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Abstract: In this paper, we propose viscosity algorithms with two different inertia parameters for
solving fixed points of nonexpansive and strictly pseudocontractive mappings. Strong convergence
theorems are obtained in Hilbert spaces and the applications to the signal processing are considered.
Moreover, some numerical experiments of proposed algorithms and comparisons with existing
algorithms are given to the demonstration of the efficiency of the proposed algorithms. The numerical
results show that our algorithms are superior to some related algorithms.
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1. Introduction

In this paper, H denotes real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. We denote
the set of fixed points of an operator T by Fix(T), more precisely, Fix(T) := {x ∈ H : Tx = x}.

Recall that a mapping T : H → H is said to be an η-strict pseudo-contraction if ‖Tx− Ty‖2 −
η‖(I − T)x − (I − T)y‖2 ≤ ‖x − y‖2, ∀x, y ∈ H, where η ∈ [0, 1) is a real number. A mapping
T : H → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H. It is evident that the class
of η-strict pseudo-contractions includes the class of nonexpansive mappings, as T is nonexpansive
if and only if T is 0-strict pseudo-contractive. Many classical mathematical problems can be casted
into the fixed-point problem of nonexpansive mappings, such as, inclusion problem, equilibrium
problem, variational inequality problem, saddle point problem, and split feasibility problem, see [1–3].
Approximating fixed points of nonexpansive mappings is an important field in many areas of pure
and applied mathematics. One of the most well-known algorithms for solving such a problem is the
Mann iterative algorithm [4]:

xn+1 = (1− θn)Txn + θnxn,

where θn is a sequence in (0, 1). One knows that the iterative sequence {xn} converges weakly to a
fixed point of T provided that ∑∞

n=0 θn(1− θn) = +∞. This algorithm is slow in terms of convergence
speed. Moreover, this algorithm converges is weak. To obtain more effective methods, many authors
have done a lot of works in this area, see [5–8]. A mapping f : H → H is called a contraction if
there exists a constant in [0, 1) such that ‖ f (x) − f (y)‖ ≤ τ‖x − y‖, ∀x, y ∈ H. One of celebrated
ways to study nonexpansive operators is to use a contractive operator, which is a convex combination

Mathematics 2020, 8, 288; doi:10.3390/math8020288 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1225-9434
https://orcid.org/0000-0003-1509-1809
http://www.mdpi.com/2227-7390/8/2/288?type=check_update&version=1
http://dx.doi.org/10.3390/math8020288
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 288 2 of 18

of the previous contractive operator and the nonexpansive operator. The viscosity type method for
nonexpansive mappings is defined as follows,

xn+1 = (1− αn)Txn + αn f (xn), (1)

where αn is a sequence in (0, 1), T is the nonexpansive operator, and f is the contractive operator.
In this method, a special fixed point of the nonexpansive operator is obtained by regularizing the
nonexpansive operator via the contraction. This method was proposed by Attouch [9] in 1996 and
further promoted by Moudafi [10] in 2000. Motivated by Moudafi, Takahashi and Takahashi [11]
introduced a strong convergence theorem by the viscosity type approximation method for finding
the fixed point of nonexpansive mappings in Hilbert spaces. In 2019, Qin and Yao [12] introduced
a viscosity iterative method for solving a split feasibility problem. For viscosity approximation
methods, one refers to [13,14]. In practical applications, one not only studies different algorithms,
but also pursues the speed of these algorithms. To obtain faster convergence algorithms, many
scholars have given various acceleration techniques, see, e.g., [15–19]. One of the most commonly
used methods is the inertial method. In [20], Polyak introduced an inertial extrapolation based on the
heavy ball method for solving the smooth convex minimization problem. Shehu et al. [21] introduced a
Halpern-type algorithm with inertial terms for approximating fixed points of a nonexpansive mapping.
They obtained strong convergence in real Hilbert spaces under some assumptions on the sequence of
parameters. To get a more general inertial Mann algorithm for nonexpansive mappings, Dong et al. [22]
introduced a general inertial Mann algorithm which includes some classical algorithms as its special
cases; however, they only got the weak convergence results.

Inspired by the above works, we give two algorithms for solving fixed point problems of
nonexpansive mappings via viscosity and inertial techniques in this paper. One highlight is that
our algorithms, which are more consistent and efficient, are accelerated via the inertial technique
and the viscosity technique. In addition, the solution also uniquely solves a monotone variational
inequality. Another highlight is that we consider two different inertial parameter sequences comparing
with the existing results. We establish strong convergence results in infinite dimensional Hilbert spaces
without compactness. We also investigate the applications of the two proposed algorithms to variational
inequality problems and inclusion problems. Furthermore, we give some numerical experiments to
illustrate the convergence efficiency of our algorithms. The proposed numerical experiments show that
our algorithms are superior to some related algorithms.

In this paper, Section 2 is devoted to some required prior knowledge, which will be used in
this paper. In Section 3, based on viscosity type method, we propose an algorithm for solving
fixed point problems of nonexpansive mappings and give an algorithm for strict pseudo-contractive
mappings. In Section 4, some applications of our algorithms in real Hilbert spaces are given. Finally,
some numerical experiments of our algorithms and its comparisons with other algorithms in signal
processing are given in Section 5. Section 6, the last section, is the final conclusion.

2. Toolbox

In this section, we give some essential lemmas for our main convergence theorems.

Lemma 1 ([23]). Let {an} be a non-negative real sequence and {bn} a real sequence and {αn} a real sequence
in (0, 1) such that ∑∞

n=1 αn = ∞. Assume that an+1 ≤ αnbn + an(1− αn), ∀n ≥ 1. If, for every subsequence
{ank} of {an} satisfying lim infk→∞(ank+1 − ank ) ≥ 0, lim supk→∞ bnk ≤ 0 holds, then limn→∞ an = 0.

Lemma 2 ([24]). Suppose that T : H → H is a nonexpansive mapping. Let {xn} be a vector sequence in H
and let p be a vector in H. If xn ⇀ p and xn − Txn → 0. Then p ∈ Fix(T).

Lemma 3 ([14]). Let {σn} be a non-negative real sequence such that there exists a subsequence {σni} of
{σn} satisfying σni < σni+1 for all i ∈ N. Then, there exists a nondecreasing sequence {mk} of N such
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that limk→∞ mk = ∞ and the following properties are satisfied for all (sufficiently large) number k ∈ N:
σmk ≤ σmk+1 and σk ≤ σmk+1.

It is known that mk is the largest number in the set {1, 2, · · · , k} such that σmk < σmk+1.

Lemma 4 ([25]). Let {sn} be a sequence of non-negative real numbers such that sn+1 = (1− βn)sn + δn,
∀ ≥ 0, where {βn} is a sequence in (0, 1) with ∑∞

n=0 βn = ∞ and {δn} satisfies lim supn→∞
δn
βn
≤ 0 or

∑∞
n=0 |δn| < ∞. Then, limn→∞ sn = 0.

3. Main Results

In this section, we give two strong convergence theorems for approximating the fixed points of
nonexpansive mappings and strict pseudo-contractive mappings. First, we propose some assumptions
which will be used in our statements.

Condition 1. Suppose that {αn}, {βn} and {γn} are three real sequences in (0, 1) satisfying the following
conditions.

(1) ∑∞
n=1 αn = ∞ and limn→∞ αn = 0;

(2) limn→∞
θn
αn
‖xn − xn−1‖ = limn→∞

εn
αn
‖xn − xn−1‖ = 0;

(3) αn + βn + γn = 1 and lim infn→∞ γnβn > 0;

Remark 1. (1) If θn = εn = 0, i.e., xn = yn = zn, Algorithm 1 is the classical viscosity type algorithm
without the inertial technique.

(2) Algorithm 1 is a generalization of Shehu et al. [21]. If f (x) = u and θn = εn, i.e., yn = zn, then it becomes
the Shehu et al. Algorithm 1 with en = 0.

Algorithm 1 The viscosity type algorithm for nonexpansive mappings

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows:
Step 1. Compute {

yn = θn(xn − xn−1) + xn,
zn = εn(xn − xn−1) + xn.

(2)

Step 2. Compute

xn+1 = αn f (xn) + βnyn + γnTzn. (3)
Step 3. Set n← n + 1 and go to Step 1.

Remark 2. The (2) of Condition 1 is well defined, as the inertial parameters θn and εn in (3) can be chosen such
that 0 ≤ θn ≤ θ∗n and 0 ≤ εn ≤ ε∗n, where

θ∗n =

min
{

θ, δn
‖xn−xn−1‖

}
, xn 6= xn−1,

θ, otherwise,
ε∗n =

min
{

ε, δn
‖xn−xn−1‖

}
, xn 6= xn−1,

ε, otherwise,
(4)

and {δn} is a positive sequence such that limn→∞
δn
αn

= 0. It is easy to verify that limn→∞ θn‖xn − xn−1‖ = 0

and limn→∞
θn

αn
‖xn − xn−1‖ = 0.

Theorem 1. Let T : H → H be a nonexpansive mapping with Fix(T) 6= ∅ and let f : H → H be a contraction
with constant k ∈ [0, 1). Suppose that {xn} is any sequence generated by Algorithm 1 and Condition 1 holds.
Then, {xn} converges strongly to p = PFix(T) ◦ f (p).
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Proof. The proof is divided into three steps.
Step 1. One claims that {xn} is bounded.
Let p ∈ Fix(T). As yn = θn(xn − xn−1) + xn, one concludes

‖yn − p‖ ≤ θn‖xn − xn−1‖+ ‖xn − p‖. (5)

Similarly, one gets
‖zn − p‖ ≤ ‖xn − p‖+ εn‖xn − xn−1‖. (6)

From (3), one obtains

‖xn+1 − p‖ ≤ γn‖p− Tzn‖+ βn‖p− yn‖+ αn‖p− f (xn)‖
≤ γn‖p− zn‖+ βn‖p− yn‖+ αn‖ f (xn)− f (p) + f (p)− p‖
≤ (1− αn(1− k))‖xn − p‖

+ αn(1− k)(
‖ f (p)− p‖+ βn

θn
αn
‖xn − xn−1‖+ γn

εn
αn
‖xn − xn−1‖

1− k
).

(7)

In view of Condition 1 (2), one sees that supn≥1
θn
αn
‖xn− xn−1‖ and supn≥1

εn
αn
‖xn− xn−1‖ exist. Taking

M := 3 max
{
‖ f (p)− p‖, supn≥1

θn
αn
‖xn − xn−1‖, supn≥1

εn
αn
‖xn − xn−1‖

}
, one gets from (7) that

‖xn+1 − p‖ ≤ (1− αn(1− k))‖xn − p‖+ αn(1− k)M

≤ max{‖xn − p‖, M} ≤ · · · ≤ max{‖x1 − p‖, M}.

This implies that {xn} is bounded.
Step 2. One claims that if {xn} converges weakly to z ∈ H, then z ∈ Fix(T). Letting wn+1 =

αn f (wn) + βnwn + γnTwn, from (1), one arrives at

‖wn − yn‖ ≤ θn|‖xn − xn−1‖+ ‖wn − xn‖ (8)

and
‖wn − zn‖ ≤ εn|‖xn − xn−1‖+ ‖wn − xn‖. (9)

By the definition of wn+1, (8) and (9), one obtains

‖wn+1 − xn+1‖ ≤ αn‖ f (wn)− f (xn)‖+ βn‖wn − yn‖+ γn‖Twn − Tzn‖
≤ kαn‖wn − xn‖+ βn‖wn − yn‖+ γn‖wn − zn‖
≤ (1− αn(1− k))‖wn − xn‖+ (θn‖xn − xn−1‖+ εn‖xn − xn−1‖).

(10)

From Condition 1 and Lemma 4, one sees that (10) implies limn→∞ ‖wn+1 − xn+1‖ = 0. Therefore,
it follows from Step 1 that {wn} is bounded. By the definition of wn+1, one also obtains

‖wn+1 − p‖2 ≤ ‖αn( f (wn)− f (p)) + βn(yn − p) + γn(Tyn − p)‖2 + 2αn〈 f (p)− p, wn+1 − p〉

≤ αnk2‖wn − p‖2 + βn‖wn − p‖2 + γn‖Twn − p‖2 − βnγn‖wn − Twn‖2

+ 2αn〈 f (p)− p, wn+1 − p〉

= (1− αn(1− k2))‖wn − p‖2 + 2αn〈 f (p)− p, wn+1 − p〉 − βnγn‖wn − Twn‖2.

(11)

Taking sn = ‖wn − p‖2, one sees that (11) is equivalent to

sn+1 ≤ (1− αn(1− k2))sn − βnγn‖wn − Twn‖2 + 2αn〈 f (p)− p, wn+1 − p〉. (12)

Now, we show z ∈ Fix(T) by considering two possible cases on sequence {sn}.
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Case 1. Suppose that there exists a n0 ∈ N such that sn+1 ≤ sn for all n ≥ n0. This implies that
limn→∞ sn exists. From (12), one has

βnγn‖wn − Twn‖2 ≤ (1− αn(1− k2))sn + 2αn〈 f (p)− p, wn+1 − p〉 − sn+1. (13)

As {wn} is bounded, from Condition 1 and (13), one deduces that

lim
n→∞

βnγn‖wn − Twn‖2 = 0. (14)

As lim infn→∞ βnγn > 0, (14) implies that

lim
n→∞

‖wn − Twn‖2 = 0. (15)

As xn ⇀ z and limn→∞ ‖wn+1 − xn+1‖ = 0, one has wn ⇀ z. By using Lemma 2, one gets z ∈ Fix(T).
Case 2. There exists a subsequence {snj} of such {sn} that snj < snj+1 for all j ∈ N. In this case,

it follows from Lemma 3 that there is a nondecreasing subsequence {mk} of N such that limk→∞ mk →
∞ and the following inequalities hold for all k ∈ N:

smk ≤ smk+1 and sk ≤ smk+1. (16)

Using a similar argument as Case 1, it is easy to get that limk→∞ ‖Twmk − wmk‖ = 0. It is known that
xn ⇀ z, which implies xmk ⇀ z. Therefore, z ∈ Fix(T).

Step 3. One claims that {xn} converges strongly to p = PFix(T) ◦ f (p). From (11), we deduce that

‖wn+1 − p‖2 ≤ (1− αn(1− k2))‖wn − p‖2 + 2αn〈 f (p)− p, wn+1 − p〉. (17)

In the following, we show that the sequence {‖wn − p‖} converges strongly to zero. As {wn} is
bounded, in view of Condition 1 and Lemma 1, we only need to show that for each subsequence
{‖wnk − p‖} of {‖wn − p‖} such that lim infk→∞(‖wnk+1 − p‖ − ‖wnk − p‖) ≥ 0, lim supk→∞〈 f (p)−
p, wnk+1 − p〉 ≤ 0. For this purpose, one assumes that {‖wnk − p‖} is a subsequence of {‖wn − p‖}
such that lim infk→∞(‖wnk+1 − p‖ − ‖wnk − p‖) ≥ 0. This implies that

lim inf
k→∞

(‖wnk+1 − p‖2 − ‖wnk − p‖2) = lim inf
k→∞

((‖wnk+1 − p‖ − ‖wnk − p‖)

× (‖wnk+1 + p‖+ ‖wnk − p‖)) ≥ 0.
(18)

From the definition of wn, we obtain

‖wnk+1 − wnk‖ ≤ ‖αnk ( f (wnk )− wnk ) + γnk (Twnk − wnk )‖
≤ αnk‖ f (wnk )− wnk‖+ γnk‖Twnk − wnk‖
≤ αnk (k‖wnk − p‖+ ‖ f (p)− wnk‖) + γnk‖Twnk − wnk‖.

(19)

Using the argument of Case 1 and Case 2 in Step 2, there exists a subsequence of {wnk}, still denoted
by {wnk}, such that

lim
k→∞
‖Twnk − wnk‖ = 0. (20)

By the boundedness of {wn}, one deduces from Condition 1, (19), and (20) that

lim
n→∞

‖wnk+1 − wnk‖ = 0. (21)

As {wnk} is bounded, there exists a subsequence {wnkj
} of {wnk} converges weakly to some z ∈ H.

This implies that
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lim sup
k→∞

〈 f (p)− p, wnk − p〉 = lim sup
j→∞

〈 f (p)− p, wnkj
− p〉 = 〈 f (p)− p, z− p〉.

From Step 2, one gets z ∈ Fix(T). Since p = PFix(T) ◦ f (p), one arrives at

lim sup
k→∞

〈 f (p)− p, wnk − p〉 = 〈 f (p)− p, z− p〉 ≤ 0.

From (21), one obtains

lim sup
k→∞

〈 f (p)− p, wnk+1 − p〉 = lim sup
k→∞

〈 f (p)− p, wnk − p〉+ lim sup
k→∞

〈 f (p)− p, wnk+1 − wnk 〉

= 〈 f (p)− p, z− p〉 ≤ 0.
(22)

Therefore, one has ‖wn − p‖ → 0. Since limn→∞ ‖wn − xn‖ = 0, one gets ‖xn − p‖ → 0.

In the following, we give a strong convergent theorem for strict pseudo-contractions.

Theorem 2. Let T : H → H be a η-strict pseudo-contraction with Fix(T) 6= ∅ and let f : H → H be a
contraction with constant k ∈ [0, 1). Suppose that {xn} is a vector sequence generated by Algorithm 2 and
Condition 1 holds. Then, {xn} converges strongly to p = PFix(T) ◦ f (p).

Algorithm 2 The viscosity type algorithm for strict pseudo-contractions

Initialization: Let x0, x1 ∈ H be arbitrary and let δ ∈ [η, 1).
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = θn(xn − xn−1) + xn,
zn = εn(xn − xn−1) + xn.

(23)

Step 2. Compute

xn+1 = αn f (xn) + βnyn + γn(δzn + (1− δ)Tzn). (24)
Step 3. Set n← n + 1 and go to Step 1.

Proof. Define Q : H → H by Qx = δx + (1− δ)Tx. It is easy to verify that Fix(T) = Fix(Q). By the
definition of strict pseudo-contraction, one has

‖Qx−Qy‖2 = δ‖x− y‖+ (1− δ)‖Tx− Ty‖2 − δ(1− δ)‖(x− y)− (Tx− Ty)‖2

= δ‖x− y‖+ (1− δ)‖x− y‖2 + η(1− δ)‖(x− y)− (Tx− Ty)‖2

− δ(1− δ)‖(x− y)− (Tx− Ty)‖2

≤ ‖x− y‖2 − (δ− η)(1− δ)‖(x− y)− (Tx− Ty)‖2

≤ ‖x− y‖2.

Therefore, Q is nonexpansive. Then, we get the conclusions from Theorem 1 immediately.

In the following, we give some corollaries for Theorem 1.
Recall that T is called a ρ-averaged mapping if and only if it can be written as the average of the

identity mapping I and a nonexpansive mapping, that is, T := (1− ρ)I + ρS, where ρ ∈ (0, 1) and
S : H → H is a nonexpansive mapping. It is known that every ρ-averaged mapping is nonexpansive
and Fix(T) = Fix(S). A mapping T : H → H is said to be quasi-nonexpansive if, for all p ∈ Fix(T),
‖Tx− Tp‖ ≤ ‖x− p‖, ∀x ∈ H. T is said to be strongly nonexpansive if xn − yn − (Txn − Tyn) → 0,
whenever {xn} and {yn} are two sequences in H such that {xn − yn} is bounded and ‖xn − yn‖ −
‖Txn − Tyn‖ → 0. T is said to be strongly quasi-nonexpansive if T is quasi-nonexpansive and
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xn − Txn → 0 whenever {xn} is a bounded sequence in H such that ‖xn − p‖ − ‖Txn − Tp‖ → 0 for
all p ∈ Fix(T). By using Theorem 1, we obtain the following corollaries easily.

Corollary 1. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let T : H → H be a ρ-average mapping with Fix(T) 6= ∅. Suppose that Conditions 1 holds. Then, the sequence
{xn} generated by Algorithm 1 converges to p = PFix(T) ◦ f (p) in norm.

Corollary 2. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1). Let
T : H → H be a quasi-nonexpansive mapping with Fix(T) 6= ∅ and I − T be demiclosed at the origin. Suppose
that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 1 converges to p = PFix(T) ◦ f (p)
in norm.

Corollary 3. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let T : H → H be a strongly quasi-nonexpansive mapping with Fix(T) 6= ∅ and I − T be demiclosed at
the origin. Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 1 converges to
p = PFix(T) ◦ f (p) in norm.

4. Applications

In this section, we will give some applications of our algorithms to variational equality problems,
inclusion problems and corresponding convex minimization problems.

4.1. Variational Inequality Problems

In this subsection, we consider the following variational inequality problem (for short, VIP): find
x ∈ C such that

〈Ax, y− x〉 ≥ 0, ∀y ∈ C, (25)

where A : H → H is a single-valued operator and C is a nonempty convex closed set in H. The solutions
of VIP 25 is denoted by Ω. It is known that x∗ is a solution of VIP (25) if and only if x∗ = PC(x∗−λAx∗),
where λ is an arbitrary positive constant. In recent decades, the VIP has received a lot of attention.
In order to solve the VIP, various methods have been proposed, see, e.g., [26–28]. In this subsection,
we will give some applications of our algorithms to the VIP (25). For this purpose, we introduce a
lemma proposed by Shehu et al. [21].

Lemma 5. Let H be a Hilbert space and let C be a nonempty convex and closed set in H. Suppose that A : H→ H
is a monotone L-Lipschitz operator on C and that λ is a positive number. Let V := PC(I − λA) and let S :=
V− λ(AV− A). Then, I−V is demi-closed at the origin. Moreover, if λL < 1, S is a strongly quasi-nonexpansive
operator and Fix(S) = Fix(V) = Ω.

By using Lemma 5 and Corollary 3, we obtain the following corollary for VIP (25) immediately.

Corollary 4. Let H be a Hilbert space and let C be a nonempty convex closed set in H. Let f : H → H be a
contraction with constant k ∈ [0, 1). Let A : H → H be a monotone L-Lipschitz operator and let τ ∈

(
0, 1

L

)
.

Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 3 converges to p = PΩ ◦ f (p)
in norm.

Proof. Let S := PC(I − τA) − τ(A(PC(I − τA)) − A). We see from Lemma 5 that S is strongly
quasi-nonexpansive and Fix(S) = Ω. Then, we get the conclusions from Corollary 3 immediately.
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Algorithm 3 The viscosity type algorithm for solving variational inequality problems

Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(26)

Step 2. Compute {
wn = PC(I − λA)zn,

xn+1 = αn f (xn) + βnyn + γn (wn − λ (Awn − Azn)) .
(27)

Step 3. Set n← n + 1 and go to Step 1.

4.2. Inclusion Problems

Let H denote the Hilbert spaces and let A : H → H be a single-valued mapping. Then, A is
said to be monotone if 〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ H; A is said to be α-inverse strongly monotone
if 〈Ax− Ay, x− y〉 ≥ α‖A(x)− A(y)‖2, ∀x, y ∈ H. A set-valued operator A : H → 2H is said to be
monotone if 〈x − y, u− v〉 ≥ 0, ∀x, y ∈ H, where u ∈ Ax and v ∈ Ay. Furthermore, A said to be
maximal monotone if, for all (y, v) ∈ Graph(A) and each (x, u) ∈ H × H, 〈x− y, u− v〉 ≥ 0 implies
that u ∈ Ax. Recall that the resolvent operator JA

r : H → H associated operator A is defined by
JA
r = (I + rA)−1x, where r > 0 and I denotes the identity operator on H. If A is a maximal monotone

mapping, JA
r is a single-valued and firmly nonexpansive mapping. Consider the following simple

inclusion problem: find x∗ ∈ H such that

0 ∈ Ax∗, (28)

where A : H → H is a maximal monotone operator. It is know that 0 ∈ A(x) if and only if x ∈ Fix(JA
r ).

By using Theorem 1, we obtain the following corollary.

Corollary 5. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let A : H → H be a maximal monotone operator such that A−1(0) 6= ∅. Suppose that Conditions 1 holds.
Then, the sequence {xn} generated by Algorithm 4 converges strongly to p = PA−1(0) ◦ f (p).

Algorithm 4 The viscosity type algorithm for solving inclusion problem (28)

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(29)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn JA

r (zn). (30)
Step 3. Set n← n + 1 and go to Step 1.

Proof. As Fix(JA
r ) = A−1(0) and JA

r is firmly nonexpansive, one has that JA
r is 1

2 -averaged. Therefore,
there exists a nonexpansive mapping S such that JA

r = 1
2 I + 1

2 S and Fix(JA
r ) = Fix(S). By using

Corollary 1, we obtain the conclusions immediately.

Now, we solve the following convex minimization problem.

min
x∈H

h(x), (31)
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where h : H → (−∞,+∞] is a proper lower semi-continuous closed convex function. The subdifferential
operator ∂h(x) of h(x) is defined by ∂h(x) = {u ∈ H : h(y) ≥ h(x) + 〈u, y− x〉,∀y ∈ H}. It is known
that ∂h(x) is maximal monotone, and x∗ is a solution of problem (31) if and only if 0 ∈ ∂h(x∗). Taking
A = ∂h(x), we have JA

r = proxrh, where r > 0 and proxrh is defined by

proxrh(u) = arg min
x∈H

{
1
2r
‖x− u‖2 + h(x)

}
.

Corollary 6. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let h : H → (−∞,+∞] be a proper closed lower semi-continuous convex function such that arg min h 6= ∅.
Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 5 converges to a solution of
convex minimization problem (31) in norm.

Algorithm 5 The viscosity type algorithm for solving convex minimization problems

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(32)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn proxrh(zn). (33)

Step 3. Set n← n + 1 and go to Step 1.

Proof. It is known that the subdifferential operator ∂h is maximal monotone since h is a proper, closed
lower semi-continuous, convex function. Therefore, proxrh = J∂h

r . Then, we get the conclusions from
Corollary 5 immediately.

In the following, we consider the following inclusion problem: find x∗ ∈ H such that

0 ∈ A(x∗) + B(x∗), (34)

where A : H → H be an α-inverse strongly monotone mapping and let B : H → 2H be a set-valued
maximal monotone operator. It is known that Fix(JB

r (I − rA)) = (A + B)−1(0). Many problems can
be modelled as the inclusion problem, such as, convex programming problems, inverse problems,
split feasibility problems, and minimization problems, see [29–32]. Moreover, this problem is also
widely applied in machine learning, signal processing, statistical regression, and image restoration,
see [33–35]. By using Theorem 1, we obtain the following corollary.

Corollary 7. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let A : H → H be a α-inverse strongly monotone mapping with 0 < r = 2α and let B : H → 2H be a
maximal monotone operator. Suppose that (A + B)−1(0) 6= ∅ and Conditions 1 holds. Then, the sequence
{xn} generated by Algorithm 3 converges to p = P(A+B)−1(0) ◦ f (p) in norm.

Proof. As A is inverse strongly monotone, one has that (I − rA) is nonexpansive. Therefore, the
operator JB

r (I − rA) is nonexpansive. Then, we get the conclusions from Theorem 1 immediately.

5. Numerical Results

In this section, we give three numerical examples to illustrate the computational performance of
our proposed algorithms. All the programs are performed in MATLAB2018a on a PC Desktop Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.800 GHz, RAM 8.00 GB.
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Example 1. In this example, we consider the following case that the usual gradient method is not convergent.
Take the feasible set as C := {−5 ≤ xi ≤ 5, i = 1, 2, · · · , m} and an m×m square matrix A :=

(
aij
)

1≤i,j≤m
whose terms are given by

aij =


1, if j = m + 1− i and j < i,
−1, if j = m + 1− i and j > i,
0, otherwise.

One knows that zero vector x∗ = (0, . . . , 0) is a solution of this problem. First, one tests the Algorithm 3
with different choices of inertial parameter θn and εn. Setting f (x) = 0.5x, δn = 1

(n+1)2 , αn = n
(n+1)1.1 ,

βn = γn = 1−αn
2 , λ = 0.7, the numerical results are shown in Tables 1 and 2.

To compare the efficiency between algorithms, we consider our proposed Algorithm 3, the extragradient
method (EGM) in [36], the subgradient extragradient method (SEGM) in [26], and the new inertial subgradient
extragradient method (NISEGM) in [27]. The parameters are selected as follows. The initial points x0, x1 ∈ Rm

are generated randomly in MATLAB and we take different values of m into consideration. In EGM, SEGM,
we take λ = 0.7. In Algorithm 3, we take f (x) = 0.5x, λ = 0.7, δn = 1

(n+1)2 , θ = 0.7 and ε = 0.8 in (4),

αn = n
(n+1)1.1 , βn = γn = 1−αn

2 . We set αn = 0.1, τn = n
(n+1)1.1 , λn = 0.8 in NISEGM. The stopping

criterion is En = ‖xn − x∗‖2 < 10−4. The results are proposed in Table 3 and Figure 1.

Table 1. Number of iterations of Algorithm 3 with θ = 0.5, m = 100

Initial Value ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 × rand(m,1) Iter. 24 23 23 23 22 22 22 21 21 21 21
100 × rand(m,1) Iter. 27 27 26 26 26 25 25 25 25 25 25

1000 × rand(m,1) Iter. 31 31 30 30 30 29 29 29 29 29 29

Table 2. Number of iterations of Algorithm 3 with ε = 0.7, m = 100

Initial Value θ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 × rand(m,1) Iter. 24 23 23 22 22 21 21 21 21 21 22
100 × rand(m,1) Iter. 27 27 26 26 25 25 25 25 25 25 25

1000 × rand(m,1) Iter. 30 30 30 29 29 29 28 28 28 28 28

Remark 3. By Table 1 and Table 2, one concludes that the number of the iteration is small for the Algorithm 3
with θ ∈ [0.5, 1] and ε ∈ [0.5, 1].

Remark 4. (1) By numerical results of Example 1, we find that our Algorithm 3 is efficient, easy to implement
and fast. Moreover, dimensions do not affect the computational performance of our algorithm.

(2) Obviously, by Example 1, we also find that our proposed Algorithm 3 outperforms the extragradient method
(EGM), the subgradient extragradient method (SEGM) and the new inertial subgradient extragradient
method (NISEGM) in both CPU time and number of iterations.

Table 3. Comparison between Algorithm 3, EGM, SEGM, and NISEGM in Example 1.

Algorithm 3 Algorithm EGM Algorithm SEGM Algorithm NISEGM

m Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

100 24 0.0102 91 0.0147 93 0.0194 84 0.0121
1000 27 0.0548 99 0.1265 101 0.1376 92 0.1136
2000 28 0.3007 101 0.7852 104 0.7018 94 0.6516
5000 29 1.6582 105 4.2879 107 4.4691 97 4.0239
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Figure 1. Convergence behavior of iteration error {En} with different dimension in Example 1.

Algorithm 6 The viscosity type algorithm for solving inclusion problem (34)

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows:
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(35)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn JB

r (I − rA)zn. (36)
Step 3. Set n← n + 1 and go to Step 1.

Example 2. In this example, we consider H = L2([0, 2π]) and the following half-space,

C =

{
x ∈ L2([0, 2π])|

∫ 2π

0
x(t)dt ≤ 1

}
, and Q =

{
x ∈ L2([0, 2π])|

∫ 2π

0
|x(t)− sin(t)|2 dt ≤ 16

}
.

Define a linear continuous operator T : L2([0, 2π])→ L2([0, 2π]), where (Tx)(t) := x(t). Then (T∗x) (t) =
x(t) and ‖T‖ = 1. Now, we solve the following problem,

find x∗ ∈ C such that Tx∗ ∈ Q. (37)



Mathematics 2020, 8, 288 12 of 18

As (Tx)(t) = x(t), (37) is actually a convex feasibility problem: find x∗ ∈ C ∩Q. Moreover, it is evident that
x(t) = 0 is a solution. Therefore, the solution set of (37) is nonempty. Take Ax = ∇

(
1
2

∥∥Tx− PQTx
∥∥2
)
=

T∗
(

I − PQ
)

Tx and B = ∂iC. Then (37) can be written in the form (34). It is clear that A is 1-Lipschitz
continuous and B is maximal monotone. For our numerical computation, we can also write the projections onto
set C and the projections onto set Q as follows, see [37].

PC(z) =

{
1−
∫ 2π

0 z(t)dt
4π2 + z,

∫ 2π
0 z(t)dt > 1,

z,
∫ 2π

0 z(t)dt ≤ 1.

and

PQ(w) =

 sin+ 4√∫ 2π
0 |w(t)−sin(t)|2dt

(w− sin),
∫ 2π

0 |w(t)− sin(t)|2dt > 16,

w,
∫ 2π

0 |w(t)− sin(t)|2dt ≤ 16.

In this numerical experiment, we consider different initial values x0 and x1. The error of the iterative algorithms
is denoted by

En =
1
2
‖PC (xn)− xn‖2

2 +
1
2

∥∥PQ (T (xn))− T (xn)
∥∥2

2 .

Now, we give some numerical experiment comparisons between our Algorithm 6 and the Algorithm 5.2 proposed
by Shehu et al. [21]. We denote this algorithm by Shehu et al. Algorithm 5.2. In the Shehu et al. Algorithm 5.2,
one sets λ = 0.25, εn = 1

(n+1)2 , θ = 0.5, αn = 1
n+1 , βn = γn = n

2(n+1) , en = 1
(n+1)2 . In Algorithm 6, one

sets f (x) = 0.5x, r = 0.25, δn = 1
(n+1)2 , θ = 0.5, ε = 0.7, αn = 1

n+1 , and βn = γn = n
2(n+1) . Our stopping

criterion is maximum iteration 200 or En < 10−3. The results are proposed in Table 4 and Figure 2.
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Figure 2. Convergence behavior of iteration error {En} with different initial values in Example 2.
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Table 4. Comparison between our Algorithm 6 and Shehu et al.’s Algorithm 5.2 in Example 2.

Algorithm 6 Shehu et al.’s Algorithm 5.2

Cases Initial Values Iter. Time (s) Iter. Time (s)

I x0 = t2

10 x1 = t2

10 9 3.4690 151 45.7379
II x0 = t2

10 x1 = 2t

16 7 2.9629 124 38.3933
III x0 = t2

10 x1 = et/2

2 18 7.0002 200 61.6568
IV x0 = t2

10 x1 = 5 sin(2t)2 15 5.8423 200 62.5465

Remark 5. (1) Also, by observing numerical results of Example 2, we find that our Algorithm 6 is more efficient
and faster than the Shehu et al.’s Algorithm 5.2.

(2) Our Algorithm 6 is consistent since the choice of initial value does not affect the number of iterations needed
to achieve the expected results.

Example 3. In this example, we consider a linear inverse problem: b = Ax0 + w, where x0 ∈ RN is the
(unknown) signal to recover, w ∈ RM is a noise vector, and A ∈ RM×N models the acquisition device. To
recover an approximation of the signal x0, we use the Basis Pursuit denoising method. That is, one uses the `1

norm as a sparsity enforcing penalty.

min
x∈RN

Φ(x) =
1
2
‖b− Ax‖2 + λ‖x‖1, (38)

where ‖x‖1 = ∑i |xi| and λ is a parameter that is relate to noise w. It is known that (38) is referred as the least
absolute selection and shrinkage operator problem, that is, the LASSO problem. The LASSO problem (38) is a
special case of minimizing F + G, where

F(x) =
1
2
‖b− Ax‖2, and G(x) = λ‖x‖1.

It is easy to see that F is a smooth function with L-Lipschitz continuous gradient∇F(x) = A∗(Ax− b), where
L = ‖A∗A‖. The `1-norm is “simple", as its proximal operator is a soft thresholding:

proxγG(xk) = max
(

0, 1− λγ

|xk|

)
xk.

In our experiment, we want to recover a sparse signal x0 ∈ RN with k (k� N) non-zero elements. A simple
linearized model of signal processing is to consider a linear operator, that is, a filtering Ax = ϕ ? x, where ϕ

is a second derivative of Gaussian. We wish to solve b = Ax0 + w, where w is a realization of Gaussian white
noise with variance 10−2. Therefore, we need to solve the (38). We compare our Algorithm 6 with another strong
convergence algorithm, which was proposed by Gibali and Thong in [38]. We denote this algorithm by G-T
Algorithm 1. In addition, we also compare the algorithms with the classic Forward–Backward algorithm in [33].
Our parameter settings are as follows. In all algorithms, we set regularization parameter λ = 1

2 in (38). In the
Forward–Backward algorithm, we set step size γ = 1.9/L. In G-T Algorithm 1, we set step size γ = 1.9/L,
αn = 1

n+1 , βn = n
2(n+1) and µ = 0.5. In Algorithm 6, we set step size r = 1.9/L, f (x) = 0.1x, θ = ε = 0.9,

δn = 1
(n+1)2 , αn = 1

n+1 , βn = 1
1000(n+1)3 , γn = 1− αn − βn. We take the maximum number of iterations

5× 104 as a common stopping criterion. In addition, we use the signal-to-noise ratio (SNR) to measure the
quality of recovery, and a larger SNR means a better recovery quality. Numerical results are proposed in Table 5
and Figures 3–5. We tested the computational performance of the above algorithms in different dimension N
and different sparsity k (Case I: N = 400, k = 12; Case II: N = 400, k = 20; Case III: N = 1000, k = 30;
Case IV: N = 1000, k = 50). Figure 3 shows the original and noise signals in different dimension N and different
sparsity k. Figure 4 shows the recovery results of different algorithms under different situation, the corresponding
numerical results are shown in Table 5. Figure 5 shows the convergence behavior of Φ(x) in (38) with the number
of iterations.
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Table 5. Comparison the SNR between Algorithm 6, G-T Algorithm 1, and Forward–Backward in
Example 3.

Cases N k G-T Algorithm 1 Algorithm 6 Forward–Backward

I 400 12 16.2421 16.3742 16.3930
II 400 20 5.3994 5.4377 5.4418
III 1000 30 6.7419 6.7749 6.7792
IV 1000 50 3.2493 3.2553 3.2561
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Figure 3. Original signals and noise signals at different N and k in Example 3.
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Figure 4. Recovery results under different algorithms in Example 3.
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Figure 5. Convergence behavior of {Φ(x)} with different N and k in Example 3.

Remark 6. (1) The LASSO problem in Example 3 also shows that our proposed algorithm is consistent and
more efficient. Furthermore, dimensions and sparsity do not affect the computational performance of our
proposed Algorithm 6, see Table 5 and Figures 4 and 5.

(2) The numerical results also show that our Algorithm 6 is superior than the algorithm proposed by Gibali
and Thong [38] in terms of computational performance and accuracy.

(3) In addition, there is little difference between our Algorithm 6 and the classical Forward–Backward
algorithm in computational performance and precision. Note that the Forward–Backward algorithm
is weak convergence in the infinite dimensional Hilbert spaces; however, our proposed algorithms is strongly
convergent (see Corollary 7 and Example 2).

6. Conclusions

In this paper, we proposed a viscosity algorithm with two different inertia parameters for
solving fixed-point problem of nonexpansive mappings. We also established a strong convergence
theorem for strict pseudo-contractive mappings. By choosing different parameter values in inertial
sequences, we analyzed the convergence behavior of our proposed algorithms. One highlight is that
our algorithms are based on two different inertial parameter sequences comparing with the exiting
ones. accelerated via the inertial technique and the viscosity technique. Another highlight is that, to
show the effectiveness of our algorithms, we compare our algorithms with other existing algorithms
in the convergence rate and applications in signal processing. Numerical experiments show that our
algorithms are consistent and efficient. Finally, we remark that the framework of the space is a Hilbert
space, it is of interest to further our results to the framework of Banach spaces or Hadamard manifolds.
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