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The above equivalence plays a significant role in a lot of convex optimization
problems; see, e.g., [1, 2, 6, 7, 9, 18,20–22,29,30] and the references therein.

An operator A : H → H is said to be (i) L-Lipschitz continuous on C if there
exists L > 0 such that ∥Ax − Ay∥ ≤ L∥x − y∥, ∀x, y ∈ C; (ii) sequentially weakly
continuous on C if for each sequence {xk}, we have that {xk} converges weakly
to x∗ implies that {Axk}converges weakly to Ax∗. (iii) pseudomonotone on C if
⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ C; (iv) monotone on C if ⟨Ax −
Ay, x − y⟩ ≥ 0, ∀x, y ∈ C; (v)strongly monotone on C if there exists δ > 0 such
that ⟨Ax − Ay, x − y⟩ ≥ δ∥x − y∥2, ∀x, y ∈ C; (vi) nonexpansive if ∥Ax − Ay∥ ≤
∥x − y∥, ∀x, y ∈ H. Suppose that g : H → R is convex and continuously Frechet
differentiable. Then g is convex if and only if ∇g : H → H is monotone. It is
well known that ∇g is κ-strongly monotone (pseudo-monotone) if and only if g is
κ-strongly convex (pseudo-convex).

The goal of this paper is to present an iterative algorithm for the following double-
hierarchical constrained optimization problem.

Problem 1.3. (Variational inequality problem over solution set of variational in-
equality problem)

Assume that

(i) Let C be a nonempty, closed, convex set of a Hilbert space H;
(ii) A1 : H → H is pseudo-monotone and Lipschitz continuous and sequentially

weakly continuous;
(iii) A2 : H → H is strongly monotone and Lipschitz continuous with

V I(V I(C,A1), A2) ̸= ∅.
Our objective is to

(1.2) find x∗ ∈ V I(V I(C,A1), A2)

= {x∗ ∈ V I(C,A1) : ⟨z − x∗, A2x
∗⟩ ≥ 0, ∀z ∈ V I(C,A1)}.

The simplest solution method solving variational inequality 1.1 is the classical
projection method, which generates a sequence {xk} through the following iteration
formula

(1.3) xk+1 = PC(I − αA)xk,

where A : H → H is δ-strongly monotone, ι-Lipschitz continuous and α ∈
(
0, 2δ

ι2

)
.

It is worth mentioning that these hypotheses are quite strong. If the strong mono-
tonicity assumption is relaxed to plain monotonicity, the situation becomes more
complicated, and one may get a divergent sequence. In order to deal with this situ-
ation, Korpelevich in [14] proposed an algorithm for the Euclidean case, known as
the extragradient method for solving variational inequalities when A is monotone
and ι-Lipschitz continuous

(1.4)

{
yk = PC(xk − αAxk),
xk+1 = PC(xk − αAyk),

for each k = 1, 2, . . . , where α ∈
(
0, 1ι

)
. Recently, the extragradient method was

also applied to solve pseudo-monotone, Lipschitz continuous variational inequalities
in the Hilbert space [31].
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The sequence {xk} generated by (1.3) and (1.4) are weakly convergent under
certain assumptions. By comparing the above modified iterative schemes, we find
that the conditions of the underlying mapping were weaken, but the projection was
still preserved during the calculation. So is there a way to avoid the calculation of
projections and can it also solve the variational inequality problem?

In 2011, Yamada [33] introduced an algorithmic solution to solve the variational
inequality problem, which was named the hybrid steepest descent method. Given
the initial data x0 ∈ H,

(1.5) xk+1 = (I − µαkA)Txk, ∀k ∈ N,
where T is a nonexpansive mapping with Fix(T ) ̸= ∅ and A : H → H is a ι-Lipschitz
continuous, κ-strongly monotone mapping. It does not rerquire to calculate PC but
requires a closed form expression of a nonexpansive mapping T . The sequence {xk}
generated by (1.5) converges strongly to a point x∗, which is a unique solution of
the hierarchical variational inequality ⟨Ax∗, x − x∗⟩ ≥ 0, ∀x ∈ Fix(T ). Recently,
descent-like solution methods have extensively investigated for solving variational
inequality problems; see, e.g., [15, 17,24–26,34]

To prove the main theorem of this paper, here we recall some known results.

Lemma 1.4 ([33]). Let the operator A : H → H be ι-Lipschitz continuous and
δ-strongly monotone with constants ι > 0, δ > 0. Assume that γ ∈

(
0, 2δ

ι2

)
. For

α ∈ (0, 1), define Tα := x− αγA(x). Then for all x, y ∈ H,

∥Tα(x)− Tα(y)∥ ≤ (1− αω)∥x− y∥

holds, where ω := 1−
√

1− γ(2δ − γι2) ∈ (0, 1).

Lemma 1.5 ([32]). Let {ak} be a sequence of nonnegative real numbers such that

ak+1 ≤ (1− αk)ak + αkbk,

where {αk} ⊂ (0, 1) and {bk} is a sequence such that limk→∞ αk = 0,
∑∞

k=0 αk =∞
and lim supk→∞ bk ≤ 0. Then limk→∞ ak = 0.

Lemma 1.6 ([16]). Let {ak} be a sequence of nonnegative real numbers such that
there exists a subsequence {akj} of {ak} such that akj < akj+1 for all j ∈ N. Then
there exists a nondecreasing sequence {mi} ⊂ N such that limi→∞mi =∞ and the
following properties are satisfied by all (sufficiently large) number i ∈ N:

ami ≤ ami+1 and ai ≤ ami+1.

In fact, mi is the largest number of k in the set {1, 2, . . . , i} such that ak ≤ ak+1

holds.

In this paper, we introduce a variational inequality with variational inequality
constraint over a nonempty, closed and convex set. Since this problem has a dou-
ble structure, it is referred here as a double-hierarchical constrained optimization
problem. The inertial algorithm can be regarded as a procedure of speeding up
the convergence properties. To solve the above problem, we focus on an inertial
extragradient algorithm by incorporating the inertial term in Algorithm (1.4). It is
worth mentioning that the strong convergence of the inertial extragradient method
in the setting of Hilbert spaces is still unexplored. Therefore, the goal here is to
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prove that our proposed algorithm strongly converges to a unique solution of (1.2),
by combining two well-known methods, the inertial extragradient method and the
hybrid steepest descent method.

2. Algorithm and convergence

We work in the following framework, which has been delineated in the previous
section.

• The feasible set C is a nonempty, convex and closed set in a real Hilbert space
H;
• The operator A1 : H → H is pseudo-monotone, L-Lipschitz and sequentially
weakly continuous;
• The operator A2 : H → H is κ-strongly monotone, ι-Lipschitz continuous with
its solution set V I(V I(C,A1), A2) ̸= ∅;

Algorithm 1

Require: Input the algorithm parameters (αi)i∈N, (λi)i∈N and (µi)i∈N.
Ensure: Output x
1: Set k ← 1.
2: Initialize the data x0, x1 ∈ H.
3: while not converged do
4: Update wk := xk + αk(xk − xk−1).
5: Update yk := PC(wk − λkA1wk).
6: Update xk+1 = (I − χµkA2)PC(yk − λkA1yk).
7: Set k ← k + 1.
8: end while
9: return x = xk

We recall two important properties of the iterative sequence generated by Algo-
rithm 2.1, which are extracted from [31].

Proposition 2.1. Let the operator A1 be pseudo-monotone and Lipschitz con-
tinuous on C with V I(C,A1) ̸= ∅. Let x∗ be a solution of V I(C,A1). Setting
zk = PC(yk − λkA1yk), then for each k ∈ N, we have

∥zk − x∗∥2 ≤ ∥wk − x∗∥2 − (1− λ2
kL

2)∥yk − wk∥2.
Proposition 2.2. Assume that A1 is pseudo-monotone, L-Lipschitz continuous
and sequentially weakly continuous on C. Additionally assume that V I(C,A1) is
nonempty. If limk→∞ ∥yk − wk∥ = 0 and lim infk→∞ λk > 0, then the sequence
{wk} generated by Algorithm 2.1 converges weakly to a solution of V I(C,A1).

We now in a position to establish the main result of this note.

Theorem 2.3. Let {λk}, {µk} be two real sequences in (0, 1) such that 0 < a ≤
λn ≤ b < 1

L for some a, b ∈ (0, 1), limk→∞ µk = 0,
∑∞

k=1 µk = ∞. Assume that
the extrapolation sequence {αk} is chosen such that limk→∞

αk
µk
∥xk−xk−1∥ = 0 and

χ ∈
(
0, 2κ

ι2

)
. Then the sequence {xk} generated by Algorithm 2.1 converges strongly

to the unique solution x̂ ∈ V I(V I(C,A1), A2).
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Proof. Let us stress the fact that I − χA2 is a contractive mapping. Owning to
A2 : H → H is κ-strongly monotone and ι-Lipschitz continuous, we have

(2.1)

∥(I − χA2)x− (I − χA2)y∥2

=∥x− y∥2 − 2χ⟨x− y,A2x−A2y⟩+ χ2∥A2x−A2y∥2

≤∥x− y∥2 − 2χκ∥x− y∥2 + χ2ι2∥x− y∥2

≤(1− σ)2∥x− y∥2,

where σ = 1
2χ(2κ−χι

2) ∈ (0, 1). By a classical result, we obtain that I−χA2 : H →
H is a contraction with constant 1 − σ. Hence the mapping PV I(C,A1)(I − χA2) is
a contraction as well. By using Banach contraction principle, there exists a unique
fixed point x∗ = PV I(C,A1)(I − χA2)x

∗. By using the definition of {wk}, it is
immediate to check that

(2.2) ∥wk − x∗∥ = ∥xk + αk(xk − xk−1)− x∗∥ ≤ ∥xk − x∗∥+ αk∥xk − xk−1∥.

On the other hand,

(2.3)

∥wk − x∗∥2 =∥xk + αk(xk − xk−1)− x∗∥2

≤∥xk − x∗∥2 + 2αk⟨xk − xk−1, wk − x∗⟩
≤∥xk − x∗∥2 + 2αk∥xk − xk−1∥∥wk − x∗∥.

To simplify the notation, let us set zk = PC(yk−λkA1yk) for every k ≥ 1. By using
successively Proposition 2.1, Lemma 1.4, (2.2), together with the definition of {xk},
we have that

(2.4)

∥xk+1 − x∗∥ =∥(I − χµkA2)zk − x∗∥
=∥(I − χµkA2)zk − (I − χµkA2)x

∗ − χµkA2x
∗∥

≤∥(I − χµkA2)zk − (I − χµkA2)x
∗∥+ χµk∥A2x

∗∥
≤(1− τµk)∥zk − x∗∥+ χµk∥A2x

∗∥
≤(1− τµk)(∥xk − x∗∥+ αk∥xk − xk−1∥) + χµk∥A2x

∗∥,

where τ = 1−
√

1− χ(2κ− χι2) ∈ (0, 1). The assumption limk→∞
αk
µk
∥xk−xk−1∥ =

0 yields that there exists a positive constant M1 > 0 such that αk
µk
∥xk−xk−1∥ ≤M1.

With the help of (2.4), an immediate recurrence shows that for every k ≥ 1, we have

(2.5)

∥xk+1 − x∗∥ ≤(1− τµk)(∥xk − x∗∥+ µkM5) + χµk∥A2x
∗∥

≤(1− τµk)∥xk − x∗∥+ τµk

(
M5

τ
+

χ

τ
∥A2x

∗∥
)

≤max

{
∥xk − x∗∥, M5

τ
+

χ

τ
∥A2x

∗∥
}

≤ · · · ≤ max

{
∥x0 − x∗∥, M5

τ
+

χ

τ
∥A2x

∗∥
}
.

It ensues that {xk} is bounded. Therefore, we immediately find that sequences
{yk}, {wk} and {zk} are bounded as well. On the other hand, the definition of
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{xk}, with the help of (2.3) and Proposition 2.1, gives that

(2.6)

∥xk+1 − x∗∥2 =∥(I − χµkA2)zk − x∗∥2

=∥µk((I − χA2)zk − x∗) + (1− µk)(zk − x∗)∥2

≤µk∥(I − χA2)zk − x∗∥2 + (1− µk)∥zk − x∗∥2

≤µk∥(I − χA2)zk − x∗∥2 + ∥xk − x∗∥2

+ 2αk∥xk − xk−1∥∥wk − x∗∥
− (1− µk)(1− λ2

kL
2)∥yk − wk∥2.

In view of the definition of {xk}, together with (2.1)-(2.3), Proposition 2.1, we find
that

(2.7)

∥xk+1 − x∗∥2 = ∥(I − χµkA2)zk − x∗∥2

= ∥µk((I − χA2)zk − x∗) + (1− µk)(zk − x∗)∥2

≤ (1− µk)
2∥zk − x∗∥2 + 2µk⟨(I − χA2)zk − x∗, xk+1 − x∗⟩

≤ (1− µk)
2∥zk − x∗∥2

+ 2µk⟨(I − χA2)zk − (I − χA2)x
∗, xk+1 − x∗⟩

+ 2µk⟨(I − χA2)x
∗ − x∗, xk+1 − x∗⟩

≤ (1− µk)
2∥zk − x∗∥2 + 2µk(I − σ)∥zk − x∗∥∥xk+1 − x∗∥

+ 2µk⟨(I − χA2)x
∗ − x∗, xk+1 − x∗⟩

≤ (1− µk)
2(∥xk − x∗∥2 + 2αk∥xk − xk−1∥∥wk − x∗∥)

+ 2µk(I − σ)(∥xk − x∗∥
+ αk∥xk − xk−1∥)∥xk+1 − x∗∥

+ 2µk⟨(I − χA2)x
∗ − x∗, xk+1 − x∗⟩

≤ (1− µk)
2∥xk − x∗∥2 + 2µk(1− σ)∥xk − x∗∥∥xk+1 − x∗∥

+ 2αk∥xk − xk−1∥(∥wk − x∗∥
+ µk∥xk+1 − x∗∥) + 2µk⟨(I − χA2)x

∗ − x∗, xk+1 − x∗⟩.

Case 1: Suppose that there exists K ∈ N such that ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2
for all k ≥ K. It ensues that limk→∞ ∥xk − x∗∥2 exists. On the other hand, the
assumption 0 < a ≤ λn ≤ b < 1

L comes down to the fact that

(2.8) 0 < 1− b2L2 ≤ 1− λ2
kL

2 ≤ 1− a2L2 < 1.

Recalling the assumptions that limk→∞
αk
µk
∥xk − xk−1∥ = 0 and limn→∞ µk = 0,

we infer that limk→∞ αk∥xk − xk−1∥ = 0. Coming back to (2.6) and collecting the
above results, with the help of the condition limk→∞ µk = 0 and (2.8), we obtain
that

(2.9) lim
k→∞

∥yk − wk∥ = 0.

From the nonexpansivity of PC and the L-Lipschitz continuity of A1, it follows that

(2.10) ∥zk − yk∥ = ∥PC(yk −λkA1yk)−PC(wk −λkA1wk)∥ ≤ (1+λkL)∥yk −wk∥.
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Combining (2.9) with (2.10), we find that

(2.11) lim
k→∞

∥yk − zk∥ = 0.

We deduce from the expression of {wk} that

(2.12) lim
k→∞

∥wk − xk∥ = lim
k→∞

αk∥xk − xk−1∥ = 0.

By putting together (2.9), (2.11), (2.12), we immediately obtain that

(2.13) lim
k→∞

∥zk − xk∥ ≤ lim
k→∞

(∥zk − yk∥+ ∥yk − wk∥+ ∥wk − xk∥) = 0.

Recalling that {xk} is bounded, there exists a subsequence {xkj} of {xk} such that
xkj ⇀ x̂ as j → ∞. From this, and by applying (2.12), it can be easily shown
that wkj ⇀ x̂ as j → ∞. Thus by using Proposition 2.2, we obtain directly that
x̂ ∈ V I(C,A1). Invoking x∗ = PV I(C,A1)(I − χA2)x

∗, we further obtain that

(2.14) lim sup
j→∞

⟨(I − χA2)x
∗ − x∗, xkj − x∗⟩ = ⟨(I − χA2)x

∗ − x∗, x̂− x∗⟩ ≤ 0.

From the expression of {xk}, together with the condition limk→∞ µk = 0 and (2.13),
we infer

(2.15) ∥xk+1−xk∥ = ∥(I−χµkA2)zk−xk∥ ≤ ∥zk−xk∥+χµk∥A2zk∥ → 0, k →∞.

Thus combining (2.14) with (2.15), we have that

(2.16) lim sup
j→∞

⟨(I − χA2)x
∗ − x∗, xkj+1 − x∗⟩ ≤ 0.

Recalling that {xk} is bounded, we deduce the existence of M2 > 0 such that
∥wk − x∗∥+ µk∥xk+1 − x∗∥ < M2. In this case, the consequence of (2.7) is that
(2.17)
∥xk+1 − x∗∥2

≤ (1− 2µkσ)∥xk − x∗∥2

+ µ2
k∥xk − x∗∥2 + 2αk∥xk − xk−1∥M2 + 2µk⟨(I − χA2)x

∗ − x∗, xk+1 − x∗⟩
≤ (1− 2µkσ)∥xk − x∗∥2

+ 2µkσ

(
µk

2σ
∥xk − x∗∥2+ αk

µkσ
∥xk − xk−1∥M2+

⟨(I − χA2)x
∗ − x∗, xk+1 − x∗⟩
σ

)
.

Combining (2.16), (2.17) with the conditions limk→∞
αk
µk
∥xk − xk+1∥ = 0,

limk→∞ µk = 0,
∑∞

k=1 µk = ∞, σ ∈ (0, 1), it follows from Lemma 1.5 that
limk→∞ ∥xk − x∗∥2 = 0. In other words, we find that limk→∞ xk = x∗.

Case 2: Let us restrict ourselves to the case that there is no k0 ∈ N such that
{∥xk − p∥2}∞k=k0

is monotonically decreasing. According to Lemma 1.6, we define a
mapping ς : N→ N by

ς(k) := max{i ∈ N : i ≤ k, ∥xi − x∗∥2 < ∥xi+1 − x∗∥2}, ∀k ≥ k0,

i.e., ς(k) is the largest number i in {1, 2, . . . , k} such that {∥xi − p∥2} is mono-
tonically decreasing at i = ς(k). In this case, observe that ς(k) is well-defined for
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all sufficiently large k. Furthermore, ς(·) is a nondecreasing mapping such that
ς(k)→∞ as k →∞. Thus it ensues that for any k ≥ k0,

(2.18) ∥xς(k) − p∥2 ≤ ∥xς(k)+1 − p∥2, ∥xk − p∥2 ≤ ∥xς(k)+1 − p∥2.

Coming back to (2.6) and rearranging the terms, we have that

(2.19)

(1− µς(k))(1− λ2
ς(k)L

2)∥yς(k) − wς(k)∥2

≤ ∥xς(k) − x∗∥2 − ∥xς(k)+1 − x∗∥2

+ 2αni∥xς(k) − xni−1∥∥xς(k) − x∗∥+ µς(k)∥(I − χA2)zς(k) − x∗∥2.

Combining the boundedness of {zς(k)} with conditions limk→∞ ας(k)∥xς(k)−xς(k)−1∥
= 0, limk→∞ µς(k) = 0, it follows from (2.18) and (2.19) that

(2.20) lim
k→∞

∥yς(k) − wς(k)∥ = 0.

Proceeding as in the proof of Case 1, we easily see that

(2.21) lim
k→∞

∥wς(k) − xς(k)∥ = lim
k→∞

∥xς(k)+1 − xς(k)∥ = 0,

and

(2.22) lim sup
k→∞

⟨(I − χA2)x
∗ − x∗, xς(k)+1 − x∗⟩ ≤ 0.

Another consequence of (2.7) is that

∥xς(k)+1 − x∗∥2 ≤ (1− 2µς(k)σ)∥xς(k)+1 − x∗∥2 + 2µς(k)σ
(µς(k)

2σ
∥xς(k)+1 − x∗∥2

+
ας(k)

µς(k)σ
∥xς(k) − xς(k)−1∥M2 +

⟨(I − χA2)x
∗ − x∗, xς(k)+1 − x∗⟩

σ

)
.

It entails that

(2.23)

∥xς(k)+1 − x∗∥2 ≤
µς(k)

2σ
∥xς(k)+1 − x∗∥2

+
ας(k)

µς(k)σ
∥xς(k) − xς(k)−1∥M2

+
⟨(I − χA2)x

∗ − x∗, xς(k)+1 − x∗⟩
σ

.

The boundedness of {xk}, together with the conditions limk→∞
ας(k)

µς(k)
∥xς(k)−xς(k)−1∥

= 0, limk→∞ µς(k) = 0, in light of (2.22), (2.23), we have that lim supk→∞ ∥xς(k)+1−
x∗∥2 ≤ 0. From this, with the help of (2.18), we conclude that xk → x∗ as k →∞.

Regarding the property of the distance projection, we observe that

x∗ = PV I(C,A1)(I − χA2)x
∗ ⇔ ⟨(I − χA2)x

∗ − x∗, z − x∗⟩ ≤ 0

⇔ ⟨A2x
∗, z − x∗⟩ ≥ 0, ∀z ∈ V I(C,A1).

This means that x∗ ∈ V I(V I(C,A1), A2). This completes the proof. □
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3. Conclusion

In this manuscript, we presented an iterative algorithm for solving the double-
hierarchical constrained optimization problem with a pseudo-monotone, Lipschitz
continuous and sequentially weakly continuous operator in real Hilbert spaces. Un-
der certain assumptions, we established the convergence theorem of the proposed
algorithm. Our results extend and generalize some existing results in the literature.
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