
Fixed Point Theory, 25(2024), No. 1, 309-332

DOI: 10.24193/fpt-ro.2024.1.19

http://www.math.ubbcluj.ro/∼nodeacj/sfptcj.html

EFFICIENT EXTRAGRADIENT METHODS FOR BILEVEL

PSEUDOMONOTONE VARIATIONAL INEQUALITIES WITH

NON-LIPSCHITZ OPERATORS AND THEIR APPLICATIONS

X. QIN∗,∗∗, A. PETRUŞEL∗∗∗, B. TAN∗∗∗∗ AND J.C. YAO∗∗∗∗∗

∗Department of Mathematics, Yibin University, Sichuan, Yibin, China

∗∗Center for Converging Humanities, Kyung Hee University, Seoul, Korea

E-mail: qxlxajh@163.com
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1. Introduction

Throughout the paper, assume that C is a nonempty, closed, and convex subset of
a real Hilbert space H with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let us first
review the classical variational inequality problem (shortly VIP), which is described
as follows:

find y∗ ∈ C such that 〈My∗, z − y∗〉 ≥ 0, ∀z ∈ C, (VIP)

where M : C → H is an operator. One denotes by VI(C,M) the set of all solutions
of (VIP). It is known that variational inequalities play a significant role in applied
science and optimization theory. They provide a general and useful framework for
solving engineering problems, data sciences, and other fields. Therefore, numerical
methods for studying variational inequalities have attracted numerous interest among
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310 X. QIN, A. PETRUŞEL, B. TAN AND J.C. YAO

researchers due to the wide application of VIPs. In this paper, we focus on the special
case of VIPs with variational inequality constraints. That is, we want to find the
solution to the following bilevel variational inequality problem (shortly BVIP), which
reads as follows:

find x∗ ∈ VI(C,M) such that 〈Fx∗, y − x∗〉 ≥ 0, ∀y ∈ VI(C,M). (BVIP)

Bilevel variational inequality problems cover a number of nonlinear optimization prob-
lems, such as fixed point problems, quasi-variational inequality problems, complemen-
tary problems, saddle problems, and minimum norm problems. Bilevel optimization
problems are hierarchical optimization problems in which the feasible region of the
upper-level problem is restricted by the solution set of the lower-level problem. BVIP
is a bilevel optimization problem where both the upper-level problem and the lower-
level problem can be written as variational inequalities. For more details on the
theory, algorithms, and applications of the bilevel optimization problem, we refer the
reader to the recent monograph [7].

A basic method for solving VIPs is the projection one. The earliest and sim-
plest numerical method to solve (VIP) is the projected gradient method (shortly,
PGM), which generates an iterative sequence {xn} from x1 in the following way:
xn+1 = PC (xn − χnMxn), where χn represents a set of appropriate parameters and
PC : H → C denotes the metric (nearest point) projection from H onto C, char-
acterized by PC(x) := arg min{‖x − y‖ : y ∈ C} and PC(x) ∈ C for all x ∈ H.
It is worth noting that the convergence condition of PGM is especially strong, that
is, the operator M is required to be strongly monotone and Lipschitz continuous,
which limits the implementation of such methods in practical applications. In order
to weaken the strong monotonicity of operator M , Korpelevich [12] proposed a two-
step iterative scheme (now called the extragradient method, shortly EGM) to solve
monotone variational inequality problems. However, the disadvantage of the EGM is
that the projection onto the feasible set needs to be calculated twice in each iteration.
It is noted that computing projection is equivalent to solving an optimization prob-
lem, which may not be easy to solve when the feasible set has a complex structure.
Therefore, the EGM not only weakens the operator but also increases computational
consumption. Next, we introduce three feasible methods to improve the computa-
tional efficiency of the EGM. The first is the Tseng’s extragradient method (shortly
TEGM) proposed by Tseng [26], which replaces the second step of EGM with an
explicit calculation step. Another feasible scheme is to convert the projection of the
second step of EGM onto the feasible set into the projection onto the half-space (note
that the projection onto a half-space can be explicitly calculated). This method is
now referred to as the subgradient extragradient method (shortly SEGM), which was
introduced by Censor, Gibali and Reich [5]. The third method of using only one pro-
jection for the feasible set is the projection and contraction method (shortly PCM)
suggested by He [9]. The first step of PCM is the same as the first step of EGM, but
the calculation of the second step is updated by some previous information without
involving any projection process. Therefore, these three methods (TEGM, SEGM,
and PCM) only need to calculate the projection onto the feasible set once in each
iteration, which greatly improves the computational efficiency of EGM.
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Note that the extragradient-type methods (EGM, TEGM, SEGM, and PCM)
mentioned above need to calculate the projection onto the feasible set at least
once in each iteration. Is there a way to avoid calculating projections and solve
variational inequalities? Indeed, Yamada [28] introduced a new iterative scheme,
which is now stated the hybrid steepest descent method and is read as follows:
xn+1 = (I − σαn+1F )Uxn, ∀n ≥ 1, where I is the identity mapping, F is an η-
strongly monotone and k-Lipschitz continuous mapping, U is a nonexpansive map-
ping, σ ∈ (0, 2η/k2) and {αn} is a sequence that satisfies some restrictions. He proved
that the iterative sequence generated by this method converges strongly to a point
x∗, which is the unique solution of the variational inequality problem over the fixed
point set, that is, find x∗ ∈ Fix(U) such that 〈Fx∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(U), where
Fix(U) = {x ∈ H : Ux = x} denotes the fixed point set of U . On the other hand,
the inertial idea has been studied by many researchers as a technique to accelerate
the convergence speed of algorithms. The main feature of the inertial method is that
the next iteration depends on the combination of the previous two iterations. This
small change can significantly improve the computational efficiency of the algorithms
without inertial terms.

Recently, a large number of numerical algorithms have been proposed for solving
BVIPs (see, e.g., [13, 11, 1, 10, 14, 21, 20]). A common characteristic enjoyed by
these algorithms is that the operator M is required to be Lipschitz continuous. How-
ever, this condition may be difficult to be satisfied in real applications because there
exist classes of mappings that do not satisfy Lipschitz continuity (such as uniformly
continuous mappings). Recently, some new numerical methods with Armijo-type
linesearch rules have been proposed to solve non-Lipschitz continuous variational in-
equality problems; see, e.g., [19, 4, 22, 23, 17]. It should be emphasized that the
Armijo-type step size criterion suggested by Cai et al. [4] is different from the other
ones [22, 23, 17]. Moreover, it is worth noting that the operator M in the algo-
rithms proposed in [13, 10] are monotone, while the operator M in [11, 1, 21, 20]
are pseudomonotone. It is known that pseudomonotone mappings contain monotone
mappings. A natural question is how to modify the extragradient algorithms so that
they can solve the bilevel pseudomonotone variational inequality problem containing a
non-Lipschitz continuous mapping. To answer this question, in this paper we propose
several modified extragradient methods with Armijo-type stepsizes for solving bilevel
pseudomonotone variational inequalities. Strong convergence theorems of the sug-
gested algorithms are established under some suitable and weaker conditions. Some
numerical experiments are presented to verify the advantages and efficiency of the
proposed algorithms.

The organizational structure of this paper is as follows. We review some basic def-
initions and lemmas that need to be used in Section 2. Section 3 states the suggested
iterative schemes and analyzes their convergence properties. In Section 4, we perform
some numerical examples to demonstrate the advantages of the proposed algorithms
in comparison with some related ones. Finally, we conclude the paper with a brief
summary in Section 5, the last section.
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2. Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert space H. The
weak convergence and strong convergence of {xn}∞n=1 to x are represented by xn ⇀ x
and xn → x, respectively. For each x, y ∈ H, we have the following inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (2.1)

It is known that PC is nonexpansive and has the following basic properties, for all
x ∈ H and y ∈ C, ‖PC(x)−y‖2 ≤ ‖x−y‖2−‖x−PC(x)‖2, 〈x−PC(x), y−PC(x)〉 ≤ 0,
and ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉

Recall that a mapping M : H → H is said to be:

(i) L-Lipschitz continuous with L > 0 if ‖Mx−My‖ ≤ L‖x−y‖ for all x, y ∈ H.
(If L ∈ (0, 1) then mapping M is called contraction. In particular, mapping
M is called nonexpansive when L = 1.)

(ii) uniformly continuous on H if for any ε > 0, there exists δ > 0 such that if
x, y ∈ H and ‖x− y‖ < δ, then ‖Mx−My‖ < ε.

(iii) α-strongly monotone if there exists a constant α > 0 such that 〈Mx−My, x−
y〉 ≥ α‖x− y‖2 for all x, y ∈ H.

(iv) monotone if 〈Mx−My, x− y〉 ≥ 0 for all x, y ∈ H.
(v) pseudomonotone if 〈Mx, y − x〉 ≥ 0⇒ 〈My, y − x〉 ≥ 0 for all x, y ∈ H.

(vi) sequentially weakly continuous if for each sequence {xn} converges weakly to
x implies {Mxn} converges weakly to Mx.

The following lemmas play an important role in our proofs.

Lemma 2.1 ([28]). Let γ > 0 and α ∈ (0, 1]. Let F : H → H be a β-strongly mono-
tone and L-Lipschitz continuous mapping. Associating with a nonexpansive mapping
T : H → H, define a mapping T γ : H → H by T γx = (I − αγF )(Tx),∀x ∈ H. Then,

T γ is a contraction provided γ < 2β
L2 , that is, ‖T γx− T γy‖ ≤ (1− αη)‖x− y‖ for all

x, y ∈ H, where η = 1−
√

1− γ (2β − γL2) ∈ (0, 1).

Lemma 2.2 ([18]). Let {pn} be a positive sequence, {qn} be a sequence of real
numbers, and {αn} be a sequence in (0, 1) such that

∑∞
n=1 αn = ∞. Assume that

pn+1 ≤ αnqn + (1−αn)pn for all n ≥ 1. If lim supk→∞ qnk
≤ 0 for every subsequence

{pnk
} of {pn} satisfying lim infk→∞ (pnk+1 − pnk

) ≥ 0, then limn→∞ pn = 0.

3. Main results

In this section, we present four efficient algorithms to solve the bilevel pseudomono-
tone variational inequality problem with a non-Lipschitz continuous operator. The
following several conditions are assumed to be satisfied before introducing our algo-
rithms.

(C1) The feasible set C is a nonempty, closed, and convex subset of a real Hilbert
space H.

(C2) The solution set of the problem (VIP) is nonempty, that is, VI(C,M) 6= ∅.
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(C3) The operator M : H → H is pseudomonotone, uniformly continuous on H,
and satisfies the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ‖Mz‖ ≤ lim inf
n→∞

‖Mxn‖. (con1)

(C4) The mapping F : H → H is LF -Lipschitz continuous and β-strongly monotone
on H.

(C5) Let {εn} be a positive sequence such that limn→∞
εn
αn

= 0, where {αn} ⊂ (0, 1)

satisfies limn→∞ αn = 0 and
∑∞
n=1 αn =∞.

3.1. First modified subgradient extragradient algorithm. Now we are ready
to state the first iterative scheme with a new Armijo-type stepsize criterion, which is
based on the subgradient extragradient method, the inertial method, and the hybrid
steepest descent method. The Algorithm 3.1 is formulated as follows.

Algorithm 3.1 First modified inertial subgradient extragradient method for solving
(BVIP).

Initialization: Take θ > 0, δ > 0, ` ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2β/L2
F ) and let

x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute wn = xn + θn(xn − xn−1), where

θn =

 min

{
εn

‖xn − xn−1‖
, θ

}
, if xn 6= xn−1;

θ, otherwise.
(In-Cri)

Step 2. Compute yn = PC(wn − χnMwn).
Step 3. Compute zn = PTn(wn − χnMyn), where the half-space Tn is defined by

Tn := {x ∈ H | 〈wn − χnMwn − yn, x− yn〉 ≤ 0} ,
and χn := δ`mn and mn is the smallest nonnegative integer m satisfying

δ`m 〈Myn −Mwn, yn − zn〉 ≤
µ

2

[
‖wn − yn‖2 + ‖yn − zn‖2

]
. (Ar-1)

Step 4. Compute xn+1 = zn − αnγFzn.
Set n := n+ 1 and go to Step 1.

Remark 3.1. Before considering the convergence of our algorithm, let us emphasize
that the following observations from Algorithm 3.1.

(i) It should be noted that the Armijo criterion (Ar-1) is derived from the re-
cent article by Cai et al. [4] and it is not of the same type as the one that
already exists in the literature [19, 22, 23, 17]. On the other hand, the pro-
posed Algorithm 3.1 uses a different type of step size than Algorithm 3.1
of Tan et al. [20], which leads to different convergence conditions for them.
Specifically, the proposed Algorithm 3.1 only requires that the operator M is
uniformly continuous while Algorithm 3.1 of Tan et al. [20] requires that it is
Lipschitz continuous. It is known that the uniform continuity of the operator
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is weaker than the Lipschitz continuity, so the proposed Algorithm 3.1 has a
wider application.

(ii) When mapping M is monotone, it is not necessary to impose Condition (con1)
(see [6]).

(iii) We note here that inertial calculation criterion (In-Cri) is easy to implement
since the term ‖xn−xn−1‖ is known before calculating θn. Moreover, it follows
from (In-Cri) and the assumptions on {αn} that limn→∞

θn
αn
‖xn−xn−1‖ = 0.

Indeed, we obtain θn‖xn − xn−1‖ ≤ εn for all n ≥ 1, which together with
limn→∞

εn
αn

= 0 implies that limn→∞
θn
αn
‖xn − xn−1‖ ≤ limn→∞

εn
αn

= 0.

(iv) Note that the condition (con1) is used by many recent work on pseudomono-
tone variational inequalities; see, e.g., [17, 25]. It is easy to check that Condi-
tion (con1) is weaker than the sequential weak continuity of the mapping M
(see [25, Remark 3.2]).

The following lemmas play an important role in the convergence analysis of Algo-
rithm 3.1.

Lemma 3.1. Suppose that Conditions (C1)–(C3) hold. Then the Armijo-like criteria
(Ar-1) is well defined.

Proof. The proof is trivial, and we omit the details here. �

Lemma 3.2. Suppose that Conditions (C1)–(C3) hold. Let {wn} and {yn} be two
sequences formulated by Algorithm 3.1. If there exists a subsequence {wnk

} of {wn}
such that {wnk

} converges weakly to z ∈ H and limk→∞ ‖wnk
− ynk

‖ = 0, then
z ∈ VI(C,M).

Proof. The proof of this lemma follows the proof of Lemma 3.2 in [4], so it is omitted.
�

Lemma 3.3. Let {wn}, {yn}, and {zn} be three sequences generated by Algorithm 3.1

and p ∈ VI(C,M). Then ‖zn − p‖2 ≤ ‖wn − p‖2− (1−µ)(‖yn − wn‖2 + ‖zn − yn‖2).

Proof. By the definition of zn and the property of projection, one sees that

2 ‖zn − p‖2 ≤ 2 〈zn − p, wn − χnMyn − p〉

= ‖zn − p‖2 + ‖wn − χnMyn − p‖2 − ‖zn − wn + χnMyn‖2

= ‖zn − p‖2 + ‖wn − p‖2 + χ2
n ‖Myn‖2 − 2 〈wn − p, χnMyn〉

− ‖zn − wn‖2 − χ2
n ‖Myn‖2 − 2 〈zn − wn, χnMyn〉

= ‖zn − p‖2 + ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, χnMyn〉 .
This implies that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, χnMyn〉 . (3.1)

Since p is the solution of (VIP), we have 〈Mp, x − p〉 ≥ 0 for all x ∈ C. By the
pseudomonotonicity of M , we obtain 〈Mx, x− p〉 ≥ 0 for all x ∈ C. Taking x = yn ∈
C, one infers that 〈Myn, p− yn〉 ≤ 0. Consequently,

〈Myn, p− zn〉 = 〈Myn, p− yn〉+ 〈Myn, yn − zn〉 ≤ 〈Myn, yn − zn〉 . (3.2)
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Combining (3.1) and (3.2), one obtains

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 + 2χn 〈Myn, yn − zn〉

= ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2

− 2 〈zn − yn, yn − wn〉+ 2χn 〈Myn, yn − zn〉

= ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2

+ 2 〈zn − yn, wn − χnMyn − yn〉 .

(3.3)

According to zn ∈ Tn and the definition of Tn, one obtains

2 〈wn − χnMyn − yn, zn − yn〉
= 2 〈wn − χnMwn − yn, zn − yn〉+ 2χn 〈Mwn −Myn, zn − yn〉
≤ 2χn 〈Mwn −Myn, zn − yn〉 .

(3.4)

Combining (Ar-1), (3.3), and (3.4), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2χn 〈Myn −Mwn, yn − zn〉
≤ ‖wn − p‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + µ

[
‖wn − yn‖2 + ‖yn − zn‖2

]
= ‖wn − p‖2 − (1− µ)(‖yn − wn‖2 + ‖zn − yn‖2).

This completes the proof of the lemma. �

Theorem 3.1. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.1 converges to the unique solution of the (BVIP) in norm.

Proof. We divide the proof into four claims.
Claim 1. The sequence {xn} is bounded. It follows from Lemma 3.3 that

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ 1. (3.5)

By the definition of wn, one has

‖wn − p‖ ≤ αn ·
θn
αn
‖xn − xn−1‖+ ‖xn − p‖. (3.6)

According to Remark 3.1 we have θn
αn
‖xn − xn−1‖ → 0 as n → ∞. Therefore, there

exists a constant Q1 > 0 such that

θn
αn
‖xn − xn−1‖ ≤ Q1, ∀n ≥ 1. (3.7)

Combining (3.5), (3.6), and (3.7), we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖+ αnQ1, ∀n ≥ 1. (3.8)
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Using Lemma 2.1 and (3.5), one has

‖xn+1 − p‖ = ‖ (I − αnγF ) zn − (I − αnγF ) p− αnγFp‖
≤ (1− αnη) ‖zn − p‖+ αnγ‖Fp‖

≤ (1− αnη) ‖xn − p‖+ αnη ·
Q1

η
+ αnη ·

γ

η
‖Fp‖

≤ max
{Q1 + γ‖Fp‖

η
, ‖xn − p‖

}
≤ · · · ≤ max

{Q1 + γ‖Fp‖
η

, ‖x1 − p‖
}
,

where η = 1 −
√

1− γ (2β − γL2
F ) ∈ (0, 1). This implies that the sequence {xn} is

bounded. We obtain that the sequences {wn} and {zn} are also bounded.
Claim 2.

(1− µ)
(
‖yn − wn‖2 + ‖zn − yn‖2

)
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnQ4

for some Q4 > 0. Indeed, using (2.1), one has

‖xn+1 − p‖2 = ‖ (I − αnγF ) zn − (I − αnγF ) p− αnγFp‖2

≤ (1− αnη)
2 ‖zn − p‖2 + 2αnγ 〈Fp, p− xn+1〉

≤ ‖zn − p‖2 + αnQ2

(3.9)

for some Q2 > 0. In the light of Lemma 3.3, we obtain

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − (1− µ)
(
‖yn − wn‖2 + ‖zn − yn‖2

)
+ αnQ2. (3.10)

It follows from (3.8) that

‖wn − p‖2 ≤ (‖xn − p‖+ αnQ1)
2

= ‖xn − p‖2 + αn
(
2Q1‖xn − p‖+ αnQ

2
1

)
≤ ‖xn − p‖2 + αnQ3

(3.11)

for some Q3 > 0. Combining (3.10) and (3.11), we obtain

(1− µ)
(
‖yn − wn‖2 + ‖zn − yn‖2

)
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnQ4,

where Q4 := Q2 +Q3.
Claim 3.

‖xn+1 − p‖2 ≤ (1− αnη) ‖xn − p‖2 + αnη
[2γ

η
〈Fp, p− xn+1〉+

3Qθn
αnη

‖xn − xn−1‖
]

for some Q > 0. Indeed, we have

‖wn − p‖2 ≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖+ θ2
n‖xn − xn−1‖2. (3.12)

Combining (3.5) and (3.9), we deduce

‖xn+1 − p‖2 ≤ (1− αnη) ‖wn − p‖2 + 2αnγ 〈Fp, p− xn+1〉 . (3.13)
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Substituting (3.12) into (3.13), we obtain

‖xn+1 − p‖2 ≤ (1− αnη) ‖xn − p‖2 + 2αnγ 〈Fp, p− xn+1〉
+ θn‖xn − xn−1‖ (2‖xn − p‖+ θ‖xn − xn−1‖)

≤ (1− αnη) ‖xn − p‖2 + αnη
[2γ

η
〈Fp, p− xn+1〉+

3Qθn
αnη

‖xn − xn−1‖
]
,

where Q := supn∈N {‖xn − p‖, θ‖xn − xn−1‖} > 0.
Claim 4. The sequence {‖xn − p‖} converges to zero. By Lemma 2.2, it needs
to show that lim supk→∞ 〈Fp, p− xnk+1〉 ≤ 0 for every subsequence {‖xnk

− p‖} of
{‖xn − p‖} satisfying lim infk→∞ (‖xnk+1 − p‖ − ‖xnk

− p‖) ≥ 0.
For this purpose, one assumes that {‖xnk

− p‖} is a subsequence of {‖xn − p‖}
such that lim infk→∞ (‖xnk+1 − p‖ − ‖xnk

− p‖) ≥ 0. Then

lim inf
k→∞

(
‖xnk+1 − p‖2 − ‖xnk

− p‖2
)

= lim inf
k→∞

[(‖xnk+1 − p‖ − ‖xnk
− p‖) (‖xnk+1 − p‖+ ‖xnk

− p‖)] ≥ 0.

By Claim 2 and the assumption on {αn}, one obtains

lim sup
k→∞

[
(1− µ)

(
‖ynk

− wnk
‖2 + ‖znk

− ynk
‖2
)]

≤ lim sup
k→∞

[
αnk

Q4 + ‖xnk
− p‖2 − ‖xnk+1 − p‖2

]
≤ lim sup

k→∞
αnk

Q4 + lim sup
k→∞

[
‖xnk

− p‖2 − ‖xnk+1 − p‖2
]

= − lim inf
k→∞

[
‖xnk+1 − p‖2 − ‖xnk

− p‖2
]
≤ 0,

which implies that limk→∞ ‖ynk
− wnk

‖ = limk→∞ ‖znk
− ynk

‖ = 0. Therefore, we
obtain

lim
k→∞

‖znk
− wnk

‖ = 0. (3.14)

Moreover, we can show that

‖xnk+1 − znk
‖ = αnk

γ‖Fznk
‖ → 0 as n→∞, (3.15)

and

‖xnk
− wnk

‖ = αnk
· θnk

αnk

‖xnk
− xnk−1‖ → 0 as n→∞. (3.16)

Combining (3.14), (3.15), and (3.16), we obtain

‖xnk+1−xnk
‖ ≤ ‖xnk+1− znk

‖+ ‖znk
−wnk

‖+ ‖wnk
−xnk

‖ → 0 as n→∞. (3.17)

Since the sequence {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
},

which converges weakly to some z ∈ H. Moreover,

lim sup
k→∞

〈Fp, p− xnk
〉 = lim

j→∞

〈
Fp, p− xnkj

〉
= 〈Fp, p− z〉.

By (3.16), we obtain wnk
⇀ z as k →∞. This together with limk→∞ ‖wnk

−ynk
‖ = 0

and Lemma 3.2 yields z ∈ VI(C,M). From the assumption that p is the unique
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solution of the (BVIP), we deduce

lim sup
k→∞

〈Fp, p− xnk
〉 = 〈Fp, p− z〉 ≤ 0. (3.18)

Using (3.17) and (3.18), we obtain

lim sup
k→∞

〈Fp, p− xnk+1〉 = lim sup
k→∞

〈Fp, p− xnk
〉 ≤ 0. (3.19)

From limn→∞
θn
αn
‖xn − xn−1‖ = 0 and (3.19), we have

lim sup
k→∞

[2γ

η
〈Fp, p− xnk+1〉+

3Qθnk

αnk
η
‖xnk

− xnk−1‖
]
≤ 0. (3.20)

Combining Claim 3, Condition (C5), and (3.20), in the light of Lemma 2.2, one
concludes that limn→∞ ‖xn − p‖ = 0. That is, xn → p as n → ∞. This completes
the proof. �

Now, we give a special case of Theorem 3.1. Set F (x) = x−f(x) in Algorithm 3.1,
where mapping f : H → H is ρ-contraction. It can be easily verified that mapping
F : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly monotone. In this
situation, by picking γ = 1, we obtain an inertial subgradient extragradient algorithm
with a new Armijo-type step size for solving (VIP). More specifically, we have the
following result.

Corollary 3.1. Suppose that Conditions (C1)–(C3) and (C5) holds. Let mapping

f : H → H be ρ-contraction with ρ ∈ [0,
√

5− 2). Take θ > 0, δ > 0, ` ∈ (0, 1), and
µ ∈ (0, 1). Let x0, x1 ∈ H be two arbitrary initial points and the iterative sequence
{xn} be generated by the following

wn = xn + θn(xn − xn−1),

yn = PC(wn − χnMwn),

zn = PTn
(wn − χnMyn),

Tn := {x ∈ H | 〈wn − χnMwn − yn, x− yn〉 ≤ 0} ,
xn+1 = (1− αn)zn + αnf(zn),

(3.21)

where θn and χn are defined in (In-Cri) and (Ar-1), respectively. Then the iterative
sequence {xn} formed by (3.21) converges to p in norm, where p = PVI(C,M)(f(p)).

3.2. Second modified subgradient extragradient algorithm. In this subsec-
tion, we present another version of Algorithm 3.1. Our second iterative scheme is
shown in Algorithm 3.2. The only difference between this method and Algorithm 3.1
is that their iteration step size are updated in two different ways.

Remark 3.2. Following the proof method of Lemma 3.1 in [22], we can obtain that
the Armijo-type criterion (Ar-2) is well defined. Let xn be a sequence generated by
Algorithm 3.2, then Lemma 3.2 still holds by replacing xn in the proof process in
Lemma 3.3 of [22] with wn.
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Algorithm 3.2 Second modified inertial subgradient extragradient method for solv-
ing (BVIP).

Initialization: Take θ > 0, δ > 0, ` ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2β/L2
F ) and let

x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute wn = xn + θn(xn − xn−1), where θn is defined in (In-Cri).
Step 2. Compute yn = PC(wn−χnMwn), where χn := δ`mn and mn is the smallest
nonnegative integer m satisfying

δ`m〈Mwn −Myn, wn − yn〉 ≤ µ‖wn − yn‖2. (Ar-2)

Step 3. Compute zn = PTn
(wn − χnMyn), where the half-space Tn is defined by

Tn := {x ∈ H | 〈wn − χnMwn − yn, x− yn〉 ≤ 0} .
Step 4. Compute xn+1 = zn − αnγFzn.
Set n := n+ 1 and go to Step 1.

Lemma 3.4. Assume that Conditions (C1)–(C3) hold. Let {wn}, {yn}, and {zn} be
three sequences generated by Algorithm 3.2. Then, for all p ∈ VI(C,M),

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ)(‖yn − wn‖2 + ‖zn − yn‖2).

Proof. Using the definition of χn in (Ar-2), one obtains χn ‖Mwn −Myn‖ ≤
µ ‖wn − yn‖ . Moreover, we obtain

2χn 〈Mwn −Myn, zn − yn〉 ≤ 2χn ‖Mwn −Myn‖ ‖yn − zn‖
≤ 2µ ‖wn − yn‖ ‖yn − zn‖

≤ µ ‖wn − yn‖2 + µ ‖yn − zn‖2 .

Applying the same statements as (3.1)–(3.4) in the proof of Lemma 3.3, we can obtain
the desired conclusion. This completes the proof of the lemma. �

Theorem 3.2. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.2 converges to the unique solution of the (BVIP) in norm.

Proof. The proof of this result follows almost in the same way as that of Theorem 3.1
but we apply Lemma 3.4 in place of Lemma 3.3. �

3.3. Modified Tseng’s extragradient algorithm. In this subsection, we intro-
duce a new iterative algorithm for solving (BVIP), which is based on the Tseng’s
extragradient method, the inertial method, and the hybrid steepest descent method.
More precisely, the method is displayed in Algorithm 3.3.

Lemma 3.5. Assume that Conditions (C1)–(C3) hold. Let {wn}, {yn}, and {zn} be
three sequences generated by Algorithm 3.3. Then, for all p ∈ VI(C,M),

‖zn − p‖2 ≤ ‖wn − p‖2 − (1− µ2) ‖yn − wn‖2 .

Proof. The proof of this lemma is very similar to the proof of Lemma 3.2 in [24]. So
we omit the details. �
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Algorithm 3.3 Modified inertial Tseng’s extragradient method for solving (BVIP).

Initialization: Take θ > 0, δ > 0, ` ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2β/L2
F ) and let

x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute wn = xn + θn(xn − xn−1), where θn is defined in (In-Cri).
Step 2. Compute yn = PC(wn − χnMwn), where χn is defined in (Ar-2).
Step 3. Compute zn = yn − χn (Myn −Mwn).
Step 4. Compute xn+1 = zn − αnγFzn.
Set n := n+ 1 and go to Step 1.

Theorem 3.3. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.3 converges to the unique solution of the (BVIP) in norm.

Proof. As shown in Claim 1 of the proof of Theorem 3.1, we obtain that the sequences
{wn}, {yn}, and {zn} are bounded. From (3.9), (3.11), and Lemma 3.5, we have

(1− µ2)‖yn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnQ4. (Eq1)

In addition, we can obtain the same conclusion as Claim 3 in Theorem 3.1.
Finally, we show that {‖xn − p‖} converges to zero. For this purpose,
one assumes that {‖xnk

− p‖} is a subsequence of {‖xn − p‖} such that
lim infk→∞ (‖xnk+1 − p‖ − ‖xnk

− p‖) ≥ 0. By (Eq1) and the assumption on {αn},
one obtains

lim sup
k→∞

[
(1− µ2)‖ynk

− wnk
‖2
]
≤ lim sup

k→∞

[
αnk

Q4 + ‖xnk
− p‖2 − ‖xnk+1 − p‖2

]
≤ 0,

which implies that limk→∞ ‖ynk
−wnk

‖ = 0. From the definition of zn and (Ar-2), we
have ‖zn − yn‖ ≤ µ ‖wn − yn‖. Thus we obtain limk→∞ ‖znk

− ynk
‖ = 0. Following

the same statements as (3.14)–(3.20) in Theorem 3.1, we conclude that xn → p as
n→∞. The proof is completed. �

3.4. Modified projection and contraction algorithm. Finally, inspired by the
inertial method, the projection and contraction method, and the hybrid steepest
descent method, the last iterative scheme for solving (BVIP) is given. The concrete
expression of Algorithm 3.4 is shown below.

Lemma 3.6. Assume that Conditions (C1)–(C3) hold. Let {wn}, {yn}, and {zn} be
three sequences generated by Algorithm 3.4. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
(2− φ)

φ
‖zn − wn‖2 , ∀p ∈ VI(C,M),

and

‖wn − yn‖2 ≤
(1 + µ)2

[(1− µ)φ]2
‖zn − wn‖2 .

Proof. The two conclusions of this lemma are easily obtained by a simple modification
of Lemma 3.2 of Dong et al. [8]. Thus we omit the details. �
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Algorithm 3.4 Modified inertial projection and contraction method for solving
(BVIP).

Initialization: Take θ > 0, δ > 0, ` ∈ (0, 1), µ ∈ (0, 1), φ ∈ (0, 2), γ ∈ (0, 2β/L2
F )

and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows.
Step 1. Compute wn = xn + θn(xn − xn−1), where θn is defined in (In-Cri).
Step 2. Compute yn = PC(wn − χnMwn), where χn is defined in (Ar-2).
Step 3. Compute zn = wn − φδndn, where dn and δn are defined by

dn := wn − yn − χn (Mwn −Myn) , δn :=

{
〈wn − yn, dn〉/‖dn‖2, if dn 6= 0;
0, otherwize.

Step 4. Compute xn+1 = zn − αnγFzn.
Set n := n+ 1 and go to Step 1.

Theorem 3.4. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn}
generated by Algorithm 3.4 converges to the unique solution of the (BVIP) in norm.

Proof. The proof of the theorem is similar to the proof of Theorem 3.3. We leave it
to the reader to verify it. �

Similar to Corollary 3.1, we have the following conclusions for Algorithms 3.2–3.4.

Corollary 3.2. Suppose that Conditions (C1)–(C3) and (C5) holds. Let mapping

f : H → H be ρ-contraction with ρ ∈ [0,
√

5 − 2). Take θ > 0, δ > 0, ` ∈ (0, 1),
µ ∈ (0, 1), and φ ∈ (0, 2). Let x0, x1 ∈ H be two arbitrary initial points and the
iterative sequence {xn} be generated by



wn = xn + θn(xn − xn−1),

yn = PC(wn − χnMwn),

zn = PTn
(wn − χnMyn),

Tn = {x ∈ H | 〈wn − χnMwn − yn, x− yn〉 ≤ 0} ,
xn+1 = (1− αn)zn + αnf(zn),

(3.22)


wn = xn + θn(xn − xn−1),

yn = PC(wn − χnMwn),

zn = yn − χn (Myn −Mwn) ,

xn+1 = (1− αn)zn + αnf(zn),

(3.23)
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wn = xn + θn(xn − xn−1),

yn = PC(wn − χnMwn),

zn = wn − φδndn,
dn = wn − yn − χn (Mwn −Myn) ,

δn =

{
〈wn − yn, dn〉/‖dn‖2, if dn 6= 0;
0, otherwize.

xn+1 = (1− αn)zn + αnf(zn),

(3.24)

where θn and χn are defined in (In-Cri) and (Ar-2), respectively. Then the iterative
sequence {xn} formed by Algorithm [(3.22), (3.23), (3.24)] converges to p in norm,
where p = PVI(C,M)(f(p)).

Remark 3.3. We make the following observations for the suggested algorithms.

(i) The four algorithms obtained in this paper can solve the bilevel pseudomono-
tone variational inequality problem, while the algorithms suggested in [13, 10]
can only solve the bilevel monotone variational inequality problem. On the
other hand, we replace the Lipschitz continuity of mapping M in the litera-
ture [13, 11, 1, 10, 21, 20] with the uniform continuity of mapping M in the
suggested algorithms. Therefore, our proposed approaches have a wider range
of applications.

(ii) It should be emphasized that the Armijo-type criterion (Ar-2) in Algo-
rithm 3.2 does not use the information of sequence {zn} when updating the
step size in each iteration, while the Armijo-type criterion (Ar-1) in Algo-
rithm 3.1 uses the information of sequence {zn}, which makes Algorithm 3.1
converge faster than Algorithm 3.2 (see the numerical examples in Section 4).

(iii) Our Algorithms (3.21)–(3.24) improve many numerical methods in the lit-
erature [19, 4, 22, 23, 17] for solving variational inequality problems due to
the fact that the mapping M involved in the proposed algorithms is pseu-
domonotone and uniformly continuous. Moreover, if we set θn = 0 and
φ = 1 in our Algorithm (3.24), then it degenerates to the Algorithm 3
proposed by Thong et al. [22]. Indeed, they compute the value of zn
through the projection of xn on the half-space Cn, where Cn is defined as
Cn := {x ∈ H : 〈dn, x− yn〉 ≤ 0} and dn = xn − yn − χn (Mxn −Myn). It
is known that the projection on the half-space can be computed explicitly.
Therefore

zn = PCn
(xn) = xn −

〈dn, xn − yn〉
‖dn‖2

dn,

which is equivalent to the calculation of zn in Algorithm (3.24) (by setting
θn = 0 and φ = 1).

(iv) Our algorithms are embedded with inertial terms making them converge faster
than the algorithms without inertial (see Section 4).
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4. Numerical experiments and applications

In this section, we provide some computational tests to demonstrate the numerical
behavior of the proposed Algorithms 3.1–3.4, and also to compare them with the
Algorithm 1 introduced by Thong et al. [21] and the Algorithm 3.2 suggested by Tan,
Liu and Qin [20]. Notice that the algorithms mentioned in [21, 20] do not require the
priori information about the Lipschitz constant of mapping M . All the programs were
implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
computer with RAM 8.00 GB. The parameters of all algorithms are set as follows.

• In the proposed Algorithms 3.1–3.4, we set θ = 0.4, εn = 100/(n+ 1)2, δ = 2,
` = 0.5, µ = 0.1, αn = 1/(n+ 1), and γ = 1.7β/L2

F . Pick φ = 1.5 for
Algorithm 3.4.
• In the Algorithm 1 introduced by Thong et al. [21], we choose µ = 0.1,
χ1 = 0.6, φ = 1.5, αn = 1/(n+ 1), and γ = 1.7β/L2

F .
• In the Algorithm 3.2 suggested by Tan et al. [20], we take θ = 0.4, εn =

100/(n+ 1)2, µ = 0.1, χ1 = 0.6, αn = 1/(n+ 1), and γ = 1.7β/L2
F .

4.1. Numerical examples of finite- and infinite-dimensions.

Example 4.1. Consider a mapping F : Rm → Rm (m = 5) of the form F (x) =
Gx + q, where G = BBT + D + K, and B is a m × m matrix with their entries
being generated in (0, 1), D is a m × m skew-symmetric matrix with their entries
being generated in (−1, 1), K is a m × m diagonal matrix, whose diagonal entries
are positive in (0, 1) (so G is positive semidefinite), q ∈ Rm is a vector with entries
being generated in (0, 1). It is clear that F is LF -Lipschitz continuous and β-strongly
monotone with LF = max{eig(G)} and β = min{eig(G)}, where eig(G) represents all
eigenvalues of G. Next, we consider the following fractional programming problem:

min f(x) =
xTQx+ aTx+ a0

bTx+ b0
,

subject to x ∈ C :=
{
x ∈ R5 : bTx+ b0 > 0

}
,

where

Q =


5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4

 , a =


1
2
−1
−2
1

 , b =


1
0
−1
0
1

 , a0 = −2, b0 = 20.

It is easy to check that Q is symmetric and positive definite in R5 and hence f is
pseudo-convex on C =

{
x ∈ R5 : bTx+ b0 > 0

}
. Let

M(x) := ∇f(x) =

(
bTx+ b0

)
(2Qx+ a)− b

(
xTQx+ aTx+ a0

)
(bTx+ b0)

2 .

It is known that the mapping M is pseudomonotone and Lipschitz continuous (see
[2]).

We use Dn = ‖xn+1 − xn‖ to measure the error of the n-th iteration since we do
not know the exact solution to the problem. The maximum number of iterations 200



324 X. QIN, A. PETRUŞEL, B. TAN AND J.C. YAO

is used as a common stopping criterion. Numerical results of all algorithms with four
initial values are reported in Fig. 1.
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(a) x0 = x1 = 5rand(5,1)
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(b) x0 = x1 = 10rand(5,1)
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(c) x0 = x1 = 20rand(5,1)
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(d) x0 = x1 = 50rand(5,1)

Figure 1. Numerical results of all algorithms for Example 4.1

Example 4.2. We consider an example that appears in the infinite-dimensional
Hilbert space H = L2[0, 1] with inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ H

and induced norm

‖x‖ =

(∫ 1

0

|x(t)|2dt

)1/2

, ∀x ∈ H.

Let r, R be two positive real numbers such that R/(k + 1) < r/k < r < R for
some k > 1. Take the feasible set as C = {x ∈ H : ‖x‖ ≤ r}. The operator
M : H → H is given by M(x) = (R − ‖x‖)x for all x ∈ H. Note that the operator
M is pseudomonotone rather than monotone (see [20, Example 2]). Let F : H → H
be an operator defined by (Fx)(t) = 0.5x(t), t ∈ [0, 1]. It is easy to see that F is
0.5-strongly monotone and 0.5-Lipschitz continuous. For the experiment, we choose
R = 1.5, r = 1 and k = 1.1. The solution of the (VIP) is x∗(t) = 0. The maximum
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number of iterations 50 is used as a common stopping criterion. Figure 2 shows the
behaviors of Dn = ‖xn(t)− x∗(t)‖ generated by all algorithms under four different
initial values x0(t) = x1(t).
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(a) x0 = x1 = 2 cos(2t)
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(b) x0 = x1 = 4t2
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(c) x0 = x1 = log(3t)
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Figure 2. Numerical results of all algorithms for Example 4.2

Example 4.3. Consider the Hilbert space

H = l2 := {x = (x1, x2, . . . , xi, . . .) |
∞∑
i=1

|xi|2 < +∞}

equipped with inner product

〈x, y〉 =

∞∑
i=1

xiyi, ∀x, y ∈ H

and induced norm ‖x‖ =
√
〈x, x〉, ∀x ∈ H. Let

C := {x = (x1, x2, . . . , xi, . . .) ∈ H : |xi| ≤ 1/i, i = 1, 2, . . . , n, . . .} .
Define an operator M : C → H by

Mx =

(
‖x‖+

1

‖x‖+ ϕ

)
x
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for some ϕ > 0. It can be verified that mappingM is pseudomonotone onH, uniformly
continuous, and sequentially weakly continuous on C but not Lipschitz continuous on
H (see [23] for more details). In the following cases, we take ϕ = 0.5, and H = Rm
for different values of m. In this case, the feasible set C is a box

C =

{
x ∈ Rm :

−1

i
≤ xi ≤

1

i
, i = 1, 2, . . . ,m

}
.

We compare the proposed Algorithms (3.21)–(3.24) with several previously known
strongly convergent algorithms, including the Algorithm 3.1 introduced by Cai, Dong
and Peng [4] (shortly, CDP Alg. 3.1), the Algorithm 3 suggested by Thong, Shehu
and Iyiola [22] (shortly, TSI Alg. 3), and the Algorithm 4 proposed by Reich et al. [17]
(shortly, RTDLD Alg. 4). Take

αn = 1/(n+ 1), f(x) = 0.1x, δ = 2, ` = 0.5, and µ = 0.1

for all algorithms. Choose χ = 0.5/µ for RTDLD Alg. 4. Set

θ = 0.4 and εn = 100/(n+ 1)2

for the suggested algorithms. The numerical performance of Dn = ‖xn+1− xn‖ of all
algorithms with four different dimensions is reported in Fig. 3.
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(b) m = 1000
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(c) m = 10000
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Figure 3. Numerical results of all algorithms for Example 4.3



EFFICIENT EXTRAGRADIENT METHODS 327

Remark 4.1. From Example 4.1–4.3, we have the following observations.

(i) The proposed Algorithms 3.1–3.4 and Algorithms (3.21)–(3.24) are useful and
converge quickly.

(ii) As shown in Figs. 1–3, the stated algorithms have higher accuracy than the
previously known ones [21, 20, 4, 22, 17] under the same stopping conditions.
These results are independent of the size of the dimension and the choice of
initial values. Therefore, our suggested algorithms are efficient and robust.

(iii) Note that the operator M in Example 4.2 is pseudomonotone rather than
monotone. The algorithms proposed in [13, 10] for solving the bilevel mono-
tone variational inequality problem will not be applicable in this case. More-
over, the algorithms proposed in [21, 20] will not be available in Example 4.3
due to the fact that the mapping M involved in this example is uniformly
continuous but not Lipschitz continuous.

(iv) It should be mentioned that Algorithm 3.2 and Algorithm 3.3 are equivalent
in the following case. Indeed, if (wn−χnMwn) ∈ C always holds in the second
step of Algorithm 3.2, then yn = wn − χnMwn and thus zn = wn − χnMyn.
On the other hand, if (wn − χnMwn) ∈ C always holds in Algorithm 3.3,
then zn = wn − χnMyn. In conclusion, the proposed Algorithms 3.2 and 3.3
have the same numerical behavior in the case just described (see Figs. 1–3).

4.2. Application to optimal control problems. Next, we use the proposed al-
gorithms to solve the variational inequality problem (VIP) that appears in optimal
control problems. We recommend readers to refer to [16, 27] for detailed description
of the problem. We compare the suggested iterative schemes (3.21)–(3.24) with some
strongly convergent algorithms in the literature. Two methods used to compare here
are the Algorithm (31) (in short, TLDCR Alg. (31)) introduced by Thong et al. [21]
and the Algorithm (3.39) (in short, TLQ Alg. (3.39)) proposed by Tan, Liu and
Qin [20]. The parameters of all algorithms are set as follows.

• In the proposed Algorithms (3.21)–(3.24), we set N = 100, θ = 0.01, εn =
10−4

(n+1)2 , δ = 1, ` = 0.5, µ = 0.1, αn = 10−4

n+1 , and f(x) = 0.1x. Pick φ = 1.5 for

Algorithm (3.24).
• In the TLDCR Alg. (31), we choose N = 100, µ = 0.1, χ1 = 0.4, φ = 1.5,

and αn = 10−4

n+1 .

• In the TLQ Alg. (3.39), we take N = 100, θ = 0.01, εn = 10−4

(n+1)2 , µ = 0.1,

χ1 = 0.4, αn = 10−4

n+1 , and f(x) = 0.1x.

The initial controls p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping
criterion is either Dn = ‖pn+1 − pn‖ ≤ 10−4, or maximum number of iterations
which is set to 1000.



328 X. QIN, A. PETRUŞEL, B. TAN AND J.C. YAO

Example 4.4 (Control of a harmonic oscillator, see [15]).

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π],

x(0) = 0,

p(t) ∈ [−1, 1].

The exact optimal control of Example 4.4 is known:

p∗(t) =

{
1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;

−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

Figure 4 shows the approximate optimal control and the corresponding trajectories
of the stated Algorithm (3.21).
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Figure 4. Numerical results of the proposed Algorithm (3.21) for Example 4.4

We now consider an example in which the terminal function is not linear.

Example 4.5 (see [3]).

minimize − x1(2) + (x2(2))
2
,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 2],

x1(0) = 0, x2(0) = 0,

p(t) ∈ [−1, 1].

The exact optimal control of Example 4.5 is

p∗(t) =

{
1, if t ∈ [0, 1.2) ;

−1, if t ∈ (1.2, 2].

The approximate optimal control and the corresponding trajectories of the suggested
Algorithm (3.21) are plotted in Fig. 5.
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Figure 5. Numerical results of the proposed Algorithm (3.21) for Example 4.5

Finally, we compare the offered Algorithms (3.21)–(3.24) with TLQ Alg. (3.39)
and TLDCR Alg. (31) for Examples 4.4 and 4.5. Figure 6 presents the numerical
behavior of the error estimate ‖pn+1 − pn‖ with respect to the number of iterations
for all algorithms. In addition, the number of terminated iterations and the execution
time of all algorithms are shown in Table 1.
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Figure 6. Error estimates of all algorithms for Examples 4.4 and 4.5

Remark 4.2. We draw the following observations from Examples 4.4 and 4.5.

(i) The suggested Algorithms (3.21)–(3.24) can be applied to solve optimal con-
trol problems, and they perform well when the terminal function is linear or
nonlinear.

(ii) As shown in Fig. 6 and Table 1, the proposed Algorithms (3.21)–(3.24) per-
form better when the terminal function is linear than when it is nonlinear.
Moreover, the proposed Algorithms (3.21)–(3.24) outperform the existing
methods in the literature [21, 20].



330 X. QIN, A. PETRUŞEL, B. TAN AND J.C. YAO

Table 1. Numerical results of all algorithms for Examples 4.4 and 4.5

Algorithms
Example 4.4 Example 4.5

Iter. Time (s) Dn Iter. Time (s) Dn

Our Alg. (3.21) 90 0.0691 1.00E-04 150 0.0630 9.87E-05
Our Alg. (3.22) 90 0.0600 1.00E-04 158 0.0652 9.84E-05
Our Alg. (3.23) 90 0.0431 1.00E-04 267 0.1969 9.91E-05
Our Alg. (3.24) 62 0.0538 9.89E-05 206 0.1628 6.47E-05
TLQ Alg. (3.39) 190 0.1029 4.74E-05 1000 0.3127 3.29E-03

TLDCR Alg. (31) 130 0.0722 7.58E-05 1000 0.3134 1.24E-03

5. Conclusions

In this paper, we introduced four modified adaptive extragradient-type methods
to solve bilevel variational inequality problems where the mapping involved is pseu-
domonotone and uniformly continuous. Our algorithms are inspired by the subgra-
dient extragradient method, the Tseng’s extragradient method, the projection and
contraction method, and the hybrid steepest descent method. The strong convergence
of the suggested algorithms is established under some suitable conditions imposed on
the parameters. Finally, some numerical experiments are performed to verify the the-
oretical results. The algorithms presented in this paper improved and extended some
known results for solving bilevel optimization problems and variational inequality
problems.
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[2] R.I. Boţ, E.R. Csetnek, P.T. Vuong, The forward-backward-forward method from continuous and

discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces, European J.

Oper. Res., 287(2020), 49-60.
[3] B. Bressan, B. Piccoli, Introduction to the Mathematical Theory of Control, San Francisco,

American Institute of Mathematical Sciences, 2007.

[4] G. Cai, Q.L. Dong, Y. Peng, Strong convergence theorems for solving variational inequality prob-
lems with pseudo-monotone and non-Lipschitz operators, J. Optim. Theory Appl., 188(2021),

447-472.

[5] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational
inequalities in Hilbert space, J. Optim. Theory Appl., 148(2011), 318-335.

[6] S.V. Denisov, V.V. Semenov, L.M. Chabak, Convergence of the modified extragradient method
for variational inequalities with non-Lipschitz operators, Cybernet. Systems Anal., 51(2015),

757-765.

[7] S. Dempe, A. Zemkoho, Bilevel Optimization, Cham, Springer, 2020.
[8] Q.L. Dong, Y.J. Cho, L.L. Zhong, T.M. Rassias, Inertial projection and contraction algorithms

for variational inequalities, J. Global Optim., 70(2018), 687-704.

[9] B.S. He, A class of projection and contraction methods for monotone variational inequalities,
Appl. Math. Optim., 35(1997), 69-76.

[10] D.V. Hieu, A. Moudafi, Regularization projection method for solving bilevel variational inequal-

ity problem, Optim. Lett., 15(2021), 205-229.



EFFICIENT EXTRAGRADIENT METHODS 331

[11] K. Jantakarn, A. Kaewcharoen, A Bregman hybrid extragradient method for solving pseu-

domonotone equilibrium and fixed point problems, J. Nonlinear Funct. Anal., 2022(2022), Ar-

ticle ID 6, pp. 1-17.
[12] G.M. Korpelevich, The extragradient method for finding saddle points and other problems,

Ékonom. i Mat. Metody, 12(1976), 747-756.
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