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ABSTRACT
In this paper, inertial splitting algorithms for nonlinear opera-
tors of pseudocontractive and accretive types are proposed.
Weak and strong convergence theorems are established in
uniformly convex and q-uniformly smooth Banach spaces.
Numerical examples are given to illustrate the effectiveness of
our proposed algorithms.
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1. Introduction

Let E be a Banach space with dual space E∗. Recall that the generalized duality
mapping Jq is defined by

Jq(x) := {z ∈ E∗ : 〈z, x〉 = ‖x‖q, ‖z‖ = ‖x‖q−1}, ∀ x ∈ E,

where 〈·, ·〉 is the duality pairing between E and E∗. If q = 2, then J2 is called the
normalized dualitymapping. Usually, we denote the normalized dualitymapping
J2 by J. From now on, we use jq to denote the single-valued generalized duality
mapping. LetU be a nonempty subset of E, and let T : U → U be amapping.We
use Fix(T) to denote the fixed point set of T, that is, Fix(T) = {u ∈ E : Tu = u}.
Recall that T is L-Lipschitz continuous if there exists a constant L>0 such that

‖Tu− Tv‖ ≤ L‖u−v‖, ∀ u, v ∈ U.

If L ∈ (0, 1), then T is called a contractive mapping. If L = 1, then T is called a
nonexpansivemapping.T is κ-strictly pseudocontractive if there exists a constant
κ ∈ (0, 1) such that

〈Tu− Tv, jq(u−v)〉 ≤ ‖u−v‖q − κ‖(u−Tu)− (v− Tv)‖q, ∀ u, v ∈ U,
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for some jq(u−v) ∈ Jq(u−v). T is pseudocontractive if

〈Tu− Tv, jq(u−v)〉 ≤ ‖u−v‖q, ∀ u, v ∈ U,

for some jq(u−v) ∈ Jq(u−v). T is strongly pseudocontractive if there exists a κ ∈
(0, 1) such that

〈Tu− Tv, jq(u−v)〉 ≤ κ‖u−v‖q, ∀ u, v ∈ U,

for some jq(u−v) ∈ Jq(u−v). One knows that κ-strictly pseudocontractions are
Lipschitz continuous with constant L = κ+1

κ
and the class of strongly pseudo-

contractive mappings is independent of the class of κ-strict pseudocontractions
(see, e.g. [1,2]).

Approximating fixed points of nonexpansive mappings and their extensions,
which is an important issue in nonlinear analysis and convex optimization, find
wide applications in signal processing, medical imaging, economics, traffic net-
works and so on. Recently, many authors have done a lot of extensive research
on nonexpansive mappings via iterative methods (see, e.g. [3–6]). Mann iterative
process is efficient and attractive for dealing with fixed points of nonexpansive
mappings

xn+1 = λnTxn + (1− λn)xn, ∀ n ≥ 0,

where {λn} is a real sequence in (0, 1) and T is a nonexpansive mapping. How-
ever, there is a flaw in this method that it is weakly convergent even in Hilbert
spaces. In fact, in practical applications, we prefer strong convergence results to
weak convergence results. A common way to obtain strong convergence results
is to approximate a nonexpansive mapping with the aid of contractive mappings.
In 2000, Moudafi [7] proposed a viscosity method for nonexpansive mappings
and gave strong convergent results in Hilbert spaces. After that, many authors
studied this method and extended it to Banach spaces (see, e.g. [8–10]). In par-
ticular, Qin et al. [11] introduced a splittingmethod and obtained its convergence
analysis in the setting of real Banach spaces. However, from the viewpoint of the
convergence speed, their method needed to be improved. In 1964, Polyak [12]
introduced an inertial extrapolation for solving the smooth convex minimiza-
tion problem. Later, this method was applied to accelerate the convergence speed
of various iterative algorithms (see, e.g. [5,13–16]). Recently, various algorithms
with inertial effects were studied in Banach spaces. In particular, Cholamjiak
and Shehu [15] proposed a splitting algorithm with inertial extrapolation for
inclusion problems in Banach spaces. In 2020, Shehu and Gibali [16] introduced
an inertial Krasnoselskii-Mann algorithm for finding fixed points of nonexpan-
sive mappings. A strong convergence was obtained for their inertial generalized
forward-backward splitting method.

In this paper, we propose four viscosity-type splitting algorithms with iner-
tial extrapolation for common solutions of the fixed-point problems of strictly
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pseudocontractive mappings and the inclusion problems of two accretive opera-
tors in uniformly convex and q-uniformly smooth Banach spaces. We give some
applications and numerical examples to illustrate the convergence efficiency of
our algorithms. It is worth noting that the mappings involved in our algorithms
are κ-strictly pseudocontractive and accretive, which are more general than the
above results. The main results presented in this paper extend and complement
the recent results obtained in [11,15,16].

The structure of this paper is as follows. In Section 2, we give some lemmas,
whichwill be used in our convergence analysis. In Section 3, we present twoweak
convergent splitting algorithms and two strong convergent splitting algorithms
for our common solution problems in Banach spaces. In Section 4, some appli-
cations and numerical examples are proposed. Section 5, the last section, is the
concluding remark of this paper.

2. Preliminaries

Let E be a real Banach space. The convexmodulus of E is defined by the following
function:

δE(r) = inf
{
1− ‖u+ v‖

2
: u, v ∈ E, ‖u‖ = ‖v‖ = 1, ‖u− v‖ ≥ r

}
,

which maps (0, 2] to [0, 1]. If δE(r) > 0 for any r ∈ (0, 2], then E is a uniformly
convex Banach space. For any p>1 and r ∈ (0, 2], if there exists a constantμp >

0 such that δE(r) ≥ μprp, then E is a p-uniformly convex Banach space. We see
from [17] that E is a uniformly convex Banach space if there exists a convex,
strictly increasing, continuous functionψ : [0,+∞)→ [0,+∞)withψ(0) = 0
and

‖tu+ (1− t)v‖p + (tp(1− t)+ (1− t)pt)ψ(‖u− v‖) ≤ t‖u‖p + (1− t)‖v‖p

for all u, v ∈ Br(0) := {u ∈ E : ‖u‖ ≤ r} and t ∈ [0, 1], where p>1 and r>0 are
two fixed real numbers. Particularly, we have

‖tu+ (1− t)v‖2 + t(1− t)ψ(‖u− v‖) ≤ t‖u‖2 + (1− t)‖v‖2.
Let {xn} be a sequence in E. Recall that E is said to satisfy the Opial condition if
whenever {xn} is a sequence in E which converges weakly to x as n→∞, then

lim inf
n→∞ ‖xn→ x‖ < lim inf

n→∞ ‖xn→ y‖, ∀ y ∈ E, y �= x.

Let B(0) = {u ∈ E : ‖u‖ = 1}. The norm of E is Gâteaux differentiable if

lim
τ→0

‖u+ τv‖ − ‖u‖
τ

exists for each u, v ∈ B(0). In this case, E is a smooth Banach space. In smooth
Banach space, Jq is single-valued and strongly weak∗ continuous. The smooth
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modulus of space E is defined by

ρE(t) =
{‖u+ tv‖ + ‖u− tv‖

2
− 1 : u, v ∈ E, ‖u‖ = ‖v‖ = 1

}
,

which maps [0,+∞) to [0,+∞). If limt→0
ρE(t)
t = 0, then E is said to be uni-

formly smooth. For all t>0 and q>1, if there exists a νq > 0 such that ρE(t) ≤
νqtq, then E is a q-uniformly smooth Banach space. Xu [17] proved that there
is no q-uniformly smooth Banach space with q>2. It is obvious that every q-
uniformly smooth Banach space is uniformly smooth. It is known that Jq is
uniformly continuous on bounded sets of uniformly smooth Banach spaces.

Let A : E→ 2E be a set-valued operator and I be the identity operator on E.
The domain of operatorA is denoted byD(A) = {u ∈ E : Au �= ∅} and the range
of operator A is denoted by R(A) = ∪{Au : u ∈ D(A)}. Recall that A is accretive
if, for all u, v ∈ D(A), there exists jq(u− v) ∈ Jq(u− v) such that

〈ũ− ṽ, jq(u− v)〉 ≥ 0, ∀ ũ ∈ Au, ṽ ∈ Av.

If the range of I+ rA is preciselyE for any r>0, thenA is anm-accretive operator.
If A is anm-accretive operator, then the resolvent of A, which maps R(I + rA) to
D(A), is a nonexpansive single-valued mapping and defined by JAr = (I + rA)−1
for all r>0. Recall that operator A is α-inverse strongly accretive if there exists a
constant α > 0 such that

〈Au− Av, jq(u− v)〉 ≥ α‖Au− Av‖q,
for allu, v ∈ E and some jq(u− v) ∈ Jq(u− v). It is easy to see that eachα-inverse
strongly accretive operator is accretive and 1

α
-Lipschitz continuous.

Let U be a closed and convex nonempty subset of E and let Q : E→ U be
a mapping. Q is called sunny if Q(τu+ (1− τ)Qu) = Qu for all u ∈ E and
τ ∈ (0, 1).Q is a retraction of E toU ifQ2 = Q for all u ∈ E.Q is a sunny nonex-
pansive retraction ifQ is sunny, nonexpansive and a retraction ontoU. In Hilbert
spaces, one knows that the sunny nonexpansive retraction Q coincides with the
metric projection from E to U. If Q : E→ U is a retraction, then the following
statements are equivalent:

(i) Q is sunny and nonexpansive;
(ii) ‖Qu− Qv‖q ≤ 〈u− v, jq(Qu− Qv)〉 for all u, v ∈ E;
(iii) 〈u− Qu, jq(v− Qu)〉 ≤ 0 for all u ∈ E, v ∈ U.

Next, we list some necessary lemmas, which play a significant role in the
convergence analysis of our iterative algorithms.

Lemma 2.1 ([8,9]): Let U be a nonempty convex closed subset of a uniformly
smooth Banach space E. Suppose that T : U → U is a nonexpansive mapping
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with Fix(T) �= ∅, and f : U → U is a contraction. If xτ is the unique solution of
the equation xτ = (1− τ)Txτ + τ f (xτ ) for each τ ∈ (0, 1), then {xτ } converges
strongly to a fixed point x∗ = QU

Fix(T)f (x
∗), where QU

Fix(T) is the unique sunny
nonexpansive retraction from U onto Fix(T) as τ → 0.

Lemma 2.2 ([17]): For each real q-uniformly smooth Banach space E, the follow-
ing inequality holds:

‖u+ v‖q ≤ ‖u‖q + q〈v, jq(u)〉 + νq‖v‖q, ∀ u, v ∈ E,

where νq is some fixed positive constant.

Lemma 2.3 ([11]): Assume that E is a q-uniformly smooth Banach space, and U
is a nonempty convex subset of E. Suppose that T : U → E is a k-strict pseudocon-
traction, and G : U → E is a mapping defined by G = τT + (1− τ)I, where τ ∈
(0,min{( qk

νq
)q−1, 1}). Then G is a nonexpansive mapping, and Fix(G) = Fix(T).

Lemma 2.4 ([11]): Suppose that E is a uniformly convex Banach space. Then there
exists a strictly increasing continuous convex function ϕ : [0,∞)→ [0,∞) with
ϕ(0) = 0 such that

‖αu+ βv+ ηz‖p ≤ α‖u‖p + β‖v‖p + η‖z‖p − α
pβ + βpα
(α + β)p ϕ(‖u− v‖),

where u, v, z ∈ Br(0) := {x ∈ E, ‖x‖ ≤ r}, p>1 is a real number and α,β , η ∈
[0, 1] such that α + β + η = 1.

Lemma 2.5 ([11]): Let U be a nonempty closed convex subset of a real uniformly
convex Banach space E, and let T : U → E be a continuous pseudocontractive
mapping. Then I−T is demiclosed at zero.

Lemma 2.6 ([18]): Let E be a real Banach space and A be anm-accretive operator.
For α > 0 and λ > 0, the following equality holds:

JAλ

(
λ

α
x+

(
1− λ

α

)
JAα x

)
= JAα x, ∀ x ∈ E.

Lemma 2.7 ([19]): Suppose that {τn} is a sequence of nonnegative real numbers,
{αn} ⊂ (0, 1) and {γn} is a sequence of real numbers. Let {sn} be a sequence of
nonnegative real numbers such that sn+1 ≤ (1− αn)sn + γn + τn, ∀ n ≥ 1. If

(i) lim supn→∞
γn
αn
≤ 0,

∑∞
n=0 αn = ∞;

(ii)
∑∞

n=0 τn <∞,

then limn→∞ sn = 0.
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Lemma 2.8 ([20]): Let q>1. Then, for any positive real numbers a and b, (ab) ·
q ≤ (q− 1) · b

q
q−1 + aq.

Lemma 2.9 ([17]): Let E be a real Banach space. Then, for any u, v ∈ E, the
following inequality holds: ‖u+ v‖q ≤ q〈v, jq(u+ v)〉 + ‖u‖q, where jq(u+ v) ∈
Jq(u+ v) is the generalized duality mapping.

Lemma 2.10 ([3]): Let E be a real uniformly convex Banach space, and let U be a
nonempty closed convex bounded subset of E. Then, for every nonexpansive map-
ping T : U → E and t ∈ [0, 1], there exists a strictly increasing and continuous
convex function ψ : [0,∞)→ [0,∞) with ψ(0) = 0 such that

‖(tTu+ (1− t)Tv)− T(tu+ (1− t)v‖ ≤ ψ−1(‖u− v‖ − (Tu− Tv)),

∀ u, v ∈ U.

Lemma 2.11 ([21]): Let {an}, {bn} and {ξn} be sequences in [0,+∞) such that

an+1 ≤ an + bn(an − an−1)+ ξn, ∀ n ≥ 1,

where
∑∞

n=1 ξn < +∞. Suppose that there exists a real number b such that 0 ≤
bn ≤ b < 1 for all n ∈ N. Then the following statements hold.

(i)
∑∞

n=1[an − an−1]+ < +∞, where [t]+ := max{t, 0};
(ii) there exist a∗ ∈ [0,+∞) such that limn→∞ an = a∗.

3. Main results

In this section, the framework of Banach spaces is restricted to be uniformly
convex and q-uniformly smooth. Weakly and strongly convergent inertial split-
ting algorithms are proposed and investigated for the common solution of the
fixed point and inclusion problem. In order to obtain our main results, we always
assume that the following conditions hold.

Condition 3.1: Let E be a uniformly convex and q-uniformly smooth Banach
space with constant νq, and let U and V be two nonempty closed convex subsets
of E. Suppose the following assumptions hold.

(i) A : V → 2E is an m-accretive operator, and B : U → E is an α-inverse
strongly accretive operator;

(ii) T : U → E is a κ-strict pseudocontraction with Fix(T) �= ∅;
(iii) Fix(T)∩(A+ B)−1(0) �= ∅ and there exists a sunny nonexpansive retrac-

tion QE
U∩V from E onto U ∩ V .
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Condition 3.2: Suppose that {εn} {δn} and {ρn} are real number sequences in
(0, 1), and {θn} and {γn} are two sequences in (0,+∞). Assume that the following
conditions are satisfied.

(i) 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 1 and
∑∞

n=0 ρn = ∞;

(ii) 0 < lim infn→∞ εn ≤ lim supn→∞ εn < min{(κq
νq
)

1
q−1 , 1};

(iii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < (
αq
νq
)

1
q−1 ;

(iv) limn→∞ θn = 0.

Algorithm 1 The inertial splitting algorithm I.
Initialization: Let δ ∈ (0, 1) and fix x0, x1 ∈ U ∩ V arbitrarily.
Iterative Steps: Given the current iterators xn and xn−1, calculate xn+1 as
follows:
Step 1. Compute δn, such that 0 ≤ δn ≤ δ∗n , where

δ∗n =
⎧⎨
⎩min

{
δ,

θn

‖xn − xn−1‖ ,
θn

‖xn − xn−1‖q
}
, xn − xn−1 �= 0,

δ, otherwise.
(1)

Step 2. Compute⎧⎪⎪⎨
⎪⎪⎩

pn = xn + δn(xn − xn−1),

zn = εnTpn + (1− εn)pn,
xn+1 = QE

U∩V((1− ρn)JAγn(pn − γnBpn + en)+ ρnzn),

where {en} is a sequence with
∑∞

n=0 ‖en‖ <∞.
Step 3. Set n← n+ 1 and go to Step 1.

Remark 3.1: By Condition 3.2 and (1), one deduces that limn→∞ δn‖xn −
xn−1‖ = 0 and limn→∞ δn

ρn
‖xn − xn−1‖ = 0. In fact, it easy to find that

lim
n→∞ δn‖xn − xn−1‖ ≤ lim

n→∞ θn = 0.

Since 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 1, one gets

lim
n→∞

δn

ρn
‖xn − xn−1‖ ≤ lim

n→∞
θn

ρn
= 0.

Theorem 3.1: Assume that E satisfies the Opial condition. Suppose that Con-
dition 3.1 and Condition 3.2 satisfied. Then the sequence {xn} generated by
Algorithm 1 converges weakly to some points in Fix(T)∩(A+ B)−1(0).
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Proof: Step 1. We show that {xn} is bounded. Take x∗ ∈ Fix(T)∩(A+ B)−1(0).
Then

‖pn − x∗‖ ≤ ‖xn − x∗‖ + δn‖xn − xn−1‖. (2)

For all x, y ∈ U, we find from Lemma 2.2 and Condition 3.2 that

‖(I − γnB)x− (I − γnB)y‖q

≤ νqγ q
n ‖Bx− By‖q − qγn〈Bx− By, jq(x− y)〉 + ‖x− y‖q

≤ νqγ q
n ‖Bx− By‖q − qγnα‖Bx− By‖q + ‖x− y‖q

≤ ‖x− y‖q + (νqγ (q−1)n − αq)γn‖Bx− By‖q
≤ ‖x− y‖q. (3)

Hence, I − γnB is nonexpansive. It is easy to see that x∗ = Tx∗ = JAγn(x
∗ −

γnx∗Bx∗) ∈ U ∩ V . Taking Tn = εnT + (1− εn)I. By Lemma 2.3, we get that Tn
is a nonexpansive mapping and Fix(T) = Fix(Tn). We yield from (3) that

‖xn+1 − x∗‖ ≤ ‖(1− ρn)JAγn(pn − γnBpn + en)+ ρnTnpn − x∗‖
≤ (1− ρn)‖JAγn(pn − γnBpn + en)− x∗‖ + ρn‖x∗ − Tnpn‖
≤ (1− ρn)‖pn − x∗‖ + ρn‖pn − x∗‖ + ‖en‖
≤ ‖pn − x∗‖ + ‖en‖. (4)

Combining (2) and (4), we obtain that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ + δn(‖xn − x∗‖ − ‖xn−1 − x∗‖)+ ‖en‖. (5)

This together with Remark 3.1 and Lemma 2.11 gives that {‖xn − x∗‖} is conver-
gent. Hence, {xn} is bounded. Inequality (2) implies that {pn} is also bounded.

Step 2. We show that ω(xn) ⊂ (A+ B)−1(0) ∩ Fix(T), where ω(xn) denotes
the weak accumulation set of {xn}. From Lemma 2.9 and (3), we can deduce that

‖(pn − γnBpn)− (x∗ − γnBx∗)+ en‖q
≤ ‖(I − γnB)pn − (I − γnB)x∗‖q
+ q〈en, jq((I − γnB)pn − (I − γnB)x∗ + en)〉
≤ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1 + ‖pn − x∗‖q

+ γn(νqγ q−1
n − αq)‖Bpn − Bx∗‖q. (6)

Let wn = JAγn(pn − γnBpn + en). Using the definition of the activeness of A and
Lemma 2.4 yields

‖wn − x∗‖q ≤ ‖wn − x∗ + γn
2
(
pn − γnBpn + en − wn

γn
− x∗ − γnBx∗ − x∗

γn
)‖q
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≤ ‖(wn − x∗)+ ((I − γnB)pn − (I − γnB)x∗ + en)
2

‖q

≤ 1
2
‖wn − x∗‖q + 1

2
‖(I − γnB)pn − (I − γnB)x∗ + en‖q

− 1
2q
ϕ(‖(I − γnB)pn − (I − γnB)x∗ + en − (wn − x∗)‖)

≤ ‖(I − γnB)pn − (I − γnB)x∗ + en‖q

− 1
2q
ϕ(‖(I − γnB)pn − (I − γnB)x∗ + en − (wn − x∗)‖), (7)

whereϕ : [0,∞)→ [0,∞) is a strict increasing continuous convex functionwith
ϕ(0) = 0. Substituting (6) into (7) gives

‖wn − x∗‖q ≤ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1 + ‖pn − x∗‖q

− γn(αq− νqγ q−1
n )‖Bpn − Bx∗‖q

− 1
2q
ϕ(‖(I − γnB)pn − (I − γnB)x∗ + en − (wn − x∗)‖). (8)

Using the convexity of ‖ · ‖q, we get that
‖xn+1 − x∗‖q ≤ (1− ρn)‖wn − x∗‖q + ρn‖Tnpn − x∗‖q

≤ ‖pn − x∗‖q + q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1

− (1− ρn)γn(αq− νqγ q−1
n )‖Bpn − Bx∗‖q

− (1− ρn) 12qϕ(‖(I − γnB)pn
− (I − γnB)x∗ + en − (wn − x∗)‖). (9)

Since

‖pn − x∗‖q = ‖xn + δn(xn − xn−1)− x∗‖q

≤ ‖xn − x∗‖q + qδn〈xn − xn−1, jq(xn − x∗)〉 + νqδqn‖xn − xn−1‖q

and

q〈xn − xn−1, jq(xn − x∗)〉 ≤ ‖xn − x∗‖q + νq‖xn − xn−1‖q − ‖xn−1 − x∗‖q,
we have

‖pn − x∗‖q ≤ ‖xn − x∗‖q + νq(δn + δqn)‖xn − xn−1‖q
+ δn(‖xn − x∗‖q − ‖xn−1 − x∗‖q)
≤ ‖xn − x∗‖q + 2νqδn‖xn − xn−1‖q
+ δn(‖xn − x∗‖q − ‖xn−1 − x∗‖q). (10)
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Substituting (10) back into (9) gives

‖xn+1 − x∗‖q ≤ ‖xn − x∗‖q + 2νqδn‖xn − xn−1‖q
+ δn(‖xn − x∗‖q − ‖xn−1 − x∗‖q)
+ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1

− (1− ρn)γn(αq− νqγ q−1
n )‖Bpn − Bx∗‖q

− (1− ρn) 12qϕ(‖(I − γnB)pn
− (I − γnB)x∗ + en − (wn − x∗)‖), (11)

which yields

(1− ρn)γn(αq− νqγ q−1
n )‖Bpn − Bx∗‖q

≤ (‖xn − x∗‖q − ‖xn+1 − x∗‖q)+ 2νqδn‖xn − xn−1‖q
+ δn(‖xn − x∗‖q − ‖xn−1 − x∗‖q)
+ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1. (12)

We see from Step 1 that {‖xn − x∗‖} is convergent. Combining Condition 3.2,
Remark 3.1 and (12), we get

lim
n→∞‖Bpn − Bx∗‖ = 0. (13)

On the other hand, inequality (11) also implies that

(1− ρn) 12qϕ(‖(I − γnB)pn − (I − γnB)x
∗ + en − (wn − x∗)‖)

≤ (‖xn − x∗‖q − ‖xn+1 − x∗‖q)+ 2νqδn‖xn − xn−1‖q
+ δn(‖xn − x∗‖q − ‖xn−1 − x∗‖q)
+ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1. (14)

Similarly, we deduce from (14) that

lim
n→∞‖pn − γnBpn + γnBx

∗ − wn‖ = 0. (15)

Since wn = JAγn(pn − γnBpn + en), by (13) and (15), we have

lim
n→∞‖pn − JAγn(pn − γnBpn)‖ = 0. (16)

Using the uniformly convexity of E and Lemma 2.4, we get

‖xn+1 − x∗‖q
≤ ρn‖Tnpn − x∗‖q − ρn(1− ρn)ϕ(‖Tnxn − wn‖)+ (1− ρn)‖wn − x∗‖q
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≤ ρn‖pn − x∗‖q + (1− ρn)‖(pn − γnBpn)− (x∗ − γnBx∗)+ en‖q
− ρn(1− ρn)ϕ(‖Tnpn − wn‖). (17)

Combining (2), (6) and (17), we obtain

‖xn+1 − x∗‖q ≤ (‖xn − x∗‖ + δn‖xn − xn−1‖)q − ρn(1− ρn)ϕ(‖Tnpn − wn‖)
+ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1

+ γn(νqγ q−1
n − αq)‖Bpn − Bx∗‖q. (18)

This implies that

ρn(1− ρn)ϕ(‖Tnpn − wn‖) ≤ (‖xn − x∗‖ + δn‖xn − xn−1‖)q − ‖xn+1 − x∗‖q

+ q‖en‖‖(I − γnB)pn − (I − γnB)x∗ + en‖q−1.
(19)

We deduce from (19) that limn→∞ ‖Tnpn − wn‖ = 0. This together with (16)
yields limn→∞ ‖Tnpn − pn‖ = 0. In addition, we find that

‖Tnxn − xn‖ = ‖Tnxn − Tnpn + Tnpn − pn + pn − xn‖
≤ 2‖pn − xn‖ + ‖Tnpn − pn‖
= 2δn‖xn − xn−1‖ + ‖Tnpn − pn‖. (20)

Combining Remark 3.1 and (20), we have limn→∞ ‖Tnxn − xn‖ = 0. Using the
definition of Tn, we get that ‖Txn − xn‖ = 1

εn
‖Tnxn − xn‖. Hence, by Condi-

tion 3.2, we get that limn→∞ ‖Txn − xn‖ = 0. We see from Lemma 2.5 that
ω(xn) ⊂ Fix(T). Without loss of generality, we assume that there exists a real
number r such that 0 < r ≤ γn for all n ≥ 0. Since A is accretive, we have

0 ≤
〈
xn − JAγn(I − γnB)xn

γn
− xn − JAr (I − rB)xn

r
,

jq(JAγn(I − γnB)xn − JAr (I − rB)xn)

〉
. (21)

This implies that

‖JAγn(I − γnB)xn − JAr (I − rB)xn‖q

≤ |γn − r|
γn
〈JAγn(I − γnB)xn − xn, jq(JAγn(I − γnB)xn − JAr (I − rB)xn)〉

≤ |γn − r|
γn
‖JAγn(I − γnB)xn − xn‖‖JAγn(I − γnB)xn − JAr (I − rB)xn‖q−1.

(22)
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Inequality (22) can be expressed as

‖JAγn(I − γnB)xn − JAr (I − rB)xn‖ ≤ |γn − r|
γn
‖JAγn(I − γnB)xn − xn‖. (23)

Therefore, by the triangle inequality of norms and (23), we can obtain

‖JAr (I − rB)xn − xn‖
≤ ‖JAγn(I − γnB)xn − xn‖ + ‖JAγn(I − γnB)xn − JAr (I − rB)xn‖

≤
(
1+ |γn − r|

γn

)
‖JAγn(I − γnB)xn − xn‖. (24)

On the other hand, we see that

‖JAγn(I − γnB)xn − xn‖
= ‖JAγn(I − γnB)xn − JAγn(I − γnB)pn + JAγn(I − γnB)pn − pn + pn − xn‖
≤ ‖JAγn(I − γnB)xn − JAγn(I − γnB)pn‖
+ ‖JAγn(I − γnB)pn − pn‖ + ‖pn − xn‖
≤ 2δn‖xn − xn−1‖ + ‖JAγn(I − γnB)pn − pn‖.

This together with (16) and (24) yields limn→∞ ‖JAr (I − rB)xn − xn‖ = 0. In
view of Browder’s demiclosedness principle, we obtain that ω(xn) ⊂ Fix(JAr (I −
rB)) = (A+ B)−1(0).

Step 3.We show that ω(xn) is a singleton. Suppose that {xni} converges weakly
to x∗1 and {xnj} converges weakly to x∗2, respectively. By Step 2, we have x∗1, x

∗
2 ∈

Fix(T) ∩ (A+ B)−1(0). Let us show x∗1 = x∗2. Assume x∗1 �= x∗2. Applying the
Opial condition on the space E gives

lim inf
n→∞ ‖xn − x∗1‖ = lim inf

i→∞ ‖xni − x∗1‖

< lim inf
i→∞ ‖xni − x∗2‖ = lim inf

n→∞ ‖xn − x∗2‖

= lim inf
j→∞ ‖xnj − x∗2‖ < lim inf

j→∞ ‖xnj − x∗1‖

= lim inf
n→∞ ‖xn − x∗1‖.

This is a contradiction. So, we have x∗1 = x∗2. Therefore, we conclude that {xn}
converges weakly to an element of Fix(T) ∩ (A+ B)−1(0). This completes the
proof. �

If mappings T, A and B are defined on space E, then the sunny nonexpansive
retraction in Algorithm 1 can be removed.
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Algorithm 2 The inertial splitting algorithm II.
Initialization: Let δ ∈ (0, 1) and fix x0, x1 ∈ E arbitrarily.
Iterative Steps: Given the current iterators xn and xn−1, calculate xn+1 as
follows:
Step 1. Compute δn, such that 0 ≤ δn ≤ δ∗n , where δ∗n is defined in (1).
Step 2. Compute⎧⎪⎪⎨

⎪⎪⎩
pn = xn + δn(xn − xn−1),

zn = εnTpn + (1− εn)pn,
xn+1 = (1− ρn)JAγn(pn − γnBpn + en)+ ρnzn,

where {en} is a sequence with
∑∞

n=0 ‖en‖ <∞.
Step 3. Set n← n+ 1 and go to Step 1.

Corollary 3.1: Assume that E satisfies the Opial condition. Suppose that Con-
dition 3.1 and Condition 3.2 satisfied. Then the sequence {xn} generated by
Algorithm 2 converges weakly to some points in Fix(T)∩(A+ B)−1(0).

In the following, we introduce a strong convergence inertial algorithm for
common solutions in Banach spaces. It is worth noting that theOpial condition is
not necessary in our convergence analysis. Before that, we give some constraints
on the parameters.

Condition 3.3: Assume that {θn} and {γn} are real number sequences in (0,+∞)
and {εn}, {ηn}, {σn} and {ρn} are sequences in (0, 1) such that ηn + ρn + σn = 1,
and

(i) 0< lim infn→∞ εn≤ lim supn→∞ εn< min{(κq
νq
)

1
q−1 , 1},∑∞n=0 |1− εn+1

εn
|

<∞;
(ii) limn→∞ ηn = 0,

∑∞
n=0 ηn = ∞,

∑∞
n=0 |ηn − ηn+1| <∞;

(iii) lim inf→∞ ρnσn > 0,
∑∞

n=0 |ρn − ρn+1| <∞,
∑∞

n=0 |σn − σn+1| <∞;

(iv) 0< lim infn→∞ γn≤ lim supn→∞ γn<(
αq
νq
)

1
q−1 ,

∑∞
n=0 |γn− γn+1|<∞;

(v) θn = o(ηn), that is limn→∞ θn
ηn
= 0.

Remark 3.2: By Condition 3.2 and (25), one deduces that limn→∞ δn‖xn −
xn−1‖ = 0 and limn→∞ δn

ηn
‖xn − xn−1‖ = 0. In fact, it is easy to find that

lim
n→∞

δn

ηn
‖xn − xn−1‖ ≤ lim

n→∞
θn

ηn
= 0.
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Algorithm 3 The inertial splitting algorithm III.
Initialization: Let δ ∈ (0, 1) and fix x0, x1 ∈ U ∩ V arbitrarily.
Iterative Steps: Given the current iterators xn and xn−1, calculate xn+1 as
follows:
Step 1. Compute δn such that 0 ≤ δn ≤ δ∗n , where

δ∗n =
⎧⎨
⎩min

{
δ,

θn

‖xn − xn−1‖ ,
θn

‖xn − xn−1‖q
}
, xn − xn−1 �= 0,

δ, otherwise.
(25)

Step 2. Compute⎧⎪⎪⎨
⎪⎪⎩

pn = xn + δn(xn − xn−1),

zn = εnTpn + (1− εn)pn,
xn+1 = QE

U∩V(ηnf (xn)+ σnJAγn(pn − γnBpn + en)+ ρnzn),

where {en} is a sequence with
∑∞

n=0 ‖en‖ <∞.
Step 3. Set n← n+ 1 and go to Step 1.

This implies that

lim
n→∞ δn‖xn − xn−1‖ = 0.

Theorem 3.2: Suppose that Condition 3.1 and Condition 3.3 satisfied. Let f :
U → E be an h-contraction. Then the sequence {xn} generated by Algorithm 3
converges strongly to some points to x∗ = QU∩V

Fix(T)∩(A+B)−1(0)f (x
∗), where

QU∩V
Fix(T)∩(A+B)−1(0) is the unique sunny nonexpansive mapping from U ∩ V to

Fix(T)∩(A+ B)−1(0), that is, x∗ is the unique solution of variational inequality
〈f (x∗)− x∗, jq(y− x∗)〉 ≤ 0 for all y ∈ Fix(T)∩(A+ B)−1(0).

Proof: We split the proof into three steps.
Step 1.We show that {xn} is bounded. For all x, y ∈ U, we find from (3) that I −

γnB is nonexpansive. For all x� ∈ (A+ B)−1(0) ∩ Fix(T), we easily see that x� =
(I + γnA)(I − γnB)x� = Tx�. Put Tn = εnT + (1− εn)I. By Lemma 2.3, we get
that Tn is nonexpansive and Fix(T) = Fix(Tn). Fixing x∗ ∈ (A+ B)−1(0) ∩
Fix(T), we obtain

‖xn+1 − x∗‖
≤ ηn‖f (xn)− x∗‖ + σn‖JAγn(pn − γnBpn + en)− x∗‖ + ρn‖Tnpn − x∗‖
≤ ηn‖f (xn)− f (x∗)‖ + ηn‖f (x∗)− x∗‖
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+ σn‖(pn − γnBpn + en)− (I − γnB)x∗‖ + ρn‖pn − x∗‖
≤ hηn‖xn − x∗‖ + (1− ηn)‖pn − x∗‖ + ηn‖f (x∗)− x∗‖ + σn‖en‖. (26)

Since

‖pn − x∗‖ ≤ ‖xn − x∗‖ + δn‖xn − xn−1‖,
we have from (26) that

‖xn+1 − x∗‖ ≤ (1− ηn(1− h))‖xn − x∗‖ + (1− ηn)δn‖xn − xn−1‖
+ ηn‖f (x∗)− x∗‖ + σn‖en‖
≤ (1− ηn(1− h))‖xn − x∗‖ + ‖en‖

+ ηn(1− h)
(‖f (x∗)− x∗‖

1− h
+ (1− ηn)δn‖xn − xn−1‖

ηn(1− h)

)
.

(27)

From Remark 3.2, we conclude that

lim
n→∞

(1− ηn)δn‖xn − xn−1‖
ηn(1− h)

= 0.

Hence, there exists an M0 > 0 such that
(1− ηn)δn‖xn − xn−1‖

ηn(1− h)
< M0 for all

n ≥ 1. By using the mathematical induction, we get from (27) that

‖xn+1 − x∗‖ ≤ max{‖x0 − x∗‖, ‖f (x
∗)− x∗‖
1− h

+M0} +
∞∑
n=0
‖en‖ <∞.

This implies that {xn} is bounded. By (2), we see that {pn} is also bounded.
Step 2. We show that lim supn→∞〈f (x̃)− x̃, jq(xn − x̃)〉 ≤ 0, where x̃ =

QU∩V
Fix(T)∩(A+B)−1(0)f (x̃). Since Fix(T)∩(A+ B)−1(0) is convex and closed, and E

is uniformly convex and q-uniformly smooth, we conclude that the sunny non-
expansive retraction onto it exists since this set can be viewed as the fixed point
set of some nonexpansive mappings. Taking ζn = pn − γnBpn + en, we have

‖ζn − ζn+1‖ ≤ ‖(pn − γnBpn + en)− (pn+1 − γn+1Bpn+1 + en+1)‖
≤ ‖(pn − γn+1Bpn + en+1)− (pn+1 − γn+1Bpn+1 + en+1)‖
+ ‖(pn − γnBpn + en)− (pn − γn+1Bpn + en+1)‖
≤ ‖pn+1 − pn‖ + |γn+1 − γn|‖Bpn‖ + ‖en+1‖ + ‖en‖. (28)

By the definition of zn, we further have

‖zn+1 − zn‖ ≤ ‖Tn+1pn+1 − Tn+1pn‖ + ‖Tn+1pn − Tnpn‖
≤ ‖pn+1 − pn‖ + |1− εn+1

εn
|‖Tnpn − pn‖ (29)
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and

‖xn+2 − xn+1‖ ≤ ηn+1‖f (xn+1)− f (xn)‖ + |ηn+1 − ηn|‖f (xn)‖
+ σn+1‖JAγnζn − JAγn+1ζn+1‖ + |σn+1 − σn|‖JAγnζn‖
+ ρn+1(‖pn+1 − pn‖ + |1− εn+1

εn
|‖Tnpn − pn‖)

+ |ρn+1 − ρn|‖zn‖. (30)

From Lemma 2.6 and (28), we obtain that

‖JAγnζn − JAγnζn+1‖ = ‖JAγnζn − JAγn(
γn

γn+1
ζn+1 + (1− γn

γn+1
)JAγn+1ζn+1)‖

≤ ‖ζn − ( γn
γn+1

ζn+1 + (1− γn

γn+1
)JAγn+1ζn+1)‖

≤ |γn − γn+1|‖ζn+1 − JAγn+1ζn+1‖
γn+1

+ ‖ζn − ζn+1‖

≤ |γn − γn+1|‖ζn+1 − JAγn+1ζn+1‖
γn+1

+ ‖pn+1 − pn‖

+ |γn+1 − γn|‖Bpn‖ + ‖en+1‖ + ‖en‖. (31)

Substituting (31) into (30), we get

‖xn+2 − xn+1‖
≤ hηn+1‖xn+1 − xn‖ + |ηn+1 − ηn|‖f (xn)‖ + |γn+1 − γn|‖Bpn‖

+ |γn − γn+1|‖ζn+1 − JAγn+1ζn+1‖
γn+1

+ ‖en+1‖ + ‖en‖

+ |σn+1 − σn|‖JAγnζn‖ + (1− ηn+1)‖pn+1 − pn‖
+ |1− εn+1

εn
|‖Tnpn − pn‖ + |ρn+1 − ρn|‖Tnpn‖. (32)

By the definition of pn, we have

‖pn+1 − pn‖ ≤ ‖(xn+1 + δn+1(xn+1 − xn))− (xn + δn(xn − xn−1))‖
≤ ‖xn+1 − xn‖ + δn+1‖xn+1 − xn‖ + δn‖xn − xn−1‖. (33)

We deduce from (32) and (33) that

‖xn+2 − xn+1‖
≤ (1− ηn+1(1− h))‖xn+1 − xn‖ + |ηn+1 − ηn|‖f (xn)‖

+ |γn − γn+1|‖ζn+1 − JAγn+1ζn+1‖
γn+1

+ |γn+1 − γn|‖Bpn‖ + ‖en+1‖ + ‖en‖
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+ |σn+1 − σn|‖JAγnζn‖ + |1−
εn+1
εn
|‖Tnpn − pn‖ + |ρn+1 − ρn|‖Tnpn‖

+ δn+1‖xn+1 − xn‖ + δn‖xn − xn−1‖. (34)

Combining Condition 3.3, Remark 3.2 and Lemma 2.7, we get that limn→∞
‖xn+1 − xn‖ = 0. Setting p = 2 in Lemma 2.4, we have

‖xn+1 − x∗‖2 ≤ ηn‖f (xn)− x∗‖2 + σn‖JAγnζn − x∗‖2

+ ρn‖Tnpn − x∗‖2 − σnρnϕ(‖JAγnζn − Tnpn‖)
≤ ‖xn − x∗‖2 + 2ηn‖xn − x∗‖‖f (x∗)− x∗‖ + ηn‖f (x∗)− x∗‖2

+ σn‖en‖2 + 2σn‖pn − x∗‖‖en‖ − σnρnϕ(‖JAγnζn − Tnpn‖)
+ 2(1− ηn)δn‖xn − xn−1‖‖xn − x∗‖+ (1− ηn)‖xn − xn−1‖2.

This is equivalent to

σnρnϕ(‖JAγnζn − Tnpn‖)
≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2ηn‖xn − x∗‖‖f (x∗)− x∗‖
+ ηn‖f (x∗)− x∗‖2 + σn‖en‖2 + 2σn‖pn − x∗‖‖en‖
+ 2(1− ηn)δn‖xn − xn−1‖‖xn − x∗‖ + (1− ηn)‖xn − xn−1‖2. (35)

Combining Condition 3.3, Lemma 2.4 and Remark 3.2, we conclude that

lim
n→∞‖J

A
γnζn − Tnpn‖ = 0. (36)

In addition, we also have

‖JAγnζn − pn‖ ≤ ‖xn+1 − JAγnζn‖ + ‖xn+1 − pn‖
≤ ηn‖f (xn)− JAγnζn‖ + ρn‖Tnpn − JAγnζn‖
+ ‖xn+1 − xn‖ + δn‖xn − xn−1‖.

Hence,

lim
n→∞‖J

A
γnζn − pn‖ = 0, (37)

due to the facts that limn→∞ ηn = 0, {xn} and {pn} are bounded, f is a contraction
and JAγn is nonexpansive. We can also get from (36) and (37) that

lim
n→∞‖Tnpn − pn‖ = 0. (38)

Observe that

‖Tnxn − xn‖ = ‖Tnxn − Tnpn + Tnpn − pn + pn − xn‖
≤ 2‖pn − xn‖ + ‖Tnpn − pn‖
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= 2δn‖xn − xn−1‖ + ‖Tnpn − pn‖. (39)

By Remark 3.2 and (39), we have

lim
n→∞‖Tnxn − xn‖ = 0. (40)

By the definition of Tn, we see that ‖Txn − xn‖ = 1
εn
‖Tnxn − xn‖. Hence, it

follows from Condition 3.3 that

lim
n→∞‖Txn − xn‖ = 0. (41)

Using Lemma2.5, we haveω(xn) ⊂ Fix(T).Without loss of generality, we assume
that there exists a real number r such that 0 < r ≤ γn for all n ≥ 0. Since A is
accretive, we have

〈xn − JAγn(I − γnB)xn
γn

− xn − JAr (I − rB)xn
r

,

jq(JAγn(I − γnB)xn − JAr (I − rB)xn)〉 ≥ 0. (42)

This implies that

‖JAγn(I − γnB)xn − JAr (I − rB)xn‖q

≤ |γn − r|
γn
〈JAγn(I − γnB)xn − xn, jq(JAγn(I − γnB)xn − JAr (I − rB)xn)〉

≤ |γn − r|
γn
‖JAγn(I − γnB)xn − xn‖‖JAγn(I − γnB)xn − JAr (I − rB)xn‖q−1.

(43)

So, it follows from (43) that

‖JAγn(I − γnB)xn − JAr (I − rB)xn‖ ≤ |γn − r|
γn
‖JAγn(I − γnB)xn − xn‖. (44)

Using the triangle inequality of norms and (44), we can obtain

‖JAr (I − rB)xn − xn‖ ≤ ‖JAγn(I − γnB)xn − xn‖
+ ‖JAγn(I − γnB)xn − JAr (I − rB)xn‖

≤
(
1+ |γn − r|

γn

)
‖JAγn(I − γnB)xn − xn‖. (45)

On the other hand,

‖JAγn(I − γnB)xn − xn‖
= ‖JAγn(I − γnB)xn − JAγn(I − γnB)pn + JAγn(I − γnB)pn − pn + pn − xn‖
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≤ ‖JAγn(I − γnB)xn − JAγn(I − γnB)pn‖
+ ‖JAγn(I − γnB)pn − pn‖ + ‖pn − xn‖
≤ 2δn‖xn − xn−1‖ + ‖JAγn(I − γnB)pn − pn‖
≤ 2δn‖xn − xn−1‖ + ‖JAγnζn − pn‖ + ‖en‖.

This together with (37) and (45) yields that

lim
n→∞‖J

A
r (I − rB)xn − xn‖ = 0. (46)

Let S = (1− τ)Tn + τ JAr (I − rB), where τ ∈ (0, 1). In view of Lemma 2.3, we
have that S is nonexpansive and Fix(S) = Fix(Tn) ∩ Fix(JAr (I − rB)) = Fix(T) ∩
(A+ B)−1(0). Since

‖Sxn − xn‖ ≤ (1− τ)‖Tnxn − xn‖ + τ‖JAr (I − rB)xn − xn‖,

we get from (40) and (46) that

lim
n→∞‖Sxn − xn‖ = 0. (47)

Since f is a contraction and S is a nonexpansive mapping, we see that (1− λ)S+
λf is contractive, where λ ∈ (0, 1). Thus, it has a unique fixed point, denoted by
xλ. That is,

xλ = (1− λ)Sxλ + λf (xλ).
Let x̃ = limλ→0 xλ. From Lemma 2.1, we get

x̃ = QU∩V
Fix(S)f (x̃) = QU∩V

(A+B)−1(0)∩Fix(T)f (x̃),

where QU∩V
(A+B)−1(0)∩Fix(T) is the unique sunny nonexpansive retraction of U ∩ V

onto (A+ B)−1(0) ∩ Fix(T). Hence, one obtains

‖xn − xλ‖q = λ〈f (xλ)− xn, jq(xλ − xn)〉 + (1− λ)〈Sxλ − xn, jq(xλ − xn)〉
= λ(〈f (xλ)− xλ, jq(xλ − xn)〉 + 〈xλ − xn, jq(xλ − xn)〉)
+ (1− λ)(〈Sxλ − Sxn, jq(xλ − xn)〉 + 〈Sxn − xn, jq(xλ − xn)〉)
≤ λ〈f (xλ)− xλ, jq(xλ − xn)〉 + λ‖xλ − xn‖q

+ (1− λ)‖Sxλ − Sxn‖‖xλ − xn‖q−1

+ (1− λ)‖Sxn − xn‖‖xλ − xn‖q−1

≤ λ〈f (xλ)− xλ, jq(xλ − xn)〉 + ‖xλ − xn‖q

+ ‖xλ − xn‖q−1‖Sxn − xn‖. (48)
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From (48), we see that

〈xλ − f (xλ), jq(xλ − xn)〉 ≤ ‖x
λ − xn‖q−1

λ
‖Sxn − xn‖. (49)

Fixing λ and letting n→∞ in (49), we conclude from (47) and (49) that

lim sup
n→∞

〈xλ − f (xλ), jq(xλ − xn)〉 ≤ 0. (50)

Since E is q-uniformly smooth, one asserts that the limits lim supn→∞ and
lim supλ→0 are interchangeable. Hence, it follows from (50) that

lim sup
n→∞

〈f (x̃)− x̃, jq(xn − x̃)〉 ≤ 0. (51)

Step 3.We show that limn→∞ ‖xn − x̃‖ = 0. Since QU∩V
Fix(T)∩(A+B)−1(0) is a sunny

contraction, one gets

‖xn+1 − x̃‖q ≤ 〈ηnf (xn)+ σnJAγn(pn − γnBpn + en)

+ ρnTnpn − x̃, jq(xn+1 − x̃)〉
≤ ηn〈f (xn)− f (x̃), jq(xn+1 − x̃)〉 + ηn〈f (x̃)− x̃, jq(xn+1 − x̃)〉
+ σn‖JAγn(pn − γnBpn + en)− x̃‖‖xn+1 − x̃‖q−1

+ ρn‖Tnpn − x̃‖‖xn+1 − x̃‖q−1

≤ ηnh‖xn − x̃‖‖xn+1 − x̃‖q−1 + ηn〈f (x̃)− x̃, jq(xn+1 − x̃)〉
+ σn‖pn − x̃‖‖xn+1 − x̃‖q−1 + ρn‖pn − x̃‖‖xn+1 − x̃‖q−1

+ ‖en‖‖xn+1 − x̃‖q−1. (52)

From (2) and (52), we have

‖xn+1 − x̃‖q ≤ (1− ηn(1− h))‖xn − x̃‖‖xn+1 − x̃‖q−1
+ ηn〈f (x̃)− x̃, jq(xn+1 − x̃)〉
+ δn‖xn − xn−1‖‖xn+1 − x̃‖q−1

+ δn‖xn − xn−1‖‖xn+1 − x̃‖q−1

+ ‖en‖‖xn+1 − x̃‖q−1. (53)

By Lemma 2.8, we get that

‖xn+1 − x̃‖q ≤ (1− ηn(1− h))‖xn − x̃‖q + ηnq〈f (x̃)− x̃, jq(xn+1 − x̃)〉
+ qδn‖xn − xn−1‖‖xn+1 − x̃‖q−1

+ qδn‖xn − xn−1‖‖xn+1 − x̃‖q−1

+ q‖en‖‖xn+1 − x̃‖q−1.
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We see from Lemma 2.7 that limn→∞ ‖xn − x̃‖ = 0. This completes the
proof. �

If mappings T, A and B are defined on space E, then the sunny nonexpansive
retraction in Algorithm 3 can be removed.

Algorithm 4 The inertial splitting algorithm IV.
Initialization: Let δ ∈ (0, 1). Let x0, x1 ∈ E be arbitrary.
Iterative Steps: Given the current iterators xn and xn−1, calculate xn+1 as
follows:
Step 1. Compute δn, such that 0 ≤ δn ≤ δ∗n , where δ∗n is defined in (25).
Step 2. Compute⎧⎪⎪⎨

⎪⎪⎩
pn = xn + δn(xn − xn−1),

zn = εnTpn + (1− εn)pn,
xn+1 = ηnf (xn)+ σnJAγn(pn − γnBpn + en)+ ρnzn,

where {en} is a sequence with
∑∞

n=0 ‖en‖ <∞.
Step 3. Set n← n+ 1 and go to Step 1.

Corollary 3.2: Suppose that Condition 3.1 and Condition 3.3 satisfied. Let f :
U → E be a h-contraction. Then the sequence {xn} generated by Algorithm 4
converges strongly to some points to

x∗ = QE
Fix(T)∩(A+B)−1(0)f (x

∗),

where QE
Fix(T)∩(A+B)−1(0) is the unique sunny nonexpansive mapping from E to

Fix(T)∩(A+ B)−1(0), that is, x∗ is the unique solution of variational inequality
〈f (x∗)− x∗, jq(y− x∗)〉 ≤ 0 for all y ∈ Fix(T)∩(A+ B)−1(0).

4. Numerical results

In this section, we provide some numerical examples to demonstrate the com-
putational performance of the suggested algorithms. In the following examples,
since the related operators are defined in thewhole spaces, we chooseAlgorithm2
and Algorithm 4 for our numerical experiments. All the programs were imple-
mented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU@1.60GHz
computer with RAM 8.00GB.

Example 4.1: Let h and g be two convex, lower semi-continuous functions such
that h is differentiable with L-Lipschitz continuous gradient, and the proximal
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Figure 1. Compare the behaviour of Algorithm 2 and Qin et al.’s algorithm under different initial
values. (a) Case I and (b) Case II.

mapping of g can be computed. The convex minimization problem is to find x∗
such that

h(x∗)+ g(x∗) ≤ h(x)+ g(x), ∀ x ∈ H.

Taking A := ∇h and B := ∂g, then the convex minimization problem can be
reduced to the following inclusion problem: find x∗ ∈ H such that

0 ∈ ∇h(x∗)+ ∂g(x∗),

where ∇h is a gradient of h and ∂g is a subdifferential of g. Let T : R3→ R3

be a mapping defined by Tx = 1
2x− sin x. We see that T is 1

4 -strict pseudo-
contractive. Now we solve the following convex minimization problem:

min
x∈R3
‖x‖22 + ‖x‖1, such that x∗ ∈ Fix(T), (54)

where x = (x1, x2, x3) ∈ R3. Let h(x) = ‖x‖22 and g(x) = ‖x‖1. We obtain that
∇h(x) = 2x. It is known that

(I + r∂g)−1x = (max{|x1| − r, 0}sign(x1), max{|x2| − r, 0}sign(x2),
max{|x3| − r, 0}sign(x3)).

In case 1, we solve convex minimization problem (54) by Algorithm 2 and
Theorem 2.1 in [11] (denoted by Algorithm Qin1). The iteration number
N = 50, En = ‖xn − xn−1‖ and the other parameters are chosen as follows. In
Algorithm 2, we choose en = 0, θn = 1

n1.2 , δ = 0.2, δn = 0.5δ∗, ρn = 0.3, γn =
0.1 and εn = 0.45. The parameters selection in AlgorithmQin1 is consistent with
Algorithm 2. We consider two different initial values (Case I: x0 = (−1,−3, 1)
and x1 = (0.5,−1.5, 0.5), Case II: x0 = (10, 2.5,−8) and x1 = (−2.5,−1, 2.5))
and the numerical results are shown in Figure 1.
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Figure 2. Compare the behaviour of Algorithm 4 and Qin et al.’s algorithm under different initial
values. (a) Case III and (b) Case IV.

In case 2, we solve convex minimization problem (54) by Algorithm 4
and Theorem 2.2 in [11] (denoted by Algorithm Qin2). The iteration num-
ber N = 50, En = ‖xn − xn−1‖ and the other parameters are chosen as follows.
In Algorithm 4, we choose f (x) = 1

2x, θn = 1
n1.2 , δ = 0.1, δn = 0.5δ∗, en = 0,

σn = ρn = n
2(n+1) , ηn = 1

n+1 , γn = 0.1 and εn = 0.45. The parameters selec-
tion in Algorithm Qin2 is consistent with Algorithm 4. We consider two dif-
ferent initial values (Case III: x0 = (1,−4, 1) and x1 = (0.5, 3.5, 1.5), Case IV:
x0 = (−3, 3,−1.5) and x1 = (1,−1, 3)) and the numerical results are shown in
Figure 2.

In the experiments, we choose the same iteration number and different ini-
tial values. It is clear from the experiments that Algorithm 2 and Algorithm 4
outperform Algorithm Qin1 and Algorithm Qin2 in the number of iterations,
respectively.

Example 4.2: Suppose thatH1 andH2 are two real Hilbert spaces and S : H1→
H2 is a bounded linear operator with the adjoint S∗. Suppose that C and Q are
two nonempty closed convex subsets ofH1 andH2, respectively. In this example,
we concern the following split convex feasibility problem:

Find x∗ ∈ C such that Sx∗ ∈ Q. (55)

TakingAx = ∇( 12‖Sx− PQSx‖2) = S∗(I − PQ)Sx and B = ∂iC, then (55) can be
written in the form as follows:

Find x∗ such that 0 ∈ A(x∗)+ B(x∗). (56)

It is clear that A is 1-Lipschitz continuous and B is maximal monotone.
In this example, we set Tx(t) = x(t), H1 = H2 = L2([0, 2π]) with the

inner product 〈x, y〉 := ∫ 2π
0 x(t)y(t) dt and the associated norm ‖x‖2 :=
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(
∫ 2π
0 |x(t)|2 dt)

1
2 . The half-spaces are defined as

C =
{
x ∈ L2([0, 2π])|

∫ 2π

0
x(t) dt ≤ 1

}
,

and

Q =
{
x ∈ L2([0, 2π])|

∫ 2π

0
|x(t)− sin(t)|2 dt ≤ 16

}
.

Define a linear continuous operator S : L2([0, 2π])→ L2([0, 2π]), where
(Sx)(t) := x(t). Then (S∗x)(t) = x(t) and ‖S‖ = 1. Now, we solve problem (55).
Since (Sx)(t) = x(t), problem (55) is actually a convex feasibility problem:

find x∗ ∈ C ∩ Q.
Moreover, it is easy to see that x(t) = 0 is a solution.Hence, the solution set of (55)
is nonempty. For our numerical computation, we write the projections onto set
C and the projections onto set Q as follows, respectively (see [22]):

JAγn(y) = PC(y) =

⎧⎪⎪⎨
⎪⎪⎩
1− ∫ 2π

0 y(t) dt
4π2 + y,

∫ 2π

0
y(t) dt > 1,

y,
∫ 2π

0
y(t) dt ≤ 1;

PQ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sin(t)+ 4√∫ 2π
0 |x(t)− sin(t)|2dt

(x− sin(t)),
∫ 2π

0
|x(t)− sin(t)|2 dt > 16,

x,
∫ 2π

0
|x(t)− sin(t)|2 dt ≤ 16.

The error of the iterative algorithms is denoted by

En = 1
2
‖PC (xn)− xn‖22 +

1
2

∥∥PQ (S (xn))− S (xn)
∥∥2
2 .

In this numerical experiment, we use the two algorithms mentioned in Exam-
ple 4.1 to solve (55). The parameters of these algorithms are the same as those sets
in Example 4.1.We consider four different initial values x0 and x1 (Case I: x0 = t2

5 ,
x1 = 2t

10 ; Case II: x0 = t2
5 , x1 = t3

50 ; Case III: x0 = t2
15 , x1 = sin t + t3

30 ; Case IV:
x0 = t3

10 , x1 = sin t + 2t
15 ). The numerical results are reported in Figures 3 and 4.

It can be seen from Figure 3 and 4 that the two algorithms with inertial terms
proposed in this paper converge faster than the algorithms without inertial terms
suggested by Qin et al. [11].

Finally, we give an example that occurs in a Banach space. In this example,
we compare the behaviour of the proposed algorithm (Algorithm 4) and Shehu
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Figure 3. Compare the behaviour of Algorithm 2 and Qin et al.’s algorithm under different initial
values. (a) Case I and (b) Case II.

Figure 4. Compare the behaviour of Algorithm 4 and Qin et al.’s algorithm under different initial
values. (a) Case III and (b) Case IV.

and Gibali’s algorithm [16]. Since Algorithm 2 is the same as Shehu and Gibali’s
algorithm, in this case, we only compare the behaviour between Algorithm 4 and
Shehu and Gibali’s algorithm.

Example 4.3: Let E = �3(R) defined by �3(R) := {x̄ = (x1, x2, x3, . . .), xi ∈
R :

∑∞
i=1 |xi|3 <∞}, with norm ‖ · ‖�3 : �3→ [0,∞) defined by ‖x̄‖�3 =

(
∑∞

i=1 |xi|3)
1
3 , for arbitrary x̄ = (x1, x2, x3, . . .) ∈ �3. It is known that �3 is a uni-

formly convex and 2-uniformly smooth Banach space but not a Hilbert space.
Let A : �3→ �3 and B : �3→ �3 be two mappings defined by

Ax = 5x

and

Bx = 2x+ (1, 1, 1, 0, 0, 0, 0, . . .),
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respectively, where x = (x1, x2, x3, . . .) ∈ �3. Now we show that A is an
m-accretive operator and B is a 1/2-inverse strongly accretive of order 2 operator.
In fact, let x, y ∈ �3, then we get〈

Ax− Ay, j2(x− y)
〉 = 5

〈
x− y, j2(x− y)

〉 = 5‖x− y‖2
�3

and R(I + rA) = �3 for all r>0. We also have〈
Bx− By, j2(x− y)

〉 = 〈
2x− 2y, j2(x− y)

〉
= 2‖x− y‖2

�3 =
1
2
‖Bx− By‖2

�3 .

On the other hand, for all r>0, we have

JAr (x− rBx) = (I + rA)−1(x− rBx)

= 1− 2r
1+ 5r

x− r
1+ 5r

(1, 1, 1, 0, 0, 0, . . .),

where x = (x1, x2, x3, . . .) ∈ �3.We compare the proposed algorithm (Algorithm
4) with the Algorithm 1 of Theorem 3 in [16]. Set T(x) = x in our Algorithm 4
and keep the other parameters the same as in Example 4.1. Take θ = 0.1, εn =
1/n2, θn = 0.5θ̄n, r = 0.1 and λn = 1/n for Shehu and Gibali’s Algorithm 1 [16].
Themaximumnumber of iterations 200 is common stopping criterion andDn =
‖xn − xn−1‖�3 is measure of the error at the nth iteration step. In order to test the
robustness of the proposed algorithm, we choose four different initial values as
follows. The numerical behaviour of all algorithms for different initial values are
shown in Figure 5:

(i) x0 = (0.6787, 0.7577, 0.7431, 0, 0, 0, . . .),
x1 = (0.3922, 0.6554, 0.1711, 0, 0, 0, . . .) ;

(ii) x0 = (7.6551, 7.9519, 1.8687, 0, 0, 0, . . .),
x1 = (4.8976, 4.4558, 6.4631, 0, 0, 0, . . .) ;

(iii) x0 = (37.5633, 12.7547, 25.2978, 0, 0, 0, . . .),
x1 = (34.9538, 44.5451, 47.9645, 0, 0, 0, . . .) ;

(iv) x0 = (61.6044, 47.3288, 35.1659, 0, 0, 0, . . .),
x1 = (83.0828, 58.5264, 54.9723, 0, 0, 0, . . .).

It is easy to check that the solution of the inclusion problem 0 ∈ (A+ B)x∗ is

x∗ = (A+ B)−1(0) =
{(
−1
7
,−1

7
,−1

7
, 0, 0, 0, . . .

)}
.

The approximate solution obtained by our Algorithm 4 in (iv) is

x∗ = (−0.14131868,−0.14131868,−0.14131868, 0, 0, 0, . . .).
It can be seen fromFigure 5 that the suggested algorithm (Algorithm4) converges
faster than Algorithm 1 presented by Shehu and Gibali [16], and the results are
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Figure 5. Compare the behaviour of Algorithm 4 and Shehu and Gibali’s algorithm under differ-
ent initial values. (a) Case (i), (b) Case (ii), (c) Case (iii), (d) Case (iv).

independent of the choice of initial values. Therefore, the algorithm proposed in
this paper is efficient and robust.

5. Conclusions

In this paper, we proposed the inertial splitting algorithms for solving the com-
mon solution problem. Weak and strong convergence theorems are established
in uniformly convex and q-uniformly smooth Banach spaces, for example, Lp
with 1 < p <∞. One of the highlights is that our new algorithms converge faster
than the associated ones from the viewpoint of numerical computation. The other
highlight of this paper is that our new algorithms work for the class of κ-strictly
pseudocontractive mappings, which include the class of nonexpansive mappings
as a special case. Themain results presented in this paper extend and complement
the recent results obtained in [11,15,16].
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