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A B S T R A C T

Bregman distance methods play a key role in solving problems in nonlinear analysis and
optimization theory, since the Bregman distance is a useful substitute for the metric. The main
purpose of this paper is to investigate two new iterative algorithms based on the Bregman
distance and the Bregman projection for solving split feasibility problems in real Hilbert spaces.
The algorithms are constructed around these methods: Byrne’s CQ method, Polyak’s gradient
method, Halpern method, and hybrid projection method. The proposed methods involve inertial
extrapolation terms and self-adaptive step sizes. We prove that the proposed iterations converge
strongly to the Bregman projection of the initial point onto the solution set. Some numerical
examples are provided to illustrate the computational effectiveness of our algorithms. The main
results extend and improve the recent results related to the split feasibility problem.

. Introduction

Let 𝐻1 and 𝐻2 be real Hilbert spaces equipped with inner product ⟨⋅ , ⋅⟩ and norm ‖ ⋅ ‖. Let 𝐶 and 𝑄 be nonempty, closed, and
onvex subsets of real Hilbert spaces 𝐻1 and 𝐻2, respectively, and let 𝐴 be a bounded operator from 𝐻1 to 𝐻2. Recall that the split
easibility problem (shortly, SFP) consists of finding an element 𝑥∗ satisfying

𝑥∗ ∈ 𝐶 such that 𝐴𝑥∗ ∈ 𝑄. (1.1)

he SFP in Euclidean spaces was first introduced by Censor and Elfying in 1994 [1]. Afterwards, the SFP has been employed for
odeling inverse problems which arise from phase retrievals and the intensity-modulated radiation therapy [2]. The SFP has aroused
umerous interests among researchers since it has been successfully applied to solve some real-world problems, such as image
econstructions, machine learning, and signal processing; see, e.g., [3–5].

Since the introduction of SFP, several types of iterative schemes have been presented for solving it. Byrne [6] introduced the
o-called CQ algorithm, which is the most popular and practical algorithm that solves the SFP. For a given initial point 𝑥0 ∈ 𝐻1, let
𝑥𝑛} be the sequence generated by the following manner

𝑥𝑛+1 = 𝑃𝐶 (𝑥𝑛 − 𝛼𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛), ∀𝑛 ∈ N, (1.2)

here 𝐼 denotes the identity operator, 𝑃𝐶 and 𝑃𝑄 are the metric projections onto 𝐶 and 𝑄, respectively, 𝐴∗ is an adjoint operator of
, and 𝛼 is a fixed real number in

(

0, 2
𝜌(𝐴∗𝐴)

)

with 𝜌(𝐴∗𝐴) being the spectral radius of 𝐴∗𝐴. It is proved that the generated sequence
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{𝑥𝑛} converges weakly to a solution of the SFP (1.1). The CQ algorithm can be regarded as a special case of the gradient projection
method, since the SFP is equivalent to the constrained convex minimization problem min𝑥∈𝐶

1
2‖(𝐼 − 𝑃𝑄)𝐴𝑥‖2.

The extensions of CQ algorithms have been studied by many authors; see, e.g., [7–10]. It is noted that the selection of the step
ize 𝛼 in (1.2) depends on any prior information of 𝜌(𝐴∗𝐴), which in general is not easy to compute in practice. To overcome this
rawback, several self-adaptive step size methods have been established to determine the step size 𝛼 in (1.2). Among these research
orks, López et al. [8] studied an ingenious dynamic step size method such that the convergence of (1.2) is guaranteed without

alculating the spectral norm of the operator 𝐴, that is

𝛼𝑛 ∶=
𝜌𝑛‖(𝐼 − 𝑃𝑄)𝐴𝑥𝑛‖2

‖𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛‖2
, (1.3)

here 𝜌𝑛 ∈ (0, 4). Subsequently, Anh et al. [5] proposed an alternative way that is to select the step size 𝛼𝑛 by

𝛼𝑛 ∶=
𝜌𝑛

max{1, ‖𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛‖}
, (1.4)

where {𝜌𝑛} is a positive sequence satisfying lim𝑛→∞ 𝜌𝑛 = 0 and ∑∞
𝑛=0 𝜌𝑛 = ∞. It is noted that the implementation of the dynamic step

size 𝛼𝑛 in both (1.3) and (1.4) does not need any prior information of the operator norm ‖𝐴‖ or its estimation. An alternative way
s to select the step size 𝛼𝑛 by using the Armijo line search rule; see [9,10]. Precisely, given 𝜇 ∈ (0, 1) and 𝜈 ∈ (0, 1), let 𝛼𝑛 ∶= 𝜇𝜈𝜏𝑛

with 𝜏𝑛 being the smallest nonnegative integer 𝜏 satisfying

𝜇𝜈𝜏‖𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛 − 𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑦𝑛‖ ≤ 𝜆‖𝑥𝑛 − 𝑦𝑛‖, ∀𝜆 ∈ (0, 1), (1.5)

where 𝑦𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝛼𝑛𝐴∗(𝐼 −𝑃𝑄)𝐴𝑥𝑛). The mentioned self-adaptive step size methods (1.3)–(1.5) have been studied extensively and
generalized in various ways; see, e.g., [11,12].

It is well known that the gradient method is one of the simplest iterative methods for solving unconstrained minimization
problems. The convergence of such method has been studied by a number of authors. Among them, Polyak modified the gradient
method by adopting a new adaptive way of determining the step size sequence; see [13]. The algorithm is of the form: For an
arbitrary starting point 𝑥0 ∈ 𝐻1, let {𝑥𝑛} be the sequence generated by

𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝑛∇𝑓 (𝑥𝑛),

where 𝑓 ∶ 𝐻1 → R is a convex and differentiable function and 𝛼𝑛 ∶= 𝜌𝑛
𝑓 (𝑥𝑛)−𝑓∗

‖∇𝑓 (𝑥𝑛)‖2
with 0 < 𝜖 ≤ 𝜌𝑛 ≤ 2 − 𝜖 and 𝑓 ∗ ∶= min 𝑓 (𝑥). It is

noted that the SFP (1.1) can be reformulated as the unconstraint minimization problem:

min 𝑓 (𝑥) ∶= 1
2
‖(𝐼 − 𝑃𝐶 )𝑥‖2 +

1
2
‖(𝐼 − 𝑃𝑄)𝐴𝑥‖2.

This motivates that Polyak’s gradient method in the unconstraint minimization can be applicable for solving the SFP (1.1); see [14].
The corresponding iterative sequence takes the following form: For any fixed initial point 𝑥0 ∈ 𝐻1,

𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝑛[(𝐼 − 𝑃𝐶 )𝑥𝑛 + 𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛],

where

𝛼𝑛 ∶=
𝜌𝑛(‖(𝐼 − 𝑃𝐶 )𝑥𝑛‖2 + ‖(𝐼 − 𝑃𝑄)𝐴𝑥𝑛‖2)
2‖(𝐼 − 𝑃𝐶 )𝑥𝑛 + 𝐴∗(𝐼 − 𝑃𝑄)𝐴𝑥𝑛‖2

. (1.6)

In this paper, we are concerned with a continuation of study on the CQ algorithm and Polyak’s gradient algorithm. We mention
here that the selection of the step sizes in (1.3)–(1.6) requires to calculate the metric projections 𝑃𝐶 and 𝑃𝑄. In general, the
computation of the metric projection onto a nonempty closed and convex subset is expensive or even impossible because there
is no explicit formula. In this sense, the execution efficiency of step size methods (1.3)–(1.6) may be seriously affected, since the
evaluations of projections 𝑃𝐶 and 𝑃𝑄 are involved therein. In particular, the choice of the step size 𝛼𝑛 in (1.5) requires to compute
𝑃𝐶 and 𝑃𝑄 several times which may cost much. This naturally motivates the following research direction: Can we design efficient and
simple step sizes, which are independent of the operator norm and different from the step sizes mentioned above?

There are many real-world problems in management and engineering that arise in infinite-dimensional spaces; see, e.g., [15–
17]. It is emphasized that the strong convergence is often much more desirable than the weak convergence in infinite-dimensional
spaces. The study of turning the weak convergence into the strong convergence is an interesting research, which has attracted much
attention of authors; see [15,17]. However, the CQ algorithm and Polyak’s gradient algorithm may fail to converge strongly in the
infinite-dimensional case [10,12,18]. For the sake of achieving the strong convergence, we recall some methods that actually enforce
the strong convergence property. Among them, a more classical and simple method seems to be the Halpern method, which has been
used to guarantee the strong convergence of the algorithm for solving SFPs; see [19,20]. Another method is the hybrid projection
method, wherein the strong convergence property is forced by adding the metric projection of a point 𝑥0 onto the intersection
of two associated half-spaces at each iteration. It was proved that the generated sequence starting with 𝑥0 converges strongly to
he solution set of the SFP, which is closest to 𝑥0; see [21]. For more theoretical results related to the hybrid projection method,
ee [22]. Motivated by this research trend, we aim to modify the CQ method and Polyak’s gradient method so as to establish the
trong convergence in infinite-dimensional cases.

The Bregman distance is an elegant and effective distance function introduced by Bregman in 1976 [23] (see Section 2 for a

efinition). It generalizes a wide range of measures such as the squared Euclidean distance, the Itakura–Saito divergence, and the
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Kullback–Leibler divergence. The Bregman distance, which capable of exploring the nonlinear correlations of data features, has found
applications in various areas including machine learning, computational geometry, operations research, and information theory; see,
e.g., [24,25]. The Bregman distance, which is derived from the various choices of Bregman functions, can be regarded as a useful and
flexible substitute for a usual norm distance. In this sense, it opened a growing area of research in which the Bregman distance can be
applied in the process of designing and analyzing iterative algorithms; see, e.g., [22,26]. Since the Bregman distance is asymmetric
and does not satisfy the triangle inequality, one has that the traditional metric method cannot be applied in the convergence analysis
of algorithms in the framework of Bregman distance. In general, different convergence proofs of iterative sequences are developed
depending on the choice of Bregman functions. It is emphasized that the lack of research on the study of Bregman distance algorithms
for solving SFPs calls for the further investigation.

The inertial technique was first proposed by Polyak in 1964 [27]. This technique can be regarded as a two-step iterative method
ased on the discrete version of the second-order dissipative dynamical system. It is known for its efficiency in speeding up the
onvergence properties of iterative processes. The main feature of this technique is that the next iterate is updated by making use
f the last two iterates. In recent years, it is desirable to work with algorithms with a high convergence speed. One way to achieve
his is by incorporating the inertial technique into some known methods. As can be seen in many earlier research, there has been
n increasing interest in studying the influence of the inertial technique on the convergence performance; see, e.g., [18,28–30].
ecently, various inertial type algorithms were proposed and analyzed based on the norm distance, for example, the inertial relaxed
Q algorithm [18], the inertial shrinking projection algorithm [28], the inertial extragradient algorithm [29], and the inertial
roximal point algorithm [30]. Our concern in this paper is focused on modifying the inertial technique by using the Bregman
istance instead of the norm distance, which is quite different from the earlier ones.

Inspired and motivated by the above results and the ongoing research interest in these directions, the purpose of this paper is
o design two iterative algorithms for solving the SFP that employ Bregman distances and Bregman projections. The step sizes are
elected adaptively by adopting the Armijo-like line search method. The strong convergence results of the algorithms are established
nder mild conditions. Some preliminary numerical results are given to illustrate the performance and the efficiency of our proposed
lgorithms. Results obtained in this paper extend and improve the previously known results in this field. Our main contributions of
his paper are fourfold.

(i) By investigating and applying different analytical methods, similar previous results are extended from the case of norm
distances to the case of Bregman distances.

(ii) Neither the prior information of the bounded linear operator norm nor any extra projection step is required to update step
sizes. This makes our method more practical and cheaper to implement than some related methods.

(iii) Inertial terms are added to accelerate the convergence speed of the proposed algorithms.
(iv) Our iterative algorithms are shown to converge strongly to a solution of the SFP, which is an important factor to consider in

an infinite-dimensional space.

The rest of the paper is organized as follows. In Section 2, we recall some definitions and lemmas, which will be used in the proof
f main results. In Section 3, we propose the algorithms and give their strong convergence analysis. In Section 4, some numerical
xperiments are provided to illustrate the efficiency and the performance of our proposed methods. Finally, the paper is concluded
ith a brief summary in Section 5.

. Preliminaries

In this section, we state some necessary theoretical background material. Let 𝐻 be a real Hilbert space with its inner product
⋅ , ⋅⟩ and the norm ‖ ⋅ ‖. Let N and R denote the set of all positive integers and the set of all real numbers, respectively.

efinition 1. Let 𝐻1 and 𝐻2 be two Hilbert spaces and let 𝐴 ∶ 𝐻1 → 𝐻2 be a bounded operator. An operator 𝐴∗ ∶ 𝐻2 → 𝐻1 is
called the adjoint operator of 𝐴, if

⟨𝐴𝑥, 𝑦⟩ = ⟨𝑥,𝐴∗𝑦⟩, ∀𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2.

We denote the domain of 𝑓 ∶ 𝐻 → R by dom𝑓 = {𝑥 ∈ 𝐻 ∶ 𝑓 (𝑥) < ∞}. Let 𝑓 ∶ 𝐻 → R be a lower semi-continuous, convex, and
differentiable function with dom𝑓 ≠ ∅.

Definition 2. Recall that the function 𝑓 ∶ 𝐻 → R is said to be

(i) Gâteaux differentiable at 𝑥 if there is a gradient of 𝑓 at 𝑥, denoted by ∇𝑓 (𝑥), such that the limit ⟨∇𝑓 (𝑥), 𝑤⟩ = lim𝜆→0
𝑓 (𝑥+𝜆𝑤)−𝑓 (𝑥)

𝜆
exists for all 𝑤 ∈ 𝐻 .

(ii) Fréchet differentiable at 𝑥 if the limit in (i) is attained uniformly for ‖𝑤‖ = 1.
(iii) uniformly Fréchet differentiable on a subset 𝐶 of 𝐻 , if the limit in (i) is attained uniformly for all 𝑥 ∈ 𝐶 and ‖𝑤‖ = 1.

Similarly, the domain of ∇𝑓 is denoted by dom∇𝑓 . It is emphasized that ∇𝑓 is uniformly continuous on bounded subsets of 𝐻
f 𝑓 is uniformly Fréchet differentiable and bounded on bounded subsets of 𝐻 ; see [31].

efinition 3 ([23,32]). Given a strictly convex and differentiable function 𝑓 with its gradient ∇𝑓 , the Bregman distance 𝐷𝑓 ∶
om𝑓 × dom∇𝑓 → [0,∞) with respect to 𝑓 is defined by 𝐷 (𝑥, 𝑦) = 𝑓 (𝑥) − 𝑓 (𝑦) − ⟨∇𝑓 (𝑦), 𝑥 − 𝑦⟩, ∀𝑥 ∈ dom𝑓, 𝑦 ∈ dom∇𝑓.
𝑓
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It is noted that the Bregman distance is in general not a metric, since it does not necessarily satisfy the triangle inequality [33],
ut the Bregman distance fulfills various geometric properties which make it a substitute for a measure of the norm distance [34]
see below).

The two point identity: For any 𝑥, 𝑦 ∈ dom∇𝑓 , 𝐷𝑓 (𝑥, 𝑦) +𝐷𝑓 (𝑦, 𝑥) = ⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩.
The three point identity: For any 𝑥 ∈ dom𝑓 and 𝑦, 𝑧 ∈ dom∇𝑓 ,

𝐷𝑓 (𝑥, 𝑦) = 𝐷𝑓 (𝑥, 𝑧) −𝐷𝑓 (𝑦, 𝑧) + ⟨∇𝑓 (𝑧) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩. (2.1)

Definition 4 ([23]). Denote by 𝛱𝑓
𝐶 the Bregman projection with respect to the Bregman function 𝑓 of a point 𝑥 ∈ dom∇𝑓 onto a

set 𝐶 ⊂ dom𝑓 , which is defined as the point in 𝐶 such that 𝐷𝑓 (𝛱
𝑓
𝐶𝑥, 𝑥) ≤ 𝐷𝑓 (𝑦, 𝑥), ∀𝑦 ∈ 𝐶.

emark 1. When 𝐶 ⊂ dom𝑓 is a nonempty, closed, and convex set, the point 𝛱𝑓
𝐶𝑥 in Definition 4 is unique.

emma 1. The properties of the Bregman projection are summarized as follows; see [32,35].

(i) ⟨∇𝑓 (𝛱𝑓
𝐶𝑥) − ∇𝑓 (𝑥), 𝑦 −𝛱𝑓

𝐶𝑥⟩ ≥ 0, ∀𝑥 ∈ dom∇𝑓, 𝑦 ∈ 𝐶;
(ii) 𝐷𝑓 (𝑦,𝛱

𝑓
𝐶𝑥) +𝐷𝑓 (𝛱

𝑓
𝐶𝑥, 𝑥) ≤ 𝐷𝑓 (𝑦, 𝑥), ∀𝑥 ∈ dom∇𝑓, 𝑦 ∈ 𝐶.

efinition 5. We recall that a function 𝑓 ∶ 𝐻 → R is said to be strongly convex with a constant 𝛿 > 0 if

𝑓 (𝑦) − 𝑓 (𝑥) ≥ ⟨∇𝑓 (𝑥), 𝑦 − 𝑥⟩ + 𝛿
2
‖𝑦 − 𝑥‖2, ∀𝑥 ∈ dom∇𝑓, 𝑦 ∈ dom𝑓.

The Bregman distance 𝐷𝑓 with respect to the 𝛿-strongly convex function 𝑓 can be characterized by the inequality of 𝐷𝑓 (𝑦, 𝑥) ≥
𝛿
2‖𝑦− 𝑥‖2, ∀𝑥 ∈ dom∇𝑓, 𝑦 ∈ dom𝑓 ; see [26]. For any 𝑥 ∈ dom∇𝑓 and 𝑦 ∈ dom𝑓 , the strong convexity of 𝑓 implies that 𝐷𝑓 (𝑦, 𝑥) = 0
s equivalent to 𝑥 = 𝑦.

emma 2 ([22]). Let 𝑓 ∶ 𝐻 → R be strongly convex, Fréchet differentiable, and bounded on bounded subsets of 𝐻 . Given two sequences
𝑥𝑛} and {𝑦𝑛} in 𝐻 , we have that

lim
𝑛→∞

𝐷𝑓 (𝑥𝑛, 𝑦𝑛) = 0 ⇒ lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = 0 ⇒ lim
𝑛→∞

‖∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑦𝑛)‖ = 0.

efinition 6. The Fenchel conjugate function of 𝑓 ∶ 𝐻 → R is the convex function 𝑓 ∗ ∶ 𝐻 → (−∞,+∞] defined by

𝑓 ∗(𝑥∗) ∶= sup
𝑥∈𝐻

{⟨𝑥∗, 𝑥⟩ − 𝑓 (𝑥)}.

emark 2. Let 𝑓 ∗ ∶ 𝐻 → (−∞,+∞] be a Fenchel conjugate function of 𝑓 ∶ 𝐻 → R. Then

∇𝑓 ∗(∇𝑓 (𝑥)) = 𝑥,∀𝑥 ∈ 𝑑𝑜𝑚∇𝑓 and ∇𝑓 (∇𝑓 ∗(𝑥∗)) = 𝑥∗,∀𝑥∗ ∈ 𝑑𝑜𝑚∇𝑓 ∗.

efinition 7 ([36]). The function 𝑓 ∶ 𝐻 → R is said to be Legendre if it satisfies

(i) dom∇𝑓 ≠ ∅ and 𝜕𝑓 is single-valued on its domain;
(ii) dom∇𝑓 ∗ ≠ ∅ and 𝜕𝑓 ∗ is single-valued on its domain.

Given a Legendre function 𝑓 ∶ 𝐻 → R, define a function 𝑉𝑓 ∶ dom𝑓 ∗ × dom𝑓 → [0,+∞) associated with 𝑓 by

𝑉𝑓 (𝜂, 𝑥) ∶= 𝑓 (𝑥) − ⟨𝜂, 𝑥⟩ + 𝑓 ∗(𝜂), ∀𝜂 ∈ dom𝑓 ∗, 𝑥 ∈ dom𝑓.

Some properties of the function 𝑉𝑓 can be summarized as follows; see [37].

(i) 𝑉𝑓 (∇𝑓 (𝑦), 𝑥) = 𝐷𝑓 (𝑥, 𝑦), ∀𝑦 ∈ dom∇𝑓, 𝑥 ∈ dom𝑓 ;
(i) 𝑉𝑓 (𝜂, 𝑥) + ⟨𝜁,∇𝑓 ∗(𝜂) − 𝑥⟩ ≤ 𝑉𝑓 (𝜂 + 𝜁, 𝑥), ∀𝜂 ∈ dom𝑓 ∗, 𝜁 ∈ dom𝑓 ∗, 𝑥 ∈ dom𝑓 ;

(iii) 𝑉𝑓 is nonnegative and convex in its first variable.

Since 𝑉𝑓 is convex in the first variable, then

𝐷𝑓

(

𝑥,∇𝑓 ∗

( 𝑁
∑

𝑖=1
𝜆𝑖∇𝑓 (𝑦𝑖)

))

≤
𝑁
∑

𝑖=1
𝜆𝑖𝐷𝑓 (𝑥, 𝑦𝑖), ∀𝑥 ∈ dom𝑓, (2.2)

here {𝑦𝑖}𝑁𝑖=1 ⊂ 𝐻 and {𝜆𝑖}𝑁𝑖=1 ⊂ [0, 1] satisfies that ∑𝑁
𝑖=1 𝜆𝑖 = 1.

emma 3 ([38]). Let {𝑎𝑛}, {𝜆𝑛}, {𝛽𝑛}, and {𝑏𝑛} be nonnegative real sequences such that for each 𝑛 ≥ 𝑛0 (where 𝑛0 is a positive integer),
∑∞ 1 ], and lim sup 𝑏 ≤ 0. Then lim 𝑎 = 0.
𝑛+1 ≤ (1 − 𝜆𝑛 − 𝛽𝑛)𝑎𝑛 + 𝛽𝑛𝑎𝑛−1 + 𝜆𝑛𝑏𝑛, 𝑛 ≥ 1, where 𝑛=1 𝜆𝑛 = ∞, {𝛽𝑛} ⊂ [0, 2 𝑛→∞ 𝑛 𝑛→∞ 𝑛
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Lemma 4 ([39]). Let {𝑎𝑛} be a nonnegative real sequence that does not decrease at infinity. Then there exists an increasing sequence
{𝑚𝑘} ⊂ N such that 𝑚𝑘 → ∞ as 𝑘 → ∞ and the following properties are satisfied by all (sufficiently large) numbers 𝑘 ∈ N:
𝑎𝑚𝑘

≤ 𝑎𝑚𝑘+1 and 𝑎𝑘 ≤ 𝑎𝑚𝑘+1. In fact, 𝑚𝑘 = max{𝑗 ≤ 𝑘 ∶ 𝑎𝑗 ≤ 𝑎𝑗+1}.

3. Algorithms and convergence analysis

In this section, we design two iterative algorithms based on Bregman distances and Bregman projections for solving SFPs and
analyze their convergence properties.

3.1. First type of Bregman projection algorithm

In this subsection, we present our first algorithm. We begin with the following standard assumptions under which we establish
the strong convergence result.

(A1) 𝐴 ∶ 𝐻1 → 𝐻2 is a bounded operator with an adjoint 𝐴∗ ∶ 𝐻2 → 𝐻1.
(A2) The function 𝑓 ∶ 𝐻1 → R is 𝛿1-strongly convex, Legendre, which is bounded and uniformly Fréchet differentiable on bounded

subsets of 𝐻1.
(A3) The function 𝑔 ∶ 𝐻2 → R is 𝛿2-strongly convex, Legendre, which is bounded and uniformly Fréchet differentiable on bounded

subsets of 𝐻2.
(A4) The solution set 𝛤 ∶= {𝑥 ∈ 𝐶 ∶ 𝐴𝑥 ∈ 𝑄} is nonempty.
(A5) The nonnegative real sequence {𝜂𝑛} ⊂ (0, 1) satisfies that lim𝑛→∞ 𝜂𝑛 = 0.
(A6) The real sequence {𝜆𝑛} ⊂ (0, 1) satisfies that ∑∞

𝑛=1 𝜆𝑛 = ∞ and lim𝑛→∞ 𝜆𝑛 = 0.

Below is the Polyak’s gradient-based algorithm by combining Bregman techniques with the Halpern method. The algorithm is
described as follows.

Algorithm 1 ( Halpern-type Polyak’s gradient algorithm with the Bregman distance)

Step 1: Let 𝑥0, 𝑥1 ∈ 𝐻1 be arbitrary. Take 𝜈 ∈ (0, 1), 𝜏 ∈ (0, 1), 𝜎 ∈ (0,∞), and 𝜇 ∈ (0,∞). Set 𝑛 = 1.
Step 2: Compute 𝑦𝑛 = ∇𝑓 ∗(∇𝑓 (𝑥𝑛) + 𝛽𝑛(∇𝑓 (𝑥𝑛−1) − ∇𝑓 (𝑥𝑛))), where 𝛽𝑛 is defined by

𝛽𝑛 =

{

min{𝜎, 𝜂𝑛
𝐷𝑓 (𝑥𝑛 ,𝑥𝑛−1)

}, if 𝑥𝑛−1 ≠ 𝑥𝑛,

𝜎, otherwise.
(3.1)

Step 3: Compute

𝑝𝑛 = ∇𝑓 ∗(∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛)),

𝑞𝑛 = ∇𝑔∗(𝐴∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛))),

𝑧𝑛 = ∇𝑓 ∗(∇𝑓 (𝑦𝑛) − 𝛼𝑛(∇𝑓 (𝑝𝑛) + ∇𝑔(𝑞𝑛))),
(3.2)

here 𝛼𝑛 ∶= 𝜇𝜈𝜅𝑛 with 𝜅𝑛 being the smallest nonnegative integer 𝜅 satisfying

𝜇𝜈𝜅 (𝐷𝑓 (𝑧𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛)) ≤ 𝜏𝐷𝑓 (𝑧𝑛, 𝑦𝑛). (3.3)

f 𝑦𝑛 = 𝑧𝑛, then stop and 𝑦𝑛 is a solution of the SFP. Otherwise, go to Step 4.
tep 4: Compute

𝑥𝑛+1 = ∇𝑓 ∗(𝜆𝑛∇𝑓 (𝑥0) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛)). (3.4)

pdate 𝑛 ∶= 𝑛 + 1 and go to Step 2.

Remark 3.

(i) The inertial term improves the computational efficiency of Algorithm 1.
(ii) Our suggested algorithm embeds a new Armijo-type line search criterion (3.3) that allows it to work adaptively and cheaply

without any extra Bregman projection step.

Now we will prove some lemmas that will be used in our convergence analysis. The following lemma is regarding the step size
roperty of Algorithm 1.

emma 5. The Armijo-type line search criterion (3.3) is well-defined. Moreover, 𝛼 ∈ (0, 𝜇], ∀𝑛 ∈ N.
𝑛
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Proof. (1) Suppose that 𝐷𝑓 (𝑧𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛) = 0. In this case, we obtain that 𝜅𝑛 = 0 holds.
(2) Suppose that 𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + 𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛) ≠ 0. In this case, we additionally suppose that 𝐷𝑓 (𝑧𝑛, 𝑦𝑛) = 0. Since the Bregman

istance is always nonnegative, one finds that 𝑧𝑛 = 𝑦𝑛 and so 𝐴𝑧𝑛 = 𝐴𝑦𝑛. This gives that 𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛) = 0. Therefore, we conclude
hat 𝐷𝑓 (𝑧𝑛, 𝑦𝑛)+𝐷𝑔(𝐴(𝑧𝑛), 𝐴(𝑦𝑛)) = 0, which is a contradiction. Hence, 𝐷𝑓 (𝑧𝑛, 𝑦𝑛) ≠ 0. We assume that the contrary of (3.3) holds for
ny integer 𝜅, that is,

𝜇𝜈𝜅 (𝐷𝑓 (𝑧𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛)) > 𝜏𝐷𝑓 (𝑧𝑛, 𝑦𝑛). (3.5)

ince 𝜇 ∈ (0,∞) and 𝜈 ∈ (0, 1), it follows from (3.5) that

0 = lim
𝜅→∞

𝜇𝜈𝜅 (𝐷𝑓 (𝑧𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛)) > 𝜏𝐷𝑓 (𝑧𝑛, 𝑦𝑛) > 0.

his yields a contradiction. Therefore, there exists a finite nonnegative integer �̃� ∈ N such that 𝜇𝜈�̃� (𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + 𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛)) ≤
𝐷𝑓 (𝑧𝑛, 𝑦𝑛). Then (3.3) holds. This implies that 𝛼𝑛 ∈ (0, 𝜇], ∀𝑛 ∈ N. The proof is completed. □

emark 4. It is worth mentioning that the proof of Lemma 5 does not use the conditions that 𝐴 is linear and ‖𝐴‖ ≠ 0, which is an
mprovement to the previous results in the literatures; see, e.g., [6].

emma 6. If 𝑦𝑛 = 𝑧𝑛 holds for some integer 𝑛, then 𝑦𝑛 is a solution of the SFP.

roof. We assume that 𝑦𝑛 = 𝑧𝑛. By using (3.2) and Remark 2, the assumption can be rewritten as

∇𝑓 (𝑦𝑛) = ∇𝑓 (𝑦𝑛) − 𝛼𝑛(∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛) + 𝐴∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛))). (3.6)

t follows from (3.6) and the obtained result of 𝛼𝑛 ∈ (0, 𝜇], ∀𝑛 ∈ N in Lemma 5 that

0 = ∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛) + 𝐴∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛)). (3.7)

iven �̂� ∈ 𝛤 , it holds that �̂� ∈ 𝐶 and 𝐴(�̂�) ∈ 𝑄. By (3.7), we find that

0 =⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛) + 𝐴∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛)), 𝑦𝑛 − �̂�⟩

=⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), 𝑦𝑛 − �̂�⟩ + ⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛), 𝐴𝑦𝑛 − 𝐴�̂�⟩.
(3.8)

y using the three point identity (2.1) and Lemma 1(ii), we have

⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), 𝑦𝑛 − �̂�⟩ = 𝐷𝑓 (�̂�, 𝑦𝑛) +𝐷𝑓 (𝑦𝑛,𝛱

𝑓
𝐶 𝑦𝑛) −𝐷𝑓 (�̂�,𝛱

𝑓
𝐶 𝑦𝑛) ≥ 𝐷𝑓 (𝑦𝑛,𝛱

𝑓
𝐶 𝑦𝑛) ≥ 0 (3.9)

nd

⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴𝑦𝑛 − 𝐴�̂�⟩ = 𝐷𝑔(𝐴�̂�, 𝐴𝑦𝑛) +𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑔(𝐴�̂�,𝛱

𝑔
𝑄𝐴𝑦𝑛) ≥ 𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) ≥ 0. (3.10)

y considering (3.8), (3.9), and (3.10), we obtain that

⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), 𝑦𝑛 − �̂�⟩ = ⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛), 𝐴𝑦𝑛 − 𝐴�̂�⟩ = 0. (3.11)

utting (3.9), (3.10), and (3.11) together, one observes that

𝐷𝑓 (𝑦𝑛,𝛱
𝑓
𝐶 𝑦𝑛) = 𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) = 0. (3.12)

ence, (3.12) asserts that ‖𝑦𝑛 −𝛱𝑓
𝐶 𝑦𝑛‖ = 0 and ‖𝐴𝑦𝑛 −𝛱𝑔

𝑄𝐴𝑦𝑛‖ = 0. This further implies that 𝑦𝑛 ∈ 𝐶 and 𝐴𝑦𝑛 ∈ 𝑄, that is, 𝑦𝑛 ∈ 𝛤 .
his completes the proof. □

emark 5. Lemma 6 implies that if the iterative sequence generated by Algorithm 1 terminates within finite steps, then the current
terative point must be a solution of the SFP (1.1). Without loss of generality, we assume that Algorithm 1 generates an infinite
terative sequence in the following convergence analysis.

emma 7. Suppose that conditions (A1)-(A6) hold. Let {𝑧𝑛} and {𝑦𝑛} be the sequences generated by Algorithm 1. Then for any �̂� ∈ 𝛤 ,
e obtain that

𝐷𝑓 (�̂�, 𝑧𝑛)

≤𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + 𝜏𝐷𝑓 (𝑧𝑛, 𝑦𝑛) − 𝛼𝑛[𝐷𝑓 (𝑧𝑛,𝛱
𝑓
𝐶 𝑦𝑛) +𝐷𝑓 (𝛱

𝑓
𝐶 𝑦𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) +𝐷𝑔(𝛱

𝑔
𝑄𝐴𝑦𝑛, 𝐴𝑦𝑛)].

(3.13)

roof. By virtue of the three point identity (2.1), we deduce that

𝐷𝑓 (�̂�, 𝑧𝑛) = 𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + ⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑧𝑛), �̂� − 𝑧𝑛⟩, (3.14)

𝑓 𝑓 𝑓 𝑓 (3.15)
⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝐶 𝑦𝑛),𝛱𝐶 𝑦𝑛 − 𝑧𝑛⟩ = −𝐷𝑓 (𝑧𝑛,𝛱𝐶 𝑦𝑛) +𝐷𝑓 (𝑧𝑛, 𝑦𝑛) −𝐷𝑓 (𝛱𝐶 𝑦𝑛, 𝑦𝑛),
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and

⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛),𝛱

𝑔
𝑄𝐴𝑦𝑛 − 𝐴𝑧𝑛⟩ = −𝐷𝑔(𝐴𝑧𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛) −𝐷𝑔(𝛱

𝑔
𝑄𝐴𝑦𝑛, 𝐴𝑦𝑛). (3.16)

n the other hand, Lemma 1(i) asserts that

⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), �̂� −𝛱𝑓

𝐶 𝑦𝑛⟩ ≤ 0 (3.17)

nd

⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴�̂� −𝛱𝑔

𝑄𝐴𝑦𝑛⟩ ≤ 0. (3.18)

y the definitions of 𝑝𝑛 and 𝑞𝑛, it follows that

⟨∇𝑓 (𝑝𝑛), �̂� − 𝑧𝑛⟩ =⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), �̂� − 𝑧𝑛⟩

=⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛), �̂� −𝛱𝑓

𝐶 𝑦𝑛⟩ + ⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝑓
𝐶 𝑦𝑛),𝛱

𝑓
𝐶 𝑦𝑛 − 𝑧𝑛⟩.

(3.19)

nd

⟨∇𝑔(𝑞𝑛), �̂� − 𝑧𝑛⟩ =⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴�̂� − 𝐴𝑧𝑛⟩

=⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴�̂� −𝛱𝑔

𝑄𝐴𝑦𝑛⟩ + ⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛),𝛱

𝑔
𝑄𝐴𝑦𝑛 − 𝐴𝑧𝑛⟩.

(3.20)

y using the definition of 𝑧𝑛, one sees that

⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑧𝑛), �̂� − 𝑧𝑛⟩ = 𝛼𝑛⟨∇𝑓 (𝑝𝑛), �̂� − 𝑧𝑛⟩ + 𝛼𝑛⟨∇𝑔(𝑞𝑛), �̂� − 𝑧𝑛⟩. (3.21)

y substituting (3.15)–(3.21) into (3.14), we deduce that

𝐷𝑓 (�̂�, 𝑧𝑛) ≤𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + 𝛼𝑛[𝐷𝑓 (𝑧𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛, 𝐴𝑦𝑛)]

− 𝛼𝑛[𝐷𝑓 (𝑧𝑛,𝛱
𝑓
𝐶 𝑦𝑛) +𝐷𝑓 (𝛱

𝑓
𝐶 𝑦𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) +𝐷𝑔(𝛱

𝑔
𝑄𝐴𝑦𝑛, 𝐴𝑦𝑛)].

his completes the proof. □

We are now in a position to prove the strong convergence result of Algorithm 1.

heorem 1. Let conditions (A1)-(A6) hold. Then the sequence {𝑥𝑛} generated by Algorithm 1 converges strongly to 𝑥† ∈ 𝛤 with
† = 𝛱𝑓

𝛤 (𝑥0).

roof. Given �̂� ∈ 𝛤 , by combining the definition of {𝑦𝑛} with (2.2), one deduces that

𝐷𝑓 (�̂�, 𝑦𝑛) = 𝐷𝑓 (�̂�,∇𝑓 ∗((1 − 𝛽𝑛)∇𝑓 (𝑥𝑛) + 𝛽𝑛∇𝑓 (𝑥𝑛−1))) ≤ (1 − 𝛽𝑛)𝐷𝑓 (�̂�, 𝑥𝑛) + 𝛽𝑛𝐷𝑓 (�̂�, 𝑥𝑛−1). (3.22)

n the basis of (3.13) and (3.22), we obtain that

𝐷𝑓 (�̂�, 𝑧𝑛) ≤ (1 − 𝛽𝑛)𝐷𝑓 (�̂�, 𝑥𝑛) + 𝛽𝑛𝐷𝑓 (�̂�, 𝑥𝑛−1). (3.23)

his implies that

𝐷𝑓 (�̂�, 𝑧𝑛) ≤ max{𝐷𝑓 (�̂�, 𝑥𝑛), 𝐷𝑓 (�̂�, 𝑥𝑛−1)}. (3.24)

y virtue of (2.2) and (3.4), we obtain that

𝐷𝑓 (�̂�, 𝑥𝑛+1) ≤𝜆𝑛𝐷𝑓 (�̂�, 𝑥0) + (1 − 𝜆𝑛)𝐷𝑓 (�̂�, 𝑧𝑛). (3.25)

y applying (3.25) with (3.24), one finds that

𝐷𝑓 (�̂�, 𝑥𝑛+1) ≤max{𝐷𝑓 (�̂�, 𝑥0), 𝐷𝑓 (�̂�, 𝑧𝑛)} ≤ max{𝐷𝑓 (�̂�, 𝑥0), 𝐷𝑓 (�̂�, 𝑥𝑛), 𝐷𝑓 (�̂�, 𝑥𝑛−1)} ≤ ⋯ ≤ max{𝐷𝑓 (𝑥, 𝑥0), 𝐷𝑓 (�̂�, 𝑥0)}.

his implies that {𝐷𝑓 (�̂�, 𝑥𝑛)} is bounded. By noticing the relation 𝐷𝑓 (𝑥, 𝑦) ≥
𝛿1
2 ‖𝑥−𝑦‖2 (∀𝑥 ∈ dom𝑓, 𝑦 ∈ dom∇𝑓 ), it follows that {𝑥𝑛}

is also bounded and so is the sequence {𝐴𝑥𝑛}. By using (3.13), (3.22), and (3.25), we obtain that

(1 − 𝜆𝑛)
{

(1 − 𝜏)𝐷𝑓 (𝑧𝑛, 𝑦𝑛) + 𝛼𝑛[𝐷𝑓 (𝑧𝑛,𝛱
𝑓
𝐶 𝑦𝑛) +𝐷𝑓 (𝛱

𝑓
𝐶 𝑦𝑛, 𝑦𝑛) +𝐷𝑔(𝐴𝑧𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) +𝐷𝑔(𝛱

𝑔
𝑄𝐴𝑦𝑛, 𝐴𝑦𝑛)]

}

(3.26)

≤𝜆𝑛𝐷𝑓 (�̂�, 𝑥0) +𝐷𝑓 (�̂�, 𝑥𝑛) −𝐷𝑓 (�̂�, 𝑥𝑛+1) − 𝛽𝑛[𝐷𝑓 (�̂�, 𝑥𝑛) −𝐷𝑓 (�̂�, 𝑥𝑛−1)].
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By applying the property of 𝑉𝑓 (⋅, ⋅) with (3.23), one deduces that

𝐷𝑓 (𝑥†, 𝑥𝑛+1) =𝑉𝑓 (𝜆𝑛∇𝑓 (𝑥0) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛), 𝑥†)

≤𝑉𝑓 (𝜆𝑛∇𝑓 (𝑥0) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛) − 𝜆𝑛(∇𝑓 (𝑥0) − ∇𝑓 (𝑥†)), 𝑥†)

+ ⟨𝜆𝑛(∇𝑓 (𝑥0) − ∇𝑓 (𝑥†)),∇𝑓 ∗(𝜆𝑛∇𝑓 (𝑥0) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛)) − 𝑥†⟩

=𝑉𝑓 (𝜆𝑛∇𝑓 (𝑥†) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛), 𝑥†) + 𝜆𝑛⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩

=𝐷𝑓 (𝑥†,∇𝑓 ∗(𝜆𝑛∇𝑓 (𝑥†) + (1 − 𝜆𝑛)∇𝑓 (𝑧𝑛))) + 𝜆𝑛⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩

≤(1 − 𝜆𝑛)𝐷𝑓 (𝑥†, 𝑧𝑛) + 𝜆𝑛⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩

≤(1 − 𝜆𝑛)𝐷𝑓 (𝑥†, 𝑥𝑛) − (1 − 𝜆𝑛)𝛽𝑛(𝐷𝑓 (𝑥†, 𝑥𝑛) −𝐷𝑓 (𝑥†, 𝑥𝑛−1)) + 𝜆𝑛⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩

=[1 − 𝜆𝑛 − (1 − 𝜆𝑛)𝛽𝑛]𝐷𝑓 (𝑥†, 𝑥𝑛) + (1 − 𝜆𝑛)𝛽𝑛𝐷𝑓 (𝑥†, 𝑥𝑛−1) + 𝜆𝑛⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩.

(3.27)

ow we consider two possible cases in proving that every weak cluster point of {𝑥𝑛} belongs to the solution set 𝛤 .
Case 1. Assume that there exists 𝑁 ∈ N such that 𝐷𝑓 (�̂�, 𝑥𝑛+1) ≤ 𝐷𝑓 (�̂�, 𝑥𝑛) for any 𝑛 ≥ 𝑁 . In this case, we derive that {𝐷𝑓 (�̂�, 𝑥𝑛)}

s convergent and

lim
𝑛→∞

(𝐷𝑓 (�̂�, 𝑥𝑛) −𝐷𝑓 (�̂�, 𝑥𝑛+1)) = 0. (3.28)

y using (3.26), (3.28), and Condition (A2), we obtain that

lim
𝑛→∞

𝐷𝑓 (𝑧𝑛, 𝑦𝑛) = lim
𝑛→∞

𝐷𝑓 (𝛱
𝑓
𝐶 (𝑦𝑛), 𝑦𝑛) = lim

𝑛→∞
𝐷𝑔(𝛱

𝑔
𝑄(𝐴(𝑦𝑛)), 𝐴(𝑦𝑛)) = 0. (3.29)

y considering the definition of {𝑦𝑛} and combining (2.2) with (3.1), one deduces that

𝐷𝑓 (𝑥𝑛, 𝑦𝑛) =𝐷𝑓 (𝑥𝑛,∇𝑓 ∗((1 − 𝛽𝑛)∇𝑓 (𝑥𝑛) + 𝛽𝑛∇𝑓 (𝑥𝑛−1)))

≤(1 − 𝛽𝑛)𝐷𝑓 (𝑥𝑛, 𝑥𝑛) + 𝛽𝑛𝐷𝑓 (𝑥𝑛, 𝑥𝑛−1) = 𝛽𝑛𝐷𝑓 (𝑥𝑛, 𝑥𝑛−1) ≤ 𝜂𝑛.
(3.30)

y using condition (A5), it follows from (3.30) that

lim
𝑛→∞

𝐷𝑓 (𝑥𝑛, 𝑦𝑛) = 0. (3.31)

y using (2.2) and (3.4), we have that

𝐷𝑓 (𝑧𝑛, 𝑥𝑛+1) ≤ 𝜆𝑛𝐷𝑓 (𝑧𝑛, 𝑥0) + (1 − 𝜆𝑛)𝐷𝑓 (𝑧𝑛, 𝑧𝑛) → 0, as 𝑛 → ∞. (3.32)

y using Lemma 2, (3.29), (3.31), and (3.32), we obtain that

lim
𝑛→∞

‖𝑧𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑥𝑛 − 𝑦𝑛‖ = lim
𝑛→∞

‖𝑧𝑛 − 𝑥𝑛+1‖ = 0. (3.33)

t follows from (3.33) that

lim
𝑛→∞

‖𝑥𝑛 − 𝑥𝑛+1‖ ≤ lim
𝑛→∞

(

‖𝑥𝑛 − 𝑦𝑛‖ + ‖𝑧𝑛 − 𝑦𝑛‖ + ‖𝑧𝑛 − 𝑥𝑛+1‖
)

= 0. (3.34)

he boundedness of {𝑥𝑛} implies that there exists a subsequence {𝑥𝑛𝑘} of {𝑥𝑛} such that {𝑥𝑛𝑘} converges weakly to some 𝑥‡ ∈ 𝐻1
nd

lim sup
𝑛→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛 − 𝑥†⟩ = lim
𝑘→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛𝑘 − 𝑥†⟩. (3.35)

y (3.31), one finds that the subsequence {𝑦𝑛𝑘} of {𝑦𝑛} also converges weakly to 𝑥‡. This together with (3.29) implies that 𝑥‡ ∈ 𝐶
nd 𝐴(𝑥‡) ∈ 𝑄, that is, 𝑥‡ ∈ 𝛤 . Since 𝑥† = 𝛱𝑓

𝛤 (𝑥0), by applying Lemma 1(i) with (3.35), one finds that

lim sup
𝑛→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛 − 𝑥†⟩ = ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥‡ − 𝑥†⟩ ≤ 0. (3.36)

By using (3.34) and (3.36), we find that

lim sup
𝑛→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥†⟩ ≤ lim sup
𝑛→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛 − 𝑥†⟩ + lim sup
𝑛→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛+1 − 𝑥𝑛⟩ ≤ 0. (3.37)

By using Lemma 3, (A6), (3.27), and (3.36), one has that lim𝑛→∞ 𝐷𝑓 (𝑥†, 𝑥𝑛) = 0. This together with the relation 𝐷𝑓 (𝑥, 𝑦) ≥
𝛿1
2 ‖𝑥−𝑦‖2

∀𝑥 ∈ dom𝑓, 𝑦 ∈ dom∇𝑓 ) gives that lim𝑛→∞ ‖𝑥𝑛 − 𝑥†‖ = 0. This ensures that lim𝑛→∞ 𝑥𝑛 = 𝑥†.
Case 2. Assume that there exists a subsequence {𝐷𝑓 (�̂�, 𝑥𝑛𝑚 )} of {𝐷𝑓 (�̂�, 𝑥𝑛)} such that 𝐷𝑓 (�̂�, 𝑥𝑛𝑚 ) ≤ 𝐷𝑓 (�̂�, 𝑥𝑛𝑚+1) for any 𝑚 ∈ N.

y applying Lemma 4, there exists an increasing sequence {𝜑(𝑚)} ⊂ N such that lim𝑚→∞ 𝜑(𝑚) = ∞ and for any 𝑚 ∈ N

𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)) ≤ 𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)+1) and 𝐷𝑓 (�̂�, 𝑥𝑚) ≤ 𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)+1). (3.38)

y rearranging and using (3.26), one observes that

(1 − 𝜆𝜑(𝑚))
{

(1 − 𝜏)𝐷𝑓 (𝑧𝜑(𝑚), 𝑦𝜑(𝑚)) + 𝛼𝜑(𝑚)[𝐷𝑓 (𝑧𝜑(𝑚),𝛱
𝑓
𝐶 𝑦𝜑(𝑚)) +𝐷𝑓 (𝛱

𝑓
𝐶 𝑦𝜑(𝑚), 𝑦𝜑(𝑚)) +𝐷𝑔(𝐴𝑧𝜑(𝑚),𝛱

𝑔
𝑄𝐴𝑦𝜑(𝑚))

+𝐷𝑔(𝛱
𝑔
𝑄(𝐴𝑦𝜑(𝑚)), 𝐴𝑦𝜑(𝑚))]

}

(3.39)
≤𝜆𝜑(𝑚)𝐷𝑓 (�̂�, 𝑥0) +𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)) −𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)+1) − 𝛽𝜑(𝑚)[𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)) −𝐷𝑓 (�̂�, 𝑥𝜑(𝑚)−1)].
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It follows from (3.39) that

lim
𝑚→∞

𝐷𝑓 (𝛱
𝑓
𝐶 𝑦𝜑(𝑚), 𝑦𝜑(𝑚)) = lim

𝑚→∞
𝐷𝑔(𝛱

𝑔
𝑄𝐴𝑦𝜑(𝑚), 𝐴𝑦𝜑(𝑚)) = 0.

Using the same similar argument as in Case 1, one has that there exists a subsequence of {𝑥𝜑(𝑚)} converges weakly to some 𝑥‡ ∈ 𝛤
and

lim sup
𝑚→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝜑(𝑚)+1 − 𝑥†⟩ ≤ 0. (3.40)

y applying (3.27) with (3.38), one gets that

𝐷𝑓 (𝑥†, 𝑥𝜑(𝑚)+1) ≤ (1 − 𝜆𝜑(𝑚))𝐷𝑓 (𝑥†, 𝑥𝜑(𝑚)) + 𝜆𝜑(𝑚)⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝜑(𝑚)+1 − 𝑥†⟩. (3.41)

y combining (3.38) with (3.41), we find that

𝐷𝑓 (𝑥†, 𝑥𝑚) ≤ 𝐷𝑓 (𝑥†, 𝑥𝜑(𝑚)) ≤ ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝜑(𝑚)+1 − 𝑥†⟩. (3.42)

t follows from (3.40) and (3.42) that lim sup𝑚→∞ 𝐷𝑓 (𝑥†, 𝑥𝑚) = 0. This together with the relation 𝐷𝑓 (𝑥, 𝑦) ≥
𝛿1
2 ‖𝑥−𝑦‖

2, ∀𝑥 ∈ dom𝑓, 𝑦 ∈
dom∇𝑓 implies that lim𝑚→∞ ‖𝑥† − 𝑥𝑚‖ = 0. Therefore, {𝑥𝑚} converges strongly to 𝑥†. This completes the proof. □

3.2. Second type of Bregman projection algorithm

In this subsection, we propose a new Bregman projection algorithm which combines Byrne’s CQ method with the hybrid
projection method. In order to prove its strong convergence, we further make the following assumption:

(A1∗) ‖𝐴‖ ≠ 0.
Now we present our iterative scheme in Algorithm 2 below.

Algorithm 2 (The modified Byrne’s CQ algorithm with Armijo-line search)

Step 1: Let 𝑥0, 𝑥1 ∈ 𝐻1 be arbitrary. Take 𝜍, 𝜏 ∈ (0, 1) and 𝜎, 𝜚 ∈ (0,∞). Set 𝑛 = 1.
Step 2: Compute 𝑦𝑛 = ∇𝑓 ∗(∇𝑓 (𝑥𝑛) + 𝛽𝑛(∇𝑓 (𝑥𝑛−1) − ∇𝑓 (𝑥𝑛))) with 𝛽𝑛 defined by

𝛽𝑛 =

{

min{𝜎, 𝜂𝑛
𝐷𝑓 (𝑥𝑛 ,𝑥𝑛−1)

}, if 𝑥𝑛−1 ≠ 𝑥𝑛,

𝜎, otherwise.

Step 3: Compute

𝑤𝑛 = ∇𝑓 ∗(∇𝑓 (𝑦𝑛) − 𝛼𝑛𝐴
∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛))), (3.43)

here 𝛼𝑛 ∶= 𝜚𝜍𝛾𝑛 with 𝛾𝑛 the smallest nonnegative integer 𝛾 satisfying

𝜚𝜍𝛾𝐷𝑔𝐴(𝑤𝑛, 𝐴𝑦𝑛) ≤ 𝜏𝐷𝑓 (𝑤𝑛, 𝑦𝑛). (3.44)

f 𝑦𝑛 = 𝛱𝑓
𝐶𝑤𝑛, then stop and 𝑦𝑛 is a solution of the SFP. Otherwise, go to Step 4.

tep 4: Compute

𝑥𝑛+1 = 𝛱𝑓
𝐶𝑛∩𝑄𝑛

𝑥0, (3.45)

here
𝐶𝑛 = {𝑧 ∈ 𝐻1 ∶ 𝐷𝑓 (𝑧,𝛱

𝑓
𝐶𝑤𝑛) ≤ 𝐷𝑓 (𝑧, 𝑦𝑛)},

𝑄𝑛 = {𝑧 ∈ 𝐻1 ∶ ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥𝑛), 𝑧 − 𝑥𝑛⟩ ≤ 0}.
(3.46)

pdate 𝑛 ∶= 𝑛 + 1 and go to Step 2.

The following elementary lemmas are quite helpful to analyze the convergence of Algorithm 2.

emma 8. The Armijo-type search rule (3.44) is well-defined. Moreover, 𝛼𝑛 ∈ (0, 𝜚], ∀𝑛 ∈ N.

roof. The proof is similar to Lemma 5, so we omit the details here for brevity. □

emma 9. If 𝑦𝑛 = 𝛱𝑓
𝐶 (𝑤𝑛) holds for some integer 𝑛, then 𝑦𝑛 is a solution of the SFP.

roof. The fact 𝑦𝑛 = 𝛱𝑓
𝐶 (𝑤𝑛) implies that 𝑦𝑛 ∈ 𝐶. Next we will prove that 𝐴(𝑦𝑛) ∈ 𝑄. Let �̂� ∈ 𝛤 . Thus �̂� ∈ 𝐶 and 𝐴(�̂�) ∈ 𝑄. It follows

rom Lemma 1 that
⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝑤𝑛), �̂� − 𝑦𝑛⟩ ≥ 0, (3.47)
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and

𝐷𝑔(𝐴�̂�,𝛱
𝑔
𝑄𝐴𝑦𝑛) ≤ 𝐷𝑔(𝐴�̂�, 𝐴𝑦𝑛). (3.48)

By using Remark 2, the three point identity (2.1), and the fact 𝛼𝑛 ∈ (0, 𝜚] (∀𝑛 ∈ N) in Lemma 8, we obtain by (3.43), (3.47), and
3.48) that

0 ≤⟨𝐴∗(∇𝑔(𝐴𝑦𝑛) + ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛)), �̂� − 𝑦𝑛⟩ = ⟨∇𝑔(𝐴𝑦𝑛) + ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛), 𝐴�̂� − 𝐴𝑦𝑛⟩

=𝐷𝑔(𝐴�̂�,𝛱
𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑔(𝐴�̂�, 𝐴𝑦𝑛) −𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) ≤ −𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) ≤ 0.

(3.49)

y using (3.49), one concludes that 𝐷𝑔(𝐴𝑦𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛) = 0. This together with the relation 𝐷𝑔(𝑥, 𝑦) ≥

𝛿2
2 ‖𝑥−𝑦‖

2 (∀𝑥 ∈ dom𝑔, 𝑦 ∈ dom∇𝑔)
ives that ‖𝐴𝑦𝑛 −𝛱𝑔

𝑄𝐴𝑦𝑛‖ = 0 i.e. that 𝐴𝑦𝑛 ∈ 𝑄. This completes the proof. □

emma 10. Under conditions (A1)-(A5) and (A1∗), suppose that Algorithm 2 reaches an iteration 𝑛 + 1. Let {𝑦𝑛} and {𝑤𝑛} be the
sequences generated by Algorithm 2. Then for any �̂� ∈ 𝛤 , it holds that

𝐷𝑓 (�̂�,𝛱
𝑓
𝐶𝑤𝑛) ≤𝐷𝑓 (�̂�, 𝑦𝑛) − (1 − 𝜏)𝐷𝑓 (𝑤𝑛, 𝑦𝑛) − 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑓 (𝛱

𝑓
𝐶𝑤𝑛, 𝑤𝑛). (3.50)

roof. By using the three point identity (2.1), one gives that

𝐷𝑓 (�̂�, 𝑤𝑛) =𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑤𝑛, 𝑦𝑛) + ⟨∇𝑔(𝑦𝑛) − ∇𝑔(𝑤𝑛), �̂� −𝑤𝑛⟩

=𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑤𝑛, 𝑦𝑛) + 𝛼𝑛⟨𝐴
∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛)), �̂� −𝑤𝑛⟩.
(3.51)

y using the three point identity (2.1), we obtain that

⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴�̂� − 𝐴𝑦𝑛⟩ = 𝐷𝑔(𝐴�̂�,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑔(𝐴�̂�, 𝐴𝑦𝑛) = −𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛), (3.52)

nd

⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴𝑦𝑛 − 𝐴𝑤𝑛⟩ = 𝐷𝑔(𝐴𝑤𝑛, 𝐴𝑦𝑛) +𝐷𝑔(𝐴𝑦𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑔(𝐴𝑤𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛). (3.53)

y combining (3.52) with (3.53), one obtains that

⟨𝐴∗(∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛)), �̂� −𝑤𝑛⟩ =⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔

𝑄𝐴𝑦𝑛), 𝐴�̂� − 𝐴𝑦𝑛⟩ + ⟨∇𝑔(𝐴𝑦𝑛) − ∇𝑔(𝛱𝑔
𝑄𝐴𝑦𝑛), 𝐴𝑦𝑛 − 𝐴𝑤𝑛⟩

≤𝐷𝑔(𝐴𝑤𝑛, 𝐴𝑦𝑛) −𝐷𝑔(𝐴𝑤𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛).

(3.54)

By substituting (3.54) into (3.51) and applying (3.44), one gives that

𝐷𝑓 (�̂�, 𝑤𝑛) =𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (𝑤𝑛, 𝑦𝑛) + 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛, 𝐴𝑦𝑛) − 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛)

≤𝐷𝑓 (�̂�, 𝑦𝑛) − (1 − 𝜏)𝐷𝑓 (𝑤𝑛, 𝑦𝑛) − 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛).

(3.55)

On the other hand, Lemma 1(ii) yields that

𝐷𝑓 (�̂�,𝛱
𝑓
𝐶𝑤𝑛) ≤ 𝐷𝑓 (�̂�, 𝑤𝑛) −𝐷𝑓 (𝛱

𝑓
𝐶𝑤𝑛, 𝑤𝑛). (3.56)

By combining (3.55) with (3.56), we conclude that

𝐷𝑓 (�̂�,𝛱
𝑓
𝐶𝑤𝑛) ≤𝐷𝑓 (�̂�, 𝑦𝑛) − (1 − 𝜏)𝐷𝑓 (𝑤𝑛, 𝑦𝑛) − 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛,𝛱

𝑔
𝑄𝐴𝑦𝑛) −𝐷𝑓 (𝛱

𝑓
𝐶𝑤𝑛, 𝑤𝑛).

This completes the proof. □

We are now in a position to state our strong convergence result of Algorithm 2.

Theorem 2. Suppose that conditions (A1)–(A5) and (A1∗) hold. Then the sequence {𝑥𝑛} generated by Algorithm 2 converges strongly to
𝑥† ∈ 𝛤 with 𝑥† = 𝛱𝑓

𝛤 𝑥0.

Proof. For simplicity, we divide the proof into three claims as follows.

Claim 1. {𝑥𝑛} is well-defined. Now we show that 𝐶𝑛 and 𝑄𝑛 are nonempty, closed, and convex sets for any 𝑛 ∈ N. It follows from the
definition of 𝐶𝑛 that

𝐷𝑓 (𝑧,𝛱
𝑓
𝐶𝑤𝑛) ≤ 𝐷𝑓 (𝑧, 𝑦𝑛), ∀𝑧 ∈ 𝐶𝑛. (3.57)

By using the definition of 𝐷𝑓 (⋅, ⋅), one obtains that (3.57) is equivalent to

𝑓 (𝑦𝑛) − 𝑓 (𝛱𝑓
𝐶𝑤𝑛) − ⟨∇𝑓 (𝑦𝑛), 𝑦𝑛⟩ + ⟨∇𝑓 (𝛱𝑓

𝐶𝑤𝑛),𝛱
𝑓
𝐶𝑤𝑛⟩ ≤ ⟨∇𝑓 (𝛱𝑓

𝐶𝑤𝑛) − ∇𝑓 (𝑦𝑛), 𝑧⟩.
It is obvious that 𝐶𝑛 is a closed and convex set. Based on (3.46), it is also obvious that 𝑄𝑛 is a closed and convex set.
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Next we show that 𝛤 ⊂ 𝐶𝑛 ∩𝑄𝑛, for any 𝑛 ∈ N. From Lemma 10, we observe that 𝛤 ⊂ 𝐶𝑛, for any 𝑛 ∈ N. On the other hand, it is
clear that 𝛤 ⊂ 𝑄1 = 𝐻1. Therefore, 𝛤 ⊂ 𝐶1∩𝑄1 and hence 𝛱𝑓

𝐶1∩𝑄1
𝑥0 is well defined. Suppose that 𝛤 ⊂ 𝐶𝑚∩𝑄𝑚 for some 𝑚 ∈ N. This

indicates that 𝐶𝑚 ∩𝑄𝑚 is nonempty, closed, and convex. Therefore, there exists a unique point 𝑥𝑚+1 such that 𝑥𝑚+1 is the Bregman
projection of 𝑥0 onto 𝐶𝑚 ∩𝑄𝑚. This together with Lemma 1(i) further gives that

⟨∇𝑓 (𝑥𝑚+1) − ∇𝑓 (𝑥0), 𝑧 − 𝑥𝑚+1⟩ ≥ 0, ∀𝑧 ∈ 𝐶𝑚 ∩𝑄𝑚. (3.58)

On the other hand, the fact 𝛤 ⊂ 𝐶𝑚 ∩𝑄𝑚 and (3.58) assert that

⟨∇𝑓 (𝑥𝑚+1) − ∇𝑓 (𝑥0), 𝑧 − 𝑥𝑚+1⟩ ≥ 0, ∀𝑧 ∈ 𝛤 . (3.59)

It follows from (3.59) that 𝛤 ⊂ 𝑄𝑚+1 and therefore 𝛤 ⊂ 𝐶𝑚+1 ∩𝑄𝑚+1. By induction, we show that 𝛤 ⊂ 𝐶𝑛 ∩𝑄𝑛, for any 𝑛 ∈ N. Hence
𝑛 ∩𝑄𝑛 is nonempty, closed, and convex. This implies that 𝑥𝑛+1 = 𝛱𝑓

𝐶𝑛∩𝑄𝑛
𝑥0 is well defined.

laim 2. We show that 𝑤𝑛(𝑥𝑛) ⊂ 𝛤 . By using the definition of 𝑄𝑛 and Lemma 1(i), we get that 𝑥𝑛 = 𝛱𝑓
𝑄𝑛

𝑥0. Hence, Lemma 1(ii) and the
act 𝛤 ⊂ 𝑄𝑛 assert that

𝐷𝑓 (𝑥𝑛, 𝑥0) ≤ 𝐷𝑓 (𝑧, 𝑥0) −𝐷𝑓 (𝑧, 𝑥𝑛) ≤ 𝐷𝑓 (𝑧, 𝑥0), ∀𝑧 ∈ 𝛤 . (3.60)

Therefore, {𝐷𝑓 (𝑥𝑛, 𝑥0)} is bounded by 𝐷𝑓 (𝑧, 𝑥0) for any 𝑧 ∈ 𝛤 . This implies that {𝑥𝑛} is bounded. Then there exists a subsequence
𝑥𝑛𝑘} of {𝑥𝑛} such that {𝑥𝑛𝑘} converges weakly to some 𝑥‡ ∈ 𝐻1. Next we show that 𝑥‡ ∈ 𝛤 . By the definitions of 𝐶𝑛 and 𝑄𝑛, we
educe that

𝐷𝑓 (𝑥𝑛+1,𝛱
𝑓
𝐶𝑤𝑛) ≤ 𝐷𝑓 (𝑥𝑛+1, 𝑦𝑛) (3.61)

nd

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ ≤ 0. (3.62)

y using the three point identity (2.1) and (3.62), one gets that

𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) =𝐷𝑓 (𝑥𝑛+1, 𝑥0) −𝐷𝑓 (𝑥𝑛, 𝑥0) + ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥𝑛), 𝑥𝑛+1 − 𝑥𝑛⟩ ≤ 𝐷𝑓 (𝑥𝑛+1, 𝑥0) −𝐷𝑓 (𝑥𝑛, 𝑥0). (3.63)

hus (3.63) asserts that {𝐷𝑓 (𝑥𝑛, 𝑥0)} is increasing. This together with the boundedness of {𝑥𝑛} asserts that lim𝑛→∞ 𝐷𝑓 (𝑥𝑛, 𝑥0) exists.
y (3.63), one observes that

lim
𝑛→∞

𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) = 0. (3.64)

his implies that

lim
𝑛→∞

‖∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑥𝑛)‖ = 0. (3.65)

y applying the three point identity (2.1), we get that

𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛−1) =𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) −𝐷𝑓 (𝑥𝑛−1, 𝑥𝑛) + ⟨∇𝑓 (𝑥𝑛) − ∇𝑓 (𝑥𝑛−1), 𝑥𝑛+1 − 𝑥𝑛−1⟩. (3.66)

y using the boundedness of {𝑥𝑛}, (3.64), and (3.65), one observes that

lim
𝑛→∞

𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛−1) = 0. (3.67)

y using the definition of {𝑦𝑛} and (2.2), one gets that

𝐷𝑓 (𝑥𝑛+1, 𝑦𝑛) =𝐷𝑓 (𝑥𝑛+1,∇𝑓 ∗((1 − 𝛽𝑛)∇𝑓 (𝑥𝑛) + 𝛽𝑛∇𝑓 (𝑥𝑛−1))) ≤ (1 − 𝛽𝑛)𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛) + 𝛽𝑛𝐷𝑓 (𝑥𝑛+1, 𝑥𝑛−1). (3.68)

n view of (3.61), (3.64), (3.67), and (3.68), one gets that

lim
𝑛→∞

𝐷𝑓 (𝑥𝑛+1, 𝑦𝑛) = lim
𝑛→∞

𝐷𝑓 (𝑥𝑛+1,𝛱
𝑓
𝐶 (𝑤𝑛)) = 0. (3.69)

y virtue of (3.69), one obtains that

lim
𝑛→∞

‖∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝛱𝑓
𝐶 (𝑤𝑛))‖ = lim

𝑛→∞
‖∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑦𝑛)‖ = 0. (3.70)

y the triangle inequality, we derive that

‖∇𝑓 (𝛱𝑓
𝐶𝑤𝑛) − ∇𝑓 (𝑦𝑛)‖ ≤ ‖∇𝑓 (𝛱𝑓

𝐶𝑤𝑛) − ∇𝑓 (𝑥𝑛+1)‖ + ‖∇𝑓 (𝑥𝑛+1) − ∇𝑓 (𝑦𝑛)‖. (3.71)

y applying (3.70) with (3.71), we conclude that

lim
𝑛→∞

‖∇𝑓 (𝛱𝑓
𝐶𝑤𝑛) − ∇𝑓 (𝑦𝑛)‖ = 0. (3.72)

y remembering (3.50) in Lemma 10 and the three point identity (2.1), one gets that

0 ≤(1 − 𝜏)𝐷𝑓 (𝑤𝑛, 𝑦𝑛) + 𝛼𝑛𝐷𝑔(𝐴𝑤𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛) +𝐷𝑓 (𝛱

𝑓
𝐶𝑤𝑛, 𝑤𝑛) ≤ 𝐷𝑓 (�̂�, 𝑦𝑛) −𝐷𝑓 (�̂�,𝛱

𝑓
𝐶𝑤𝑛)

𝑓 𝑓
(3.73)
≤ − ⟨∇𝑓 (𝑦𝑛) − ∇𝑓 (𝛱𝐶𝑤𝑛), �̂� −𝛱𝐶𝑤𝑛⟩.
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Therefore, it follows from (3.73) that

lim
𝑛→∞

𝐷𝑓 (𝑤𝑛, 𝑦𝑛) = lim
𝑛→∞

𝐷𝑔(𝐴𝑤𝑛,𝛱
𝑔
𝑄𝐴𝑦𝑛) = lim

𝑛→∞
𝐷𝑓 (𝛱

𝑓
𝐶𝑤𝑛, 𝑤𝑛) = 0. (3.74)

hen {𝑦𝑛𝑘} and {𝑤𝑛𝑘} also converge weakly to 𝑥‡. We further obtain that 𝑥‡ ∈ 𝛤 .

laim 3. We show that 𝑥𝑛 → 𝑥† ∈ 𝛤 with 𝑥† = 𝛱𝑓
𝛤 𝑥0. Since 𝑥𝑛 = 𝛱𝑓

𝑄𝑛
𝑥0 and 𝛤 ⊂ 𝑄𝑛, one has that 𝐷𝑓 (𝑥𝑛, 𝑥0) ≤ 𝐷𝑓 (𝑥†, 𝑥0). This together

ith the three point identity (2.1) implies that

𝐷𝑓 (𝑥𝑛, 𝑥†) =𝐷𝑓 (𝑥𝑛, 𝑥0) −𝐷𝑓 (𝑥†, 𝑥0) + ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛 − 𝑥†⟩ ≤ ⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛 − 𝑥†⟩. (3.75)

Taking into account that the limit point 𝑥‡ of {𝑥𝑛𝑘} belongs to 𝛤 and 𝑥† is the Bregman projection of 𝑥0 onto 𝛤 , it follows from
emma 1(i) that

lim sup
𝑘→∞

⟨∇𝑓 (𝑥0) − ∇𝑓 (𝑥†), 𝑥𝑛𝑘 − 𝑥†⟩ ≤ 0. (3.76)

y combining (3.75) with (3.76), it follows that lim sup𝑘→∞ 𝐷𝑓 (𝑥𝑛𝑘 , 𝑥
†) = 0. This implies that 𝑥𝑛𝑘 → 𝑥†, as 𝑘 → ∞. Since {𝑥𝑛𝑘} is an

rbitrary weakly convergent subsequence of {𝑥𝑛}, we conclude that {𝑥𝑛} converges strongly to 𝑥†. The proof is completed. □

emark 6. The convergence proof of our algorithms cannot rely on the triangle inequality and it solely derived from the geometric
roperties of Bregman distance.

. Numerical experiments

In this section, we provide numerical experiments of the proposed algorithms in signal processing and image deblurring to verify
he effectiveness of the algorithms and compare them with the schemes in the literature [7,8]. Our code is implemented in MATLAB
023b on a MacBook Air having a chip Apple M2 and 8 GB of RAM.

xample 1. In this example, our goal is to solve the signal processing problem using the proposed algorithms. The mathematical
odel for signal processing represented by 𝑏 = 𝐴𝑥, where

• 𝐴 ∈ R𝑚×𝑛 represents a matrix that maps the input signal 𝑥 to the output signal 𝑏.
• 𝑥 ∈ R𝑛×1 is the input signal vector with 𝑘 nonzero components that needs to be recovered (i.e., original signal).
• 𝑏 ∈ R𝑚×1 is the output signal vector (i.e., degraded signal).

This equation signifies that the output signal 𝑏 is obtained by applying a linear transformation represented by the matrix 𝐴 to the
nput signal 𝑥. Finding a sparse solution of the linear inverse problem can be seen as solving the constrained least squares problem:

min
𝑥

𝑓 (𝑥) ∶= 1
2
‖𝐴𝑥 − 𝑏‖22, such that ‖𝑥‖1 ≤ 𝑟,

where 𝑟 > 0 is a given constant. In this convex optimization problem, the objective function 𝑓 (𝑥) represents the least squares error
between the observed and predicted output signals. To convert this convex optimization problem into a feasibility problem, we can
introduce the following problem:

find 𝑥 ∈ 𝐶, such that 𝐴𝑥 ∈ 𝑄,

where 𝐶 ∶= {‖𝑥‖1 ≤ 𝑟} and 𝑄 = {𝑏}.

For our Algorithms 1 and 2, we set 𝑓 (𝑥) = 𝑔(𝑥) = 1
2‖𝑥‖

2
2. One can check that 𝑓 and 𝑔 satisfy conditions (A2) and (A3) with

strongly convex coefficient 1. Moreover, we have ∇𝑓 ∗(𝑥) = (∇𝑓 )−1(𝑥). It is not difficult to see that ∇𝑓 (𝑥) = 𝑥 and (∇𝑓 )−1(𝑥) = 𝑥.
he corresponding Bregman distance is given by 𝐷𝑓 (𝑥, 𝑦) =

1
2‖𝑥 − 𝑦‖22 which is the squared Euclidean distance (SE). For simplicity,

e abbreviate our Algorithms 1 and 2 with the squared Euclidean distance as our Alg. 1-SE and our Alg. 2-SE, respectively.
In the following examples, we compare the proposed algorithms with Shehu and Gibali’s Algorithm 1 [7] (abbreviated as SG

lg. 1) and López et al.’s Algorithm 3.1 [8] (abbreviated as LMWX Alg. 3.1). The parameters of all the algorithms are set as follows.

• For our Alg. 1-SE, we set 𝜇 = 2, 𝜈 = 0.9, 𝜏 = 0.9, 𝜎 = 0.3, 𝜂𝑛 =
1

10(𝑛+1)2 , and 𝜆𝑛 =
1

100(𝑛+1) . Choose 𝜚 = 2, 𝜍 = 0.9, 𝜏 = 0.9, 𝜎 = 0.3,
and 𝜂𝑛 =

1
10(𝑛+1)2 for our Alg. 2-SE.

• Select 𝜃 = 0.3, 𝛾 = 2, 𝑙 = 0.5, and 𝜇 = 0.5 for SG Alg. 1 [7].
• For LMWX Alg. 3.1 [8], we pick 𝜌𝑛 = 0.2.

In the example here, we first set 𝑛 = 512 and 𝑚 = 256. We randomly generate the original signal 𝑥 ∈ [−1, 1] with 𝑘 spikes
spikes have a value of ±1). Subsequently, we generate a random matrix 𝐴 with 𝑚 rows and 𝑛 columns, and then orthogonalize its
olumns. then the degenerate signal is generated by 𝑏 = 𝐴𝑥. The mean square error MSE = 1

𝑛‖�̂�− 𝑥‖22 was used as a measure of the
econstruction error of the recovered signal �̂� and the original signal 𝑥. The stopping criterion for all algorithms is MSE < 10−6. The
umerical results of the proposed algorithms and the comparison algorithms under signals with different sparsities are displayed
12 
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Table 1
Numerical results for all algorithms in Example 1.
Algorithms 𝑘 = 10 𝑘 = 20 𝑘 = 30 𝑘 = 40

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 1-SE 55 0.07 105 0.11 108 0.12 219 0.20
Our Alg. 2-SE 1025 0.48 2274 1.05 2434 0.99 7595 3.30
SG Alg.1 170 0.23 339 0.38 357 0.39 786 0.91
LMWX Alg. 3.1 118 0.03 224 0.04 234 0.04 476 0.11

Fig. 1. The original signal, the degraded signal, and the recovered signals under 𝑘 = 30.

Fig. 2. Trends of all algorithms regarding MSE and 𝑓 (𝑥), for 𝑘 = 30, respectively.

n Table 1, where ‘‘Iter’’. denotes the number of iterations required to reach the stopping condition and ‘‘Time (s)’’ represents the
xecution time in seconds.

The reconstruction results for all algorithms at 𝑘 = 30 are displayed in Figs. 1 and 2.

emark 7. From Table 1, Figs. 1, and 2, we observe that our proposed algorithms perform well in solving signal processing problems
nd achieve good recovery results. Moreover, the information in Table 1 indicates that our Alg. 1-SE requires the fewest number of
terations, while our Alg. 2-SE needs the most. It is noteworthy that the time required by our Alg. 2-SE is also the longest, which
s not surprising as this algorithm requires a projection calculation at the end of each iteration. However, it should be noted that
oth our algorithms achieve strong convergence in infinite-dimensional spaces, whereas the methods in [7,8] only obtain weak
onvergence. On the other hand, it can be from Fig. 2 that our Alg. 1-SE converges the fastest.
13 
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Example 2. In this example, we consider applying the proposed algorithms for solving the image deblurring problem. Recall that
the model representation of the image deblurring problem is given as:

𝑏 = 𝐴𝑥 + 𝜖,

where

• 𝑏 ∈ R𝑚×𝑚 is the observed blurred image.
• 𝐴 ∈ R𝑚×𝑚 is the blurring operator, which represents the effect of the blurring process on the original image 𝑥.
• 𝑥 ∈ R𝑚×𝑚 is the original sharp image that we aim to recover.
• 𝜖 ∈ R𝑚×𝑚 is the noise present in the observed image.

This equation signifies that the observed blurred image 𝑏 is obtained by convolving the original sharp image 𝑥 with the blurring
perator 𝐴, which introduces blurring effects such as motion blur or out-of-focus blur. Additionally, the observed image may contain
oise represented by 𝜖. The goal of image deblurring is to estimate the original sharp image 𝑥 from the observed blurred image 𝑏,
aking into account the blurring effects and noise present in the observed image.

We can convert the image deblurring problem into the following constrained convex optimization problem:

min
𝑥∈𝐶

1
2
‖𝐴𝑥 − (𝑏 − 𝜖)‖22,

where 𝐶 represents the domain of the original image 𝑥. This problem can fall into the framework of the split feasibility problem by
setting 𝑄 ∶= ‖𝑦∶ ‖𝑦 − (𝑏 − 𝜖)∥ ≤ 𝑠, where 𝑠 is a sufficiently small positive constant.

In our Algorithms 1 and 2, we consider 𝑓 (𝑥) = 𝑔(𝑥) =
∑𝑗

𝑖=1 𝑥𝑖 log
(

𝑥𝑖
)

which satisfies assumptions (A2) and (A3). In addition, one
has ∇𝑓 ∗(𝑥) = (∇𝑓 )−1(𝑥), where

∇𝑓 (𝑥) =
(

1 + log
(

𝑥1
)

,… , 1 + log
(

𝑥𝑗
))𝑇

(∇𝑓 )−1(𝑥) =
(

exp
(

𝑥1 − 1
)

,… , exp
(

𝑥𝑗 − 1
))𝑇 .

Moreover, the corresponding Bregman distance is given by

𝐷𝑓 (𝑥, 𝑦) =
𝑗
∑

𝑖=1

(

𝑥𝑖 log
(

𝑥𝑖
𝑦𝑖

)

+ 𝑦𝑖 − 𝑥𝑖

)

,

which is the Kullback–Leibler distance (KL).
Now we denote our Algorithm 1 with the Kullback–Leibler distance as our Alg. 1-KL. In the following examples, we compare

the computational efficiency of our Alg. 1-SE, our Alg. 1-KL, our Alg. 2-SE, SG Alg. 1 [7], and LMWX Alg. 3.1 [8]. The parameters
of all the algorithms are set as follows.

• For our Alg. 1-SE and our Alg. 1-KL, we set 𝜇 = 5, 𝜈 = 0.8, 𝜏 = 0.9, 𝜎 = 0.3, 𝜂𝑛 = 1
10(𝑛+1)2 , and 𝜆𝑛 = 1

100(𝑛+1) . Choose 𝜚 = 5,
𝜍 = 0.8, 𝜏 = 0.9, 𝜎 = 0.3, and 𝜂𝑛 =

1
10(𝑛+1)2 for our Alg. 2-SE.

• Select 𝜃 = 0.3, 𝛾 = 0.5, 𝑙 = 0.5, and 𝜇 = 0.5 for SG Alg. 1 [7].
• For LMWX Alg. 3.1 [8], we pick 𝜌𝑛 = 2.

In this example, we select three test images with a domain of [0, 1]. The test images are initially contaminated by a 9 × 9
Gaussian random blur with a standard deviation of 1.5, and further corrupted by random Gaussian white noise with zero mean and
a standard deviation of 10−4. The maximum number of iterations 100 is used as a common stopping criterion for all algorithms.
We use Signal-to-Noise Ratio (SNR) and Peak Signal-to-Noise Ratio (PSNR) to measure the reconstruction quality. The definition of
SNR is as follows:

SNR = 20 log10
‖𝑥‖2

‖�̂� − 𝑥‖2
.

The definition of PSNR is given by the following equation:

PSNR = 10 log10

(

MAX2

MSE

)

,

here MAX is the maximum possible pixel value of the image 𝑥, and MSE (Mean Squared Error) is the average squared difference
between the original and reconstructed image. It is well known that higher values of SNR and PSNR indicate better reconstruction
quality.

The numerical results of the proposed algorithms as well as the comparison ones for the three test images are displayed in
Table 2. Figs. 3, 4, and 5 show the reconstructed images for all the algorithms in the three images, respectively. Finally, as an
example, we present the variation curves of SNR and PSNR for all algorithms under the image ‘‘Cameraman’’ in Fig. 6.

Remark 8. From Table 2 and Figs. 3–6, it can be observed that our algorithms perform well in solving image deblurring problems
and outperform the algorithms in [7,8]. Moreover, note that our Alg. 1-KL achieves higher reconstruction quality than our Alg. 1-SE
in some cases (see Table 2). This suggests that our Algorithm 1 may achieve better results when using the Kullback–Leibler distance
compared to using the squared Euclidean distance.
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Table 2
Numerical results of all algorithms for different images.
Algorithms Cameraman Pepper Barbara

Time (s) SNR PSNR Time (s) SNR PSNR Time (s) SNR PSNR

Our Alg. 1-SE 2.17 21.36 26.95 2.48 23.38 29.12 6.53 19.38 25.27
Our Alg. 1-KL 5.96 21.62 27.20 6.25 23.21 28.95 19.70 19.40 25.28
Our Alg. 2-SE 2.23 21.10 26.69 2.46 23.09 28.83 6.41 19.30 25.18
SG Alg. 1 1.50 21.16 26.74 1.58 23.19 28.93 4.54 19.28 25.17
LMWX Alg. 3.1 0.97 19.94 25.52 1.04 20.81 26.55 3.13 18.21 24.10

Fig. 3. Reconstructed images for all algorithms under image ‘‘Cameraman’’.

Fig. 4. Reconstructed images for all algorithms under image ‘‘Pepper’’.
15 
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Fig. 5. Reconstructed images for all algorithms under image ‘‘Barbara’’.

Fig. 6. The variation curves of SNR and PSNR for all algorithms under the image ‘‘Cameraman’’.

5. Conclusion

In this paper, two novel adaptive inertial Bregman iteration algorithms are proposed to solve split feasibility problems in Hilbert
spaces. By leveraging the Halpern method and the hybrid projection method, we establish the strong convergence of the proposed
algorithms under appropriate conditions. Furthermore, some numerical experiments in signal processing and image deblurring
validate the computational efficiency of our methods. The results of this paper extend and enhance the latest findings on split
feasibility problems.
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