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 A B S T R A C T

Two modified double inertial proximal point algorithms are proposed for solving variational 
inequality problems with a pseudomonotone vector field in the settings of a Hadamard manifold. 
Weak convergence of the proposed methods is attained without the requirement of Lipschitz 
continuity conditions. The convergence efficiency of the proposed algorithms is improved with 
the help of the double inertial technique and the non-monotonic self-adaptive step size rule. 
We present a numerical experiment to demonstrate the effectiveness of the proposed algorithm 
compared to several existing ones. The results extend and generalize many recent methods in 
the literature.

. Introduction

The variational inequality problem (VIP for short) is one of the most important theories in applied mathematics. It serves as 
n effective tool for studying various problems, including equilibrium problems, PDE boundary value problems, and optimization 
roblems (see, e.g. [1]). Such a problem in the setting of a real Hilbert space H is to find a point 𝑤 ∈ D such that 

⟨𝖥𝑤, 𝑦 −𝑤⟩ ≥ 0, ∀𝑦 ∈ D, (1.1)

here 𝖥∶ D → H is a mapping with D ⊆ H. To approximate the solution of (1.1), Korpelevich [2] proposed the following 
xtragradient method (in short, EGM):

{

𝑧𝑘 = 𝑃𝑟𝑜𝑗D(𝑤𝑘 − 𝜆𝖥𝑤𝑘),
𝑤𝑘+1 = 𝑃𝑟𝑜𝑗D(𝑤𝑘 − 𝜆𝖥𝑧𝑘),

here 𝜆 ∈ (0, 1∕𝐿), 𝑃𝑟𝑜𝑗D(𝑤) represents the projection of 𝑤 on D, and the operator 𝖥 is monotone and 𝐿-Lipschitz continuous. Note 
hat the efficiency of the EGM can be affected by the complex structure of the feasible set D or the condition on the operator 𝖥. To 
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overcome this drawback, Censor et al. [3] proposed the following subgradient extragradient method:
{

𝑧𝑘 = 𝑃𝑟𝑜𝑗D(𝑤𝑘 − 𝜆𝖥𝑤𝑘),
𝑤𝑘+1 = 𝑃𝑟𝑜𝑗𝑇𝑘 (𝑤𝑘 − 𝜆𝖥𝑧𝑘),

where 𝑇𝑘 ∶= {𝑥 ∈ H∶ ⟨𝑤𝑘 − 𝜆𝖥𝑤𝑘 − 𝑧𝑘, 𝑥 − 𝑧𝑘⟩ ≤ 0} and 𝜆 ∈ (0, 1∕𝐿). They considered a projection onto a half space instead of the 
second projection in the EGM to accelerate the convergence of the method. Moreover, Tseng [4] proposed the following algorithm:

{

𝑧𝑘 = 𝑃𝑟𝑜𝑗D(𝑤𝑘 − 𝜆𝖥𝑤𝑘),
𝑤𝑘+1 = 𝑧𝑘 − 𝜆(𝖥𝑧𝑘 − 𝖥𝑤𝑘),

where 𝜆 ∈ (0, 1∕𝐿). Note that the Tseng extragradient method only needs to compute the projection once in each iteration. In 
addition, the projection and contraction method proposed by He [5] also only needs to calculate the projection on the feasible set 
once in each iteration. The iterative process of the algorithm is as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑘 = 𝑃𝑟𝑜𝑗D
(

𝑤𝑘 − 𝜆𝖥𝑤𝑘
)

,

𝑦𝑘 = 𝑤𝑘 − 𝑧𝑘 − 𝜆
(

𝖥𝑤𝑘 − 𝖥𝑧𝑘
)

,

𝛹𝑘 = ⟨𝑤𝑘 − 𝑧𝑘, 𝑦𝑘⟩∕‖‖𝑦𝑘‖‖
2,

𝑤𝑘+1 = 𝑤𝑘 − 𝜏𝜆𝛹𝑘𝑦𝑘,

where 𝜏 ∈ (0, 2) and 𝜆 ∈ (0, 1∕𝐿). Under some suitable conditions, weak convergence theorems for the three algorithms in [3–7] are 
established.

In recent years, there has been an extension of various theories and techniques related to optimization and nonlinear analysis 
from linear spaces to manifolds; for instance, the concepts of variational inequalities and equilibrium problems have been studied and 
extended from linear spaces to manifolds (see, e.g. [8–10]). It is worth noting that extending the theory and results of linear spaces 
to Riemannian manifolds offers several significant advantages; such as, non-convex optimization problems can be transformed into 
convex problems and constrained problems can be reduced to unconstrained problems on Riemannian manifolds, and non-monotone 
vector fields can be transformed into monotone vector fields on manifolds by choosing a suitable Riemannian metric. In general, a 
manifold does not possess a linear structure and when we replace linear spaces with Riemannian manifolds (in particular, Hadamard 
manifolds), the line segment is replaced by a geodesic. Many known properties and techniques in the linear setting do not hold in 
the settings of manifolds. Therefore, the extension of the concepts, techniques, and results for various problems from linear spaces 
to nonlinear manifolds is natural and interesting.

Variational inequality problems on Hadamard manifolds were first introduced and established by Németh [8] for single-valued 
vector fields. In the settings of a Hadamard manifold, the VIP is to find 𝑤 ∈ D such that 

⟨𝖥𝑤, exp−1𝑤 𝑦⟩ ≥ 0, ∀𝑦 ∈ D, (1.2)

where D is a nonempty, closed, and geodesic convex subset of a Hadamard manifold , 𝖥∶D → 𝑇 is a vector field, 𝑇 is the 
tangent bundle of , and exp−1 ∶ → 𝑇 is the inverse of the exponential map. We denote the solution set of (1.2) by VIP(D, 𝖥).

Since the inception of VIP on Hadamard manifolds, several authors have proposed different iterative algorithms for solving the 
VIP (1.2). There are two types of methods to solve VIP (1.2) on Hadamard manifolds: one is based on proximal point algorithms, 
and the other is based on extragradient-type methods. In 2009, Li et al. [9] introduced the proximal point algorithm for the 
singularity of a maximal monotone vector field on Hadamard manifolds. They proved that the proposed algorithm is also valid 
for variational inequality problem (1.2) whenever the vector field 𝖥 is monotone. It is known that many non-monotone problems 
are encountered in the real world and it is therefore of great importance to investigate the theory and methods for non-monotone 
(such as pseudomonotone) problems. In 2013, Tang et al. [11] introduced a proximal point algorithm to solve pseudomonotone 
variational inequality problems on Hadamard manifolds. Recently, Ansari and Uddin [12] proposed two adaptive algorithms for 
solving the monotone inclusion problem in Hadamard manifolds. The first algorithm uses an Armijo-type step size, while the 
second one uses a non-monotonic step size criterion. The robustness and good convergence characteristics of the algorithms in [12] 
have been shown by both theoretical analysis and numerical experiments. On the other hand, Ferreira et al. [13] proposed an 
extragradient algorithm with an Armijo-type step size to solve the VIP (1.2). Subsequently, Tang and Huang [14] introduced a 
modified extragradient algorithm to find solutions for pseudomonotone variational inequality problems on Hadamard manifolds. 
In addition, Tang et al. [15] proposed a projection-based extragradient algorithm to solve variational inequality problems with 
pseudomonotone and continuous vector fields. Recently, Sahu et al. [16] explored an iterative scheme based on the extragradient 
algorithm to solve VIP (1.2). Under some suitable conditions, they proved that the proposed algorithm could be applied to monotone 
or non-monotone variational inequality problems. Furthermore, they demonstrated the computational advantages of the proposed 
algorithm compared to the algorithms in [14,15] through a numerical experiment. For more algorithms used to solve VIP (1.2), 
one can refer to [17,18]. On the other hand, it is worth noting that the convergence rate of algorithms is crucial when solving 
optimization problems. To accelerate the convergence speed of iterative algorithms, Polyak [19] proposed an inertial extrapolation 
method based on the discrete form of second-order dissipative dynamical systems, which takes the form 𝑤𝑘 + 𝛽𝑘(𝑤𝑘 −𝑤𝑘−1), where 
𝛽𝑘 is called the inertial parameter. In [20], it is mentioned through an example that a single-step inertial extrapolation might 
not provide acceleration. Recently, some methods based on double inertial techniques have been proposed to address variational 
inequality problems in real Hilbert spaces; see, e.g., [21–24]. These methods have been validated in numerical experiments to be 
more computationally efficient compared to some single-step inertial methods.
2 
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Note that the results on pseudomonotone variational inequalities are limited due to the nonlinearity of manifolds and also the 
stepsizes used in most of these results depend on the Lipschitz constant of the vector field 𝖥. In this paper, we consider the uniform 
continuity condition on the vector field 𝖥, which is a weaker notion than the Lipschitz continuity condition, since it is noted that the 
latter can be difficult to compute. To the best of our knowledge, the proximal point algorithm has not been employed for solving 
variational inequalities involving a pseudomonotone and uniformly continuous vector field in Hadamard manifolds.

Motivated by the results described above, we propose two modified proximal point methods together with a double inertial 
technique for solving variational inequalities associated with a pseudomonotone and uniformly continuous vector field in Hadamard 
manifolds. Unlike many of the existing results in the literature, our proposed methods do not require the Lipschitz continuity 
assumption of the vector field. We incorporated our proposed methods with a suitable self-adaptive step size technique that generates 
a nonmonotonic sequence and is independent of the Lipschitz continuity modulus of 𝖥. The results discussed in this paper generalize 
the algorithms of Ansari and Uddin [12], Ferreira et al. [13], Tang and Huang [14], Tang et al. [15], Sahu et al. [16], and many 
related methods in the literature.

Our paper is organized as follows. Some important definitions and preliminary results for further use are given in Section 2. 
In Section 3, we discuss the convergence analysis of our proposed algorithms. In Section 4, some numerical results are given to 
illustrate the performance of our methods. Finally, we summarize the paper in Section 5.

2. Preliminaries

Let  be a Riemannian manifold of finite dimension, 𝑇𝑝 be the tangent space of  at the point 𝑝 ∈ , and 𝑇 be the tangent 
bundle of  defined as 𝑇 =

⋃

𝑝∈ 𝑇𝑝. We denote the Riemannian metric ⟨⋅ , ⋅⟩𝑝 on 𝑇𝑝 and the corresponding norm ‖ ⋅ ‖𝑝. We can 
omit subscript 𝑝 if no confusion occurs. Given a piecewise smooth curve 𝛾 ∶ [𝑟, 𝑠] →  joining 𝑝 to 𝑞 (that is, 𝛾(𝑟) = 𝑝 and 𝛾(𝑠) = 𝑞), 
we define the length of the curve 𝛾 as 𝓁(𝛾) ∶= ∫ 𝑠

𝑟 ‖𝛾̇(𝑡)‖ d𝑡, where 𝛾̇(𝑡) denotes the tangent vector at 𝛾(𝑡) in the tangent space 𝑇𝛾(𝑡). 
The Riemannian distance between 𝑝 and 𝑞 is denoted by 𝑑(𝑝, 𝑞), which is the minimal length over the set of all such curves joining 
𝑝 and 𝑞.

Let ∇ be a Levi-Civita connection associated with the Riemannian metric. For a smooth curve 𝛾, a tangent vector 𝑋 along 𝛾 is 
said to be parallel if ∇𝛾̇𝑋 = 𝟎, where 0 denotes the zero tangent vector. If 𝛾̇ itself is parallel along 𝛾, then 𝛾 is called a geodesic 
and ‖𝛾̇‖ is a constant. A geodesic joining 𝑝 to 𝑞 in  is called a minimizing geodesic if its length equals 𝑑(𝑝, 𝑞). If for any 𝑝 in a 
Riemannian manifold , all geodesic emanating from 𝑝 are defined for all 𝑡 ∈ R, then the Riemannian manifold  is said to be 
complete.

For a Riemannian manifold , the exponential map exp𝑝 ∶ 𝑇𝑝 →  at 𝑝 ∈  is defined by exp𝑝 𝑣 ∶= 𝛾𝑣(1, 𝑝), ∀𝑣 ∈ 𝑇𝑝, where 
𝛾𝑣(⋅, 𝑝) is the geodesic starting from 𝑝 with velocity 𝑣, i.e., 𝛾𝑣(𝟎, 𝑝) = 𝑝 and 𝛾̇𝑣(𝟎, 𝑝) = 𝑣. Note that the exponential map exp𝑝 is 
differentiable on 𝑇𝑝 for any 𝑝 ∈ . The inverse of the exponential map exists, denoted by exp−1𝑝 ∶ → 𝑇𝑝. For any 𝑝, 𝑞 ∈ , we 
have 𝑑(𝑝, 𝑞) = ‖ exp−1𝑝 𝑞‖ = ‖ exp−1𝑞 𝑝‖.

To compare the tangent vectors of different tangent spaces, we employ the parallel transport 𝑃𝛾,𝛾(𝑠)𝛾(𝑟) ∶ 𝑇𝛾(𝑟) → 𝑇𝛾(𝑠) with 
respect to ∇, defined by

𝑃𝛾,𝛾(𝑠),𝛾(𝑟)𝑣 = 𝖥(𝛾(𝑠)), ∀𝑟, 𝑠 ∈ R, ∀𝑣 ∈ 𝑇𝛾(𝑟),

where 𝖥 is a vector field such that ∇𝛾̇(𝑡)𝖥 = 𝟎 for all 𝑡 ∈ [𝑟, 𝑠] and 𝖥(𝛾(𝑟)) = 𝑣. When 𝛾 is a minimal geodesic joining 𝛾(𝑟) to 𝛾(𝑠), we 
write 𝑃𝛾(𝑠),𝛾(𝑟) instead of 𝑃𝛾,𝛾(𝑠),𝛾(𝑟). For every 𝑟, 𝑠, 𝑢 ∈ R, we have 𝑃𝛾(𝑠),𝛾(𝑢)◦𝑃𝛾(𝑢),𝛾(𝑟) = 𝑃𝛾(𝑠),𝛾(𝑟). Note that 𝑃𝛾(𝑠),𝛾(𝑟) is an isometry from 
𝑇𝛾(𝑟) to 𝑇𝛾(𝑠).

A Hadamard manifold is a complete, simply connected Riemannian manifold with nonpositive sectional curvature. In the 
following, we always use  to represent a Hadamard manifold. Next, we review some definitions, properties, and lemmas that 
will be used in the subsequent convergence analysis. 

Definition 2.1 ([25]). Let 𝖥∶D → 𝑇 be such that 𝖥𝑝 ∈ 𝑇𝑝 for each 𝑝 ∈ D. A vector field 𝖥 is said to be:

(i) monotone, if
⟨𝖥𝑝, exp−1𝑝 𝑞⟩ ≤ ⟨𝖥𝑞,−exp−1𝑞 𝑝⟩, ∀𝑝, 𝑞 ∈ D.

(ii) pseudomonotone, if
⟨𝖥𝑝, exp−1𝑝 𝑞⟩ ≥ 0 ⇒ ⟨𝖥𝑞, exp−1𝑞 𝑝⟩ ≤ 0, ∀𝑝, 𝑞 ∈ D.

(iii) 𝐿-Lipschitz continuous, if there exists 𝐿 > 0 such that
‖𝑃𝑝,𝑞𝖥𝑞 − 𝖥𝑝‖ ≤ 𝐿𝑑(𝑝, 𝑞), ∀𝑝, 𝑞 ∈ D.

(iv) uniformly continuous, if for all 𝑝, 𝑞 ∈ D, there exists 𝜖 > 0 and 𝛿 = 𝛿(𝜖) > 0 such that
‖𝑃𝑝,𝑞𝖥𝑞 − 𝖥𝑝‖ ≤ 𝜖, whenever 𝑑(𝑝, 𝑞) < 𝛿.

Definition 2.2 ([26]). A subset D of a Hadamard manifold  is said to be (geodesic) convex if for any two points 𝑝, 𝑞 ∈ D, the 
geodesic 𝛾 ∶ [𝑟, 𝑠] →  satisfies 𝛾(𝑟𝑡 + (1 − 𝑡)𝑠) ∈ D for all 𝑡 ∈ [0, 1] and 𝑟, 𝑠 ∈ R, where 𝑝 = 𝛾(𝑟) and 𝑞 = 𝛾(𝑠).
3 
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Proposition 2.1 ([26]). Let 𝑝 ∈ . The exponential mapping exp𝑝 ∶ 𝑇𝑝 →  is a diffeomorphism. For any two points 𝑝, 𝑞 ∈ , there exists 
a unique normalized geodesic joining 𝑝 to 𝑞, which is given by 𝛾(𝑡) = exp𝑝 𝑡 exp−1𝑝 𝑞 for all 𝑡 ∈ [0, 1].

A geodesic triangle 𝛥(𝑝, 𝑞, 𝑟) of a Hadamard manifold  is a set containing three points 𝑝, 𝑞, 𝑟 and three minimizing geodesics 
joining these points. 

Proposition 2.2 ([26]). Let 𝛥(𝑝, 𝑞, 𝑟) be a geodesic triangle in . Then

𝑑2(𝑝, 𝑞) + 𝑑2(𝑞, 𝑟) − 2⟨exp−1𝑞 𝑝, exp−1𝑞 𝑟⟩ ≤ 𝑑2(𝑟, 𝑞),

and

𝑑2(𝑝, 𝑞) ≤ ⟨exp−1𝑝 𝑟, exp−1𝑝 𝑞⟩ + ⟨exp−1𝑞 𝑟, exp−1𝑞 𝑝⟩.

Moreover, if 𝜃 is the angle at 𝑝, then 

⟨exp−1𝑝 𝑞, exp−1𝑝 𝑟⟩ = 𝑑(𝑞, 𝑝)𝑑(𝑝, 𝑟) cos 𝜃. (2.1)

Note that 

‖ exp−1𝑝 𝑞‖2 = ⟨exp−1𝑝 𝑞, exp−1𝑝 𝑞⟩ = 𝑑2(𝑝, 𝑞). (2.2)

Proposition 2.3 ([9]). If 𝑝, 𝑞 ∈  and 𝑣 ∈ 𝑇𝑞, then

⟨𝑣,−exp−1𝑞 𝑝⟩ = ⟨𝑣, 𝑃𝑞,𝑝 exp−1𝑝 𝑞⟩ = ⟨𝑃𝑝,𝑞𝑣, exp−1𝑝 𝑞⟩.

The following lemmas are very useful in our convergence analysis. 

Lemma 2.1 ([27]). Let D be a nonempty, closed, and convex subset of a Hadamard manifold , then 𝖥∶D → 𝑇 is said to be uniformly 
continuous if and only if, for every 𝜖 > 0, there exists a constant 𝑀 < +∞ such that

‖𝑃𝑞,𝑝𝖥𝑝 − 𝖥𝑞‖ ≤ 𝑀𝑑(𝑝, 𝑞) + 𝜖, ∀𝑝, 𝑞 ∈ D.

Proof.  Suppose that 𝖥∶D → 𝑇 is uniformly continuous and fix 𝜖 > 0. Then, there exists a 𝛿 > 0 such that ‖𝑃𝑝,𝑞𝖥𝑞 − 𝖥𝑝‖ ≤
𝜖, whenever 𝑑(𝑝, 𝑞) < 𝛿. Fix 𝑝 and 𝑞 in D and let

𝑣𝑘 = exp𝑝(−𝑘)
𝛿
2

exp−1𝑝 𝑞

𝑑(𝑞, 𝑝)
, for 𝑘 = 0, 1, 2⋯ , 𝑁,

where 𝑁 =
⌊𝑑(𝑞, 𝑝)⌋

𝛿
2

, and ⌊⋅⌋ denotes the greatest integer function. From the convexity of D, we see that 𝑣𝑘 belongs to D. Also,

𝑣0 = 𝑝.

𝑑(𝑣𝑘, 𝑣𝑘−1) =
𝛿
2
,

and

𝑑(𝑞, 𝑣𝑁 ) < 𝛿
2
.

The remaining part of the proof follows from Theorem 1 of [27], so we omit it. □

Lemma 2.2 ([28]). Let 𝛥(𝑤1, 𝑤2, 𝑤3) be a geodesic triangle in . There exists a comparison triangle 𝛥(𝑤̄1, 𝑤̄2, 𝑤̄3) corresponding to 
𝛥(𝑤1, 𝑤2, 𝑤3) such that 𝑑(𝑤𝑖, 𝑤𝑖+1) = ‖𝑤̄𝑖 − 𝑤̄𝑖+1‖ with the indices taken modulo 3. The points 𝑤̄1, 𝑤̄2 and 𝑤̄3 are called comparison 
points to 𝑤1, 𝑤2 and 𝑤3. This triangle is unique up to isometries of R2.

Lemma 2.3 ([29]). Let 𝛥(𝑝, 𝑞, 𝑟) be a geodesic triangle in a Hadamard manifold  and 𝛥(𝑝′, 𝑞′, 𝑟′) be its comparison triangle. Let 𝛼, 𝛽, 𝛾
(resp., 𝛼′, 𝛽′, 𝛾 ′) be the angles of 𝛥(𝑝, 𝑞, 𝑟) (resp., 𝛥(𝑝′, 𝑞′, 𝑟′)) at the vertices 𝑝, 𝑞, 𝑟 (resp., 𝑝′, 𝑞′, 𝑟′). Then 𝛼′ ≥ 𝛼, 𝛽′ ≥ 𝛽, and 𝛾 ′ ≥ 𝛾.

Lemma 2.4.  Let 𝑡𝑘, 𝑞𝑘, 𝑢𝑘, 𝑢𝑘+1 ∈ . Consider the geodesic triangle 𝛥 (

𝑡𝑘, 𝑞𝑘, 𝑢𝑘
) (resp., 𝛥 (

𝑡𝑘, 𝑞𝑘, 𝑢𝑘+1
)

) and its comparison triangle 
𝛥(𝑡′𝑘, 𝑞

′
𝑘, 𝑢

′
𝑘) (resp., 𝛥(𝑡′𝑘, 𝑞′𝑘, 𝑢′𝑘+1)). Then

⟨

𝑢′𝑘+1 − 𝑞′𝑘, 𝑡
′
𝑘 − 𝑢′𝑘

⟩

≤
⟨

𝑃𝑢𝑘 ,𝑞𝑘 exp
−1
𝑞𝑘

𝑢𝑘+1, exp−1𝑢𝑘 𝑡𝑘
⟩

.

4 
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Proof.  Let 𝛹 = exp−1𝑞𝑘 𝑢𝑘+1 and 𝑎 = exp𝑢𝑘 𝑃𝑢𝑘 ,𝑞𝑘 exp
−1
𝑞𝑘

𝑢𝑘+1. The comparison point of 𝑎 is 𝑎′ = 𝑢′𝑘 + 𝑢′𝑘+1 − 𝑞′𝑘. Let 𝛽 (resp., 𝛽′) be the 
angle of 𝛥(𝑎, 𝑢𝑘, 𝑡𝑘) (resp., 𝛥(𝑎′, 𝑢′𝑘, 𝑡′𝑘)) at the vertice 𝑢𝑘 (resp., 𝑢′𝑘). From Lemma  2.3, we have 𝛽′ ≥ 𝛽. since 𝛽, 𝛽′ ∈ (0, 𝜋), it follows 
that cos 𝛽′ ≤ cos 𝛽. By using Lemma  2.2 and (2.1), one obtains

⟨

𝑎′ − 𝑢′𝑘, 𝑡
′
𝑘 − 𝑢′𝑘

⟩

= ‖

‖

‖

𝑎′ − 𝑢′𝑘
‖

‖

‖

‖

‖

‖

𝑡′𝑘 − 𝑢′𝑘
‖

‖

‖

cos 𝛽′

≤ 𝑑
(

𝑎, 𝑢𝑘
)

𝑑
(

𝑡𝑘, 𝑢𝑘
)

cos 𝛽

=
⟨

exp−1𝑢𝑘
(

exp𝑢𝑘 𝑃𝑢𝑘 ,𝑞𝑘 exp
−1
𝑞𝑘

𝑢𝑘+1
)

, exp−1𝑢𝑘 𝑡𝑘
⟩

.

=
⟨

𝑃𝑢𝑘 ,𝑞𝑘 exp
−1
𝑞𝑘

𝑢𝑘+1, exp−1𝑢𝑘 𝑡𝑘
⟩

.

This completes the proof. □

Lemma 2.5 ([30]). Let {𝑎𝑘}, {𝜑𝑘}, and {𝛽𝑘} be nonnegative sequences which satisfy
𝑎𝑘+1 ≤ (1 + 𝛽𝑘)𝑎𝑘 + 𝜑𝑘, ∀𝑘 ≥ 1.

If ∑∞
𝑘=1 𝛽𝑘 < +∞ and ∑∞

𝑘=1 𝜑𝑘 < +∞, then lim𝑘→∞ 𝑎𝑘 exists.

Lemma 2.6 ([31]). Let {𝑣𝑘} and {𝛿𝑘} be nonnegative sequences which satisfy
𝑣𝑘+1 ≤ (1 + 𝛿𝑘)𝑣𝑘 + 𝛿𝑘𝑣𝑘−1, ∀𝑘 ≥ 1.

Then 𝑣𝑘+1 ≤ 𝑀 ⋅
∏𝑘

𝑗=1(1 + 2𝛿𝑗 ), where 𝑀 = max{𝑣1, 𝑣2}. Moreover, if 
∑∞

𝑘=1 𝛿𝑘 < +∞, then {𝑣𝑘} is bounded.

Lemma 2.7 ([9]). Let 𝑤0 ∈  and {𝑤𝑘} ⊂  with 𝑤𝑘 → 𝑤0 as 𝑘 → ∞. Then the following assertions hold:
(i) For any 𝑦 ∈ , we have exp−1𝑤𝑘

𝑦 → exp−1𝑤0
𝑦 and exp−1𝑦 𝑤𝑘 → exp−1𝑦 𝑤0;

(ii) Given 𝑢𝑘, 𝑣𝑘 ∈ 𝑇𝑤𝑘
 and 𝑢0, 𝑣0 ∈ 𝑇𝑤0

, if 𝑢𝑘 → 𝑢0 and 𝑣𝑘 → 𝑣0, then ⟨𝑢𝑘, 𝑣𝑘⟩ → ⟨𝑢0, 𝑣0⟩;
(iii) For any 𝑢 ∈ 𝑇𝑤0

, the function 𝖥∶ → 𝑇, defined by 𝖥(𝑥) = 𝑃𝑥,𝑤0
𝑢 for each 𝑥 ∈  is continuous on .

Lemma 2.8 ([32]). Let D be a nonempty, closed, and convex subset of  and {𝑤𝑘} ⊂ . Assume that (i) for every 𝑝 ∈ D, lim𝑘→∞ 𝑑(𝑤𝑘, 𝑝)
exists; and (ii) every cluster point of {𝑤𝑘} belongs to D. Then {𝑤𝑘} converges to a point in D.

3. Main result

In this section, we present two modified proximal point algorithm with the double inertial method and the self-adaptive step size 
rule for solving variational inequality problem (1.2). Under certain suitable conditions, we established the convergence theorems 
of the suggested algorithms. The first proposed iterative scheme is shown in Algorithm 3.1.

To analyze the convergence of Algorithm 3.1, we assume that the following Assumption  3.1 holds. 

Assumption 3.1. 
(A1) The vector field 𝖥∶D → 𝑇 is pseudomonotone and uniformly continuous.
(A2) The solution set VIP(D, 𝖥) is nonempty.
(A3) The sequences {𝛽𝑘}, {𝜃𝑘}, and {𝛿𝑘} satisfy 

∑∞
𝑘=1 𝛽𝑘 < +∞, ∑∞

𝑘=1 𝛿𝑘 < +∞, and ∑∞
𝑘=1 𝜃𝑘 < +∞.

The following two lemmas are crucial for the convergence analysis of the algorithm. 

Lemma 3.1.  Let {𝜆𝑘} be a sequence generated by Algorithm 3.1. Suppose that Assumption  3.1 holds. Then, {𝜆𝑘} is well-defined and 
lim𝑘→∞ 𝜆𝑘 = 𝜆 ∈

[

min
{

𝜇∕𝑀,𝜆1
}

, 𝜆1 +
∑∞

𝑘=1 𝜃𝑘] for some 𝑀 > 0.

Proof.  It is obvious that {𝜆𝑘} is a non-monotonic sequence. Since 𝖥 is uniformly continuous, it follows from Lemma  2.1 that for 
any 𝜖 > 0, there exists 𝐾 < +∞ such that ‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖ ≤ 𝐾𝑑(𝑢𝑘, 𝑧𝑘) + 𝜖. In the case of ‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖ ≠ 0, we obtain

𝜇𝑑(𝑢𝑘, 𝑧𝑘)
‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖

≥
𝜇𝑑(𝑢𝑘, 𝑧𝑘)

𝐾𝑑(𝑢𝑘, 𝑧𝑘) + 𝜖
=

𝜇𝑑(𝑢𝑘, 𝑧𝑘)
(𝐾 + 𝜖1)𝑑(𝑢𝑘, 𝑧𝑘)

=
𝜇
𝑀

,

where 𝜖 = 𝜖1𝑑(𝑢𝑘, 𝑧𝑘) and 𝑀 = 𝐾 + 𝜖1. Thus, by the definition of 𝜆𝑘+1 in (3.5), the sequence {𝜆𝑘} has lower bound {𝜇∕𝑀,𝜆1}
and upper bound 𝜆1 +

∑∞
𝑘=1 𝜃𝑘. From Lemma  2.5, one obtains that lim𝑘→∞ 𝜆𝑘 exists and lim𝑘→∞ 𝜆𝑘 = 𝜆. Clearly, we have 𝜆 ∈

[

min{𝜇∕𝑀,𝜆1}, 𝜆1 +
∑∞

𝑘=1 𝜃𝑘
]

. This completes the proof. □

Lemma 3.2.  If 𝑢 = 𝑧  or 𝑦 = 0 in Algorithm 3.1, then 𝑢 ∈ VIP(D, 𝖥).
𝑘 𝑘 𝑘 𝑘

5 
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Algorithm 3.1 The first modified proximal point algorithm
Initialization: Choose 𝜆1 > 0, 𝜇 ∈ (0, 1), 𝜏 ∈ (0, 2), {𝛽𝑘}, {𝜃𝑘}, and {𝛿𝑘} are real positive sequences for all 𝑘 ∈ N. Let 𝑤0, 𝑤1 ∈ 
be arbitrary.
Step 1: Given the current iterates 𝑤𝑘−1, 𝑤𝑘, compute 

{

𝑣𝑘 = exp𝑤𝑘
(−𝛽𝑘 exp−1𝑤𝑘

𝑤𝑘−1),

𝑢𝑘 = exp𝑣𝑘 (−𝛿𝑘 exp
−1
𝑣𝑘

𝑤𝑘−1).
(3.1)

Step 2: Compute 𝑧𝑘 ∈ D such that 
⟨

exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘, exp
−1
𝑧𝑘

𝑦
⟩

≤ 0, ∀𝑦 ∈ D. (3.2)

If 𝑢𝑘 = 𝑧𝑘, then stop and 𝑢𝑘 ∈ VIP(D, 𝖥). Otherwise, go to Step 3.
Step 3: Calculate 

𝑤𝑘+1 = exp𝑢𝑘 (−𝜏𝛹𝑘𝑃𝑢𝑘 ,𝑧𝑘𝑦𝑘), (3.3)

where 𝑦𝑘 = exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘(𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘) and 

𝛹𝑘 =

⎧

⎪

⎨

⎪

⎩

⟨exp−1𝑧𝑘 𝑢𝑘, 𝑦𝑘⟩

‖𝑦𝑘‖2
, if 𝑦𝑘 ≠ 0,

0, if 𝑦𝑘 = 0.
(3.4)

Update 𝜆𝑘+1 by 

𝜆𝑘+1 =

⎧

⎪

⎨

⎪

⎩

min

{

𝜇𝑑(𝑢𝑘, 𝑧𝑘)
‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖

, 𝜆𝑘 + 𝜃𝑘

}

, if ‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖ ≠ 0,

𝜆𝑘 + 𝜃𝑘, otherwise.
(3.5)

Set 𝑘 ∶= 𝑘 + 1 and return to Step 1.

Proof.  By applying the definition of 𝑦𝑘 in Algorithm 3.1 and (3.5), we have 
‖𝑦𝑘‖ = ‖ exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘(𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘)‖

≥ ‖ exp−1𝑧𝑘 𝑢𝑘‖ − 𝜆𝑘‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖

≥ 𝑑(𝑢𝑘, 𝑧𝑘) −
𝜇𝜆𝑘
𝜆𝑘+1

𝑑(𝑢𝑘, 𝑧𝑘)

=
(

1 − 𝜇
𝜆𝑘
𝜆𝑘+1

)

𝑑(𝑢𝑘, 𝑧𝑘), (3.6)

and

‖𝑦𝑘‖ ≤ ‖ exp−1𝑧𝑘 𝑢𝑘‖ + 𝜆𝑘‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖

≤
(

1 + 𝜇
𝜆𝑘
𝜆𝑘+1

)

𝑑(𝑢𝑘, 𝑧𝑘). (3.7)

From (3.6) and (3.7), we deduce that
(

1 − 𝜇
𝜆𝑘
𝜆𝑘+1

)

𝑑(𝑢𝑘, 𝑧𝑘) ≤ ‖𝑦𝑘‖ ≤
(

1 + 𝜇
𝜆𝑘
𝜆𝑘+1

)

𝑑(𝑢𝑘, 𝑧𝑘).

Thus, 𝑦𝑘 = 0 if and only if 𝑢𝑘 = 𝑧𝑘. If 𝑢𝑘 = 𝑧𝑘, then by (3.2), one sees that 𝑢𝑘 is a solution of Problem (1.2). □

Lemma 3.3.  Suppose that Assumption  3.1 holds. Let {𝑢𝑘}, {𝑧𝑘} and {𝑤𝑘} be sequences generated by Algorithm 3.1. Then, for each 
𝑞 ∈ VIP(D, 𝖥),

𝑑2(𝑤𝑘+1, 𝑞) ≤ 𝑑2(𝑢𝑘, 𝑞) − 𝜏(2 − 𝜏)

(

1 − 𝜇 𝜆𝑘
𝜆𝑘+1

)2

(

1 + 𝜇 𝜆𝑘
𝜆𝑘+1

)2
𝑑2(𝑢𝑘, 𝑧𝑘), ∀𝑘 ≥ 0.

⌊𝑥⌋

Proof.  Fix 𝑞 ∈ VIP(D, 𝖥). Consider the geodesic triangle 𝛥 (

𝑞,𝑤𝑘+1, 𝑢𝑘
) and its comparison triangle 𝛥

(

𝑞′, 𝑤′
𝑘+1, 𝑢

′
𝑘

)

. It follows from 
Lemma  2.2 that

𝑑
(

𝑞, 𝑢
)

= ‖𝑞′ − 𝑢′ ‖, 𝑑
(

𝑤 , 𝑢
)

= ‖𝑤′ − 𝑢′ ‖ , 𝑑
(

𝑞,𝑤
)

= ‖𝑞′ −𝑤′ ‖ .
𝑘 ‖

‖

𝑘‖
‖

𝑘+1 𝑘 ‖

‖

𝑘+1 𝑘‖
‖

𝑘+1 ‖

‖

𝑘+1‖
‖

6 
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The comparison point for 𝑤𝑘+1 is 𝑤′
𝑘+1 = 𝑢′𝑘 − 𝜏𝛹𝑘

(

𝑢′𝑘 − 𝑧′𝑘 + 𝜆𝑘(𝖥𝑧′𝑘 − 𝖥𝑢′𝑘)
)

. For convenience, we let 𝜒 ′
𝑘 = 𝑢′𝑘 − 𝑧′𝑘 + 𝜆𝑘(𝖥𝑧′𝑘 − 𝖥𝑢′𝑘). 

From the definitions of 𝑤𝑘+1 and 𝑤′
𝑘+1, we have

𝜏𝛹𝑘
‖

‖

‖

𝑦𝑘
‖

‖

‖

= 𝑑
(

𝑤𝑘+1, 𝑢𝑘
)

= ‖

‖

‖

𝑤′
𝑘+1 − 𝑢′𝑘

‖

‖

‖

= 𝜏𝛹𝑘
‖

‖

‖

𝜒 ′
𝑘
‖

‖

‖

.

By the definition of 𝑤𝑘+1 in (3.3), we obtain 
𝑑2

(

𝑤𝑘+1, 𝑞
)

= ‖𝑤′
𝑘+1 − 𝑞′‖2

= ‖𝑢′𝑘 − 𝜏𝛹𝑘𝜒
′
𝑘 − 𝑞′‖2

= ‖𝑢′𝑘 − 𝑞′‖2 − 2𝜏𝛹𝑘⟨𝑢
′
𝑘 − 𝑞′, 𝜒 ′

𝑘⟩ + 𝜏2𝛹 2
𝑘‖𝜒

′
𝑘‖

2

= 𝑑2
(

𝑢𝑘, 𝑞
)

+ 2𝜏𝛹𝑘⟨𝑞
′ − 𝑢′𝑘, 𝜒

′
𝑘⟩ + 𝜏2𝛹 2

𝑘‖𝑦𝑘‖
2.

(3.8)

Let 𝑎 ∶= exp𝑧𝑘 𝑦𝑘 and 𝑏 ∶= exp𝑢𝑘 𝑃𝑢𝑘 ,𝑧𝑘𝑦𝑘. The comparison points of 𝑎 and 𝑏 are 𝑎′ = 𝑢′𝑘+𝜆𝑘
(

𝖥𝑧′𝑘 − 𝖥𝑢′𝑘
) and 𝑏′ = 2𝑢′𝑘−𝑧

′
𝑘+𝜆𝑘

(

𝖥𝑧′𝑘 − 𝖥𝑢′𝑘
)

, 
respectively. By the definition of 𝜒 ′

𝑘 and Lemma  2.4, one has 
⟨𝑞′ − 𝑢′𝑘, 𝜒

′
𝑘⟩ = ⟨𝑧′𝑘 − 𝑢′𝑘, 𝜒

′
𝑘⟩ + ⟨𝑞′ − 𝑧′𝑘, 𝜒

′
𝑘⟩

= ⟨𝑧′𝑘 − 𝑢′𝑘, 𝑏
′ − 𝑢′𝑘⟩ + ⟨𝑞′ − 𝑧′𝑘, 𝑎

′ − 𝑧′𝑘⟩

≤
⟨

exp−1𝑢𝑘 𝑧𝑘, exp−1𝑢𝑘 𝑏
⟩

+
⟨

exp−1𝑧𝑘 𝑞, exp−1𝑧𝑘 𝑎
⟩

=
⟨

exp−1𝑢𝑘 𝑧𝑘, 𝑃𝑢𝑘 ,𝑧𝑘𝑦𝑘
⟩

+
⟨

exp−1𝑧𝑘 𝑞, 𝑦𝑘
⟩

.

(3.9)

From Proposition  2.3 and (3.4), one obtains 
⟨

exp−1𝑢𝑘 𝑧𝑘, 𝑃𝑢𝑘 ,𝑧𝑘𝑦𝑘
⟩

= −
⟨

exp−1𝑧𝑘 𝑢𝑘, 𝑦𝑘
⟩

= −𝛹𝑘
‖

‖

𝑦𝑘‖‖
2 . (3.10)

By the definition of 𝑧𝑘 and 𝑞 ∈ D, one sees that 
⟨

exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘, exp
−1
𝑧𝑘

𝑞
⟩

≤ 0. (3.11)

Since 𝑞 ∈ VIP(D, 𝖥) and 𝑧𝑘 ∈ D, we have 
⟨

𝖥𝑞, exp−1𝑞 𝑧𝑘
⟩

≥ 0. It follows from the pseudomonotonicity of 𝖥 that 
⟨

𝖥𝑧𝑘, exp−1𝑧𝑘 𝑞
⟩

≤ 0. 
This combined with (3.11) gives 

⟨

exp−1𝑧𝑘 𝑢𝑘 + 𝜆𝑘
(

𝖥𝑧𝑘 − 𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘
)

, exp−1𝑧𝑘 𝑞
⟩

≤ 0. (3.12)

Using (3.9), (3.10), and (3.12), we have 
⟨𝑞′ − 𝑢′𝑘, 𝜒

′
𝑘⟩ ≤ −𝛹𝑘

‖

‖

𝑦𝑘‖‖
2 . (3.13)

It follows from (3.7) that 
1

‖𝑦𝑘‖2
≥ 1

(

1 + 𝜇 𝜆𝑘
𝜆𝑘+1

)2𝑑2(𝑢𝑘, 𝑧𝑘)
. (3.14)

According to (3.4), (3.5), and Cauchy–Schwarz inequality, we have
⟨exp−1𝑧𝑘 𝑢𝑘, 𝑦𝑘⟩ = ⟨exp−1𝑧𝑘 𝑢𝑘, exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘(𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘)⟩

= ⟨exp−1𝑧𝑘 𝑢𝑘, exp−1𝑧𝑘 𝑢𝑘⟩ − 𝜆𝑘⟨exp−1𝑧𝑘 𝑢𝑘, 𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘⟩

≥ ‖ exp−1𝑧𝑘 𝑢𝑘‖
2 − 𝜆𝑘‖ exp−1𝑧𝑘 𝑢𝑘‖ ‖𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘‖

≥
(

1 − 𝜇
𝜆𝑘
𝜆𝑘+1

)

𝑑2(𝑢𝑘, 𝑧𝑘). (3.15)

From (3.14) and (3.15), one has 

𝛹𝑘 =
⟨exp−1𝑧𝑘 𝑢𝑘, 𝑦𝑘⟩

‖𝑦𝑘‖2
≥

(

1 − 𝜇 𝜆𝑘
𝜆𝑘+1

)
(

1 + 𝜇 𝜆𝑘
𝜆𝑘+1

)2
. (3.16)

By (3.10), (3.15), and (3.16), we have

𝛹 2
𝑘‖𝑦𝑘‖

2 ≥

(

1 − 𝜇 𝜆𝑘
𝜆𝑘+1

)2

(

1 + 𝜇 𝜆𝑘
𝜆𝑘+1

)2
𝑑2(𝑢𝑘, 𝑧𝑘).

This together with (3.8) and (3.13) yields
𝑑2

(

𝑤𝑘+1, 𝑞
)

≤ 𝑑2
(

𝑢𝑘, 𝑞
)

− 2𝜏𝛹 2
𝑘
‖

‖

𝑦𝑘‖‖
2 + 𝜏2𝛹 2

𝑘‖𝑦𝑘‖
2

≤ 𝑑2
(

𝑢𝑘, 𝑞
)

− 𝜏 (2 − 𝜏)

(

1 − 𝜇𝜆𝑘
𝜆𝑘+1

)2

(

1 + 𝜇𝜆𝑘 )2
𝑑2

(

𝑢𝑘, 𝑧𝑘
)

.

𝜆𝑘+1
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This completes the proof. □

Theorem 3.1.  Suppose that Assumption  3.1 holds and let {𝑤𝑘} be a sequence generated by Algorithm 3.1, then {𝑤𝑘} converges to an 
element of VIP(D, 𝖥).

Proof.  Fix 𝑞 ∈ VIP(D, 𝖥). Consider the geodesic triangles 𝛥(𝑣𝑘, 𝑤𝑘, 𝑞) and 𝛥(𝑤𝑘, 𝑤𝑘−1, 𝑞) with their comparison triangles 𝛥(𝑣′𝑘, 𝑤′
𝑘, 𝑞

′)
and 𝛥(𝑤′

𝑘, 𝑤
′
𝑘−1, 𝑞

′). By applying Lemma  2.2, we have
𝑑(𝑣𝑘, 𝑤𝑘) = ‖𝑣′𝑘 −𝑤′

𝑘‖, 𝑑(𝑣𝑘, 𝑞) = ‖𝑣′𝑘 − 𝑞′‖, 𝑑(𝑤𝑘, 𝑤𝑘−1) = ‖𝑤′
𝑘 −𝑤′

𝑘−1‖,

𝑑(𝑤𝑘, 𝑞) = ‖𝑤′
𝑘 − 𝑞′‖, 𝑑(𝑤𝑘−1, 𝑞) = ‖𝑤′

𝑘−1 − 𝑞′‖.

In addition, consider the geodesic triangles 𝛥(𝑤𝑘−1, 𝑣𝑘, 𝑞) and 𝛥(𝑤𝑘, 𝑢𝑘, 𝑞) with their comparison triangles 𝛥(𝑤′
𝑘−1, 𝑣

′
𝑘, 𝑞

′) and 
𝛥(𝑤′

𝑘, 𝑢
′
𝑘, 𝑞

′). It follows from Lemma  2.2 that
𝑑(𝑤𝑘−1, 𝑣𝑘) = ‖𝑤′

𝑘−1 − 𝑣′𝑘‖, 𝑑(𝑢𝑘, 𝑞) = ‖𝑢′𝑘 − 𝑞′‖, 𝑑(𝑢𝑘, 𝑤𝑘) = ‖𝑢′𝑘 −𝑤′
𝑘‖.

According to (3.1), the comparison points of 𝑣𝑘 and 𝑢𝑘 are 𝑣′𝑘 = 𝑤′
𝑘+𝛽𝑘(𝑤′

𝑘−𝑤′
𝑘−1) and 𝑢′𝑘 = 𝑣′𝑘+𝛿𝑘(𝑣′𝑘−𝑤′

𝑘−1), respectively. Therefore,
𝑑(𝑣𝑘, 𝑞) = ‖𝑣′𝑘 − 𝑞′‖

≤ ‖𝑤′
𝑘 − 𝑞′‖ + 𝛽𝑘‖𝑤

′
𝑘 −𝑤′

𝑘−1‖

= 𝑑(𝑤𝑘, 𝑞) + 𝛽𝑘𝑑(𝑤𝑘, 𝑤𝑘−1), (3.17)

and

𝑑(𝑣𝑘, 𝑤𝑘−1) = ‖𝑣′𝑘 −𝑤′
𝑘−1‖

≤ ‖𝑤′
𝑘 −𝑤′

𝑘−1‖ + 𝛽𝑘‖𝑤
′
𝑘 −𝑤′

𝑘−1‖

= (1 + 𝛽𝑘)𝑑(𝑤𝑘, 𝑤𝑘−1). (3.18)

From the definition of 𝑢𝑘, (3.17), and (3.18), we obtain
𝑑(𝑢𝑘, 𝑞) = ‖𝑢′𝑘 − 𝑞′‖

≤ 𝑑(𝑣𝑘, 𝑞) + 𝛿𝑘𝑑(𝑣𝑘, 𝑤𝑘−1)

≤ 𝑑(𝑤𝑘, 𝑞) + (𝛽𝑘 + 𝛿𝑘(1 + 𝛽𝑘))𝑑(𝑤𝑘, 𝑤𝑘−1). (3.19)

Since 𝜏 ∈ (0, 2), lim𝑘→∞ 𝜆𝑘 = 𝜆 > 0, and 𝜇 ∈ (0, 1), it follows from Lemma  3.3 and (3.19) that 
𝑑(𝑤𝑘+1, 𝑞) ≤ 𝑑(𝑤𝑘, 𝑞) + (𝛽𝑘 + 𝛿𝑘(1 + 𝛽𝑘))𝑑(𝑤𝑘, 𝑤𝑘−1). (3.20)

This gives
𝑑(𝑤𝑘+1, 𝑞) ≤ 𝑑(𝑤𝑘, 𝑞) + (𝛽𝑘 + 𝛿𝑘(1 + 𝛽𝑘))(𝑑(𝑤𝑘, 𝑞) + 𝑑(𝑤𝑘−1, 𝑞))

= (1 + 𝛽𝑘 + 𝛿𝑘(1 + 𝛽𝑘))𝑑(𝑤𝑘, 𝑞) + (𝛽𝑘 + 𝛿𝑘(1 + 𝛽𝑘))𝑑(𝑤𝑘−1, 𝑞).

By utilizing Lemma  2.6, we obtain that 

𝑑(𝑤𝑘+1, 𝑞) ≤ 𝑀1 ⋅
𝑘
∏

𝑗=1
(1 + 2(𝛽𝑗 + 𝛿𝑗 (1 + 𝛽𝑗 ))), (3.21)

where 𝑀1 = max{𝑑(𝑤1, 𝑞), 𝑑(𝑤2, 𝑞)}. Since 
∑∞

𝑘=1 𝛽𝑘 < +∞ and ∑∞
𝑘=1 𝛿𝑘 < +∞, by Lemma  2.6 and (3.21), the sequence {𝑑(𝑤𝑘, 𝑞)} is 

bounded. This also implies that ∑∞
𝑘=1 𝛽𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) < +∞ and ∑∞

𝑘=1 𝛿𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) < +∞. By utilizing Lemma  2.5 in (3.20), we claim 
that lim𝑘→∞ 𝑑(𝑤𝑘, 𝑞) exists. It follows from Lemma  2.2 that 

𝑑2(𝑣𝑘, 𝑞) = ‖𝑤′
𝑘 + 𝛽𝑘(𝑤′

𝑘 −𝑤′
𝑘−1) − 𝑞′‖2

= ‖(1 + 𝛽𝑘)(𝑤′
𝑘 − 𝑞′) − 𝛽𝑘(𝑤′

𝑘−1 − 𝑞′)‖2

= (1 + 𝛽𝑘)𝑑2(𝑤𝑘, 𝑞) − 𝛽𝑘𝑑
2(𝑤𝑘−1, 𝑞)

+ 𝛽𝑘(1 + 𝛽𝑘)𝑑2(𝑤𝑘, 𝑤𝑘−1).

(3.22)

By utilizing (2.2), we have
𝑑2(𝑣𝑘, 𝑤𝑘−1) = ‖𝑤′

𝑘 + 𝛽𝑘(𝑤′
𝑘 −𝑤′

𝑘−1) −𝑤′
𝑘−1‖

2

= ‖𝑤′
𝑘 −𝑤′

𝑘−1‖
2 + 2⟨𝑤′

𝑘 −𝑤′
𝑘−1, 𝛽𝑘(𝑤

′
𝑘 −𝑤′

𝑘−1)⟩

+ 𝛽2𝑘‖𝑤
′
𝑘 −𝑤′

𝑘−1‖
2

= 𝑑2(𝑤𝑘, 𝑤𝑘−1) + 2𝛽𝑘𝑑2(𝑤𝑘, 𝑤𝑘−1) + 𝛽2𝑘𝑑
2(𝑤𝑘, 𝑤𝑘−1)

= (1 + 𝛽𝑘)2𝑑2(𝑤𝑘, 𝑤𝑘−1). (3.23)
8 
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We deduce from (3.22) and (3.23) that
𝑑2(𝑢𝑘, 𝑞) = ‖𝑣′𝑘 + 𝛿𝑘(𝑣′𝑘 −𝑤′

𝑘−1) − 𝑞′‖2

= ‖(1 + 𝛿𝑘)(𝑣′𝑘 − 𝑞′) − 𝛿𝑘(𝑤′
𝑘−1 − 𝑞′)‖2

= (1 + 𝛿𝑘)𝑑2(𝑣𝑘, 𝑞) − 𝛿𝑘𝑑
2(𝑤𝑘−1, 𝑞) + 𝛿𝑘(1 + 𝛿𝑘)𝑑2(𝑣𝑘, 𝑤𝑘−1)

= (1 + 𝛿𝑘)
(

𝑑2(𝑤𝑘, 𝑞) + 𝛽𝑘
(

𝑑2(𝑤𝑘, 𝑞) − 𝑑2(𝑤𝑘−1, 𝑞)
)

+ 𝛽𝑘(1 + 𝛽𝑘)𝑑2(𝑤𝑘, 𝑤𝑘−1)
)

− 𝛿𝑘𝑑
2(𝑤𝑘−1, 𝑞) + 𝛿𝑘(1 + 𝛿𝑘)(1 + 𝛽𝑘)2𝑑2(𝑤𝑘, 𝑤𝑘−1).

Therefore 
𝑑2(𝑢𝑘, 𝑞) = 𝑑2(𝑤𝑘, 𝑞) + 𝛽𝑘(1 + 𝛽𝑘)(1 + 𝛿𝑘)𝑑2(𝑤𝑘, 𝑤𝑘−1)

+ (𝛿𝑘 + (1 + 𝛿𝑘)𝛽𝑘)
(

𝑑2(𝑤𝑘, 𝑞) − 𝑑2(𝑤𝑘−1, 𝑞)
)

+ 𝛿𝑘(1 + 𝛿𝑘)(1 + 𝛽𝑘)2𝑑2(𝑤𝑘, 𝑤𝑘−1).

(3.24)

On substituting (3.24) into Lemma  3.3, we have 

𝜏(2 − 𝜏)

(

1 − 𝜇 𝜆𝑘
𝜆𝑘+1

)2

(

1 + 𝜇 𝜆𝑘
𝜆𝑘+1

)2
𝑑2(𝑢𝑘, 𝑧𝑘)

≤ 𝑑2(𝑤𝑘, 𝑞) − 𝑑2(𝑤𝑘+1, 𝑞) + (𝛿𝑘 + (1 + 𝛿𝑘)𝛽𝑘)
(

𝑑2(𝑤𝑘, 𝑞) − 𝑑2(𝑤𝑘−1, 𝑞)
)

+ 𝛽𝑘(1 + 𝛽𝑘)(1 + 𝛿𝑘)𝑑2(𝑤𝑘, 𝑤𝑘−1) + 𝛿𝑘(1 + 𝛿𝑘)(1 + 𝛽𝑘)2𝑑2(𝑤𝑘, 𝑤𝑘−1).

(3.25)

From ∑∞
𝑘=1 𝛽𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) < +∞ and ∑∞

𝑘=1 𝛿𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) < +∞, one has 

lim
𝑘→∞

𝛽𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) = 0, lim
𝑘→∞

𝛿𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) = 0. (3.26)

Using the fact that lim𝑘→∞ 𝑑(𝑤𝑘, 𝑞) exists and (3.26), we can deduce from (3.25) that 
lim
𝑘→∞

𝑑(𝑢𝑘, 𝑧𝑘) = 0. (3.27)

It follows from (3.26) that
𝑑(𝑣𝑘, 𝑤𝑘) = ‖𝑤′

𝑘 + 𝛽𝑘(𝑤′
𝑘 −𝑤′

𝑘−1) −𝑤′
𝑘‖

= 𝛽𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) → 0,  as 𝑘 → ∞. (3.28)

By utilizing (3.26) and (3.28), we obtain
𝑑(𝑢𝑘, 𝑤𝑘) = ‖𝑣′𝑘 + 𝛿𝑘(𝑣′𝑘 −𝑤′

𝑘−1) −𝑤′
𝑘‖

≤ ‖𝑣′𝑘 −𝑤′
𝑘‖ + 𝛿𝑘‖𝑤

′
𝑘 + 𝛽𝑘(𝑤′

𝑘 −𝑤′
𝑘−1) −𝑤′

𝑘−1‖

≤ 𝑑(𝑣𝑘, 𝑤𝑘) + 𝛿𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) + 𝛽𝑘𝛿𝑘𝑑(𝑤𝑘, 𝑤𝑘−1) → 0, as 𝑘 → ∞. (3.29)

From the fact that {𝑑(𝑤𝑘, 𝑞)} is bounded, one obtains that {𝑤𝑘} is also bounded, and thus there exists a subsequence {𝑤𝑘𝑗 } which 
converges to a cluster 𝑞. From (3.27) and (3.29), one has 𝑢𝑘𝑗 → 𝑞 and 𝑧𝑘𝑗 → 𝑞. According to (3.2), one has

⟨

𝑃𝑧𝑘𝑗 ,𝑢𝑘𝑗
𝖥𝑢𝑘𝑗 −

1
𝜆𝑘𝑗

exp−1𝑧𝑘𝑗
𝑢𝑘𝑗 , exp

−1
𝑧𝑘𝑗

𝑝
⟩

≥ 0, ∀𝑝 ∈ D,

which implies that
⟨

𝑃𝑧𝑘𝑗 ,𝑢𝑘𝑗
𝖥𝑢𝑘𝑗 , exp

−1
𝑧𝑘𝑗

𝑝
⟩

≥ 1
𝜆𝑘𝑗

⟨

exp−1𝑧𝑘𝑗
𝑢𝑘𝑗 , exp

−1
𝑧𝑘𝑗

𝑝
⟩

.

Consider the geodesic triangle 𝛥(𝑧𝑘𝑗 , 𝑢𝑘𝑗 , 𝑝). Then, using Proposition  2.2, we obtain

⟨exp−1𝑧𝑘𝑗
𝑢𝑘𝑗 , exp

−1
𝑧𝑘𝑗

𝑝⟩ ≥ 1
2
(

𝑑2(𝑧𝑘𝑗 , 𝑢𝑘𝑗 ) + 𝑑2(𝑧𝑘𝑗 , 𝑝) − 𝑑2(𝑢𝑘𝑗 , 𝑝)
)

.

Combined with the last two inequalities, we have 

⟨𝑃𝑧𝑘𝑗 ,𝑢𝑘𝑗
𝖥𝑢𝑘𝑗 , exp

−1
𝑧𝑘𝑗

𝑝⟩ ≥ 1
2𝜆𝑘𝑗

(

𝑑2(𝑧𝑘𝑗 , 𝑢𝑘𝑗 ) + 𝑑2(𝑧𝑘𝑗 , 𝑝) − 𝑑2(𝑢𝑘𝑗 , 𝑝)
)

. (3.30)

By passing the limit as 𝑗 → ∞ in (3.30) and using (3.27), Lemmas  2.7 and 3.1, we obtain
⟨𝖥𝑞, exp−1𝑞 𝑝⟩ ≥ 0, ∀𝑝 ∈ D.

This means that 𝑞 ∈ VIP(D, 𝖥). Lastly, by Lemma  2.8, we obtain that {𝑤𝑘} converges to an element in VIP(D, 𝖥). The proof is 
finished. □
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Inspired by the Tseng extragradient algorithm, the second iterative scheme presented in this paper is shown in Algorithm 3.2.

Algorithm 3.2 The second modified proximal point algorithm
Initialization: Choose 𝜆1 > 0, 𝜇 ∈ (0, 1), {𝛽𝑘}, {𝜃𝑘}, and {𝛿𝑘} are real positive sequences for all 𝑘 ∈ N. Let 𝑤0, 𝑤1 ∈  be arbitrary.
Step 1: Given the current iterates 𝑤𝑘−1, 𝑤𝑘, compute 𝑣𝑘 and 𝑢𝑘 as (3.1).
Step 2: Compute 𝑧𝑘 ∈ D such that (3.2) holds.
Step 3: Calculate 𝑤𝑘+1 = exp𝑧𝑘

(

𝜆𝑘(𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘)
)

. Update 𝜆𝑘+1 by (3.5).
Set 𝑘 ∶= 𝑘 + 1 and return to Step 1.

Theorem 3.2.  Let {𝑢𝑘} be generated by Algorithm 3.2 and Assumption  3.1 holds. Then {𝑤𝑘} converges to a solution of VIP (1.2).

Proof.  Fix 𝑞 ∈ VIP(D, 𝖥). Consider the geodesic triangle 𝛥 (

𝑢𝑘, 𝑧𝑘, 𝑞
) and its comparison triangle 𝛥 (

𝑢′𝑘, 𝑧
′
𝑘, 𝑞

′), and consider the 
geodesic triangle 𝛥 (

𝑤𝑘+1, 𝑧𝑘, 𝑞
) and its comparison triangle 𝛥

(

𝑤′
𝑘+1, 𝑧

′
𝑘, 𝑞

′
)

. It follows from Lemma  2.2 that

𝑑
(

𝑢𝑘, 𝑞
)

= ‖

‖

‖

𝑢′𝑘 − 𝑞′‖‖
‖

, 𝑑
(

𝑧𝑘, 𝑞
)

= ‖

‖

‖

𝑧′𝑘 − 𝑞′‖‖
‖

, 𝑑
(

𝑢𝑘, 𝑧𝑘
)

= ‖

‖

‖

𝑢′𝑘 − 𝑧′𝑘
‖

‖

‖

,

𝑑
(

𝑤𝑘+1, 𝑞
)

= ‖

‖

‖

𝑤′
𝑘+1 − 𝑞′‖‖

‖

, 𝑑
(

𝑧𝑘, 𝑞
)

= ‖

‖

‖

𝑧′𝑘 − 𝑞′‖‖
‖

, 𝑑
(

𝑤𝑘+1, 𝑧𝑘
)

= ‖

‖

‖

𝑤′
𝑘+1 − 𝑧′𝑘

‖

‖

‖

.

By the definition of 𝑤𝑘+1 in Algorithm 3.2, one obtains that the comparison point of 𝑤𝑘+1 is 𝑤′
𝑘+1 = 𝑧′𝑘 + 𝜆𝑘

(

𝖥𝑢′𝑘 − 𝖥𝑧′𝑘
)

. Moreover,
‖

‖

‖

exp−1𝑧𝑘 𝑤𝑘+1
‖

‖

‖

=
‖

‖

‖

‖

exp−1𝑧𝑘 exp𝑧𝑘
(

𝜆𝑘
(

𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘
))

‖

‖

‖

‖

.

Thus

𝜆𝑘
‖

‖

‖

𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘
‖

‖

‖

= 𝑑
(

𝑤𝑘+1, 𝑧𝑘
)

= ‖𝑤′
𝑘+1 − 𝑧′𝑘‖ = 𝜆𝑘

‖

‖

‖

𝖥𝑧′𝑘 − 𝖥𝑢′𝑘
‖

‖

‖

.

Let 𝑎 = exp𝑧𝑘 (𝖥𝑧𝑘 − 𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘). Then the comparison point of 𝑎 is 𝑎′ = 𝑧′𝑘 + 𝖥𝑧′𝑘 − 𝖥𝑢′𝑘. According to Lemma  2.4, we have
⟨

𝑎′ − 𝑧′𝑘, 𝑞
′ − 𝑧′𝑘

⟩

≤
⟨

𝖥𝑧𝑘 − 𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘, exp
−1
𝑧𝑘

𝑞
⟩

.

Hence, we deduce that 
𝑑2

(

𝑤𝑘+1, 𝑞
)

= ‖𝑤′
𝑘+1 − 𝑞′‖2

= ‖

‖

‖

𝑧′𝑘 + 𝜆𝑘
(

𝖥𝑢′𝑘 − 𝖥𝑧′𝑘
)

− 𝑞′‖‖
‖

2

= ‖

‖

‖

𝑧′𝑘 − 𝑞′‖‖
‖

2
+ 𝜆2𝑘

‖

‖

‖

𝖥𝑢′𝑘 − 𝖥𝑧′𝑘
‖

‖

‖

2

+ 2𝜆𝑘
⟨

𝖥𝑧′𝑘 − 𝖥𝑢′𝑘, 𝑞
′ − 𝑧′𝑘

⟩

≤ ‖

‖

‖

𝑧′𝑘 − 𝑞′‖‖
‖

2
+ 𝜆2𝑘

‖

‖

‖

𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘
‖

‖

‖

2

+ 2𝜆𝑘
⟨

𝖥𝑧𝑘 − 𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘, exp
−1
𝑧𝑘

𝑞
⟩

.

(3.31)

By using Lemma  2.4 again, one has 
‖

‖

‖

𝑧′𝑘 − 𝑞′‖‖
‖

2
= ‖

‖

‖

𝑧′𝑘 − 𝑢′𝑘
‖

‖

‖

2
+ ‖

‖

‖

𝑢′𝑘 − 𝑞′‖‖
‖

2
+ 2

⟨

𝑧′𝑘 − 𝑢′𝑘, 𝑢
′
𝑘 − 𝑞′

⟩

= ‖

‖

‖

𝑢′𝑘 − 𝑞′‖‖
‖

2
+ ‖

‖

‖

𝑧′𝑘 − 𝑢′𝑘
‖

‖

‖

2
− 2

⟨

𝑧′𝑘 − 𝑢′𝑘, 𝑧
′
𝑘 − 𝑢′𝑘

⟩

+ 2
⟨

𝑧′𝑘 − 𝑢′𝑘, 𝑧
′
𝑘 − 𝑞′

⟩

= ‖

‖

‖

𝑢′𝑘 − 𝑞′‖‖
‖

2
− ‖

‖

‖

𝑧′𝑘 − 𝑢′𝑘
‖

‖

‖

2
+ 2

⟨

𝑢′𝑘 − 𝑧′𝑘, 𝑞
′ − 𝑧′𝑘

⟩

≤ 𝑑2
(

𝑢𝑘, 𝑞
)

− 𝑑2
(

𝑢𝑘, 𝑧𝑘
)

+ 2
⟨

exp−1𝑧𝑘 𝑢𝑘, exp−1𝑧𝑘 𝑞
⟩

.

(3.32)

From the definition of 𝑧𝑘 and 𝑞 ∈ D, one obtains 
⟨

exp−1𝑧𝑘 𝑢𝑘 − 𝜆𝑘𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘, exp
−1
𝑧𝑘

𝑞
⟩

≤ 0. (3.33)

Since 𝑞 ∈ VIP(D, 𝖥) and 𝑧𝑘 ∈ D, we have ⟨𝖥𝑞, exp−1𝑞 𝑧𝑘
⟩

≥ 0. It follows from the pseudomonotonicity of 𝖥 that 
⟨

𝖥𝑧𝑘, exp−1𝑧𝑘 𝑞
⟩

≤ 0. (3.34)

Combining (3.5), (3.31), (3.32), (3.33), and (3.34), one concludes that

𝑑2
(

𝑤𝑘+1, 𝑞
)

≤ 𝑑2
(

𝑢𝑘, 𝑞
)

− 𝑑2
(

𝑢𝑘, 𝑧𝑘
)

+ 𝜆2𝑘
‖

‖

‖

𝑃𝑧𝑘 ,𝑢𝑘𝖥𝑢𝑘 − 𝖥𝑧𝑘
‖

‖

‖

2

≤ 𝑑2
(

𝑢𝑘, 𝑞
)

−
(

1 −
𝜆2𝑘
2

)

𝑑2
(

𝑢𝑘, 𝑧𝑘
)

.

𝜆𝑘+1
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Table 1
Numerical results of all algorithms.
 Algorithms 𝑤0 = 20 𝑤0 = 30 𝑤0 = 60 𝑤0 = 80

 Iter. Time Iter. Time Iter. Time Iter. Time  
 Our Alg. 3.1 10 0.3316 10 0.3400 10 0.4337 10 0.3551  
 Our Alg. 3.2 34 0.4313 34 0.3983 35 0.7093 35 0.3745  
 SFS Alg. 2 100 27.2960 100 32.8638 100 38.0513 100 39.9684 
 TH Alg. 4.1 100 0.4111 100 0.2154 100 0.2249 100 0.5795  
 TWL Alg. 3.1 93 0.4002 90 0.3785 96 0.7257 97 0.6041  

The remaining proof is similar to that of Theorem  3.1 and is therefore omitted. □

Remark 3.1.  The results of Theorems  3.1 and 3.2 hold if 𝖥 is pseudomonotone and 𝐿-Lipschitz continuous.

4. Numerical experiments

In this section, we give a numerical example to demonstrate the computational efficiency of the proposed algorithms compared 
with some known methods in the literature [14–16]. All codes are implemented on a personal computer in MATLAB R2023b.

Example 4.1.  Let R++ = {𝑥 ∈ R∶ 𝑥 > 0}, and define the Riemannian metric ⟨⋅ , ⋅⟩ by
⟨𝑢, 𝑣⟩ ∶= 𝑢𝑣

𝑥2
, ∀𝑢, 𝑣 ∈ 𝑇𝑥, ∀𝑥 ∈ .

With this metric,  =
(

R++, ⟨⋅ , ⋅⟩
) forms a Riemannian manifold. The Riemannian distance 𝑑 ∶ ×  → R++ between 𝑥, 𝑦 ∈  is 

defined as

𝑑(𝑥, 𝑦) =
|

|

|

|

|

ln
(

𝑥
𝑦

)

|

|

|

|

|

, ∀𝑥, 𝑦 ∈ .

The exponential map is given by exp𝑥(𝑡𝑣) = 𝑥𝑒
(

𝑣
𝑥

)

𝑡 for all 𝑥 ∈ , 𝑡 ∈ R, and 𝑣 ∈ 𝑇𝑥. The inverse exponential map is expressed as

exp−1𝑥 (𝑦) = 𝑥 ln
( 𝑦
𝑥

)

, ∀𝑥, 𝑦 ∈ .

Consider the set D = [1, 100], which is a subset of R++. Define the single-valued vector field 𝖥∶D → 𝑇 by
𝖥𝑥 = 𝑥 ln 𝑥, ∀𝑥 ∈ D.

It is evident that 𝖥 is both pseudo-monotone and monotone on D. According to [33, Example 1], 𝖥 is 1-Lipschitz continuous. Clearly, 
the VIP (1.2) associated with the above 𝖥 and D has a unique solution 𝑤∗ = 1.

Next, we use the proposed algorithms to solve Example  4.1 and compare them with the Algorithm 4.1 of Tang and Huang [14] 
(shortly, TH Alg. 4.1), the Algorithm 3.1 of Tang et al. [15] (shortly, TWL Alg. 3.1), and the Algorithm 2 of Sahu et al. [16] (shortly, 
SFS Alg. 2). The parameters of the algorithms are set as follows.

• Take 𝜇 = 0.5, 𝜏 = 1.5, 𝛽𝑘 = 1∕(𝑘 + 1)2, 𝛿𝑘 = 1∕(𝑘 + 1)2, 𝜆1 = 0.5, and 𝜃𝑘 = 0.1∕(𝑘 + 1)2 for the proposed Algorithms 3.1 and 3.2.
• Choose 𝛽𝑘 = 0.5 and 𝛿 = 0.91 for TH Alg. 4.1.
• Select 𝜎 = 0.85 and 𝜇 = 0.5 for TWL Alg. 3.1.
• Set 𝜆 = 1, 𝜎 = 0.85, and 𝜂 = 0.5 for SFS Alg. 2.

We represent the iteration error at step 𝑛 of the algorithms as 𝐷𝑘 = 𝑑(𝑤𝑘, 𝑤∗) and set a common stopping condition of 𝐷𝑘 < 10−5

or a maximum of 100 iterations. To evaluate the convergence performance of the proposed algorithm and those in [14–16] for 
Example  4.1, we tested four initial points with 𝑤0 = 𝑤1, as illustrated in Table  1 and Fig.  1. In Table  1, ‘‘Iter’’. represents the 
number of iterations, and ‘‘Time’’ indicates the execution time in seconds.

Remark 4.1.  From Table  1 and Fig.  1, it can be observed that our algorithms are applicable to solving the variational inequality 
problem on the Hadamard manifold. Moreover, our algorithms require fewer iterations and shorter execution time compared to 
the algorithms in the literature [14–16] under the same stopping criteria, and these results are independent of the choice of initial 
values. Therefore, the algorithms proposed in this paper are both efficient and robust.

5. Conclusions

In this paper, we propose two accelerated iterative algorithms to solve variational inequality problems on Hadamard manifolds. 
The proposed algorithms are inspired by the double inertial method, the proximal point algorithm, the Tseng extragradient 
algorithm, and the projection and contraction method. Additionally, we introduce a non-monotonic step size criterion, enabling 
11 
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Fig. 1. Numerical behavior of all algorithms.

the algorithms to operate adaptively. Under the assumption that the bifunction is pseudomonotone and uniformly continuous, we 
prove two convergence theorems for the proposed algorithms. Finally, we demonstrate the computational efficiency and advantages 
of the proposed algorithms compared to some known ones in the literature through a numerical example.
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