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 A B S T R A C T

We introduce two extragradient methods that incorporate one-step inertial terms and self-
adaptive step sizes for equilibrium problems in real Hilbert spaces. These methods synergis-
tically combine inertial techniques and relaxation parameters to enhance convergence speed 
while ensuring superior performance in addressing pseudomonotone and Lipschitz continuous 
equilibrium problems. The first method is formulated to achieve weak convergence, whereas 
the second method guarantees strong convergence; both methods feature designed step-size 
adaptation mechanisms that maintain feasibility and efficiency. The proposed methods utilize 
adaptive step sizes that are updated at each iteration based on previous iterations. Convergence 
is demonstrated under mild assumptions, and our findings generalize and extend some related 
results within the existing literature. Lastly, we present numerical experiments that illustrate 
the performance of the proposed methods, including their applications to image restoration 
problems.

. Introduction

Let  be a real Hilbert space endowed with an inner product ⟨⋅ , ⋅⟩ and an induced norm ‖ ⋅ ‖, and let  ⊆  be a nonempty, 
losed, and convex subset. The equilibrium problem aims to identify a solution 𝑥∗ within a subset  of a real Hilbert space  such 
hat this solution satisfies a specified inequality for all elements in . Formally, the problem is defined as follows: assume there 
xists a bifunction  ∶  × → R such that (𝑠, 𝑠) = 0 for any 𝑠 ∈ . The objective is to find an element 𝑥∗ ∈  that satisfies the 
nequality 

(𝑥∗, 𝑠) ≥ 0, for all 𝑠 ∈ . (EP)

Equilibrium problems offer a framework for handling various classical challenges in optimization and mathematical program-
ing, such as variational inequalities, convex programming, optimization with equilibrium constraints, and specific game-theoretic 
odels [1,2]. The equilibrium problem framework is indispensable across various fields, including economics and game theory. 
ash’s seminal work [3] exemplifies how equilibrium can model interactions among competing agents, establishing a foundational 
oncept in these disciplines.
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The auxiliary problem principle, first introduced by Cohen [4] for optimization problems, was subsequently extended to 
variational inequality problems [5]. Mastroeni [6] further applied this principle to equilibrium problems characterized by strongly 
monotone bifunctions. An initial method based on this principle for solving equilibrium problems was proposed by Flåm and 
Antipin [7]. This convergence analysis operates under the assumption that the bifunction  is pseudomonotone and adheres to 
a Lipschitz-type condition. Specifically, there exist positive constants 𝑐1 and 𝑐2 such that, for all 𝑠1, 𝑠2, 𝑠3 ∈ , 

(𝑠1, 𝑠3) ≤ (𝑠1, 𝑠2) + (𝑠2, 𝑠3) + 𝑐1‖𝑠1 − 𝑠2‖
2 + 𝑐2‖𝑠2 − 𝑠3‖

2. (L-type)

The extragradient method is an iterative optimization technique designed to address both variational inequality problems and 
equilibrium problems. Specifically, as delineated in [8], the extragradient method generates two sequences, {𝑥𝑘} and {𝑦𝑘}, in the 
following manner. Initiating from an arbitrary point 𝑥0 within the feasible set , the method updates iteratively as follows: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑘 ∈ ,

𝑦𝑘 = argmin
𝑠∈

{

𝜛(𝑥𝑘, 𝑠) +
1
2
‖𝑥𝑘 − 𝑠‖2

}

,

𝑥𝑘+1 = argmin
𝑠∈

{

𝜛(𝑦𝑘, 𝑠) +
1
2
‖𝑥𝑘 − 𝑠‖2

}

,

(1)

where 𝜛 is a positive parameter. The performance and convergence of the extragradient method are contingent upon the judicious 
selection of the parameter 𝜛, which must satisfy 0 < 𝜛 < min

{

1
2𝑐1

, 1
2𝑐2

}

, where 𝑐1 and 𝑐2 are the Lipschitz constants.  Note that 
the approach described in (1) requires solving the optimization problem on the feasible set twice per iteration. Moreover, it relies 
on a fixed step size, which is determined based on prior knowledge or an estimate of the Lipschitz constant of the bifunction. 
Additionally, the method guarantees only weak convergence in Hilbert spaces.

The extragradient method [9] continues to be one of the most widely utilized techniques for addressing variational inequality 
problems and equilibrium problems. This two-step iterative procedure was designed to overcome the limitations of classical 
projection methods, particularly in non-monotone contexts, by executing two projections in each iteration instead of one. This 
modification significantly enhances both the convergence rate and robustness of the method.  Subsequently, a method known as the 
subgradient extragradient algorithm was introduced by Censor et al. [10–12]. In this approach, the projection onto the feasible set 
in the second step is replaced by a projection onto a half-space (with a formal expression provided). This modification implies that, 
in each iteration, the method only requires one computation of the projection onto the feasible set, which significantly improves 
the computational efficiency of the extragradient algorithm. 

Inertial method [13] represent a class of optimization algorithms that enhance convergence rates by incorporating a memory 
term that utilizes information from prior iterations. Drawing inspiration from Nesterov’s accelerated gradient method [14] and 
the work of Alvarez and Attouch [15]. On the other hand, relaxation method is also widely used by scholars as an acceleration 
technique. Recently, researchers have combined the relaxation technique, the inertial methods, the extragradient algorithm, and 
the subgradient extragradient algorithms to solve equilibrium problems; see, e.g., [16–24]. 

It is noted that the algorithm in [25] are designed to solve monotone equilibrium problems, while the algorithms in [8,16,17,20,
26–30] are intended for pseudomonotone equilibrium problems. As is well known, pseudomonotone bifunctions include monotone 
bifunctions, thus the algorithms mentioned above have a broader range of applicability. On the other hand, researchers have also 
proposed algorithms that do not require any monotonicity to solve equilibrium problems; see, e.g., [31–34].

The preceding discussion leads to the following natural question:

Is it possible to modify the method in (1) by incorporating relaxation parameters and inertial terms to achieve both weak 
and strong convergence when solving equilibrium problems without monotonicity?

In this paper, we give a positive answer to the above question. Specifically, our contributions are as follows:

(1) We propose two new relaxed inertial-type methods for solving the problem (EP) in real Hilbert spaces. We demonstrate that 
the proposed methods converge weakly and strongly, respectively, when the bifunction is pseudomonotone and Lipschitz 
continuous. Additionally, our methods achieve weak and strong convergence independently of the Lipschitz constant of the 
bifunction. Both methods incorporate adaptive step-size mechanisms, ensuring their applicability to a broad range of problem 
settings.

(2) Numerical comparisons of our methods with relevant approaches to equilibrium problems, utilizing test cases derived from 
image restoration problems, demonstrate that our methods are efficient.

The structure of this paper is as follows: In Section 2, we review key definitions and preliminary results that will be utilized 
in subsequent sections. Section 3 is dedicated to analyzing the convergence of the proposed algorithms. In Section 4, we present 
several numerical examples to illustrate the performance of our algorithms. Finally, we give a summary of this paper in Section 5.

2. Preliminaries

This section presents a comprehensive review of the fundamental concepts and results that are employed throughout this paper. 
We denote weak convergence of the sequence {𝑥𝑘} to 𝑥 by 𝑥𝑘 ⇀ 𝑥 and strong convergence by 𝑥𝑘 → 𝑥. The normal cone to the set 
at a point 𝑥 ∈  is represented by 𝑁 (𝑥). Let 𝜘 ∶  → R be a convex function. The subdifferential of 𝜘 at 𝑥 ∈  is denoted by 𝜕𝜘(𝑥). 
The metric projection of a point 𝜐 ∈  onto the set  is defined as: 𝑃 (𝜐 ) = argmin {‖𝜐 − 𝜐 ‖}. Let  be a Hilbert space, and 
1  1 𝜐2∈ 1 2
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let 𝜐1, 𝜐2 ∈  and 𝑐 ∈ R. The following properties hold:

1. ‖𝜐1 + 𝜐2‖2 = ‖𝜐1‖2 + 2⟨𝜐1, 𝜐2⟩ + ‖𝜐2‖2.
2. ‖𝜐1 + 𝜐2‖2 ≤ ‖𝜐1‖2 + 2⟨𝜐2, 𝜐1 + 𝜐2⟩.
3. ‖𝑐𝜐1 + (1 − 𝑐)𝜐2‖2 = 𝑐‖𝜐1‖2 + (1 − 𝑐)‖𝜐2‖2 − 𝑐(1 − 𝑐)‖𝜐1 − 𝜐2‖2.

Definition 2.1 ([35]). Let  ∶  × → R be a bifunction on the set  and 𝜍 > 0 and  is called:
(i) strongly monotone if (𝑠1, 𝑠2) + (𝑠2, 𝑠1) ≤ −𝜍‖𝑠1 − 𝑠2‖2, ∀𝑠1, 𝑠2 ∈ ,
(ii) monotone if (𝑠1, 𝑠2) + (𝑠2, 𝑠1) ≤ 0, ∀𝑠1, 𝑠2 ∈ ,
(iii) strongly pseudomonotone if (𝑠1, 𝑠2) ≥ 0 ⟹ (𝑠2, 𝑠1) ≤ −𝜍‖𝑠1 − 𝑠2‖2, ∀𝑠1, 𝑠2 ∈ ,
(iv) pseudomonotone if (𝑠1, 𝑠2) ≥ 0 ⟹ (𝑠2, 𝑠1) ≤ 0, ∀𝑠1, 𝑠2 ∈ .

Lemma 2.2 ([36]). Let 𝜘 ∶  → R be a lower semicontinuous convex function defined on the set . A point 𝑥 ∈  is characterized as a 
minimizer of the function 𝜘 if and only if

0 ∈ 𝜕𝜘(𝑥) +𝑁 (𝑥),

where 𝜕𝜘(𝑥) denotes the subdifferential of 𝜘 at the point 𝑥, and 𝑁 (𝑥) represents the normal cone to the set  at the point 𝑥.

Lemma 2.3 ([15]). Let {𝑎𝑘} ⊂ [0,+∞), {𝑏𝑘} ⊂ (0, 1), and {𝑐𝑘} ⊂ R be sequences that satisfy the following conditions:
𝑎𝑘+1 ≤ (1 − 𝑏𝑘)𝑎𝑘 + 𝑏𝑘𝑐𝑘, ∀𝑘 ∈ N,

and ∑+∞
𝑘=1 𝑏𝑘 = +∞. If for every subsequence {𝑎𝑘𝑗 } of {𝑎𝑘}, the following conditions hold:
lim sup
𝑗→+∞

𝑐𝑘𝑗 ≤ 0 and lim inf
𝑗→+∞

(𝑎𝑘𝑗+1 − 𝑎𝑘𝑗 ) ≥ 0,

then it follows that lim𝑘→+∞ 𝑎𝑘 = 0.

Lemma 2.4 ([37]). Let {𝑎𝑘} and {𝑏𝑘} denote sequences of non-negative real numbers. If for all 𝑘 ∈ N, 𝑎𝑘+1 ≤ 𝑎𝑘 + 𝑏𝑘 and 
∑+∞

𝑘=1 𝑏𝑘 < +∞, 
then lim𝑘→+∞ 𝑎𝑘 exists.

Lemma 2.5 ([38]). Let  be a real Hilbert space and let {𝑥𝑘} be a sequence in . Assume that there exists a nonempty closed set  ⊂ 
such that:

(i) For every 𝑧 ∈ , lim𝑘→∞ ‖𝑥𝑘 − 𝑧‖ exists.
(ii) Every weak cluster point of the sequence {𝑥𝑘} is contained in the set .

Then, there exists an element 𝑧̄ ∈  such that the sequence {𝑥𝑘} converges weakly to 𝑧̄.

3. Main results

This section presents two new relaxed inertial subgradient extragradient algorithms aimed at addressing the (EP). Both algorithms 
utilize adaptive step-size strategies.  The proposed methods are based on the subgradient extragradient algorithm, the inertial 
method, the relaxation technique, and an adaptive step size strategy. Under appropriate conditions, the proposed algorithms are 
proven to have weak convergence and strong convergence, respectively. A comprehensive, step-by-step description of the first 
algorithm is provided below: 

Assumption 3.1.  In order to establish both weak and strong convergence theorems, we consider the following conditions:
(F1) The solution set of problem (EP), denoted by EP(,), is nonempty.
(F2) The bifunction  is pseudomonotone.
(F3) The bifunction  satisfies a Lipschitz-type condition as defined in (L-type).
(F4) For each fixed 𝑠1 ∈ , the function (𝑠1, ⋅) is convex on .
(F5) For any sequence {𝑦𝑘} ⊂  that converges weakly to 𝑦∗, the following inequality holds:

lim sup
𝑘→+∞

(𝑦𝑘, 𝑠1) ≤ (𝑦∗, 𝑠1), ∀𝑠1 ∈ .

To support our analysis, we examine the sequence {𝜛𝑘}, which is essential for establishing convergence in our iterative scheme. 
This sequence influences the step sizes, thereby ensuring both stability and efficacy. The subsequent lemma demonstrates that {𝜛𝑘}
is well-defined.

Lemma 3.2 ([26, Lemma 3.1]). Let {𝜛𝑘} be defined by (3). Then {𝜛𝑘} converging to 𝜛.
3 
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Algorithm 1 : Weakly Convergent Relaxed Inertial Extragradient Method
1: Initialization: Set 𝑥0, 𝑥1 ∈ , 𝜃 ∈ [0, 1), 𝜛1 > 0, 𝜅 ∈ (0, 1], 𝜏 ∈ (0, 1), and 𝜇 ∈ (0, 1).
2: Select a positive sequence {𝜖𝑘} that satisfies 

∑∞
𝑘=1 𝜖𝑘 < ∞.

3: Iterations: For each 𝑘, perform the following steps:
4: Compute 𝜃𝑘 as: 

0 ≤ 𝜃𝑘 ≤ 𝜃̂𝑘 = min
{

𝜃
2
,

𝜖𝑘
‖𝑥𝑘 − 𝑥𝑘−1‖

}

if 𝑥𝑘 ≠ 𝑥𝑘−1, otherwise 𝜃̂𝑘 = 𝜃
2
. (2)

5: Set 𝑤𝑘 = 𝑥𝑘 + 𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1).
6: Compute 𝑦𝑘 = argmin𝑦∈

{

𝜛𝑘(𝑤𝑘, 𝑦) +
1
2‖𝑤𝑘 − 𝑦‖2

}

.
7: Determine 𝑧𝑘 by finding 𝜔𝑘 ∈ 𝜕2(𝑤𝑘, 𝑦𝑘) such that 𝑤𝑘 −𝜛𝑘𝜔𝑘 − 𝑦𝑘 ∈ 𝑁 (𝑦𝑘), and let

𝑘 = {𝑧 ∈  ∶ ⟨𝑤𝑘 −𝜛𝑘𝜔𝑘 − 𝑦𝑘, 𝑧 − 𝑦𝑘⟩ ≤ 0}.

Then, compute 𝑧𝑘 = argmin𝑦∈𝑘

{

𝜅𝜛𝑘(𝑦𝑘, 𝑦) +
1
2‖𝑤𝑘 − 𝑦‖2

}

.
8: Update 𝑥𝑘+1 = (1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘.
9: Adjust the step size 𝜛𝑘+1 according to the rule: 

𝜛𝑘+1 =

⎧

⎪

⎨

⎪

⎩

min
{

𝜛𝑘,
𝜇
2

[

‖𝑤𝑘−𝑦𝑘‖2+‖𝑧𝑘−𝑦𝑘‖2
]

(𝑤𝑘 ,𝑧𝑘)−(𝑤𝑘 ,𝑦𝑘)−(𝑦𝑘 ,𝑧𝑘)

}

if (𝑤𝑘, 𝑧𝑘) − (𝑤𝑘, 𝑦𝑘) − (𝑦𝑘, 𝑧𝑘) > 0,

𝜛𝑘, otherwise.
(3)

10: Set 𝑘 ∶= 𝑘 + 1, and again conduct the above process.

Remark 3.3.  The following property is essential for the analysis of the convergence behavior of the algorithm.
(i) When the parameters 𝜃 = 0 and 𝜅 = 1, the algorithm simplifies to the standard relaxed extragradient method, as delineated 

in [8].
(ii) By integrating the expression in equation (2) with the constraint 0 ≤ 𝜃𝑘 ≤ 𝜃̂𝑘, we derive the inequality:

𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ 𝜃̂𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ 𝜖𝑘.

 This combining with ∑∞
𝑘=1 𝜖𝑘 < ∞ implies that ∑∞

𝑘=1 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ < ∞. As 𝜖𝑘 approaches zero as 𝑘 → ∞, we obtain
lim

𝑘→+∞
𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ ≤ lim

𝑘→+∞
𝜖𝑘 = 0.

Consequently, the sequence {𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖} is bounded.
To demonstrate the convergence of the sequence generated by Algorithm 1, we will establish a crucial inequality in the 

subsequent lemma that constrains the distance between each iterate 𝑧𝑘 and the solution 𝑥∗ in terms of the previous iterates 𝑤𝑘
and 𝑦𝑘.

Lemma 3.4.  Let {𝑥𝑘} be a sequence generated by Algorithm 1 with the step size rule (3), satisfying Assumption  3.1. Let 𝑥∗ be an arbitrary 
solution to the equilibrium problem. Then, the following inequality holds:

‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑤𝑘 − 𝑥∗‖2 − (1 − 𝜅)‖𝑧𝑘 −𝑤𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

(

‖𝑤𝑘 − 𝑦𝑘‖
2 + ‖𝑧𝑘 − 𝑦𝑘‖

2) .

Proof.  Using the definition of 𝑧𝑘 from Algorithm 1 and applying Lemma  2.2, we have

0 ∈ 𝜕2
{

𝜅𝜛𝑘(𝑦𝑘, ⋅) +
1
2
‖𝑤𝑘 − ⋅‖2

}

(𝑧𝑘) +𝑁𝑘
(𝑧𝑘).

If 𝜐 ∈ 𝜕(𝑦𝑘, 𝑧𝑘), then there exists a vector 𝜐 ∈ 𝑁𝑘
(𝑧𝑘) such that: 𝜅𝜛𝑘𝜐 + 𝑧𝑘 −𝑤𝑘 + 𝜐 = 0. Thus, we have the following relation

⟨𝑤𝑘 − 𝑧𝑘, 𝑦 − 𝑧𝑘⟩ = 𝜅𝜛𝑘⟨𝜐, 𝑦 − 𝑧𝑘⟩ + ⟨𝜐, 𝑦 − 𝑧𝑘⟩.

Since 𝜐 ∈ 𝑁𝑘
(𝑧𝑘), it follows that ⟨𝜐, 𝑦 − 𝑧𝑘⟩ ≤ 0. Hence, 

⟨𝑤𝑘 − 𝑧𝑘, 𝑦 − 𝑧𝑘⟩ ≤ 𝜅𝜛𝑘⟨𝜐, 𝑦 − 𝑧𝑘⟩. (4)

Moreover, since 𝜐 ∈ 𝜕(𝑦𝑘, 𝑧𝑘), we have 
(𝑦𝑘, 𝑦) − (𝑦𝑘, 𝑧𝑘) ≥ ⟨𝜐, 𝑦 − 𝑧𝑘⟩, ∀𝑦 ∈ . (5)

Combining (4) and (5), we obtain 
𝜅𝜛

[

(𝑦 , 𝑦) − (𝑦 , 𝑧 )
]

≥ ⟨𝑤 − 𝑧 , 𝑦 − 𝑧 ⟩, ∀𝑦 ∈  . (6)
𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘

4 
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Since 𝑧𝑘 ∈ 𝑘, it holds that 

⟨𝑤𝑘 − 𝑦𝑘, 𝑧𝑘 − 𝑦𝑘⟩ ≤ 𝜛𝑘⟨𝜔𝑘, 𝑧𝑘 − 𝑦𝑘⟩. (7)

By the definition of the subdifferential, for any 𝑦 ∈ 𝑘, we arrive at 

(𝑤𝑘, 𝑧𝑘) − (𝑤𝑘, 𝑦𝑘) ≥ ⟨𝜔𝑘, 𝑧𝑘 − 𝑦𝑘⟩. (8)

Combining (7) and (8), we obtain 

𝜛𝑘
{

(𝑤𝑘, 𝑧𝑘) − (𝑤𝑘, 𝑦𝑘)
}

≥ ⟨𝑤𝑘 − 𝑦𝑘, 𝑧𝑘 − 𝑦𝑘⟩. (9)

Given that 𝑥∗ ∈ EP(,), substituting 𝑦 = 𝑥∗ into expression (6) gives
𝜅𝜛𝑘(𝑦𝑘, 𝑥∗) − 𝜅𝜛𝑘(𝑦𝑘, 𝑧𝑘) ≥ ⟨𝑤𝑘 − 𝑧𝑘, 𝑥

∗ − 𝑧𝑘⟩.

Using condition (F2), we can simplify this further to the following: 

⟨𝑤𝑘 − 𝑧𝑘, 𝑧𝑘 − 𝑥∗⟩ ≥ 𝜅𝜛𝑘(𝑦𝑘, 𝑧𝑘). (10)

From expression (2), we have the inequality

(𝑤𝑘, 𝑧𝑘) − (𝑤𝑘, 𝑦𝑘) − (𝑦𝑘, 𝑧𝑘) ≤
𝜇
(

‖𝑤𝑘 − 𝑦𝑘‖2 + ‖𝑧𝑘 − 𝑦𝑘‖2
)

2𝜛𝑘+1
.

Multiplying both sides by 𝜛𝑘 > 0, we obtain 

𝜛𝑘(𝑦𝑘, 𝑧𝑘) ≥ 𝜛𝑘(𝑤𝑘, 𝑧𝑘) −𝜛𝑘(𝑤𝑘, 𝑦𝑘) −
𝜛𝑘𝜇

(

‖𝑤𝑘 − 𝑦𝑘‖2 + ‖𝑧𝑘 − 𝑦𝑘‖2
)

2𝜛𝑘+1
. (11)

The combination of inequalities (9) and (10) gives

1
𝜅
⟨𝑤𝑘 − 𝑧𝑘, 𝑧𝑘 − 𝑥∗⟩ ≥ ⟨𝑤𝑘 − 𝑦𝑘, 𝑧𝑘 − 𝑦𝑘⟩ −

𝜛𝑘𝜇
(

‖𝑤𝑘 − 𝑦𝑘‖2 + ‖𝑧𝑘 − 𝑦𝑘‖2
)

2𝜛𝑘+1
.

Now, using the identity
2⟨𝑤𝑘 − 𝑧𝑘, 𝑧𝑘 − 𝑥∗⟩ = ‖𝑤𝑘 − 𝑥∗‖2 − ‖𝑧𝑘 −𝑤𝑘‖

2 − ‖𝑧𝑘 − 𝑥∗‖2,

and the identity
2⟨𝑦𝑘 −𝑤𝑘, 𝑦𝑘 − 𝑧𝑘⟩ = ‖𝑤𝑘 − 𝑦𝑘‖

2 + ‖𝑧𝑘 − 𝑦𝑘‖
2 − ‖𝑤𝑘 − 𝑧𝑘‖

2,

we can derive the following inequality
‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑤𝑘 − 𝑥∗‖2 − (1 − 𝜅)‖𝑧𝑘 −𝑤𝑘‖

2 − ‖𝑤𝑘 − 𝑦𝑘‖
2

− ‖𝑧𝑘 − 𝑦𝑘‖
2 +

𝜛𝑘𝜇
(

‖𝑤𝑘 − 𝑦𝑘‖2 + ‖𝑧𝑘 − 𝑦𝑘‖2
)

𝜛𝑘+1
.

Alternatively, this can be written as:

‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑤𝑘 − 𝑥∗‖2 − (1 − 𝜅)‖𝑧𝑘 −𝑤𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

(‖𝑤𝑘 − 𝑦𝑘‖
2 + ‖𝑧𝑘 − 𝑦𝑘‖

2).

This completes the proof. □

We now present a main theorem that establishes the weak convergence of the sequence {𝑥𝑘} generated by Algorithm 1 to a 
solution of the equilibrium problem.

Theorem 3.5.  Let  ∶  ×  → R satisfy Assumption  3.1. Then, the sequence {𝑥𝑘} generated by Algorithm 1 converges weakly to some 
point 𝑥∗ ∈ EP(,), where 𝑥∗ is the solutions to the equilibrium problem.

Proof.  By the definition of 𝑥𝑘+1, we have
‖𝑥𝑘+1 − 𝑥∗‖ = ‖(1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘 − 𝑥∗‖ = ‖(1 − 𝜏)(𝑤𝑘 − 𝑥∗) + 𝜏(𝑧𝑘 − 𝑥∗)‖.

Using the convexity of the norm, this implies 

‖𝑥𝑘+1 − 𝑥∗‖ ≤ (1 − 𝜏)‖𝑤𝑘 − 𝑥∗‖ + 𝜏‖𝑧𝑘 − 𝑥∗‖. (12)

From the definition of 𝑤𝑘 in the algorithm, we find 

‖𝑤 − 𝑥∗‖ ≤ ‖𝑥 − 𝑥∗‖ + 𝜃 ‖𝑥 − 𝑥 ‖. (13)
𝑘 𝑘 𝑘 𝑘 𝑘−1

5 
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Applying Lemma  3.2, we obtain

lim
𝑘→+∞

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

= 1 − 𝜇 > 0,

which ensures the existence of 𝑁1 ∈ N such that
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

> 0, ∀𝑘 ≥ 𝑁1.

Using Lemma  3.4, we also obtain
‖

‖

𝑧𝑘 − 𝑥∗‖
‖

2 ≤ ‖

‖

𝑤𝑘 − 𝑥∗‖
‖

2 ,

which implies that 
‖

‖

𝑧𝑘 − 𝑥∗‖
‖

≤ ‖

‖

𝑥𝑘 − 𝑥∗‖
‖

+ 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖. (14)

Substituting (13) and (14) into (12) gives
‖𝑥𝑘+1 − 𝑥∗‖ ≤ (1 − 𝜏)

(

‖𝑥𝑘 − 𝑥∗‖ + 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖
)

+ 𝜏
(

‖𝑥𝑘 − 𝑥∗‖ + 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖
)

= ‖𝑥𝑘 − 𝑥∗‖ + 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖.

Finally, applying Lemma  2.4 with 𝑎𝑘 ∶= ‖𝑥𝑘 − 𝑥∗‖ and 𝑏𝑘 ∶= 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖, we conclude that

lim
𝑘→∞

‖𝑥𝑘 − 𝑥∗‖

exists, proving that the sequence {𝑥𝑘} is bounded. Using (13), we obtain

‖𝑤𝑘 − 𝑥∗‖2 ≤
(

‖𝑥𝑘 − 𝑥∗‖ +𝐾1
)2

= ‖𝑥𝑘 − 𝑥∗‖2 + 2𝐾1‖𝑥𝑘 − 𝑥∗‖ +𝐾2
1

≤ ‖𝑥𝑘 − 𝑥∗‖2 +𝐾2, (15)

where 𝐾1 is an upper bound for the inertial term 𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ and 𝐾2 is a positive constant such that 𝐾2 > 0. From Lemma  3.4, 
we also have 

‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑤𝑘 − 𝑥∗‖2 − (1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2

−
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2.

(16)

Combining (15) and (16), we derive 
‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 +𝐾2 − (1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖

2

−
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2.

(17)

To simplify the expression for ‖
‖

𝑥𝑘+1 − 𝑥∗‖
‖

2, we proceed as follows
‖

‖

𝑥𝑘+1 − 𝑥∗‖
‖

2 = ‖

‖

(1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘 − 𝑥∗‖
‖

2

= ‖

‖

‖

(1 − 𝜏)
[

𝑤𝑘 − 𝑥∗
]

+ 𝜏
[

𝑧𝑘 − 𝑥∗
]

‖

‖

‖

2

= (1 − 𝜏) ‖
‖

𝑤𝑘 − 𝑥∗‖
‖

2 + 𝜏 ‖
‖

𝑧𝑘 − 𝑥∗‖
‖

2 − 𝜏(1 − 𝜏)‖𝑧𝑘 −𝑤𝑘‖
2

≤ (1 − 𝜏) ‖
‖

𝑤𝑘 − 𝑥∗‖
‖

2 + 𝜏 ‖
‖

𝑧𝑘 − 𝑥∗‖
‖

2 . (18)

Substituting the inequalities from (15) and (17) into (18), we deduce that
‖

‖

𝑥𝑘+1 − 𝑥∗‖
‖

2 ≤ (1 − 𝜏) ‖
‖

𝑤𝑘 − 𝑥∗‖
‖

2 + 𝜏 ‖
‖

𝑧𝑘 − 𝑥∗‖
‖

2

≤ (1 − 𝜏)‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝜏)𝐾2 + 𝜏‖𝑥𝑘 − 𝑥∗‖2 + 𝜏𝐾2

− 𝜏(1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2 − 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2

− 𝜏
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2.

Thus, the expression simplifies to:

𝜏(1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2 + 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

(‖𝑤𝑘 − 𝑦𝑘‖
2 + ‖𝑧𝑘 − 𝑦𝑘‖

2)

≤ ‖𝑥𝑘 − 𝑥∗‖2 − ‖

‖

𝑥𝑘+1 − 𝑥∗‖
‖

2 +𝐾2. (19)
6 
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Taking the limit in (19) and noting that {‖𝑥𝑘 − 𝑥∗‖2} converges to zero as 𝑘 → ∞, we obtain 
lim

𝑘→+∞
‖

‖

𝑤𝑘 − 𝑧𝑘‖‖ = 0, lim
𝑘→+∞

‖

‖

𝑤𝑘 − 𝑦𝑘‖‖ = 0, lim
𝑘→+∞

‖

‖

𝑧𝑘 − 𝑦𝑘‖‖ = 0. (20)

By Lemma  2.5, it suffices to show that any weak cluster point of {𝑥𝑘} belongs to the solution set EP(,). Let 𝑥̂ be an arbitrary weak 
cluster point of {𝑥𝑘}. Since {𝑥𝑘} is bounded, there exists a subsequence {𝑥𝑘𝑗 } such that 𝑥𝑘𝑗 ⇀ 𝑥̂. Furthermore, by (20), 𝑦𝑘𝑗 ⇀ 𝑥̂ and 
𝑥̂ ∈ . Next, we prove that 𝑥̂ ∈ EP(,). Using (6), we have 

𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑦) ≥ 𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑧𝑘𝑗 ) + ⟨𝑤𝑘𝑗 − 𝑧𝑘𝑗 , 𝑦 − 𝑧𝑘𝑗 ⟩, ∀𝑦 ∈ 𝑘. (21)

Additionally, from (9), we obtain
𝜅𝜛𝑘𝑗

(

(𝑤𝑘𝑗 , 𝑧𝑘𝑗 ) − (𝑤𝑘𝑗 , 𝑦𝑘𝑗 )
)

≥ 𝜅⟨𝑤𝑘𝑗 − 𝑦𝑘𝑗 , 𝑧𝑘𝑗 − 𝑦𝑘𝑗 ⟩.

Moreover, from (11), we have 
𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑧𝑘𝑗 ) ≥ 𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑧𝑘𝑗 ) −𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑦𝑘𝑗 )

−
𝜛𝑘𝑗𝜇

(

‖

‖

‖

𝑤𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2
+ ‖

‖

‖

𝑧𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2
)

2𝜛𝑘𝑗+1
.

(22)

Combining (21) and (22), we obtain
𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑦) ≥ 𝜅𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑧𝑘𝑗 ) − 𝜅𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑦𝑘𝑗 ) + ⟨𝑤𝑘𝑗 − 𝑧𝑘𝑗 , 𝑦 − 𝑧𝑘𝑗 ⟩

−
𝜛𝑘𝑗𝜇

‖

‖

‖

𝑤𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2

2𝜛𝑘𝑗+1
−

𝜛𝑘𝑗𝜇
‖

‖

‖

𝑧𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2

2𝜛𝑘𝑗+1
.

By simplifying further using (22), we conclude that
𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑦) ≥ 𝜅⟨𝑤𝑘𝑗 − 𝑦𝑘𝑗 , 𝑧𝑘𝑗 − 𝑦𝑘𝑗 ⟩ + ⟨𝑤𝑘𝑗 − 𝑧𝑘𝑗 , 𝑦 − 𝑧𝑘𝑗 ⟩

−
𝜛𝑘𝑗𝜇

‖

‖

‖

𝑤𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2

2𝜛𝑘𝑗+1
−

𝜛𝑘𝑗𝜇
‖

‖

‖

𝑧𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2

2𝜛𝑘𝑗+1
.

Here, 𝑦 is an arbitrary element of the set 𝑘. From (20), and the boundedness of {𝑥𝑘𝑗 }, the right-hand side tends to zero. Given 
𝜛𝑘𝑗 > 0, condition (F5), and 𝑦𝑘𝑗 ⇀ 𝑥̂, we deduce:

0 ≤ lim sup
𝑗→∞

(𝑦𝑘𝑗 , 𝑦) ≤ (𝑥̂, 𝑦), ∀𝑦 ∈ 𝑘.

Thus, (𝑥̂, 𝑦) ≥ 0 for all 𝑦 ∈ , implying that 𝑥̂ ∈ EP(,). Therefore, we have established the following:
1. For every 𝑥∗ ∈ EP(,), lim𝑘→∞ ‖𝑥𝑘 − 𝑥∗‖2 exists;
2. Every weak cluster point of {𝑥𝑘} lies in EP(,).

By Lemma  2.5, the sequence {𝑥𝑘} converges weakly to 𝑥∗ ∈ EP(,). □

Next, we present another relaxed inertial subgradient extragradient algorithm designed to address the equilibrium problem (EP). 
A comprehensive, step-by-step elucidation of the second algorithm is provided below:

Theorem 3.6.  Let  ∶  ×  → R satisfy Assumption  3.1. Then, the sequence {𝑥𝑘} generated by Algorithm 2 converges strongly to an 
element 𝑥∗ ∈ EP(,), where 𝑥∗ is the projection of the origin onto the set of solutions to the equilibrium problem.

Proof.  We divide the proof into four claims.
Claim 1: The sequence {𝑥𝑘} is bounded.

From (23), we have 

lim
𝑘→∞

𝜃𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖ = lim
𝑘→∞

𝜖𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖ = 0. (24)

Using the definition of {𝑤𝑘} and inequality (24), we have
‖

‖

𝑤𝑘 − 𝑥∗‖
‖

= ‖

‖

𝑥𝑘 + 𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝛽𝑘𝑥𝑘 − 𝜃𝑘𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝑥∗‖
‖

= ‖

‖

(1 − 𝛽𝑘)(𝑥𝑘 − 𝑥∗) + (1 − 𝛽𝑘)𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝛽𝑘𝑥
∗
‖

‖

≤ (1 − 𝛽𝑘) ‖‖𝑥𝑘 − 𝑥∗‖
‖

+ (1 − 𝛽𝑘)𝜃𝑘 ‖‖𝑥𝑘 − 𝑥𝑘−1‖‖ + 𝛽𝑘 ‖‖𝑥
∗
‖

‖

≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝛽𝑘𝑀1, (25)

where

(1 − 𝛽𝑘)
𝜃𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖ + ‖

‖

𝑥∗‖
‖

≤ 𝑀1.
𝛽𝑘

7 



H.u. Rehman et al. Communications in Nonlinear Science and Numerical Simulation 146 (2025) 108795 
Algorithm 2 : Strongly Convergent Relaxed Inertial Extragradient Method
1: Initialize: Let 𝑥0, 𝑥1 ∈ , 𝜃 ∈ [0, 1), 𝜛1 > 0, 𝜅 ∈ (0, 1], 𝜏 ∈ (0, 1), and 𝜇 ∈ (0, 1).
2: Select two positive sequences {𝛽𝑘} ⊂ (0, 1) and {𝜖𝑘} such that 

lim
𝑘→+∞

𝛽𝑘 = 0,
+∞
∑

𝑘=1
𝛽𝑘 = +∞, and lim

𝑘→+∞

𝜖𝑘
𝛽𝑘

= 0. (23)

3: Iterations: For each 𝑘, perform the following steps:
4: Compute 𝜃𝑘 as

0 ≤ 𝜃𝑘 ≤ 𝜃̂𝑘 = min
{

𝜃
2
,

𝜖𝑘
‖𝑥𝑘 − 𝑥𝑘−1‖

}

if 𝑥𝑘 ≠ 𝑥𝑘−1, otherwise 𝜃̂𝑘 = 𝜃
2
.

5: Compute 𝑤𝑘 = (1 − 𝛽𝑘)
[

𝑥𝑘 + 𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1)
]

.

6: Compute 𝑦𝑘 = argmin𝑦∈
{

𝜛𝑘(𝑤𝑘, 𝑦) +
1
2‖𝑤𝑘 − 𝑦‖2

}

.
7: Compute 𝑧𝑘 such that 𝜔𝑘 ∈ 𝜕2(𝑤𝑘, 𝑦𝑘) satisfies 𝑤𝑘 −𝜛𝑘𝜔𝑘 − 𝑦𝑘 ∈ 𝑁 (𝑦𝑘), and 𝑘 = {𝑧 ∈  ∶ ⟨𝑤𝑘 −𝜛𝑘𝜔𝑘 − 𝑦𝑘, 𝑧− 𝑦𝑘⟩ ≤ 0}, then 
compute

𝑧𝑘 = argmin
𝑦∈𝑘

{

𝜅𝜛𝑘(𝑦𝑘, 𝑦) +
1
2
‖𝑤𝑘 − 𝑦‖2

}

.

8: Compute 𝑥𝑘+1 = (1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘.
9: Update the step size rule:

𝜛𝑘+1 =

⎧

⎪

⎨

⎪

⎩

min
{

𝜛𝑘,
𝜇
2

[

‖𝑤𝑘−𝑦𝑘‖2+‖𝑧𝑘−𝑦𝑘‖2
]

(𝑤𝑘 ,𝑧𝑘)−(𝑤𝑘 ,𝑦𝑘)−(𝑦𝑘 ,𝑧𝑘)

}

if (𝑤𝑘, 𝑧𝑘) − (𝑤𝑘, 𝑦𝑘) − (𝑦𝑘, 𝑧𝑘) > 0,

𝜛𝑘, otherwise.

10: Set 𝑘 ∶= 𝑘 + 1, and again conduct the above process.

By applying Lemma  3.4, we obtain
‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑤𝑘 − 𝑥∗‖2 − (1 − 𝜅)‖𝑧𝑘 −𝑤𝑘‖

2

−
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2. (26)

According to Lemma  3.2, we have

lim
𝑘→∞

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

= 1 − 𝜇 > 0.

This implies the existence of a natural number 𝑁2 ∈ N such that
1 −

𝜇𝜛𝑘
𝜛𝑘+1

> 0, ∀𝑘 ≥ 𝑁2.

Using (26), we obtain
‖

‖

𝑧𝑘 − 𝑥∗‖
‖

≤ ‖

‖

𝑤𝑘 − 𝑥∗‖
‖

≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝛽𝑘𝑀1.

By the definition of {𝑥𝑘+1}, we have
‖

‖

𝑥𝑘+1 − 𝑥∗‖
‖

= ‖

‖

(1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘 − 𝑥∗‖
‖

= ‖

‖

‖

(1 − 𝜏)
[

𝑤𝑘 − 𝑥∗
]

+ 𝜏
[

𝑧𝑘 − 𝑥∗
]

‖

‖

‖

≤ (1 − 𝜏) ‖
‖

𝑤𝑘 − 𝑥∗‖
‖

+ 𝜏 ‖
‖

𝑧𝑘 − 𝑥∗‖
‖

.

The expression for (1 − 𝜏) ‖
‖

𝑤𝑘 − 𝑥∗‖
‖

 is given by
(1 − 𝜏) ‖

‖

𝑤𝑘 − 𝑥∗‖
‖

≤ (1 − 𝜏)
(

(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝛽𝑘𝑀1
)

= (1 − 𝜏)(1 − 𝛽𝑘) ‖‖𝑥𝑘 − 𝑥∗‖
‖

+ (1 − 𝜏)𝛽𝑘𝑀1.

Substituting the bounds for ‖𝑤𝑘 − 𝑥∗‖ and ‖𝑧𝑘 − 𝑥∗‖, we obtain
‖𝑥𝑘+1 − 𝑥∗‖ ≤ (1 − 𝜏)(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + (1 − 𝜏)𝛽𝑘𝑀1

+ 𝜏(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝜏𝛽𝑘𝑀1.

To simplify the coefficients for ‖𝑥𝑘 − 𝑥∗‖, we compute
(1 − 𝜏)(1 − 𝛽 ) + 𝜏(1 − 𝛽 ) = (1 − 𝛽 )((1 − 𝜏) + 𝜏) = 1 − 𝛽 .
𝑘 𝑘 𝑘 𝑘

8 
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Similarly, for the coefficients of 𝑀1, we have
(1 − 𝜏)𝛽𝑘 + 𝜏𝛽𝑘 = 𝛽𝑘((1 − 𝜏) + 𝜏) = 𝛽𝑘.

Thus, the expression simplifies to
‖𝑥𝑘+1 − 𝑥∗‖ ≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝛽𝑘𝑀1.

From the above expression, we obtain
‖𝑥𝑘+1 − 𝑥∗‖ ≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖ + 𝛽𝑘𝑀1

≤ max
{

‖𝑥𝑘 − 𝑥∗‖,𝑀1
}

⋮

≤ max
{

‖𝑥0 − 𝑥∗‖,𝑀1
}

.

Hence, we conclude that the sequence {𝑥𝑘} is bounded.
Claim 2: 

𝜏(1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2 + 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 + 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2

≤ ‖𝑥𝑘 − 𝑥∗‖2 − ‖𝑥𝑘+1 − 𝑥∗‖2 + 𝛽𝑘𝑀2.

Using (25), we deduce that
‖𝑤𝑘 − 𝑥∗‖2 ≤ (1 − 𝛽𝑘)2‖𝑥𝑘 − 𝑥∗‖2 + 𝛽2𝑘𝑀

2
1 + 2𝑀1𝛽𝑘(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖

≤ ‖𝑥𝑘 − 𝑥∗‖2 + 𝛽𝑘
[

𝛽𝑘𝑀
2
1 + 2𝑀1(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖

]

≤ ‖𝑥𝑘 − 𝑥∗‖2 + 𝛽𝑘𝑀2, (27)

where 𝑀2 > 0. Furthermore, from Lemma  3.4 and (27), we have 
‖𝑧𝑘 − 𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 + 𝛽𝑘𝑀2 − (1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖

2

−
(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 −

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2.

(28)

Given the definition of 𝑥𝑘+1, we find
‖𝑥𝑘+1 − 𝑥∗‖2 = ‖(1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘 − 𝑥∗‖2

= ‖(1 − 𝜏)
[

𝑤𝑘 − 𝑥∗
]

+ 𝜏
[

𝑧𝑘 − 𝑥∗
]

‖

2

= (1 − 𝜏)‖𝑤𝑘 − 𝑥∗‖2 + 𝜏‖𝑧𝑘 − 𝑥∗‖2 − 𝜏(1 − 𝜏)‖𝑧𝑘 −𝑤𝑘‖
2

≤ (1 − 𝜏)‖𝑤𝑘 − 𝑥∗‖2 + 𝜏‖𝑧𝑘 − 𝑥∗‖2. (29)

To simplify ‖𝑥𝑘+1 − 𝑥∗‖2, we substitute ‖𝑤𝑘 − 𝑥∗‖2 from (27) and ‖𝑧𝑘 − 𝑥∗‖2 from (28) into (29), we obtain
‖𝑥𝑘+1 − 𝑥∗‖2 ≤ (1 − 𝜏)‖𝑤𝑘 − 𝑥∗‖2 + 𝜏‖𝑧𝑘 − 𝑥∗‖2

≤ (1 − 𝜏)‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝜏)𝛽𝑘𝑀2 + 𝜏‖𝑥𝑘 − 𝑥∗‖2 + 𝜏𝛽𝑘𝑀2

− 𝜏(1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2 − 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

(‖𝑤𝑘 − 𝑦𝑘‖
2 + ‖𝑧𝑘 − 𝑦𝑘‖

2).

Thus, the final expression is:

𝜏(1 − 𝜅)‖𝑤𝑘 − 𝑧𝑘‖
2 + 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑤𝑘 − 𝑦𝑘‖
2 + 𝜏

(

1 −
𝜇𝜛𝑘
𝜛𝑘+1

)

‖𝑧𝑘 − 𝑦𝑘‖
2

≤ ‖𝑥𝑘 − 𝑥∗‖2 − ‖𝑥𝑘+1 − 𝑥∗‖2 + 𝛽𝑘𝑀2.

Claim 3: 

‖𝑥𝑘+1 − 𝑥∗‖2 ≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖2 + 𝛽𝑘
[

𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ +
𝜃𝑘
𝛽𝑘

‖𝑥𝑘 − 𝑥𝑘−1‖

+ 2(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖
𝜃𝑘
𝛽𝑘

‖𝑥𝑘 − 𝑥𝑘−1‖

+ 2‖𝑥∗‖‖𝑤𝑘 − 𝑥𝑘+1‖ + 2⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩
]

.

Using the value of {𝑤𝑘}, we have
‖𝑤𝑘 − 𝑥∗‖2 = ‖

‖

𝑥𝑘 + 𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝛽𝑘𝑥𝑘 − 𝜃𝑘𝛽𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝑥∗‖
‖

2

= ‖

‖

(1 − 𝛽𝑘)(𝑥𝑘 − 𝑥∗) + (1 − 𝛽𝑘)𝜃𝑘(𝑥𝑘 − 𝑥𝑘−1) − 𝛽𝑘𝑥
∗
‖

‖

2

≤ ‖(1 − 𝛽 )(𝑥 − 𝑥∗) + (1 − 𝛽 )𝜃 (𝑥 − 𝑥 )‖2

‖ 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘−1 ‖

9 
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+ 2𝛽𝑘⟨−𝑥∗, 𝑤𝑘 − 𝑥∗⟩

= (1 − 𝛽𝑘)2‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝛽𝑘)2𝜃2𝑘‖𝑥𝑘 − 𝑥𝑘−1‖
2

+ 2𝜃𝑘(1 − 𝛽𝑘)2‖𝑥𝑘 − 𝑥∗‖‖𝑥𝑘 − 𝑥𝑘−1‖ + 2𝛽𝑘⟨−𝑥∗, 𝑤𝑘 − 𝑥𝑘+1⟩

+ 2𝛽𝑘⟨−𝑥∗, 𝑥𝑘+1 − 𝑥∗⟩

≤ (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖2 + 𝜃2𝑘‖𝑥𝑘 − 𝑥𝑘−1‖
2 + 2𝜃𝑘(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖‖𝑥𝑘 − 𝑥𝑘−1‖

+ 2𝛽𝑘‖𝑥∗‖‖𝑤𝑘 − 𝑥𝑘+1‖ + 2𝛽𝑘⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩

= (1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖2 + 𝛽𝑘
[

𝜃𝑘‖𝑥𝑘 − 𝑥𝑘−1‖ +
𝜃𝑘
𝛽𝑘

‖𝑥𝑘 − 𝑥𝑘−1‖

+2(1 − 𝛽𝑘)‖𝑥𝑘 − 𝑥∗‖
𝜃𝑘
𝛽𝑘

‖𝑥𝑘 − 𝑥𝑘−1‖

+2‖𝑥∗‖‖𝑤𝑘 − 𝑥𝑘+1‖ + 2⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩
]

. (30)

By applying expression (29), we obtain 

‖𝑥𝑘+1 − 𝑥∗‖2 ≤ (1 − 𝜏)‖𝑤𝑘 − 𝑥∗‖2 + 𝜏‖𝑧𝑘 − 𝑥∗‖2. (31)

Using expressions (30), (31), and the inequality ‖𝑧𝑘 − 𝑥∗‖ ≤ ‖𝑤𝑘 − 𝑥∗‖, we derive that the required inequality.
Claim 4: The sequence ‖

‖

𝑥𝑘 − 𝑥∗‖
‖

 converges to zero.
Note that

‖

‖

𝑥𝑘+1 − 𝑥∗‖
‖

2 ≤ (1 − 𝛽𝑘) ‖‖𝑥𝑘 − 𝑥∗‖
‖

2 + 𝛽𝑘

[

𝜃𝑘 ‖‖𝑥𝑘 − 𝑥𝑘−1‖‖ +
𝜃𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖

+2(1 − 𝛽𝑘) ‖‖𝑥𝑘 − 𝑥∗‖
‖

𝜃𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖ + 2 ‖
‖

𝑥∗‖
‖

‖

‖

𝑤𝑘 − 𝑥𝑘+1‖‖ + 2⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩
]

.

Now, define

𝑎𝑘 ∶= ‖

‖

𝑥𝑘 − 𝑥∗‖
‖

2

and

𝑐𝑘 ∶= 𝜃𝑘 ‖‖𝑥𝑘 − 𝑥𝑘−1‖‖ +
𝜃𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖ + 2(1 − 𝛽𝑘) ‖‖𝑥𝑘 − 𝑥∗‖
‖

𝜃𝑘
𝛽𝑘

‖

‖

𝑥𝑘 − 𝑥𝑘−1‖‖

+ 2 ‖
‖

𝑥∗‖
‖

‖

‖

𝑤𝑘 − 𝑥𝑘+1‖‖ + 2⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩.

Thus, Claim 4 can be restated as follows:

𝑎𝑘+1 ≤ (1 − 𝛽𝑘)𝑎𝑘 + 𝛽𝑘𝑐𝑘.

According to Lemma  2.3, it suffices to show that

lim sup
𝑗→+∞

𝑐𝑘𝑗 ≤ 0

for every subsequence {𝑎𝑘𝑗 } of {𝑎𝑘} that satisfies

lim inf
𝑗→+∞

(

𝑎𝑘𝑗+1 − 𝑎𝑘𝑗
)

≥ 0.

This is equivalent to demonstrating that

lim sup
𝑗→+∞

⟨

𝑥∗, 𝑥∗ − 𝑥𝑘𝑗+1
⟩

≤ 0

for every subsequence {‖‖
‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

} of {‖
‖

𝑥𝑘 − 𝑥∗‖
‖

} that satisfies

lim inf
𝑗→+∞

(

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

− ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

)

≥ 0.

Assume that {‖‖
‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

} is a subsequence of {‖
‖

𝑥𝑘 − 𝑥∗‖
‖

} satisfying

lim inf
𝑗→+∞

(

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

− ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

)

≥ 0.

Then we have

lim inf
𝑗→+∞

(

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

2
− ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

2
)

= lim inf
𝑗→+∞

(

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

− ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

)(

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

+ ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

)

≥ 0.
10 
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It follows from Claim 2 that

lim sup
𝑗→+∞

[

𝜏(1 − 𝜅) ‖‖
‖

𝑤𝑘𝑗 − 𝑧𝑘𝑗
‖

‖

‖

2
+ 𝜏

(

1 −
𝜇𝜛𝑘𝑗

𝜛𝑘𝑗+1

)

(

‖

‖

‖

𝑤𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2
+ ‖

‖

‖

𝑧𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

2
)

]

≤ lim sup
𝑗→+∞

[

‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

2
− ‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

2
+ 𝛽𝑘𝑗𝑀2

]

= − lim inf
𝑗→+∞

[

‖

‖

‖

𝑥𝑘𝑗+1 − 𝑥∗‖‖
‖

2
− ‖

‖

‖

𝑥𝑘𝑗 − 𝑥∗‖‖
‖

2
]

≤ 0.

This implies that 
lim

𝑗→+∞
‖

‖

‖

𝑤𝑘𝑗 − 𝑧𝑘𝑗
‖

‖

‖

= 0, lim
𝑗→+∞

‖

‖

‖

𝑤𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

= 0, lim
𝑗→+∞

‖

‖

‖

𝑧𝑘𝑗 − 𝑦𝑘𝑗
‖

‖

‖

= 0. (32)

Moreover, the following relationship is established:
‖𝑤𝑘𝑗 − 𝑥𝑘𝑗 ‖ = ‖𝑥𝑘𝑗 + 𝜃𝑘𝑗 (𝑥𝑘𝑗 − 𝑥𝑘𝑗−1) − 𝛽𝑘𝑗

[

𝑥𝑘𝑗 + 𝜃𝑘𝑗 (𝑥𝑘𝑗 − 𝑥𝑘𝑗−1)
]

− 𝑥𝑘𝑗 ‖

≤ 𝜃𝑘𝑗 ‖𝑥𝑘𝑗 − 𝑥𝑘𝑗−1‖ + 𝛽𝑘𝑗 ‖𝑥𝑘𝑗 ‖ + 𝜃𝑘𝑗 𝛽𝑘𝑗 ‖𝑥𝑘𝑗 − 𝑥𝑘𝑗−1‖

= 𝛽𝑘𝑗
𝜃𝑘𝑗
𝛽𝑘𝑗

‖𝑥𝑘𝑗 − 𝑥𝑘𝑗−1‖ + 𝛽𝑘𝑗 ‖𝑥𝑘𝑗 ‖ + 𝛽2𝑘𝑗
𝜃𝑘𝑗
𝛽𝑘𝑗

‖𝑥𝑘𝑗 − 𝑥𝑘𝑗−1‖ ⟶ 0. (33)

The convergence ‖‖
‖

𝑧𝑘𝑗 −𝑤𝑘𝑗
‖

‖

‖

→ 0 implies that

lim
𝑗→+∞

‖

‖

‖

𝑧𝑘𝑗 − 𝑥𝑘𝑗
‖

‖

‖

= 0.

Given the recurrence relation
𝑥𝑘+1 = (1 − 𝜏)𝑤𝑘 + 𝜏𝑧𝑘,

for some 𝜏 ∈ (0, 1), we can express 𝑥𝑘𝑗+1 in terms of 𝑤𝑘𝑗  and 𝑧𝑘𝑗  as follows:

‖𝑤𝑘𝑗 − 𝑥𝑘𝑗+1‖ =
‖

‖

‖

‖

𝑤𝑘𝑗 −
[

(1 − 𝜏)𝑤𝑘𝑗 + 𝜏𝑧𝑘𝑗
]

‖

‖

‖

‖

= ‖

‖

‖

𝜏(𝑤𝑘𝑗 − 𝑧𝑘𝑗 )
‖

‖

‖

= 𝜏‖𝑤𝑘𝑗 − 𝑧𝑘𝑗 ‖.

Since it is given that lim𝑗→∞ ‖𝑤𝑘𝑗 − 𝑧𝑘𝑗 ‖ = 0, by the properties of limits, we conclude that
lim
𝑗→∞

‖𝑤𝑘𝑗 − 𝑥𝑘𝑗+1‖ = 𝜏 ⋅ 0 = 0.

Using the definition 𝑥𝑘𝑗+1 = (1 − 𝜏)𝑤𝑘𝑗 + 𝜏𝑧𝑘𝑗 , we have

‖𝑥𝑘𝑗 − 𝑥𝑘𝑗+1‖ =
‖

‖

‖

‖

𝑥𝑘𝑗 −
[

(1 − 𝜏)𝑤𝑘𝑗 + 𝜏𝑧𝑘𝑗
]

‖

‖

‖

‖

.

By applying the triangle inequality, we obtain
‖𝑥𝑘𝑗 − 𝑥𝑘𝑗+1‖ ≤ ‖𝑥𝑘𝑗 −𝑤𝑘𝑗 ‖ + 𝜏‖𝑤𝑘𝑗 − 𝑧𝑘𝑗 ‖.

Since lim𝑗→∞ ‖𝑥𝑘𝑗 −𝑤𝑘𝑗 ‖ = 0 and lim𝑗→∞ ‖𝑤𝑘𝑗 − 𝑧𝑘𝑗 ‖ = 0, it follows that
lim
𝑗→∞

‖𝑥𝑘𝑗 − 𝑥𝑘𝑗+1‖ = 0 + 𝜏 ⋅ 0 = 0.

Next, since the sequence {𝑥𝑘} is bounded, there exists a subsequence {𝑥𝑘𝑗 } of {𝑥𝑘} such that 𝑥𝑘𝑗 ⇀ 𝑥̂. From expression (33), it 
follows that {𝑤𝑘𝑗 } weakly converges to 𝑥̂ ∈ . Our next goal is to prove that 𝑥̂ ∈ EP(,). Using expression (6), we obtain the 
inequality 

𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑦) ≥ 𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑧𝑘𝑗 ) + ⟨𝑤𝑘𝑗 − 𝑧𝑘𝑗 , 𝑦 − 𝑧𝑘𝑗 ⟩, ∀𝑦 ∈ 𝑘. (34)

Additionally, from (9), we have
𝜅𝜛𝑘𝑗

{

(𝑤𝑘𝑗 , 𝑧𝑘𝑗 ) − (𝑤𝑘𝑗 , 𝑦𝑘𝑗 )
}

≥ 𝜅⟨𝑤𝑘𝑗 − 𝑦𝑘𝑗 , 𝑧𝑘𝑗 − 𝑦𝑘𝑗 ⟩.

Moreover, from (11), we obtain the following inequality:
𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑧𝑘𝑗 ) ≥ 𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑧𝑘𝑗 ) −𝜛𝑘𝑗(𝑤𝑘𝑗 , 𝑦𝑘𝑗 )

−
𝜛𝑘𝑗𝜇

(

‖𝑤𝑘𝑗 − 𝑦𝑘𝑗 ‖
2 + ‖𝑧𝑘𝑗 − 𝑦𝑘𝑗 ‖

2
)

2𝜛𝑘𝑗+1
. (35)

Combining expressions (34) and (35), we obtain
𝜅𝜛 (𝑦 , 𝑦) ≥ 𝜅𝜛 (𝑤 , 𝑧 ) − 𝜅𝜛 (𝑤 , 𝑦 ) + ⟨𝑤 − 𝑧 , 𝑦 − 𝑧 ⟩
𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗 𝑘𝑗

11 
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−
𝜛𝑘𝑗𝜇‖𝑤𝑘𝑗 − 𝑦𝑘𝑗 ‖

2

2𝜛𝑘𝑗+1
−

𝜛𝑘𝑗𝜇‖𝑧𝑘𝑗 − 𝑦𝑘𝑗 ‖
2

2𝜛𝑘𝑗+1
.

By further simplification using (35), we find that

𝜅𝜛𝑘𝑗(𝑦𝑘𝑗 , 𝑦) ≥ 𝜅⟨𝑤𝑘𝑗 − 𝑦𝑘𝑗 , 𝑧𝑘𝑗 − 𝑦𝑘𝑗 ⟩ + ⟨𝑤𝑘𝑗 − 𝑧𝑘𝑗 , 𝑦 − 𝑧𝑘𝑗 ⟩

−
𝜛𝑘𝑗𝜇‖𝑤𝑘𝑗 − 𝑦𝑘𝑗 ‖

2

2𝜛𝑘𝑗+1
−

𝜛𝑘𝑗𝜇‖𝑧𝑘𝑗 − 𝑦𝑘𝑗 ‖
2

2𝜛𝑘𝑗+1
.

Here, 𝑦 is an arbitrary element of the set 𝑘. From expressions (32) and the boundedness of {𝑥𝑘𝑗 }, the right-hand side approaches 
zero. Given that 𝜛𝑘𝑗 > 0, condition (F5), and 𝑦𝑘𝑗 ⇀ 𝑥̂, we conclude that

0 ≤ lim sup
𝑗→∞

(𝑦𝑘𝑗 , 𝑦) ≤ (𝑥̂, 𝑦), ∀𝑦 ∈ 𝑘.

This implies that (𝑥̂, 𝑦) ≥ 0 for all 𝑦 ∈ , and hence 𝑥̂ ∈ EP(,). Next, we have 

lim sup
𝑘→+∞

⟨𝑥∗, 𝑥∗ − 𝑥𝑘⟩ = lim
𝑗→+∞

⟨𝑥∗, 𝑥∗ − 𝑥𝑘𝑗 ⟩ = ⟨𝑥∗, 𝑥∗ − 𝑥̂⟩ ≤ 0. (36)

Using the fact that lim𝑘→∞ ‖𝑥𝑘+1 − 𝑥𝑘‖ = 0, we deduce from (36) that

lim sup
𝑘→∞

⟨𝑥∗, 𝑥∗ − 𝑥𝑘+1⟩ ≤ lim sup
𝑘→∞

⟨𝑥∗, 𝑥∗ − 𝑥𝑘⟩ + lim sup
𝑘→∞

⟨𝑥∗, 𝑥𝑘 − 𝑥𝑘+1⟩

≤ 0.

Combining Claim 3 with Lemma  2.3, we observe that 𝑥𝑘 → 𝑥∗ as 𝑘 → +∞. Thus, the proof of Theorem  3.6 is completed. □

4. Numerical experiments

In this section, we present some computational experiments to assess and compare the performance of the methodologies 
presented in Section 3 with other related algorithms. Additionally, we investigate and analyze the influence of varying control 
parameters on their numerical efficiency of the proposed methods. Our experiments were conducted using MATLAB R2022b on a 
Lenovo laptop equipped with a Core i9-13900H 2.60 GHz processor and 32 GB of RAM. All comparative experiments were carried 
out under the following parameter settings:

1. For Algorithm 3.1 in [17] (in short iPEGM), we set 𝜛 = 1
10𝑐1

, 𝜃 = 0.12, 𝐷𝑘 = max{‖𝑥𝑘+1 − 𝑦𝑘‖, ‖𝑥𝑘+1 −𝑤𝑘‖}.

2. For Algorithm 2 in [19] (in short iSEGM), we choose 𝜛1 = 0.60, 𝛼𝑘 = 0.20, 𝜇 = 0.20, 𝐷𝑘 = ‖𝑤𝑘 − 𝑦𝑘‖.
3. For Algorithm 1 in [18] (in short iEGM), we select 𝜛 = 1

4𝑐1
, 𝜃 = 0.60, 𝜖𝑘 = 1

𝑘2
, 𝐷𝑘 = ‖𝑤𝑘 − 𝑦𝑘‖.

4. For Algorithm 1 (in short iREGM), we pick 𝜛1 = 0.65, 𝜃 = 0.60, 𝜇 = 0.44, 𝜅 = 0.75, 𝜏 = 0.75, 𝜖𝑘 = 1
𝑘2
, 𝐷𝑘 = ‖𝑤𝑘 − 𝑦𝑘‖2.

5. For Algorithm 3 in [18] (in short iMEGM), we select 𝜛 = 1
max{4𝑐1 ,4𝑐2}

, 𝜃 = 0.60, 𝜖𝑘 = 1
𝑘2
, 𝛾𝑘 = 1

5(𝑘+2) , 𝛽𝑘 = 5
10 (1 − 𝛾𝑘), 𝐷𝑘 =

‖𝑤𝑘 − 𝑦𝑘‖2.
6. For Algorithm 3.1 in [24] (in short iSMEGM), we set 𝜛1 = 0.60, 𝜃 = 0.60, 𝜇 = 0.33, 𝜖𝑘 = 1

𝑘2
, 𝛽𝑘 = 1

5(𝑘+2) , 𝐷𝑘 = ‖𝑤𝑘 − 𝑦𝑘‖2, 𝑝𝑘 =
100

(𝑘+1)2 .

7. For Algorithm 2 (in short iRSMEGM), we choose 𝜛1 = 0.65, 𝜃 = 0.60, 𝜇 = 0.44, 𝜅 = 0.825, 𝜏 = 0.825, 𝜖𝑘 = 1
𝑘2
, 𝛽𝑘 = 1

5(𝑘+2) , 𝐷𝑘 =
‖𝑤𝑘 − 𝑦𝑘‖2.

Example 4.1.  To illustrate the effectiveness of our proposed Algorithm 1, we apply it to an image restoration problem. In this 
setting, each image consists of 𝐷 ∶= 𝑀 ×𝑁 pixels, with each pixel’s intensity value ranging between [0, 255], representing standard 
grayscale levels. We therefore model this setup in the real Hilbert space R𝐷, where 𝐷 corresponds to the total number of pixels, 
and endow this space with the Euclidean norm ‖ ⋅ ‖. We define the feasible set for pixel values as  = [0, 255]𝐷, ensuring that 
all reconstructed values remain within realistic intensity bounds. Let 𝑥̄ denote the original (or true) image, and 𝑦∗ represent the 
observed degraded image. The degradation process is modeled as follows:

𝑦∗ = 𝐴𝑥̄ + 𝜉,

where 𝐴 is a matrix representing the blurring effect, commonly referred to as the point spread function (PSF) or convolution matrix. 
The term 𝜉 denotes an additive noise component, capturing random disturbances or imperfections in the observed image. The goal 
of image restoration is to reconstruct or closely approximate the original image 𝑥̄, given the degraded observation 𝑦∗ and the known 
blurring matrix 𝐴. This restoration task is formulated as a constrained optimization problem, aimed at minimizing the squared error 
between the degraded image and its estimated (blurred) counterpart:

min 1
‖𝐴𝑥 − 𝑦∗‖2.
𝑥∈ 2

12 
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Here, 𝑥 denotes our estimate of the original image, and the objective function, 12‖𝐴𝑥− 𝑦∗‖2, measures the discrepancy between the 
observed degraded image 𝑦∗ and the estimated blurred image 𝐴𝑥. For clarity, we define this objective function as 𝜑(𝑥), where:

𝜑(𝑥) ∶= 1
2
‖𝐴𝑥 − 𝑦∗‖2.

Since 𝐴 is a linear operator and the squared Euclidean norm ‖ ⋅ ‖2 is convex, it follows that 𝜑 is also convex. This convexity allows 
us to reinterpret the constrained minimization problem as an equilibrium problem. Specifically, we define a bifunction  associated 
with this problem as follows:

(𝑥, 𝑦) ∶= 𝜑(𝑦) − 𝜑(𝑥), ∀𝑥, 𝑦 ∈ .

This reformulation enables the application of equilibrium-based techniques to identify a solution that minimizes 𝜑(𝑥) over the 
feasible set . To evaluate the quality of the restored image 𝑥, we utilize the signal-to-noise ratio (SNR), a widely used metric 
in image processing. The SNR is expressed in decibels (dB) and is computed as follows:

SNR ∶= 20 log10
‖𝑥̄‖

‖𝑥̄ − 𝑥‖
,

where 𝑥̄ represents the original image, and 𝑥 is the restored image obtained by our method. A higher SNR value indicates that the 
restored image is closer to the original, thus reflecting a higher quality of restoration. For the initialization of our method, we select 
the initial point 𝑥0 = 𝟏 ∈ R𝐷 (a vector with all elements equal to 1) and set 𝑥1 = 𝟎 ∈ R𝐷 (a vector with all elements equal to 0).

We report the SNR as a function of both the iteration count and the CPU time required for each method, providing a dual 
perspective on the computational efficiency and effectiveness of each approach. By evaluating performance across these metrics, we 
aim to identify the strengths and weaknesses of the proposed method in comparison to existing techniques, offering insights into its 
applicability for real-world image recovery scenarios.

The aim of our numerical experiments is to evaluate the performance of the proposed Algorithm 1 in comparison with three 
established approaches (iPEGM, iSEGM, and iEGM). To ensure a comprehensive assessment, we simulate three distinct types of 
blurring and noise: Motion Blur and Noise, Gaussian Blur and Noise, and Average Blur and Noise. Each of these blurring techniques 
introduces specific distortions commonly encountered in real-world scenarios, enabling us to assess the robustness and efficiency 
of our method under various conditions. After applying the blurring, we implement our proposed approach as well as the existing 
methods to recover the degraded image, and compare the results based on restoration quality and computational efficiency.

Each of the chosen blurring techniques has unique characteristics and practical significance in image processing applications:
1. Average Blur and Noise: Average (or mean) blur reduces image details by averaging the values of neighboring pixels, resulting 

in a smoothing effect that diminishes noise but can also obscure fine details. This blurring technique is particularly relevant in 
applications where images undergo preprocessing steps such as downsampling or compression, which are common in fields like 
remote sensing and real-time video processing. The introduction of noise offers a more realistic test case, as average blur is frequently 
used to mitigate noise, often at the cost of unintentionally blurring important features. The numerical results corresponding to this 
technique are presented in Figs.  1 and 2.

2. Motion Blur and Noise: Motion blur simulates the effect of camera or object movement during image capture, typically resulting 
in elongated streaks in a specific direction. This type of blur is commonly encountered in dynamic imaging scenarios such as video 
recording, traffic surveillance, and sports photography. By adding noise, we replicate real-world conditions where motion blur 
is often accompanied by background noise, creating a challenging test case for image recovery methods. The numerical results 
corresponding to this technique are shown in Figs.  3 and 4.

3. Gaussian Blur and Noise: Gaussian blur, which applies a Gaussian function to smooth the image, is commonly employed in image 
processing to reduce detail and noise. In practical scenarios, this blurring effect may result from optical defocusing or low-quality 
imaging devices. Gaussian blur with added noise is frequently used in testing due to its widespread occurrence in applications such 
as medical imaging, satellite photography, and computer vision, where maintaining clarity and detail is crucial. The numerical 
results corresponding to this technique are presented in Figs.  5 and 6.

Example 4.2.  This example is inspired by the Nash-Cournot oligopolistic equilibrium model, which describes the competition 
between firms in a market setting. The model and its mathematical structure are detailed in [8]. We now define a bifunction  that 
represents the interaction between two points 𝑥 and 𝑦 in the Hilbert space  as follows:

(𝑥, 𝑦) = ⟨𝑃𝑥 +𝑄𝑦 + 𝑐, 𝑦 − 𝑥⟩,

where 𝑐 ∈ R𝑚 is a constant vector, and 𝑃  and 𝑄 are 𝑚×𝑚 matrices. The properties of the matrices are such that 𝑄−𝑃  is symmetric 
and negative semidefinite, and 𝑃  is symmetric and positive semidefinite. Additionally, both matrices have a Lipschitz continuity 
constant given by 𝑐1 = 𝑐2 = 1

2‖𝑃 − 𝑄‖, as established in [8]. For practical computation in this numerical example, we use the 
following values for 𝑄, 𝑃 , and 𝑞:

𝑄 =

⎡

⎢

⎢

⎢

⎢

⎢

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0

⎤

⎥

⎥

⎥

⎥

⎥

, 𝑃 =

⎡

⎢

⎢

⎢

⎢

⎢

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0

⎤

⎥

⎥

⎥

⎥

⎥

,

⎣
0 0 0 0 2

⎦ ⎣
0 0 0 0 3

⎦
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Fig. 1. Figure (a) displays the original image. Figure (b) depicts the image degraded by average blur and noise. Figure (c) shows the restored image generated by 
Algorithm 3.1 from [17], while Figure (d) illustrates the restored image obtained using Algorithm 2 from [19]. Figure (e) presents the restored image produced 
by Algorithm 1 from [18], and Figure (f) showcases the restored image generated by the proposed Algorithm 1.

Fig. 2. Graphs (a) and (b) illustrate the relationship between SNR values and iteration count, and SNR values and CPU time, respectively, for the methods 
analyzed in Fig.  1.

𝑞 = [1,−2,−1, 2,−1]⊤, and 𝑐 =
‖𝑃 −𝑄‖

2
.

These choices for 𝑄, 𝑃 , 𝑞, and 𝑐 satisfy the theoretical conditions necessary, allowing the algorithm to proceed.

Numerical experiments based on Example  4.2 are conducted to evaluate the efficiency of Algorithms 1 and 2, focusing on CPU 
time (denoted by 𝑡 in seconds) and the iteration count (𝑘) required for convergence.
Experiment 1.  In this experiment, the parameter 𝑥0 is varied to compare the numerical performance of several algorithms: Algorithm 
.1 in [17], 2 in [19], Algorithm 1 in [18], and our Algorithm 1. Figs.  7 and 8 and Table  1 present the numerical results obtained 
or six distinct initial values of 𝑥0.
From Figs.  7 and 8 and Table  1, we observe the following:
14 
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Fig. 3. Figure (a) displays the original image. Figure (b) depicts the image degraded by motion blur and noise. Figures (c)–(f) show the restored image generated 
by the methods described in Fig.  1.

Fig. 4. Graphs (a) and (b) illustrate the relationship between SNR values and iteration count, and SNR values and CPU time, respectively, for the methods 
analyzed in Fig.  3.

(i) For iREGM, as 𝑥0 varies, the iteration count remains relatively low compared to the other algorithms. The counts for iREGM
range between 22 and 28, indicating its efficiency in reaching convergence. In contrast, iPEGM, iSEGM, and iEGM generally 
require more iterations. Specifically, iPEGM and iSEGM reach up to 58 iterations for more variable initializations, such as 
𝑥0 = [1, 2, 3,−4, 5]⊤ and 𝑥0 = [2,−1, 3,−4, 5]⊤, suggesting they are more sensitive to initial values.

(ii) iREGM also performs well in terms of CPU time, consistently achieving the lowest times across most 𝑥0 values, with a range 
from 0.310 to 0.381 s. This indicates that iREGM is computationally efficient, likely due to its lower iteration requirements. 
The other methods, especially iPEGM and iSEGM, show higher CPU times, particularly as 𝑥0 becomes more varied.

(iii) For iREGM, the initialization 𝑥0 = [0, 0, 0, 0, 0]⊤ yields one of the lowest CPU times (0.310592 s) and an iteration count of only 
22. This suggests that a simpler, neutral starting point minimizes computation time while maintaining a low iteration count. 
15 
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Fig. 5. Figure (a) displays the original image. Figure (b) depicts the image degraded by Gaussian blur and noise. Figures (c)–(f) show the restored image 
generated by the methods described in Fig.  1.

Fig. 6. Graphs (a) and (b) illustrate the relationship between SNR values and iteration count, and SNR values and CPU time, respectively, for the methods 
analyzed in Fig.  5.

Although slightly higher for other initializations, the iteration count and CPU time remain efficient, showing that iREGM is 
robust across different starting values.

(iv) Overall, iREGM achieves a favorable balance between iteration count and CPU time across all tested values of 𝑥0. It 
consistently outperforms iPEGM, iSEGM, and iEGM in both metrics, highlighting its efficiency and reliability.

Experiment 2.  This experiment evaluates the numerical performance of three algorithms: Algorithm 3 from [18], Algorithm 3.1 
rom [24], and our Algorithm 2 by varying the initial parameter 𝑥0. Figs.  9 and 10, along with Table  2, summarize the numerical 
esults obtained for six distinct initial values of 𝑥0.
Based on these results, the following observations are made:
16 
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Fig. 7. Comparison of error term and iteration count for Algorithm 1 with other algorithms using various 𝑥0 values in Experiment 1 of Example  4.2.

Fig. 8. Comparison of error term and elapsed time for Algorithm 1 with other algorithms using various 𝑥0 values in Experiment 1 of Example  4.2.

(i) For each initial point, iRSMEGM consistently exhibits the lowest iteration counts (k) compared to iMEGM and iSMEGM. For 
instance, with the initial point [1, 1, 1, 1, 1]⊤, iRSMEGM converges in 488 iterations, whereas iMEGM and iSMEGM require 707
and 592 iterations, respectively. This pattern suggests that iRSMEGM has more efficient convergence characteristics.
17 
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Table 1
Numerical data associated with Figs.  7 and 8.
 𝑥0 iPEGM iSEGM iEGM iREGM

 k t k t k t k t  
 [1, 1, 1, 1, 1]⊤ 51 0.552324 45 0.614985 35 0.426293 24 0.334564 
 [0, 0, 0, 0, 0]⊤ 50 0.435106 46 0.516347 35 0.387253 22 0.310592 
 [2, 2, 2, 2, 2]⊤ 51 0.442636 43 0.515811 36 0.404221 28 0.321133 
 [1, 2, 3, 4, 5]⊤ 53 0.475501 45 0.525171 37 0.401853 26 0.342597 
 [1, 2, 3,−4, 5]⊤ 58 0.529097 53 0.530917 40 0.442222 27 0.381919 
 [2,−1, 3,−4, 5]⊤ 58 0.522312 47 0.535435 40 0.437482 28 0.365248 

Fig. 9. Error term and iteration count for Algorithm 2, compared with other algorithms for various 𝑥0 values in Experiment 2 of Example  4.2.

Table 2
Numerical data associated with Figs.  9 and 10.
 𝑥0 iMEGM iSMEGM iRSMEGM

 k t k t k t  
 [1, 1, 1, 1, 1]⊤ 707 7.592327 592 6.351945 488 5.301434 
 [0, 0, 0, 0, 0]⊤ 736 7.316485 640 7.577108 513 6.288430 
 [2, 2, 2, 2, 2]⊤ 693 6.808429 583 6.909141 478 5.165282 
 [1, 2, 3, 4, 5]⊤ 721 7.190297 594 6.809648 496 6.009568 
 [1, 2, 3,−4, 5]⊤ 802 7.998531 662 8.762895 542 6.779339 
 [2,−1, 3,−4, 5]⊤ 767 7.376159 624 0.535435 534 7.344370 

(ii) In addition to fewer iterations, iRSMEGM generally requires less CPU time than the other methods. For example, with initial 
points [1, 1, 1, 1, 1]⊤ and [2, 2, 2, 2, 2]⊤, iRSMEGM achieves CPU times of 5.301434 and 5.165282 s, respectively, both of which 
are lower than the times recorded for iMEGM and iSMEGM.

(iii) The choice of initial point influences both the iteration counts and CPU time across all algorithms. For instance, the initial 
point [1, 2, 3,−4, 5]⊤ increases both the iteration counts and CPU time for each method, with iRSMEGM requiring 542 iterations 
and 6.779339 s. This finding suggests that convergence speed is sensitive to the selection of the initial point.

(iv) In summary, the results in Figs.  9 and 10, along with Table  2 demonstrate that iRSMEGM consistently outperforms the other 
two algorithms across different initial points, achieving fewer iterations and reduced CPU time in most cases.
18 
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Fig. 10. Error term and elapsed time for Algorithm 2, compared with other algorithms for various 𝑥0 values in Experiment 2 of Example  4.2.

5. Conclusions

In this paper, we introduce two inertial algorithms to solve equilibrium problems in real Hilbert spaces. Under suitable conditions, 
the weak convergence and strong convergence theorems of the proposed algorithms are established, respectively. Finally, numerical 
experiments, including applications in image restoration problems, demonstrate the computational advantages of the proposed 
algorithms compared to other methods. In future work, we consider extending the proposed algorithms to solve equilibrium problems 
on Hadamard manifolds.
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