Letting k → ∞, then the right hand side

of (19) tends to zero since A is uniformly continuous, {yNk
} is bounded and

limk→∞ εkgNk
= 0. Therefore, we obtain

lim inf
k→∞

〈Ax, x− yNk
〉 ≥ 0.

Thus, for all x ∈ C, we get

〈Ax, x− z〉 = lim
k→∞

〈Ax, x− yNk
〉 = lim inf

k→∞
〈Ax, x− yNk

〉 ≥ 0.

By Lemma 2.7, we have z ∈ V I(C,A). This finishes the proof.

Lemma 3.3. Assume that Conditions 3.1–3.3 hold. Let {zn} be a sequence gener-
ated by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
2− γ
γ
‖wn − zn‖2, ∀ p ∈ V I(C,A).

Proof. Using (4), we have

〈wn − p, dn〉 = 〈wn − yn, dn〉+ 〈yn − p, dn〉
= 〈wn − yn, wn − yn − τn(Awn −Ayn)〉

+ 〈yn − p, wn − yn − τn(Awn −Ayn)〉
≥ ‖wn − yn‖2 − µ‖wn − yn‖2

+ 〈yn − p, wn − yn − τn(Awn −Ayn)〉
= (1− µ)‖wn − yn‖2 + 〈yn − p, wn − yn − τnAwn + τnAyn〉.

(20)
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Since yn = PC(wn − τnAwn), we get

〈wn − τnAwn − yn, yn − p〉 ≥ 0. (21)

By p ∈ V I(C,A) and yn ∈ C, we obtain

〈Ap, yn − p〉 ≥ 0.

Noticing the fact that A is pseudomonotone on H, we have

〈Ayn, yn − p〉 ≥ 0. (22)

Combining (20), (21) and (22), we get

〈wn − p, dn〉 ≥ (1− µ)‖wn − yn‖2. (23)

It follows from (23) that

‖zn − p‖2 = ‖wn − γηndn − p‖2

= ‖wn − p‖2 + ‖γηndn‖2 − 2γηn〈wn − p, dn〉
≤ ‖wn − p‖2 + ‖γηndn‖2 − 2γηn(1− µ)‖wn − yn‖2

= ‖wn − p‖2 + ‖γηndn‖2 − 2γ‖ηndn‖2

= ‖wn − p‖2 −
2− γ
γ
‖wn − zn‖2.

This completes the proof.

Lemma 3.4. Assume that Conditions 3.1–3.3 hold and let the sequence {wn} be
generated by Algorithm 3.1. Then

‖wn − yn‖2 ≤
(1 + µ)2

((1− µ)γ)2
‖wn − zn‖2. (24)

Proof. We have

‖wn − yn‖2 =
ηn

1− µ
‖dn‖2 =

‖γηndn‖2

(1− µ)γ2ηn
=

1

(1− µ)γ2ηn
‖wn − zn‖2. (25)

It follows from (4) that

‖dn‖ = ‖wn − yn − τn(Awn −Ayn)‖
≤ ‖wn − yn‖+ τn‖Awn −Ayn‖
≤ ‖wn − yn‖+ µ‖wn − yn‖
= (1 + µ)‖wn − yn‖.

(26)

Using (26) we have

ηn = (1− µ)
‖wn − yn‖2

‖dn‖2
≥ (1− µ)

‖wn − yn‖2

(1 + µ)2‖wn − yn‖2
=

1− µ
(1 + µ)2

. (27)

Combining (25) and (27), we know that (24) holds. The proof is completed.

Theorem 3.5. Assume that Conditions 3.1 – 3.3 hold. Let {αn}, {βn} and {γn}
be sequences in [0, 1) such that

lim
n→∞

βn = 0,

∞∑
n=1

βn =∞, 0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1



2664 SHAOTAO HU, YUANHENG WANG, BING TAN AND FENGHUI WANG

and limn→∞
αn

βn
‖xn − xn−1‖ = 0. If Algorithm 3.1 stops in Step 1, then yn is an

element of V I(C,A). Otherwise, the sequence {xn} generated by Algorithm 3.1 con-
verges strongly to an element p ∈ F (T ) ∩ V I(C,A), where p = PF (T )∩V I(C,A)f(p).

Proof. Claim 1. We prove that {xn} is bounded. Indeed, by Lemma 3.3, we have

‖zn − p‖ ≤ ‖wn − p‖. (28)

By (28), we have

‖xn+1 − p‖
= ‖βnf(xn) + γnxn + (1− βn − γn)Tzn − p‖
≤ βn‖f(xn)− p‖+ γn ‖xn − p‖+ (1− βn − γn)‖zn − p‖
≤ βn‖f(xn)− f(p)‖+ βn‖f(p)− p‖+ γn ‖xn − p‖+ (1− βn − γn)‖zn − p‖
≤ βnρ‖xn − p‖+ βn‖f(p)− p‖+ γn ‖xn − p‖+ (1− βn − γn)‖wn − p‖.

(29)

We also have

‖wn − p‖ = ‖xn + αn(xn − xn−1)− p‖ ≤ ‖xn − p‖+ βn ·
αn
βn
‖xn − xn−1‖.

Since

lim
n→∞

αn
βn
‖xn − xn−1‖ = 0,

there exists M1 > 0 such that

αn
βn
‖xn − xn−1‖ ≤M1, ∀n ∈ N.

Then

‖wn − p‖ ≤ ‖xn − p‖+ βnM1. (30)

Combining (29) and (30) we get

‖xn+1 − p‖
≤ βnρ‖xn − p‖+ βn‖f(p)− p‖+ γn‖xn − p‖

+ (1− βn − γn)‖xn − p‖+ βnM1

= βnρ‖xn − p‖+ βn‖f(p)− p‖+ (1− βn)‖xn − p‖+ βnM1

= [1− βn(1− ρ)]‖xn − p‖+ βn(1− ρ)
‖f(p)− p‖+M1

1− ρ

≤ max{‖xn − p‖,
‖f(p)− p‖+M1

1− ρ
}.

By induction, we obtain

‖xn+1 − p‖ ≤ max{‖x1 − p‖,
‖f(p)− p‖+M1

1− ρ
}.

This implies that the sequence {xn} is bounded.
Claim 2. We prove that

(1− βn − γn)
2− γ
γ
‖wn − zn‖2 + γn(1− βn − γn) ‖Tzn − xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM3,
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for some M3 > 0. Indeed, by (3) and Lemma 3.3, we have

‖xn+1 − p‖2

= ‖βn(f(xn)− p) + γn(xn − p) + (1− βn − γn)(Tzn − p)‖2

≤ βn‖f(xn)− p‖2 + γn‖xn − p‖2 + (1− βn − γn) ‖Tzn − p‖2

− γn(1− βn − γn) ‖Tzn − xn‖2

≤ βn‖f(xn)− p‖2 + γn‖xn − p‖2 + (1− βn − γn) ‖zn − p‖2

− γn(1− βn − γn) ‖Tzn − xn‖2

≤ βn‖f(xn)− p‖2 + γn‖xn − p‖2 + (1− βn − γn)[‖wn − p‖2

− 2− γ
γ
‖wn − zn‖2]− γn(1− βn − γn) ‖Tzn − xn‖2 .

(31)

Owing to (30), we have

‖wn − p‖2 ≤ (‖xn − p‖+ βnM1)2

= ‖xn − p‖2 + βn(2M1‖xn − p‖+ βnM
2
1 )

≤ ‖xn − p‖2 + βnM2,

(32)

where M2 := supn≥1{2M1‖xn−p‖+βnM
2
1 }. Substituting (32) into (31), we obtain

‖xn+1 − p‖2

≤ βn‖f(xn)− p‖2 + ‖xn − p‖2 + βnM2 − (1− βn − γn)
2− γ
γ
‖wn − zn‖2

− γn(1− βn − γn) ‖Tzn − xn‖2 ,
which implies

(1− βn − γn)
2− γ
γ
‖wn − zn‖2 + γn(1− βn − γn) ‖Tzn − xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + βnM3,

where M3 := supn≥1{‖f(xn)− p‖2 +M2}.
Claim 3. We prove that

‖xn+1 − p‖2

≤ [1− βn(1− ρ)] ‖xn − p‖2 + βn(1− ρ)[
αn
βn
‖xn − xn−1‖

M4

1− ρ
+

+
2

1− ρ
〈f(p)− p, xn+1 − p〉],

(33)

where M4 is a constant. We observe that

‖wn − p‖2 = ‖xn + αn(xn − xn−1)− p‖2

≤ ‖xn − p‖2 + 2αn‖xn − p‖‖xn − xn−1‖+ α2
n‖xn − xn−1‖2

= ‖xn − p‖2 + αn‖xn − xn−1‖(2‖xn − p‖+ αn‖xn − xn−1‖)
≤ ‖xn − p‖2 + αn‖xn − xn−1‖(2‖xn − p‖+ βnM1).

It follows that

‖xn+1 − p‖2

= 〈βn(f(xn)− p) + γn(xn − p) + (1− βn − γn)(Tzn − p), xn+1 − p〉
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= βn 〈f(xn)− f(p), xn+1 − p〉+ γn 〈xn − p, xn+1 − p〉
+ (1− βn − γn) 〈Tzn − p, xn+1 − p〉+ βn 〈f(p)− p, xn+1 − p〉
≤ βnρ ‖xn − p‖ ‖xn+1 − p‖+ γn ‖xn − p‖ ‖xn+1 − p‖

+ (1− βn − γn) ‖wn − p‖ ‖xn+1 − p‖+ βn 〈f(p)− p, xn+1 − p〉

≤ 1

2
(βnρ+ γn)[‖xn − p‖2 + ‖xn+1 − p‖2] +

1

2
(1− βn − γn)[‖wn − p‖2

+ ‖xn+1 − p‖2] + βn 〈f(p)− p, xn+1 − p〉

≤ 1

2
(βnρ+ γn)[‖xn − p‖2 + ‖xn+1 − p‖2] +

1

2
(1− βn − γn)[‖xn − p‖2

+ αn‖xn − xn−1‖(2‖xn − p‖+ βnM1) + ‖xn+1 − p‖2]

+ βn 〈f(p)− p, xn+1 − p〉

≤ 1

2
[1− βn(1− ρ)] ‖xn − p‖2 +

1

2
‖xn+1 − p‖2

+
1

2
αn‖xn − xn−1‖(2‖xn − p‖+ βnM1) + βn 〈f(p)− p, xn+1 − p〉 ,

which implies

‖xn+1 − p‖2

≤ [1− βn(1− ρ)] ‖xn − p‖2 + αn‖xn − xn−1‖(2‖xn − p‖+ βnM1)

+ 2βn 〈f(p)− p, xn+1 − p〉

≤ [1− βn(1− ρ)] ‖xn − p‖2 + αn‖xn − xn−1‖M4

+ 2βn 〈f(p)− p, xn+1 − p〉

= [1− βn(1− ρ)] ‖xn − p‖2 + βn(1− ρ)[
αn
βn
‖xn − xn−1‖

M4

1− ρ
+

+
2

1− ρ
〈f(p)− p, xn+1 − p〉],

where M4 = supn≥1(2‖xn − p‖+ βnM1).

Claim 4. Now, we will prove that the sequence {‖xn − p‖2} converges to zero by
considering two possible cases on the sequence {‖xn − p‖2}.
Case 1: There exists N2 ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N2.
This implies that limn→∞ ‖xn − p‖2 exists. By Claim 2, 0 < lim infn→∞ γn ≤
lim supn→∞ γn < 1, limn→∞ βn = 0 and βn + γn < 1, we get

lim
n→∞

‖wn − zn‖ = 0, (34)

and

lim
n→∞

‖Tzn − xn‖ = 0. (35)

From Lemma 3.4 and (34), we also get

lim
n→∞

‖wn − yn‖ ≤ lim
n→∞

(1 + µ)

(1− µ)γ
‖wn − zn‖ = 0. (36)

Since

‖wn − zn‖ = ‖xn + αn(xn − xn−1)− zn‖ ≥ ‖xn − zn‖ − αn‖xn − xn−1‖,
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that is

‖xn − zn‖ ≤ ‖wn − zn‖+ βn ·
αn
βn
‖xn − xn−1‖.

It follows from (34) and limn→∞ βn = 0 that

lim
n→∞

‖xn − zn‖ = 0. (37)

By (35) and (37), we have

‖Txn − xn‖ ≤ ‖Txn − Tzn‖+ ‖Tzn − xn‖
≤ ‖xn − zn‖+ ‖Tzn − xn‖
→ 0 as n→∞.

(38)

Since limn→∞ βn = 0 and (35), we obtain

‖xn+1 − xn‖ = ‖βnf(xn) + γnxn + (1− βn − γn)Tzn − xn‖
≤ βn‖f(xn)− xn‖+ (1− βn − γn)‖Tzn − xn‖
≤ βn‖f(xn)− xn‖+ ‖Tzn − xn‖
→ 0 as n→∞.

(39)

Since the sequence {xn} is bounded, there exists a subsequence {xnk
} of {xn}

that weakly converge to some z ∈ H such that

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim
k→∞

〈f(p)− p, xnk
− p〉

= 〈f(p)− p, z − p〉.
We note that

‖wn − xn‖ = ‖αn(xn − xn−1)‖

= βn ·
αn
βn
‖xn − xn−1‖

→ 0 as n→∞.

Then we have wnk
⇀ z ∈ H as k → ∞. From (36) and Lemma 3.2, we have z ∈

V I(C,A). By (38) and Lemma 2.4, we get z ∈ F (T ). Hence z ∈ F (T ) ∩ V I(C,A).
By Lemma 2.1, we have

lim sup
n→∞

〈f(p)− p, xn − p〉 = 〈f(p)− p, z − p〉 ≤ 0. (40)

By (39) and (40), we have

lim sup
n→∞

〈f(p)− p, xn+1 − p〉

≤ lim sup
n→∞

〈f(p)− p, xn+1 − xn〉+ lim sup
n→∞

〈f(p)− p, xn − p〉

= 〈f(p)− p, z − p〉
≤ 0.

(41)

Using (41) and limn→∞
αn

βn
‖xn − xn−1‖ = 0, we get

lim sup
n→∞

(
αn
βn
‖xn − xn−1‖

M4

1− ρ
+

2

1− ρ
〈f(p)− p, xn+1 − p〉

)
≤ 0.

Apply Lemma 2.3 to (33), we obtain xn → p as n→∞.
Case 2: There exists a subsequence {‖xnj − p‖2} of {‖xn − p‖2} such that ‖xnj −
p‖2 ≤ ‖xnj+1 − p‖2 for all j ∈ N. In this case, it follows from Lemma 2.2 that
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there exists a nondecreasing sequence {mk} of N such that limk→∞mk = ∞ and
the following inequalities hold for all sufficiently large number k ∈ N:

‖xmk
− p‖2 ≤ ‖xmk+1 − p‖2, (42)

and

‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (43)

According to Claim 2 and (42), we have

(1− βmk
− γmk

)
2− γ
γ
‖wmk

− zmk
‖2 + γmk

(1− βmk
− γmk

) ‖Tzmk
− xmk

‖2

≤ ‖xmk
− p‖2 − ‖xmk+1 − p‖2 + βmk

M3.

(44)

It follows that

lim
n→∞

‖wmk
− zmk

‖ = 0, lim
n→∞

‖Tzmk
− xmk

‖ = 0.

By Lemma 3.4, we have

lim
n→∞

‖wmk
− ymk

‖ = 0.

Using the same arguments as in the proof of Case 1, we obtain

lim sup
k→∞

〈f(p)− p, xmk+1 − p〉 ≤ 0. (45)

In the light of Claim 3, we have

‖xmk+1 − p‖2

≤ [1− (1− ρ)βmk
]‖xmk

− p‖2 + (1− ρ)βmk
(
M4

1− ρ
αmk

βmk

‖xmk
− xmk−1‖

+
2

1− ρ
〈f(p)− p, xmk+1 − p〉)

≤ [1− (1− ρ)βmk
]‖xmk+1 − p‖2 + (1− ρ)βmk

(
M4

1− ρ
αmk

βmk

‖xmk
− xmk−1‖

+
2

1− ρ
〈f(p)− p, xmk+1 − p〉),

which implies

‖xmk+1 − p‖2 ≤
M4

1− ρ
αmk

βmk

‖xmk
− xmk−1‖+

2

1− ρ
〈f(p)− p, xmk+1 − p〉.

By (43), (45) and limn→∞
αn

βn
‖xn − xn−1‖ = 0, we have

lim sup
k→∞

‖xk − p‖ ≤ lim sup
k→∞

‖xmk+1 − p‖ ≤ 0,

which implies xk → p as k →∞. This completes the proof.

Remark 3.6. It is easy to see that the condition limn→∞
αn

βn
‖xn − xn−1‖ = 0 of

Theorem 3.5 can be implemented easily in the numerical computation as the value
of ‖xn − xn−1‖ is known before choosing αn. Indeed, the parameter αn can be
chosen such that

αn =

min

{
θn

‖xn − xn−1‖
, α

}
, if xn 6= xn−1,

α, otherwise,

(46)
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where α is a constant such that 0 < α < 1 and {θn} is a positive sequence such
that limn→∞

θn
βn

= 0.

Remark 3.7. Theorem 3.5 improves and extends Theorem 3.2 of Gibali, Thong
and Tuan [19] in the following aspects.

(i) From monotone operator to more general psudomonotone operator.
(ii) From Lipschitz continuous operator to more general uniformly continuous

operator.
(iii) We add an inertial term in our proposed algorithm which improve the conver-

gence speed of the generated sequence.
(iv) Our iterative Algorithm 3.1 is more general than ones of Gibali, Thong and

Tuan [19] since it can be applied to solve variational inequality problems and
fixed point problems of nonexpansive mapping.

4. Numerical experiments. In this section, we provide some numerical examples
occurring in finite- and infinite-dimensional spaces to demonstrate the efficiency of
the proposed algorithm compared to some known ones in the literature. We update
the inertia parameter αn by (46). All the programs are implemented in MATLAB
2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz computer with RAM 8.00
GB.

Example 4.1. Let the linear operator A : Rm → Rm be defined by Ax = Gx
and G = BBT + S + E, matrix B ∈ Rm×m, matrix S ∈ Rm×m is skew-symmetric,
and matrix E ∈ Rm×m is diagonal matrix whose diagonal terms are nonnegative
(hence G is positive symmetric definite). The feasible set C is given by C = {x ∈
Rm : −2 ≤ xi ≤ 5, i = 1, 2, · · · ,m}. It is easy to see that A is monotone (hence it
is pseudomonotone) Lipschitz continuous with its Lipschitz constant L = ‖G‖. In
this example, all entries of B,E are generated randomly in [0, 2] and S is generated
randomly in [−2, 2]. Then the solution set is {0}. We compare the proposed
algorithm with the Algorithm 3.1 introduced by Cholamjiak, Thong and Cho [10]
(shortly, CTC Alg. 3.1) and the Algorithms 3.1 and 3.2 presented by Gibali, Thong
and Tuan [19] (shortly, GTT Alg. 3.1 and GTT Alg. 3.2).

The parameters of all algorithms are set as follows.

• In the proposed Algorithm 3.1, we take θn = 100/(n+ 1)2, α = 0.4 in (3.43),
λ = 0.5, l = 0.5, µ = 0.4, γ = 1.5, βn = 1/(n + 1), γn = 0.5βn, f(x) = 0.1x
and Tx = x.

• In the CTC Alg. 3.1, we choose τn = 100/(n + 1)2, α = 0.4, λ = 0.9/L,
βn = 1/(n+ 1) and θn = 0.5(1− βn).

• In the GTT Alg. 3.1 and GTT Alg. 3.2, we pick λ = 0.5, l = 0.5, µ = 0.4,
γ = 1.5, αn = 1/(n+ 1), βn = 0.5(1− αn) and f(x) = 0.1x.

The maximum number of iterations 200 as a common stopping criterion for all
algorithms. We use Dn = ‖xn − x∗‖ to measure the iteration error at the n-th
step. Fig. 1 and Table 1 show the numerical results of all algorithms with different
dimensions, where “CPU” in Table 1 denotes the execution time in seconds for all
algorithms.

Example 4.2. We consider an example in the Hilbert space H = L2([0, 1]) with
inner product

〈x, y〉 :=

∫ 1

0

x(t)y(t) dt, ∀x, y ∈ H,
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Figure 1. The behavior of our Algorithm 3.1 in Example 4.1 (m = 200)

Table 1. Numerical results of all algorithms with different dimen-
sions in Example 4.1

Algorithms
m = 20 m = 50 m = 100 m = 200

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 4.47E-05 0.0303 1.70E-04 0.0316 3.17E-04 0.0707 5.00E-04 0.1119
CTC Alg. 3.1 3.36E-04 0.0227 9.95E-04 0.0227 1.69E-03 0.0250 2.64E-03 0.0273
GTT Alg. 3.1 2.80E-03 0.0310 6.86E-03 0.0361 1.08E-02 0.1044 1.63E-02 0.1393
GTT Alg. 3.2 3.38E-03 0.0483 9.78E-03 0.0379 1.64E-02 0.0704 2.56E-02 0.1027

and induced norm

‖x‖ := (

∫ 1

0

|x(t)|2 dt)1/2, ∀x ∈ H.

The feasible set is given by C = {x ∈ H : ‖x‖ ≤ 1}. Define an operator A : C → H
by

(Ax)(t) =

∫ 1

0

(
x(t)−G(t, s)g(x(s))

)
ds+ h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) =
2tset+s

e
√

e2 − 1
, g(x) = cosx, h(t) =

2tet

e
√

e2 − 1
.

It is known that A is monotone (hence it is pseudomonotone) and L-Lipschitz
continuous with L = 2 (see [20] for more details), and x∗(t) = {0} is the solution of
the corresponding variational inequality problem. The parameters of all algorithms
are the same as those set in Example 4.1. We choose the maximum number of
iterations 50 as the common stopping criterion for all algorithms and use Dn =
‖xn(t) − x∗(t)‖ to measure the iteration error of the n-th step. The numerical
behaviors of all algorithms with four starting points x0(t) = x1(t) are reported in
Fig. 2 and Table 2.
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Figure 2. The behavior of our Algorithm 3.1 in Example 4.2
(x0 = x1 = 10 exp(t))

Table 2. Numerical results of all algorithms with different initial
values in Example 4.2

Algorithms
x1 = 10t3 x1 = 10 sin(2t) x1 = 10 log(t) x1 = 10 exp(t)

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 1.47E-15 37.7392 4.04E-15 38.5818 7.26E-15 39.9932 3.16E-15 44.6711
CTC Alg. 3.1 3.16E-13 22.8652 2.55E-13 24.3823 3.36E-12 25.0381 4.39E-12 30.0801
GTT Alg. 3.1 9.04E-06 33.7345 1.54E-05 34.5784 2.31E-05 36.9545 2.01E-05 45.1488
GTT Alg. 3.2 6.25E-11 33.5898 7.40E-10 36.0191 1.04E-09 37.5059 1.06E-09 44.7099

Example 4.3. Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi, . . .) |∑∞
i=1 |xi|

2
< +∞} with inner product 〈x, y〉 =

∑∞
i=1 xiyi, ∀x, y ∈ H and induced

norm ‖x‖ =
√
〈x, x〉, ∀x ∈ H. Let C := {x ∈ H : |xi| ≤ 1/i}. Define an operator

A : C → H by

Ax = (‖x‖+ 1/‖x‖+ ϕ)x, , ϕ > 0

It can be verified that mapping A is pseudo-monotone on H, uniformly continuous
and sequentially weakly continuous on C but not Lipschitz continuous on H (see
[45]). In this example, we take ϕ = 0.5, H = Rm for different values of m. We com-
pare the proposed Algorithm 3.1 with several convergent algorithms that can find
an element of V I(C,A) with uniformly continuous operators, which including the
Algorithm 4 proposed by Reich et al. [33] (shortly, RTDLD Alg. 4), the Algorithm 3
suggested by Thong et al. [44] (shortly, TSI Alg. 3) and the Algorithm 3.1 intro-
duced by Cai et al. [6] (shortly, CDP Alg. 3.1). The parameters of all algorithms
are set as follows.

• The parameters of the proposed Algorithm 3.1 are the same as those set in
Example 4.1.

• In the RTDLD Alg. 4, we take l = 0.5, µ = 0.4, λ = 0.5/µ, αn = 1/(n + 1)
and f(x) = 0.1x.
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• In the TSI Alg. 3, we pick γ = 0.5, l = 0.5, µ = 0.4, αn = 1/(n + 1) and
f(x) = 0.1x.

• In the CDP Alg. 3.1, we choose γ = 0.5, l = 0.5, µ = 0.4, βn = 1/(n+ 1) and
f(x) = 0.1x.

The maximum number of iterations 200 is used as a common stopping criterion.
The numerical behaviors of Dn = ‖xn − xn−1‖ of all algorithms with four different
dimensions are reported in Fig. 3 and Table 3. Furthermore, this stopping criterion
is applicable if the algorithm converges superlinearly( see [12] for more detail.)
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TSI Alg. 3

CDP Alg. 3.1

Our Alg. 3.1

Figure 3. The behavior of our Algorithm 3.1 in Example 4.3 (m = 500000)

Table 3. Numerical results of all algorithms with different dimen-
sions in Example 4.3

Algorithms
m = 500 m = 5000 m = 50000 m = 500000

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 7.13E-57 0.0249 8.76E-57 0.1079 3.77E-57 0.4058 8.89E-57 13.8430
CDP Alg. 3.1 3.97E-27 0.0406 7.89E-27 0.1274 7.25E-27 0.5290 4.78E-26 13.9558
TSI Alg. 3 8.38E-13 0.0318 7.96E-13 0.1270 8.17E-13 0.4180 6.62E-13 15.0426
RTDLD Alg. 4 4.72E-10 0.0312 3.07E-07 0.1132 1.64E-03 0.4540 2.59E-02 19.2562

Remark 4.4. From Figs. 1–3 and Tables 1–3, we know that our algorithm has a
higher accuracy than some known methods in the literature [19, 10, 33, 44, 6] when
performing the same stopping criterion, and this result is independent of the size
of the dimension and the choice of the initial values. Therefore, our algorithm is
efficient and robust.
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[4] R. I. Boţ, E. R. Csetnek, A. Heinrich and C. Hendrich, On the convergence rate improvement

of a primal-dual splitting algorithm for solving monotone inclusion problems, Math. Program.,
150 (2015), 251–279.
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