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ON THE RESOLUTION OF VARIATIONAL INEQUALITY
PROBLEMS WITH A DOUBLE-HIERARCHICAL STRUCTURE

LIYA LIU, BING TAN, AND CHO SUN YOUNG

ABSTRACT. In this paper, we discuss a pseudo-monotone variational inequality
problem with a variational inequality constraint over a general, nonempty, closed
and convex set, which is called the double-hierarchical constrained optimization
problem. In addition, we propose an iterative algorithm by incorporating inertial
terms in the extragradient algorithm. Strong convergence of the algorithm to the
unique solution of the problem is guaranteed under certain assumptions.

1. INTRODUCTION-PRELIMINARIES

Problem 1.1. Let C be a nonempty closed convex subset of H and let A : H — H
be a nonlinear operator,

(1.1) find 2" e VI(C,A) :={z" € C:(z—z",A(z")) >0, Vz € C},
where H is a real Hilbert space with inner product (-, -) and its induced norm || - ||.

Variational inequalities serve as an important tool in studying a wide class of
many related problems arising in mathematical problems, regional problems, phys-
ical problems. Also, variational inequalities can be viewed as a natural framework
for unifying the treatment of equilibrium problems and fixed point problems. In-
deed, (1.1) has many applications in the analysis of piece-wise-linear resistive cir-
cuits, economic equilibrium modeling, bimatrix equilibrium points, and traffic net-
work equilibrium modeling, signal and image processing, and pattern recognition
(see [12,13,28]). Recently, many authors employed various numerical methods for
solving the variational inequality problem; see, for example, [3-5,8,10,11,19,23,27]
and the references therein.

For any x € H, there exists a unique nearest point in C, denoted by Pgx, such
that

|2 — Pox|| = inf{[lz —y[| : y € C}.
Then P is called the metric projection of H onto C. It is known that the projection
operator can be characterized by (i) ||Pcx — Pey| < ||z — y||, Vx,y € H; (ii)
(x—Pox,y— Pox) <0, Va € H,y € C; Furthermore, the property (ii) is equivalent
to [z — Pex|® + |ly — Pex|? < |lo — y|?, Vo € H,y € C.

Remark 1.2. Indeed, we can turn the variational inequality problem into a fixed
point problem, in other words, the variational inequality is equivalent to

¥ = Po(I — aA)x™, for all o > 0.
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The above equivalence plays a significant role in a lot of convex optimization
problems; see, e.g., [1,2,6,7,9,18,20-22,29,30] and the references therein.

An operator A : H — H is said to be (i) L-Lipschitz continuous on C' if there
exists L > 0 such that |Az — Ay|| < L||z — y||, Vz,y € C; (ii) sequentially weakly
continuous on C' if for each sequence {zy}, we have that {x;} converges weakly
to z* implies that {Axy}converges weakly to Az*. (iii) pseudomonotone on C' if
(Az,y —z) > 0 = (Ay,y —z) > 0, Vz,y € C; (iv) monotone on C if (Azx —
Ay,z —y) > 0, Va,y € C; (v)strongly monotone on C' if there exists § > 0 such
that (Ax — Ay, z — y) > d||z — y||?, Va,y € C; (vi) nonexpansive if |4z — Ay|| <
|lx — yl||, Yz,y € H. Suppose that g : H — R is convex and continuously Frechet
differentiable. Then g is convex if and only if Vg : H — H is monotone. It is
well known that Vg is k-strongly monotone (pseudo-monotone) if and only if g is
k-strongly convex (pseudo-convex).

The goal of this paper is to present an iterative algorithm for the following double-
hierarchical constrained optimization problem.

Problem 1.3. (Variational inequality problem over solution set of variational in-
equality problem)
Assume that

(i) Let C be a nonempty, closed, convex set of a Hilbert space H;
(ii) Ay : H — H is pseudo-monotone and Lipschitz continuous and sequentially
weakly continuous;
(iii)) Ao : H — H is strongly monotone and Lipschitz continuous with
VIVI(C, Ay), As) # 0.

Our objective is to

(1.2) find 2* € VI(VI(C, Al),AQ)
={a* e VI(C, A1) : (z —a", Ax™) >0, V2 € VI(C, Ay)}.

The simplest solution method solving variational inequality 1.1 is the classical
projection method, which generates a sequence {zj} through the following iteration
formula

(1.3) Tr41 = Po(I — aA)zy,

where A : H — H is §-strongly monotone, ¢-Lipschitz continuous and a € (0, %3)
It is worth mentioning that these hypotheses are quite strong. If the strong mono-
tonicity assumption is relaxed to plain monotonicity, the situation becomes more
complicated, and one may get a divergent sequence. In order to deal with this situ-
ation, Korpelevich in [14] proposed an algorithm for the Euclidean case, known as
the extragradient method for solving variational inequalities when A is monotone
and ¢-Lipschitz continuous

(1.4) { yr = Po(xp — aAxy),
' rp1 = Po(rr — adyr),

for each k = 1,2,..., where a € (O, %) Recently, the extragradient method was
also applied to solve pseudo-monotone, Lipschitz continuous variational inequalities
in the Hilbert space [31].
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The sequence {zj} generated by (1.3) and (1.4) are weakly convergent under
certain assumptions. By comparing the above modified iterative schemes, we find
that the conditions of the underlying mapping were weaken, but the projection was
still preserved during the calculation. So is there a way to avoid the calculation of
projections and can it also solve the variational inequality problem?

In 2011, Yamada [33] introduced an algorithmic solution to solve the variational
inequality problem, which was named the hybrid steepest descent method. Given
the initial data zg € H,

(1.5) g1 = (I — pagA)Txy, Yk €N,

where T is a nonexpansive mapping with Fixz(T) # () and A : H — H is a t-Lipschitz
continuous, k-strongly monotone mapping. It does not rerquire to calculate Po but
requires a closed form expression of a nonexpansive mapping 7'. The sequence {z}
generated by (1.5) converges strongly to a point z*, which is a unique solution of
the hierarchical variational inequality (Axz*,x — x*) > 0, Vo € Fiz(T). Recently,
descent-like solution methods have extensively investigated for solving variational
inequality problems; see, e.g., [15,17,24-26, 34]
To prove the main theorem of this paper, here we recall some known results.

Lemma 1.4 ([33]). Let the operator A : H — H be v-Lipschitz continuous and

d-strongly monotone with constants ¢+ > 0, § > 0. Assume that v € (0, f—S) For
€ (0,1), define Ty, := x — ayA(x). Then for all z,y € H,

[Ta(z) = Ta()ll < (1 = aw)llz — y||
holds, where w =1 — /1 — (26 —v:2) € (0,1).

Lemma 1.5 ([32]). Let {a;} be a sequence of nonnegative real numbers such that
ap+1 < (1 — ag)ag + agbg,

where {a} C (0,1) and {by} is a sequence such thatlimy_,oo o = 0, Y12 ap = 00
and limsupy,_, ., by < 0. Then limy_,o ar = 0.

Lemma 1.6 ([16]). Let {ax} be a sequence of nonnegative real numbers such that
there exists a subsequence {ay;} of {ax} such that ay, < ay, 41 for all j € N. Then
there exists a nondecreasing sequence {m;} C N such that lim; o, m; = oo and the
following properties are satisfied by all (sufficiently large) number i € N:

m; < Qg1 and a; < Qpyq1-

In fact, m; is the largest number of k in the set {1,2,...,i} such that ap < ag41
holds.

In this paper, we introduce a variational inequality with variational inequality
constraint over a nonempty, closed and convex set. Since this problem has a dou-
ble structure, it is referred here as a double-hierarchical constrained optimization
problem. The inertial algorithm can be regarded as a procedure of speeding up
the convergence properties. To solve the above problem, we focus on an inertial
extragradient algorithm by incorporating the inertial term in Algorithm (1.4). It is
worth mentioning that the strong convergence of the inertial extragradient method
in the setting of Hilbert spaces is still unexplored. Therefore, the goal here is to
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prove that our proposed algorithm strongly converges to a unique solution of (1.2),
by combining two well-known methods, the inertial extragradient method and the
hybrid steepest descent method.

2. ALGORITHM AND CONVERGENCE

We work in the following framework, which has been delineated in the previous
section.

e The feasible set C' is a nonempty, convex and closed set in a real Hilbert space
H;

e The operator Ay : H — H is pseudo-monotone, L-Lipschitz and sequentially
weakly continuous;

e The operator Ay : H — H is k-strongly monotone, ¢-Lipschitz continuous with
its solution set VI(VI(C, Ay), As) # 0;

Algorithm 1

Require: Input the algorithm parameters (;)ien, (Ai)ien and (1;)ien-
Ensure: Output x
1: Set k «+ 1.
2: Initialize the data xy,z1 € H.
3: while not converged do
4: Update wy, := xg + ag(xp — xx—1).
5: Update y := Pc(wk - )\kAlwk).
6
7
8
9

Update xpy1 = (I — xpnA2) Po(yx — AA1yk)-
Set k< k+ 1.

: end while

: return x = x;,

We recall two important properties of the iterative sequence generated by Algo-
rithm 2.1, which are extracted from [31].

Proposition 2.1. Let the operator Ay be pseudo-monotone and Lipschitz con-
tinuous on C with VI(C, A1) # 0. Let x* be a solution of VI(C,A1). Setting
2z = Po(yr — M\ A1yg), then for each k € N, we have

Iz = 2% < Jlw — 2% 1% = (1 = NiL?) [l — wie*.

Proposition 2.2. Assume that A1 is pseudo-monotone, L-Lipschitz continuous
and sequentially weakly continuous on C. Additionally assume that VI(C,Ay) is
nonempty. If limg_,o ||lyx — wi|] = 0 and liminfy_,oo A\ > 0, then the sequence
{wg} generated by Algorithm 2.1 converges weakly to a solution of VI(C, Ay).

We now in a position to establish the main result of this note.

Theorem 2.3. Let {\y}, {ur} be two real sequences in (0,1) such that 0 < a <
A < b < % for some a,b € (0,1), imp_oo i = 0, > poy . = 00. Assume that
the extrapolation sequence {ay} is chosen such that limg_, %ka —zk_1]| =0 and

X € ((), %—;‘) Then the sequence {xy} generated by Algorithm 2.1 converges strongly
to the unique solution & € VI(VI(C, A;y), As).
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Proof. Let us stress the fact that I — yAs is a contractive mapping. Owning to
Ao : H — H is k-strongly monotone and ¢-Lipschitz continuous, we have
I(Z = xA2)a — (I — xA2)y]?
(2.1) =llz =yl = 2x(z — y, Agw — Agy) + X*[| Asz — Ay
<llz = ylI* = 2xxllz =yl + x>z -y
<(1—o)?|lz -yl
where o = $x(2k—x¢%) € (0,1). By a classical result, we obtain that [ —x Ay : H —
H is a contraction with constant 1 — o. Hence the mapping Py ¢ a,)(I — xA2) is

a contraction as well. By using Banach contraction principle, there exists a unique

fixed point 2% = Pypc,a,)(I — xAz2)z*. By using the definition of {wy}, it is

immediate to check that
(22)  lwk — 27| = llzx + on(ar — 2e—1) — 27| < |lzp — 2™ + onllar — zp—al]-
On the other hand,
lwy —a*||* =z, + an(zr — zp-1) — 2|
(2.3) <||zp — 2 + 200 (p — 21, Wk — TF)
<|lwg —&*|1* + 20y |lag — zp—||[wg, — 2.

To simplify the notation, let us set zx = Po(yr — A\ A1yx) for every k > 1. By using
successively Proposition 2.1, Lemma 1.4, (2.2), together with the definition of {x}},
we have that

[@r1 — 2| =[[(I — xprA2)ze — 27|
=||(I = xprA2)zr — (I — xpA2)x™ — xpupAgz™ ||
(2.4) <[[(I = xprA2) 2k — (I — xpuA2)z™ || + x| A2z™ |

<= 7p)llzk — 27| + xpn ]| Az
<= 7pr)(lze — 2™l + arllze — ze-1l]) + xpll A2z,

where 7 = 1—+/1 — x(2k — x¢2) € (0,1). The assumption limg_, %ka—xk,lﬂ =
0 yields that there exists a positive constant M; > 0 such that % ek —zK—1]| < M.
With the help of (2.4), an immediate recurrence shows that for every k > 1, we have

[@pg1 — 2] <1 = 7pw)([|og — 27| + peMs) + xpur || Aoz

* M5 X *
S R e

(2.5) Ms

Smax{nxk—x*n, +X||A2x*||}
T T
M.
<. < max{]xo -z, T‘E’ + f”Aﬂ*H}

It ensues that {xp} is bounded. Therefore, we immediately find that sequences
{yr}, {wi} and {2} are bounded as well. On the other hand, the definition of
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{z}}, with the help of (2.3) and Proposition 2.1, gives that
ki1 — 2|2 =[1(1 — xppAz)zp — 2|
=[| k(I — xA2)zk — %) + (1 — ) (2 — 2¥)|?
<pl|(I — xA2)zk — 2*|1* + (1 — pg) || 2p — 2*[|?
<prl(I — xA2)z — 2*||* + ||lg — 2*[|
+ 20| x) — w1 [[[Jwr — 27
= (1= ) (1= NEL?) [l — wie[*

In view of the definition of {z}}, together with (2.1)-(2.3), Proposition 2.1, we find
that

ks — )12 = (T = xpxAz) 2 — 2|
= [l ((I — xA2) 2 — %) + (1 — ) (2 — 2%)||?
< (L= ) o — &1 + 2 (1 — xA2)zp — 2, g1 — 2¥)
< (1= Pl — o
+2up (I — xA2)zk — (I — xA2)z™, 241 — 2F)
+ 2pp (I — xA2)x™ — o™, 21 — 2¥)
< (1= )z — 2|1 + 20 (1 = 0) |21, — 2*[[ |1 — 27
2.7) (T = xAa)" — 27y — )
< (1= p)* (g — 2|1 + 20 |Jag — xpa[[[lwr — 2*[])
+ 2pu (I — o) ([|zx — 27|
+ agller — -l 2rra — 27|
+ 2p (I — xA2)2™ — 2%, 21 — %)
< (1= ) o — 2| + 20k (1 — o) |z — || wpsr — 27
+ 2aplzr — zp—a[|([lwr — 27|
+ prl|lzrer — 7)) + 2uk((I — xA2)z™ — 2™,z — 2¥).
Case 1: Suppose that there exists K € N such that ||z — 2*[|? < ||zg — 2¥]|?

for all £ > K. It ensues that limy_,o ||z — 2*||? exists. On the other hand, the
assumption 0 < a < A\, < b < % comes down to the fact that

(2.8) 0<1-VL?*<1-MNL*<1-d’L*<1.

Recalling the assumptions that limy_,.o %ka — 2—1|| = 0 and lim,, o0 ux = 0,
we infer that limy_, o ax||zr — 2x—1]] = 0. Coming back to (2.6) and collecting the
above results, with the help of the condition limg_, pur = 0 and (2.8), we obtain
that

(2.9) lim [ly — wy | = 0.
k—o0

From the nonexpansivity of Po and the L-Lipschitz continuity of Ay, it follows that
(2.10) |z — ykll = [1Pe(yk — AeAryr) — Po(w, — ApArwg)[| < (1+ A L) [lyr — wgl|-
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Combining (2.9) with (2.10), we find that
(2.11) lim |y, — 2z = 0.
k—o0

We deduce from the expression of {wy} that
(2.12) lim ||wk - ka = lim Oék:ka - .%'k_1|| =0.
k—o0 k—ro0
By putting together (2.9), (2.11), (2.12), we immediately obtain that
(2.13) Hm ||z, — 2] < lim (|2 = yrll + llyr — well + [we — zz]]) = 0.
k—o0 k—o0

Recalling that {z}} is bounded, there exists a subsequence {xy,} of {z}} such that
Ty, — & as j — co. From this, and by applying (2.12), it can be easily shown
that wg; — 2 as j — oo. Thus by using Proposition 2.2, we obtain directly that
€ VI(C, Ay). Invoking x* = Py r(c,a,)(I — xA2)z*, we further obtain that

(2.14)  limsup(({ — xA2)z" — 2%, mp; — %) = ([ — xA2)z" — 27,2 —2") <0.
Jj—00

From the expression of {z}, together with the condition limy_, o ux = 0 and (2.13),

we infer

(2.15) [|wpgr —zill = 1(L = xprA2) 2 — x| < |20 — @kl + Xl A2z ]| = 0, k — oo.

Thus combining (2.14) with (2.15), we have that

(2.16) limsup((/ — xAz2)z" — 2%, 5,11 — %) < 0.
Jj—o0
Recalling that {z} is bounded, we deduce the existence of My > 0 such that

|lwr, — x*|| + pkl|zr+1 — 2*|| < Ma. In this case, the consequence of (2.7) is that
(2.17)

[
< (1= 2u0)[lzg — 2

+ pgllar — o)+ 20p |2 — zpo1 || Mo + 2k (1 — xA2)2™ — 2%, 24y — %)
< (1= 2u0)[|lzp — 2

((I — xA2)z™ — 2%, 2pq1 — 33*>)

Mk * Ak
+ 20 (B o = P 2 o = s [+
o Uro o

Combining (2.16), (2.17) with the conditions limg_,., z—:ka — 2p+1]] = 0,
limg oo pir = 0, D opoqpe = 00, 0 € (0,1), it follows from Lemma 1.5 that
limg_yo0 [|2x — %2 = 0. In other words, we find that limy_,o 2 = z*.

Case 2: Let us restrict ourselves to the case that there is no kg € N such that
{||lxr — p|]2}z°:k0 is monotonically decreasing. According to Lemma 1.6, we define a
mapping ¢ : N — N by

s(k) :==max{i € N:i <k, |lz; — 2*||> < [|wip1 — z¥||*}, VEk > ko,

i.e., ¢(k) is the largest number i in {1,2,...,k} such that {||z; — p||*} is mono-
tonically decreasing at i = ¢(k). In this case, observe that ¢(k) is well-defined for
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all sufficiently large k. Furthermore, ¢(-) is a nondecreasing mapping such that
¢(k) = o0 as k — oco. Thus it ensues that for any k > ko,

(2.18) ey = pII” < l2gy1 — 2%, Mz = plI? < e+ — pI*
Coming back to (2.6) and rearranging the terms, we have that
(1= pigr)) (1 = A2 L) s (ry — winylI?
(2.19) < ey = 2117 = 2@y — 2|
+ 2ap, ch(k) - xm——l” ch(k) - x*H + M{(k)”(l - XA2)Z<(k) - x*H2

Combining the boundedness of {z )} with conditions limg e (i) | ¢ (k) — To(r)—1]]
=0, limg o0 pi(xy = 0, it follows from (2.18) and (2.19) that

(2.20) Hm {Jye) — weee)ll = 0.

k—o0

Proceeding as in the proof of Case 1, we easily see that

(2.21) JHm |weky — Tyl = Jim |Ze(k)+1 — Tyl = 0,
and
(2.22) limsup((/ — xAz2)z" — 2%, ()41 — ") < 0.

k—o0

Another consequence of (2.7) is that

* * He(k *

2ery+1 — 217 < (1 = 2000 0) Ty 11 — N7 + 200 ( ;Ej) [Ea

Ok <(I — XA2)x" — 2%, X ()41 — $*>

+— 81z = Ty 1 | Mo + aUas .

ug(k)a o

It entails that
lesr — 212 < 52 gy an — |
Q¢ (k)
— M.
(2.23) ey 126y — o) —1 [ M2
N (I = xA2)r™ — 2", Ty 41 — T7)

g

The boundedness of {x} }, together with the conditions limg_, Z:—E:; (k) = o)1

=0, limg 00 f1g(x) = 0, in light of (2.22), (2.23), we have that lim supy,_, . [|T¢(k)4+1 —
x*||? < 0. From this, with the help of (2.18), we conclude that z — z* as k — oo.
Regarding the property of the distance projection, we observe that

¥ = Pyrgoan(I — xA2)a* & (T = xAo)a" — 27,2 — 27) <0
& (Agx™, z —a*) > 0,Vz e VI(C, Ay).

This means that z* € VI(VI(C, A1), A2). This completes the proof. O
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3. CONCLUSION

In this manuscript, we presented an iterative algorithm for solving the double-
hierarchical constrained optimization problem with a pseudo-monotone, Lipschitz
continuous and sequentially weakly continuous operator in real Hilbert spaces. Un-
der certain assumptions, we established the convergence theorem of the proposed
algorithm. Our results extend and generalize some existing results in the literature.
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