
APPLICABLE ANALYSIS
2022, VOL. 101, NO. 15, 5386–5414
https://doi.org/10.1080/00036811.2021.1892080

Strong convergence of inertial forward–backward methods for
solving monotone inclusions

Bing Tan a and Sun Young Chob

aInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu,
People’s Republic of China; bDepartment of Liberal Arts, Gyeongnam National University of Science and Technology,
Jinju-Si, South Korea

ABSTRACT
The paper presents four modifications of the inertial forward–backward
splittingmethod formonotone inclusion problems in the framework of real
Hilbert spaces. The advantages of our iterative schemes are that the single-
valued operator is Lipschitz continuous monotone rather than cocoercive
and the Lipschitz constant does not require to be known. The strong con-
vergence of the suggested approaches is obtained under some standard
and mild conditions. Finally, several numerical experiments in finite- and
infinite-dimensional spaces are proposed to demonstrate the advantages
of our algorithms over the existing related ones.

ARTICLE HISTORY
Received 2 October 2020
Accepted 12 February 2021

COMMUNICATED BY
J.-C. Yao

KEYWORDS
Inclusion problem; inertial
forward–backward method;
projection and contraction
method; Tseng’s splitting
method; viscosity method

MATHEMATICS SUBJECT
CLASSIFICATIONS
47H05; 47J22; 47J25; 68W10;
65K15

1. Introduction

In this paper, our interest is to devise fast iterative algorithms to solve themonotone inclusion problem
in real Hilbert spaces. Our problem is described as follows:

find x∗ ∈ H such that 0 ∈ (A + B)x∗, (MIP)

where H is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖, A : H → H
is a monotone mapping and B : H → 2H is a maximal monotone mapping. The solution set of
(MIP) is denoted by �. It is known that many problems can be converted into the model of (MIP),
such as image processing problems, convex minimization problems, split feasibility problems, equi-
librium problems, variational inequalities and DC programming problems; see, e.g. [1–8]. Therefore,
a large number of researchers are very interested in this problem and have developed many meth-
ods to solve such problems. One of the most famous of these approaches is the forward–backward
algorithm (FBA), which generates an iterative sequence {xn} in the following way:

xn+1 = (I + λnB)−1(I − λnA)xn, (1)

where stepsize λn > 0, I stands for the identity mapping on H , the operator (I − λnA) is referred to
as forward operator and the operator (I + λnB)−1 is the so-called backward operator (also referred
to as resolvent operator). The FBA for monotone inclusion problems were first introduced by Lions

CONTACT Sun Young Cho sycho@gntech.ac.kr

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00036811.2021.1892080&domain=pdf&date_stamp=2022-09-05
http://orcid.org/0000-0003-1509-1809
mailto:sycho@gntech.ac.kr

APPLICABLE ANALYSIS 5387

and Mercier [9] (also by Passty [10] independently). In the past few decades, the convergence prop-
erties and the modified versions of this method have been extensively studied in the literature; see,
e.g. [11–16] and the references therein. It should be mentioned that the FBA defined by (1) requires
mapping A to be inverse strongly monotone (see the definition in Section 2). This assumption is very
strict and it is difficult tomeet the practical problems. In order to avoid this restriction, many scholars
have made a lot of efforts and achieved some important results. Next, we introduce two methods to
overcome this difficulty in the literature.

The first is the Tseng splitting algorithm (also known as forward–backward–forward method)
proposed by Tseng [17] in 2000, which is a two-step iterative scheme. More precisely, the form of the
algorithm is as follows: {

yn = (I + λnB)−1(I − λnA)xn,
xn+1 = yn − λn(Ayn − Axn),

(2)

where the step size {λn} can be automatically updated by Armijo-type search methods. When the
mappingA is Lipschitz continuousmonotone and themappingB is maximalmonotone, the sequence
{xn} formed by iterative process (2) converges weakly to a solution of (MIP) in real Hilbert spaces. In
2018, Zhang andWang [18] combined the projection and contraction method and (1), and proposed
another iterative scheme to overcome the strong assumption on mapping A. To be more precise, the
method is described as follows: {

yn = (I + λnB)−1(I − λnA)xn,
xn+1 = xn − γ ηndn,

(3)

where dn = xn − yn − λn(Axn − Ayn), ηn = 〈xn−yn, dn〉
‖dn‖2 , γ ∈ (0, 2), {λn} is a control sequence, oper-

ator A is assumed to be Lipschitz continuous monotone and operator B is assumed to be maximal
monotone. They established the weak convergence of the iterative method (3) under some suitable
conditions.

It is worth noting that the Tseng splitting method (2) and the Algorithm (3) are only weakly con-
vergent in infinite-dimensional spaces. Examples in CT reconstruction and machine learning tell us
that strong convergence is preferable to weak convergence in an infinite-dimensional space. There-
fore, a natural question is how to modify method (1) such that it can achieve strong convergence in
infinite-dimensional spaces. In fact, in the past few decades, researchers have proposed many modi-
fied forward–backwardmethods to achieve strong convergence in realHilbert spaces; see, e.g. [19–22]
and the references therein. It should be pointed out that the algorithms mentioned in the above lit-
eratures also require operator A to be inverse strongly monotone. Let us review some recent results
to overcome this shortcoming. In 2018, Gibali and Thong [23] proposed two modifications of (2)
based on Mann and viscosity ideas. They established two strong convergence theorems of the sug-
gested algorithms in an infinite-dimensional Hilbert space. Moreover, Thong and Cholamjiak [24]
and Gibali et al. [25] presented several new algorithms by means of the viscosity-type method and
iterative method (3), and established the strong convergence theorems of the proposed algorithms in
Hilbert spaces.

In recent years, the development of fast iterative algorithms has attracted enormous interest,
especially for the inertial method, which is based on discrete versions of a second-order dissipative
dynamic system.Many researchers have constructed various fast iterative algorithms by using inertial
technology; see, e.g. [26–31] and the references therein. One of the common features of these algo-
rithms is that the next iteration depends on the combination of the previous two iterations. Note that
this minor change greatly improves the performance of the algorithms. In 2015, Lorenz and Pock [26]
introduced the following inertial forward–backward algorithm (iFBA) for monotone inclusions:{

wn = xn + θn(xn − xn−1),
xn+1 = (I + λnB)−1(I − λnA)wn.

(4)

5388 B. TAN AND S. Y. CHO

Note that the iFBA (4) still achieves weak convergence in real Hilbert spaces. Their numerical
experiments on image restoration show that iFBA converges faster than some existing algorithms.

Motivated and stimulated by the above work, in this paper, we propose four accelerated for-
ward–backward splitting algorithms to solve the monotone inclusion problem (MIP) in real Hilbert
spaces. The advantages of our iterative schemes are: (1) operatorA is assumed to be Lipschitz contin-
uous monotone and operator B is assumed to be maximal monotone; (2) the prior information of the
Lipschitz constant of the operator is not required; (3) the strong convergence theorems of the sug-
gested algorithms are established under some weaker conditions; (4) the inertial term is embedded
to accelerate the convergence speed of the algorithms. Furthermore, we also give several theoretical
applications of the proposedmethods. Finally, some numerical experiments are provided to show the
advantages of our stated algorithms over the previously existing algorithms. Our approaches obtained
in this paper improve and summarize some results in the literature [18,20–25].

The organizational structure of our paper is built up as follows. Some essential definitions and tech-
nical lemmas that need to be used are given in Section 2. In Section 3, we propose several algorithms
and analyze their convergence. Section 4 introduces four theoretical applications of the proposed
methods. Some numerical experiments to verify our theoretical results are presented in Section 5.
Finally, the paper ends with a brief summary in Section 6, the last section.

2. Preliminaries

Let C be a closed and convex nonempty subset of a real Hilbert space H . The weak convergence
and strong convergence of {xn}∞n=1 to x are represented by xn ⇀ x and xn → x, respectively. For each
x, y, z ∈ H , we have the following facts:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, α ∈ R;
(3) ‖αx + βy + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2 − αβ‖x − y‖2 − αγ ‖x − z‖2 − βγ ‖y − z‖2,

where α,β , γ ∈ [0, 1] with α + β + γ = 1.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PC(x) such that
PC(x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of H onto C. It is known that
PC is nonexpansive and PC(x) has the following basic properties:

• 〈x − PC(x), y − PC(x)〉 ≤ 0, ∀x ∈ H , y ∈ C;
• ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉, ∀x ∈ H , y ∈ H .

The two projection formulas given next will be used in the sequel (see Section 5).

(1) The projection of x onto a half-space Hu,v = {x : 〈u, x〉 ≤ v} is computed by

PHu,v(x) = x − max
{
[〈u, x〉 − v]/‖u‖2, 0}u.

(2) The projection of x onto a ball B[p, q] = {x : ‖x − p‖ ≤ q} is computed by

PB[p,q](x) = p + q
max{‖x − p‖, q} (x − p).

For any x, y ∈ H , the mapping A : H → H is said to be:

(1) L-Lipschitz continuous with L> 0 if

‖Ax − Ay‖ ≤ L‖x − y‖.

APPLICABLE ANALYSIS 5389

If L ∈ (0, 1), then mapping A is called a contraction. In particular, when L = 1, mapping A is
called nonexpansive.

(2) Monotone if

〈Ax − Ay, x − y〉 ≥ 0.

(3) k-inverse strongly monotone (also called k-cocoercive) if there exists a k> 0 such that

〈Ax − Ay, x − y〉 ≥ k‖Ax − Ay‖2.

Clearly, every k-cocoercive mapping is 1/k-Lipschitz continuous and monotone.

Recall that a multi-valuedmapping B : H → 2H with domain Dom(B) := {x ∈ H : Bx �= ∅} is
said to be (i) monotone if, for all x, y ∈ H , u ∈ Bx and v ∈ By indicates that 〈u − v, x − y〉 ≥ 0; (ii)
maximal monotone if it is monotone and if, for any (x, u) ∈ H × H , 〈u − v, x − y〉 ≥ 0 for every
(y, v) ∈ Graph(B) (the graph of mapping B) indicates that u ∈ Bx. Let mapping B : H → 2H be
set-valuedmaximal monotone. Then, for ∀x ∈ H and λ > 0, the resolvent mapping JλB : H → H
associated with B is represented as JλB(x) = (I + λB)−1(x), where I stands for the identity operator
on H .

We give the following definitions which will be used in the sequel.

(i) Let h : H → R be a proper convex and lower semicontinuous function. Its subdifferential is
defined as

∂h(x) = {
z ∈ H : h(y) − h(x) ≥ 〈z, y − x〉}, ∀x, y ∈ Dom(h).

It is known that ∂h is maximal monotone.
(ii) Let NC(x) denote the normal cone of C at x, which is given by

NC(x) :=
{ ∅ if x /∈ C;

{z ∈ H : 〈z, y − x〉 ≤ 0, ∀y ∈ C} if x ∈ C.

(iii) Let δC(x) be the indicator function of C at x, that is,

δC(x) :=
{

0, if x ∈ C;
∞, if x /∈ C.

Then δC : H → R is a proper convex and lower semicontinuous function. Set B = ∂δC, we
claim that JλB(x) = PC(x). Indeed, it is easy to see that ∂δC(x) = NC(x). In addition, for all
x ∈ C, we have

u = JλB(x) ⇔ x ∈ u + λNC(u) ⇔ 〈x − u, y − u〉 ≤ 0 ⇔ u = PC(x).

Therefore, we deduce that JλB(x) = PC(x).
(iv) Let proxλϕ represent the proximal mapping of a proper convex and lower semicontinuous

function ϕ of parameter λ > 0, which is defined as follows:

proxλϕ(x) := arg min
y∈H

{
λϕ(y) + 1

2
‖y − x‖2

}
.

Note that it has closed-form expressions in some special situations. For example, if ϕ = δC, we
get proxλϕ(x) = PC(x) = argminz∈C ‖x − z‖.

The following lemmas are very helpful for the convergence analysis of the algorithms.

5390 B. TAN AND S. Y. CHO

Lemma 2.1: Assume thatH is a real Hilbert space, A : H → H is a mapping and B : H → 2H is
a maximal monotone mapping. Define the fixed point set of the mapping T as Fix(T) = {x : x = Tx},
and Tλ = (I + λB)−1(I − λA), λ > 0. Then,

Fix(Tλ) = (A + B)−1(0), ∀λ > 0.

Proof: By the definition of Tλ, one has

x = Tλx ⇔ x = (I + λB)−1(I − λA)x

⇔ x − λAx ∈ (I + λB)x ⇔ x ∈ (A + B)−1(0).

Thus, Fix(Tλ) = (A + B)−1(0). �

Lemma 2.2 ([32]): Assume that H is a real Hilbert space. Let mapping A : H → H be Lipschitz
continuous monotone and mapping B : H → 2H be maximal monotone. Then the mapping (A + B)

is maximal monotone.

Lemma 2.3 ([33]): Let {an} be a sequence of nonnegative real numbers, {σn} be a sequence of real
numbers in (0, 1) with

∑∞
n=1 σn = ∞, and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1 − σn)an + σnbn, ∀n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying lim infk→∞ (ank+1 − ank) ≥ 0,
then limn→∞ an = 0.

3. Main results

In this section, we propose four inertial forward–backward algorithms to solve the inclusion prob-
lem (MIP) in real Hilbert spaces. The advantage of our algorithms is that they do not require the prior
information of the Lipschitz constant of the operator. Before introducing our methods, assume that
the following conditions are met.

(C1) The solution set of the inclusion problem (MIP) is nonempty, i.e. � := (A + B)−1(0) �= ∅.
(C2) The mappings A : H → H is L-Lipschitz continuous monotone and B : H → 2H is max-

imal monotone.
(C3) Let {εn} be a positive sequence such that limn→∞ εn

αn
= 0, where {αn} ⊂ (0, 1) satisfies

limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.
(C4) The mapping f : H → H is ρ-contraction with constant ρ ∈ [0, 1).

3.1. The inertial viscosity-type projection algorithm

In this subsection, in order to solve the inclusion problem (MIP), we introduce an inertial projection
method that is inspired by the inertial method, the forward–backward method, the projection and
contraction method and the viscosity-type method. Details of the iterative scheme are described in
Algorithm 3.1.

APPLICABLE ANALYSIS 5391

Algorithm 3.1 The inertial viscosity-type projection algorithm for solving (MIP).
Initialization: Set δ > 0, θ > 0, l ∈ (0, 1),μ ∈ (0, 1), γ ∈ (0, 2) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + θn(xn − xn−1), where

θn =
⎧⎨
⎩ min

{
εn

‖xn−xn−1‖ , θ
}
, if xn �= xn−1;

θ , otherwise.
(5)

Step 2. Compute yn = (I + λnB)−1(I − λnA)wn, where λn is chosen to be the largest λ ∈{
δ, δl, δl2, . . .

}
satisfying the following:

λ
〈
Awn − Ayn,wn − yn

〉 ≤ μ
∥∥wn − yn

∥∥2 . (6)

If wn = yn, then stop and yn is a solution of (MIP). Otherwise, go to Step 3.
Step 3. Compute zn = wn − γ ηndn, where

dn := wn − yn − λn(Awn − Ayn), ηn := (1 − μ)

∥∥wn − yn
∥∥2

‖dn‖2 . (7)

Step 4. Compute xn+1 = αnf (xn) + (1 − αn) zn.
Set n := n + 1 and go to Step 1.

Remark 3.1: We have the following observations for Algorithm 3.1.

(i) It follows from (5) that

lim
n→∞

θn

αn
‖xn − xn−1‖ = 0.

Indeed, we have θn‖xn − xn−1‖ ≤ εn for all n, which together with limn→∞ εn
αn

= 0 implies that

lim
n→∞

θn

αn
‖xn − xn−1‖ ≤ lim

n→∞
εn

αn
= 0.

(ii) If wn = yn or dn = 0, then yn ∈ �. Indeed, from the definition of dn, one obtains

〈wn − yn, dn〉 = ‖wn − yn‖2 − λn〈wn − yn,Awn − Ayn〉 ≥ (1 − μ)‖wn − yn‖2.

This means that if dn = 0, then wn = yn. We get yn ∈ � by means of Lemma 2.1.

The following lemmas are quite helpful for the convergence analysis of our algorithms.

Lemma 3.1: The Armijo-like search rule (6) is well defined andmin{δ, μl
L } ≤ λn ≤ δ.

Proof: From the fact that A is L-Lipschitz continuous, one has 〈Awn − Ayn,wn − yn〉 ≤ L‖wn −
yn‖2. Obviously, (6) holds for all λ ≤ μL−1. On the other hand, it is easy to see that λn ≤ δ. If λn = δ,
then this lemma is proved. Otherwise, if λn < δ, then inequality (6) will be violated when λ = λnl−1,
which indicates that λnl−1 > μL−1. Hence λn ≥ min{δ, μl

L }. �

5392 B. TAN AND S. Y. CHO

Lemma 3.2: Let {wn}, {yn} and {zn} be three sequences formed by Algorithm 3.1. Then

‖zn − p‖2 ≤ ‖wn − p‖2 − 2 − γ

γ
‖zn − wn‖2, ∀p ∈ �

and

‖wn − yn‖2 ≤ 1 + L2δ2

[(1 − μ)γ]2
‖zn − wn‖2.

Proof: From the definition of zn, one sees that

‖zn − p‖2 = ∥∥wn − γ ηndn − p
∥∥2

= ‖wn − p‖2 − 2γ ηn〈wn − p, dn〉 + γ 2η2n‖dn‖2. (8)

By (6) and the definition of dn, we obtain

〈wn − p, dn〉 = 〈wn − yn, dn〉 + 〈yn − p, dn〉
= 〈

wn − yn,wn − yn − λn(Awn − Ayn)
〉+ 〈yn − p, dn〉

= ‖wn − yn‖2 − 〈
wn − yn, λn(Awn − Ayn)

〉+ 〈yn − p, dn〉
≥ (1 − μ)‖wn − yn‖2 + 〈

yn − p,wn − yn − λn(Awn − Ayn)
〉
. (9)

According to the definition of yn, one has (I − λnA)wn ∈ (I + λnB)yn. Since B is maximalmonotone,
there exists vn ∈ Byn satisfying (I − λnA)wn = yn + λnvn, which yields that

vn = λ−1
n (wn − yn − λnAwn). (10)

Hence, (A + B) is maximal monotone by means of Lemma 2.2. From Ayn + vn ∈ (A + B)yn and 0 ∈
(A + B)p, we have 〈Ayn + vn, yn − p〉 ≥ 0, which together with (10) yields

〈wn − yn − λn(Awn − Ayn), yn − p〉 ≥ 0. (11)

By use of (8), (9), (11), and the definitions of ηn and zn, we get

‖zn − p‖2 ≤ ‖wn − p‖2 − 2γ ηn(1 − μ)‖wn − yn‖2 + γ 2η2n‖dn‖2

≤ ‖wn − p‖2 − 2γ η2n‖dn‖2 + γ 2η2n‖dn‖2

= ‖wn − p‖2 − 2 − γ

γ
‖γ ηndn‖2

= ‖wn − p‖2 − 2 − γ

γ
‖zn − wn‖2. (12)

On the other hand, from the definition of ηn and zn, we have

‖wn − yn‖2 = ηn

1 − μ
‖dn‖2 = 1

1 − μ
‖γ ηndn‖2 · 1

γ 2 · 1
ηn

= 1
1 − μ

‖zn − wn‖2 · 1
γ 2 · 1

ηn
. (13)

From the definition of dn and the fact that A is L-Lipschitz continuous monotone, we obtain

‖dn‖2 = ‖wn − yn − λn(Awn − Ayn)‖2

APPLICABLE ANALYSIS 5393

= ‖wn − yn‖2 + λ2n‖Awn − Ayn‖2 − 2λn〈wn − yn,Awn − Ayn〉
≤ (1 + L2δ2)‖wn − yn‖2.

It follows from the definition of ηn that

1
ηn

= ‖dn‖2
(1 − μ)‖wn − yn‖2 ≤ 1 + L2δ2

1 − μ
,

which, together with (13), deduces that

‖wn − yn‖2 ≤ 1 + L2δ2

[(1 − μ)γ]2
‖zn − wn‖2.

This completes the proof of the lemma. �

Lemma 3.3: Assume that the sequences {wn} and {yn} are created by Algorithm 3.1. If limn→∞ ‖wn −
yn‖ = 0 and {wnk} converges weakly to some z ∈ H , then z ∈ �.

Proof: Let (v, u) ∈ Graph(A + B), i.e. u ∈ (A + B)v. From the definition of yn, one sees that (I −
λnkA)wnk ∈ (I + λnkB)ynk . This means that

λ−1
nk (wnk − ynk − λnkAwnk) ∈ Bynk .

Since mapping B is maximal monotone, we obtain

〈u − Av − λ−1
nk (wnk − ynk − λnkAwnk), v − ynk〉 ≥ 0.

This combining with the monotonicity of A finds that

〈v − ynk , u〉 ≥
〈
v − ynk ,Av + λ−1

nk

(
wnk − ynk − λnkAwnk

)〉
= 〈

v − ynk ,Av − Aynk
〉+ 〈

v − ynk ,Aynk − Awnk
〉

+
〈
v − ynk , λ

−1
nk (wnk − ynk)

〉
≥ 〈

v − ynk ,Aynk − Awnk
〉+ 〈

v − ynk , λ
−1
nk (wnk − ynk)

〉
.

Moreover, with the help of limn→∞ ‖wn − yn‖ = 0 and the fact that A is Lipschitz continuous, we
find that limk→∞ ‖Aynk − Awnk‖ = 0. Since λn > 0, one infers that

lim
k→∞

〈v − ynk , u〉 = 〈v − z, u〉 ≥ 0,

which together with the maximal monotonicity of (A + B) yields that 0 ∈ (A + B)z, i.e. z ∈ �. �

Remark 3.2: It is worth noting that the proof of Lemma 3.3 does not use the definition of Armijo
stepsize (6).

Theorem 3.1: Suppose that Assumptions (C1)–(C4) hold. Then the sequence {xn} formed by
Algorithm 3.1 converges to p ∈ � in norm, where p = P� ◦ f (p).

5394 B. TAN AND S. Y. CHO

Proof: First, we show that the sequence {xn} is bounded. Indeed, it follows from Lemma 3.2 that

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ 1. (14)

By the definition of wn, we can write

‖wn − p‖ ≤ ‖xn − p‖ + αn · θn

αn
‖xn − xn−1‖. (15)

According to Remark 3.1 (i), one has θn
αn

‖xn − xn−1‖ → 0. Therefore, there exists a constantM1 > 0
such that

θn

αn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1. (16)

Combining (14), (15) and (16), we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + αnM1. (17)

Thus, we obtain

‖xn+1 − p‖ ≤ αn‖f (xn) − f (p)‖ + αn‖f (p) − p‖ + (1 − αn)‖zn − p‖

≤ [1 − αn(1 − ρ)]‖xn − p‖ + αn(1 − ρ)
‖f (p) − p‖ + M1

1 − ρ

≤ max
{
‖xn − p‖, ‖f (p) − p‖ + M1

1 − ρ

}

≤ · · · ≤ max
{
‖x0 − p‖, ‖f (p) − p‖ + M1

1 − ρ

}
.

This implies that the sequence {xn} is bounded. So the sequences {f (xn)}, {wn}, {yn} and {zn} are also
bounded. From (17), one sees that

‖wn − p‖2 ≤ (‖xn − p‖ + αnM1
)2

= ‖xn − p‖2 + αn
(
2M1‖xn − p‖ + αnM2

1
)

≤ ‖xn − p‖2 + αnM2 (18)

for someM2 > 0. Combining Lemma 3.2 and (18), we obtain

‖xn+1 − p‖2 ≤ αn‖f (xn) − p‖2 + (1 − αn)‖zn − p‖2

≤ αn
(‖f (xn) − f (p)‖ + ‖f (p) − p‖)2 + (1 − αn)‖zn − p‖2

≤ αn
(‖xn − p‖ + ‖f (p) − p‖)2 + (1 − αn)‖zn − p‖2

= αn‖xn − p‖2 + (1 − αn)‖zn − p‖2

+ αn
(
2‖xn − p‖ · ‖f (p) − p‖ + ‖f (p) − p‖2)

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2 + αnM3

≤ ‖xn − p‖2 − (1 − αn)
2 − γ

γ
‖wn − zn‖2 + αnM4,

APPLICABLE ANALYSIS 5395

whereM4 := M2 + M3. It follows that

(1 − αn)
2 − γ

γ
‖wn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4. (TC1)

In view of the definition of wn, one asserts that

‖wn − p‖2 ≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖ + θ2n‖xn − xn−1‖2

≤ ‖xn − p‖2 + 3Mθn‖xn − xn−1‖, (19)

whereM := supn∈N{‖xn − p‖, θ‖xn − xn−1‖} > 0. Using (17) and (19), we have

‖xn+1 − p‖2 = ‖αn(f (xn) − f (p)) + (1 − αn)(zn − p) + αn(f (p) − p)‖2

≤ ‖αn(f (xn) − f (p)) + (1 − αn)(zn − p)‖2 + 2αn〈f (p) − p, xn+1 − p〉
≤ αn‖f (xn) − f (p)‖2 + (1 − αn)‖zn − p‖2 + 2αn〈f (p) − p, xn+1 − p〉
≤ αnρ‖xn − p‖2 + (1 − αn)‖wn − p‖2 + 2αn〈f (p) − p, xn+1 − p〉

≤ (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn ·
[

3M
1 − ρ

· θn

αn
‖xn − xn−1‖

+ 2
1 − ρ

〈f (p) − p, xn+1 − p〉
]
. (TC2)

Next, one shows that {‖xn − p‖2} converges to zero. Indeed, by Lemma 2.3, it suffices to show
that lim supk→∞〈f (p) − p, xnk+1 − p〉 ≤ 0 for every subsequence {‖xnk − p‖} of {‖xn − p‖} satis-
fying lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. For this purpose, we assume that {‖xnk − p‖} is a
subsequence of {‖xn − p‖} such that lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2)
= lim inf

k→∞
[
(‖xnk+1 − p‖ − ‖xnk − p‖)(‖xnk+1 − p‖ + ‖xnk − p‖)] ≥ 0.

From (TC1), the assumption on {αn} and γ ∈ (0, 2), one finds that

(1 − αnk)
2 − γ

γ
‖wnk − znk‖2 ≤ lim sup

k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2 + αnkM4
]

≤ 0,

which implies that

lim
k→∞

‖znk − wnk‖ = 0. (20)

This together with Lemma 3.2 finds that limk→∞ ‖ynk − wnk‖ = 0. Moreover, using Remark 3.1(i)
and Condition (C3), we have

‖xnk+1 − znk‖ = αnk‖znk − f (xnk)‖ → 0 (21)

and

‖xnk − wnk‖ = αnk · θnk
αnk

‖xnk − xnk−1‖ → 0. (22)

From (20)–(22), we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖ + ‖znk − wnk‖ + ‖wnk − xnk‖ → 0. (23)

5396 B. TAN AND S. Y. CHO

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ z.
Furthermore,

lim sup
k→∞

〈f (p) − p, xnk − p〉 = lim
j→∞〈f (p) − p, xnkj − p〉 = 〈f (p) − p, z − p〉. (24)

We get wnk ⇀ z since ‖xnk − wnk‖ → 0. This together with limk→∞ ‖wnk − ynk‖ = 0 and
Lemma 3.3 obtains z ∈ �. From the definition of p and (24), we obtain

lim sup
k→∞

〈f (p) − p, xnk − p〉 = 〈f (p) − p, z − p〉 ≤ 0. (25)

Combining (23) and (25), we obtain

lim sup
k→∞

〈f (p) − p, xnk+1 − p〉 ≤ lim sup
k→∞

〈f (p) − p, xnk − p〉 ≤ 0. (26)

Thus, from Remark 3.1(i), (26), (TC2) and Lemma 2.3, we conclude that xn → p. That is the desired
result. �

3.2. The inertial Mann-type projection algorithm

In this subsection, we propose an inertialMann-type projection algorithm to solve (MIP) and assume
that our algorithm satisfies the conditions (C1)–(C3) and (C5).

(C5) Assume that the real sequence {βn} ⊂ (0, 1) such that {βn} ⊂ (a, b) ⊂ (0, 1 − αn) for some
a > 0, b > 0.

The Algorithm (3.2) is of the form:

Algorithm 3.2 The inertial Mann-type projection algorithm for solving (MIP).
Initialization: Set δ > 0, θ > 0, l ∈ (0, 1),μ ∈ (0, 1), γ ∈ (0, 2) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),

yn = (I + λnB)−1(I − λnA)wn,

zn = wn − γ ηndn,

xn+1 = (1 − αn − βn)wn + βnzn,

where {θn}, {λn} and {dn} are defined in (5)- -(7), respectively.

Theorem 3.2: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} created by
Algorithm 3.2 converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.

Proof: Thanks to Lemma 3.2, we have

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ 1. (27)

By use of the definition of xn+1, one has

‖xn+1 − p‖ = ‖(1 − αn − βn)(wn − p) + βn(zn − p) − αnp‖

APPLICABLE ANALYSIS 5397

≤ ‖(1 − αn − βn)(wn − p) + βn(zn − p)‖ + αn‖p‖. (28)

It follows from (27) that

‖(1 − αn − βn)(wn − p) + βn(zn − p)‖2

≤ (1 − αn − βn)
2‖wn − p‖2 + 2(1 − αn − βn)βn‖zn − p‖‖wn − p‖ + β2

n‖zn − p‖2

≤ (1 − αn − βn)
2‖wn − p‖2 + 2(1 − αn − βn)βn‖wn − p‖2 + β2

n‖wn − p‖2

= (1 − αn)
2‖wn − p‖2,

which yields

‖(1 − αn − βn)(wn − p) + βn(zn − p)‖ ≤ (1 − αn)‖wn − p‖. (29)

Combining (17), (28) and (29), we deduce that

‖xn+1 − p‖ ≤ (1 − αn)‖wn − p‖ + αn‖p‖
≤ (1 − αn)‖xn − p‖ + αn(‖p‖ + M1)

≤ max{‖xn − p‖, ‖p‖ + M1}
≤ · · · ≤ max{‖x0 − p‖, ‖p‖ + M1}.

That is, the sequence {xn} is bounded, so are {zn} and {wn}. From Lemma 3.2 and (18), we obtain

‖xn+1 − p‖2 = ‖(1 − αn − βn)(wn − p) + βn(zn − p) + αn(−p)‖2

≤ (1 − αn − βn)‖wn − p‖2 + βn‖zn − p‖2 + αn‖p‖2

≤ (1 − αn − βn)‖wn − p‖2 + βn‖wn − p‖2 − βn
2 − γ

γ
‖wn − zn‖2 + αn‖p‖2

≤ ‖xn − p‖2 − βn
2 − γ

γ
‖wn − zn‖2 + αn(‖p‖2 + M2).

Hence,

βn
2 − γ

γ
‖wn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2). (TC3)

Setting tn = (1 − βn)wn + βnzn, one has

‖tn − wn‖ = βn‖wn − zn‖. (30)

It follows from (27) that

‖tn − p‖ = ‖(1 − βn)(wn − p) + βn(zn − p)‖
≤ (1 − βn)‖wn − p‖ + βn‖wn − p‖
= ‖wn − p‖. (31)

From (19), (30) and (31), we have

‖xn+1 − p‖2 = ‖(1 − βn)wn + βnzn − αnwn − p‖2

= ‖(1 − αn)(tn − p) − αn(wn − tn) − αnp‖2

≤ (1 − αn)
2‖tn − p‖2 − 2αn〈wn − tn + p, xn+1 − p〉

5398 B. TAN AND S. Y. CHO

= (1 − αn)
2‖tn − p‖2 + 2αn〈wn − tn, p − xn+1〉 + 2αn〈p, p − xn+1〉

≤ (1 − αn)‖tn − p‖2 + 2αn‖wn − tn‖‖xn+1 − p‖ + 2αn〈p, p − xn+1〉

≤ (1 − αn)‖xn − p‖2 + αn

[
2βn‖wn − zn‖‖xn+1 − p‖

+2〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
. (TC4)

Finally, one shows that {‖xn − p‖2} converges to zero. Assume that {‖xnk − p‖} is a subsequence
of {‖xn − p‖} such that lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. By use of (TC3) and Condition
(C5), we have

βnk
2 − γ

γ
‖wnk − znk‖2 ≤ lim sup

k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2]+ lim sup
k→∞

αnk
(‖p‖2 + M2

)
≤ 0,

which indicates that

lim
k→∞

‖znk − wnk‖ = 0. (32)

In view of Lemma 3.2, one observes that limk→∞ ‖ynk − wnk‖ = 0. From (32) and the boundedness
of {xn}, we can further obtain

lim
k→∞

βnk‖wnk − znk‖‖xnk+1 − p‖ = 0. (33)

Moreover, using (32), Condition (C5) and Remark 3.1 (i), we have

‖xnk+1 − wnk‖ = αnk‖wnk‖ + βnk‖znk − wnk‖ → 0

and

‖xnk − wnk‖ = αnk · θnk
αnk

‖xnk − xnk−1‖ → 0.

Thus, we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − wnk‖ + ‖wnk − xnk‖ → 0. (34)

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ z.
Moreover,

lim sup
k→∞

〈p, p − xnk〉 = lim
j→∞〈p, p − xnkj 〉 = 〈p, p − z〉. (35)

Since ‖xnk − wnk‖ → 0, one has wnk ⇀ z, which together with limk→∞ ‖wnk − ynk‖ = 0 and
Lemma 3.3, gets z ∈ �. From the definition of p and (35), we obtain

lim sup
k→∞

〈p, p − xnk〉 = 〈p, p − z〉 ≤ 0. (36)

Combining (34) and (36), we have

lim sup
k→∞

〈p, p − xnk+1〉 ≤ lim sup
k→∞

〈p, p − xnk〉 ≤ 0. (37)

Thus, from Remark 3.1(i), (33), (37), (TC4) and Lemma 2.3, we conclude that xn → p. The proof is
completed. �

APPLICABLE ANALYSIS 5399

3.3. The inertial Mann-type Tseng algorithm

In this subsection, an inertial Mann-type Tseng algorithm will be given. It is worth noting that this
method uses a new step size update criterion that does not require any line search process. More
precisely, the Algorithm 3.3 is described as follows.

Algorithm 3.3 The inertial Mann-type Tseng algorithm for solving (MIP).
Initialization: Set λ0 > 0, θ > 0,μ ∈ (0, 1) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),

yn = (I + λnB)−1(I − λnA)wn,

zn = yn − λn(Ayn − Axn),

xn+1 = (1 − αn − βn)wn + βnzn,

where {θn} is defined in (5) and the stepsize λn is updated by the following:

λn+1 =
⎧⎨
⎩ min

{
μ‖wn − yn‖
‖Awn − Ayn‖ , λn

}
, if Awn − Ayn �= 0;

λn, otherwise.
(38)

The following two lemmas are very important for the convergence analysis of the algorithms.

Lemma 3.4: The sequence {λn} formed by (38) is nonincreasing and limn→∞ λn = λ ≥ min{λ0, μ
L }.

Proof: It is easy to see that the sequence {λn} is nonincreasing by the definition of {λn}. Moreover,
from the fact that operator A is L-Lipschitz continuous, one obtains,

μ‖wn − yn‖
‖Awn − Ayn‖ ≥ μ

L
, if Awn − Ayn �= 0.

Therefore, we deduce that limn→∞ λn = λ ≥ min{λ0, μ
L }. �

Lemma 3.5: Suppose that Conditions (C1)–(C3) hold. Let the sequences {wn} and {zn} be made by
Algorithm 3.3. Then

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2, ∀p ∈ �.

Proof: From the definition of zn, one has

‖zn − p‖2 = ‖yn − p‖2 + λ2n‖Ayn − Awn‖2 − 2λn
〈
yn − p,Ayn − Awn

〉
= ‖wn − p‖2 + ‖yn − wn‖2 − 2

〈
yn − wn, yn − wn

〉+ 2
〈
yn − wn, yn − p

〉
+ λ2n‖Ayn − Awn‖2 − 2λn

〈
yn − p,Ayn − Awn

〉
= ‖wn − p‖2 − ‖wn − yn‖2 − 2

〈
wn − yn − λn(Awn − Ayn), yn − p

〉
+ λ2n‖Ayn − Awn‖2. (39)

5400 B. TAN AND S. Y. CHO

It follows from the definition of λn that

‖Awn − Ayn‖ ≤ μ

λn+1
‖wn − yn‖, ∀n. (40)

Indeed, if Awn = Ayn, then inequality (40) holds. Otherwise, we obtain

λn+1 ≤ μ‖wn − yn‖
‖Awn − Ayn‖ ,

which yields that ‖Awn − Ayn‖ ≤ μ
λn+1

‖wn − yn‖. Therefore, inequality (40) holds for all n.
Next, we will show that 〈

wn − yn − λn(Awn − Ayn), yn − p
〉 ≥ 0. (41)

From the definition of yn, one sees that (I − λnA)wn ∈ (I + λnB)yn. By use of the maximal mono-
tonicity of B, there exists vn ∈ Byn such that (I − λnA)wn = yn + λnvn. This indicates that

vn = 1
λn

(wn − yn − λnAwn). (42)

Using the definition of p, one obtains 0 ∈ (A + B)p. From Ayn + vn ∈ (A + B)yn and the fact that
(A + B) is maximal monotone, we get 〈Ayn + vn, yn − p〉 ≥ 0. This together with (42) yields

λ−1
n 〈wn − yn − λnAwn + λnAyn, yn − p〉 ≥ 0,

which further infers that (41) holds. Combining (39)–(41), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2.

The proof of the lemma is now complete. �

Next, the convergence theorem of Algorithm 3.3 is given. This proof has some common charac-
teristics with the proof of Theorem 3.2, but there are still some differences. Therefore, we decide to
introduce it in a compact form.

Theorem 3.3: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} formed by
Algorithm 3.3 converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.

Proof: From limn→∞(1 − μ2 λ2n
λ2n+1

) = 1 − μ2 > 0, one sees that there exists n0 ∈ N such that 1 −
μ2 λ2n

λ2n+1
> 0,∀n ≥ n0, which together with Lemma 3.5 yields that

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ n0. (43)

From (17), (28) and (29), we obtain

‖xn+1 − p‖ ≤ (1 − αn)‖wn − p‖ + αn‖p‖
≤ (1 − αn)‖xn − p‖ + αn(‖p‖ + M1)

≤ max{‖xn − p‖, ‖p‖ + M1}
≤ · · · ≤ max{‖xn0 − p‖, ‖p‖ + M1},

APPLICABLE ANALYSIS 5401

where M1 is defined as in Theorem 3.1. Thus, the sequence {xn} is bounded. Consequently, the
sequences {wn} and {zn} are also bounded. From Lemma 3.5 and (18), we have

‖xn+1 − p‖2 = ∥∥(1 − αn − βn)(wn − p) + βn(zn − p) + αn(−p)
∥∥2

≤ (1 − αn − βn)‖wn − p‖2 + βn‖zn − p‖2 + αn‖p‖2

− βn(1 − αn − βn)‖wn − zn‖2

≤ ‖xn − p‖2 − βn

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2

+ αn(‖p‖2 + M2) − βn(1 − αn − βn)‖wn − zn‖2,

whereM2 is defined as in Theorem 3.1. So,

βn

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 + βn(1 − αn − βn)‖wn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn
(‖p‖2 + M2

)
. (TC5)

Using the same facts as (TC4) of Theorem 3.2, we find that

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − p‖2 + αn
[
2βn‖wn − zn‖‖xn+1 − p‖

+2〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
. (TC6)

Finally, we show that {‖xn − p‖2} converges to zero. Assume that {‖xnk − p‖} is a subsequence of
{‖xn − p‖} such that lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. From (TC5) and Condition (C5),
we have

βnk

(
1 − μ2 λ2nk

λ2nk+1

)
‖wnk − ynk‖2 + βnk

(
1 − αnk − βnk

) ‖wnk − znk‖2

≤ lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2]+ lim sup
k→∞

αnk
(‖p‖2 + M2

) ≤ 0,

which implies that limk→∞ ‖znk − wnk‖ = 0 and limk→∞ ‖ynk − wnk‖ = 0. From (33)–(37), we can
show that

lim
k→∞

βnk‖wnk − znk‖‖xnk+1 − p‖ = 0

and

lim sup
k→∞

〈p, p − xnk+1〉 ≤ 0.

Combining these with Remark 3.1(i), (TC6) and Lemma 2.3, we deduce that xn → p. This completes
the proof. �

3.4. The inertial viscosity-type Tseng algorithm

Finally, we introduce a modified version of Algorithm 3.3, which uses the viscosity-type method
to ensure the strong convergence of the suggested iterative scheme. The Algorithm 3.4 is stated as
follows.

5402 B. TAN AND S. Y. CHO

Algorithm 3.4 The inertial viscosity-type Tseng algorithm for solving (MIP).
Initialization: Set λ0 > 0, θ > 0,μ ∈ (0, 1) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),

yn = (I + λnB)−1(I − λnA)wn,

zn = yn − λn(Ayn − Axn),

xn+1 = αnf (xn) + (1 − αn)zn,

where {θn} and {λn} are defined in (5) and (38), respectively.

Based on the proofs of Theorems 3.1 and 3.3, wewill give the convergence analysis ofAlgorithm3.4
in a compact way.

Theorem 3.4: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} created by
Algorithm 3.4 converges to p ∈ � in norm, where p = P� ◦ f (p).

Proof: Using (15)–(17) and (43), we have

‖xn+1 − p‖ = ∥∥αn(f (xn) − p) + (1 − αn)(zn − p)
∥∥

≤ max
{
‖xn0 − p‖, ‖f (p) − p‖ + M1

1 − ρ

}
.

This means that the sequence {xn} is bounded. Hence, the sequences {f (xn)}, {wn}, {yn} and {zn} are
also bounded. From (18) and Lemma 3.5, we obtain

‖xn+1 − p‖2 ≤ αn‖f (xn) − p‖2 + (1 − αn)‖zn − p‖2

≤ αn(‖f (xn) − f (p)‖ + ‖f (p) − p‖)2 + (1 − αn)‖zn − p‖2

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2

+ αn(2‖xn − p‖ · ‖f (p) − p‖ + ‖f (p) − p‖2)
≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2 + αnM3

≤ ‖xn − p‖2 − (1 − αn)

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 + αnM4,

whereM4 := M2 + M3. That is,

(1 − αn)

(
1 − μ2 λ2n

λ2n+1

)
‖wn − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM4. (TC7)

From the same line in Theorem 3.1, one arrives at

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)αn)‖xn − p‖2 + (1 − ρ)αn ·
[

3M
1 − ρ

· θn

αn
‖xn − xn−1‖

+ 2
1 − ρ

〈f (p) − p, xn+1 − p〉
]
. (TC8)

APPLICABLE ANALYSIS 5403

Finally, one shows {‖xn − p‖2} converges to zero. We assume that {‖xnk − p‖} is a subsequence
of {‖xn − p‖} such that lim infk→∞(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. By use of Condition (C3) and
(TC7), we have

(1 − αnk)

(
1 − μ2 λ2nk

λ2nk+1

)
‖wnk − ynk‖2 ≤ lim sup

k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2 + αnkM4
] ≤ 0,

which implies that limk→∞ ‖wnk − ynk‖ = 0. From the definition of zn and (40), we have

‖zn − yn‖ ≤ μ
λn

λn+1
‖wn − yn‖,

which yields limk→∞ ‖ynk − znk‖ = 0. Therefore, we obtain limk→∞ ‖znk − wnk‖ = 0. From (21)–
(26), we observe that

lim sup
k→∞

〈f (p) − p, xnk+1 − p〉 ≤ 0.

This together with Remark 3.1(i), (TC8) and Lemma 2.3, we conclude that xn → p. We have thus
proved the theorem. �

Remark 3.3: We note here that the proposed algorithms directly improve some known results in the
literature. The details are as follows:

(i) In the algorithms proposed by Dong et al. [20] and Cholamjiak et al. [21], the operator A is
assumed to be inverse strongly monotone, while operator A in our algorithms is Lipschitz con-
tinuous monotone. It is known that inverse strongly monotone mappings are monotone and
thus the suggested methods are applicable to a wider class of mappings.

(ii) The selection of the step size in the algorithms provided by [20,21,25] requires the knowledge
of the Lipschitz constant of the mapping, while our algorithms can adaptively update the step
size of each iteration. On the one hand, it is not easy to estimate the Lipschitz constant of the
mapping in practical applications. On the other hand, it should be pointed out that Armijo-
type search methods need to evaluate the value of the iterative sequences wn, yn at operator
A multiple times in each iteration. The proposed Algorithms 3.3 and 3.4 use a new step size
update criterion that does not involve any line search process. The criterion only needs to use
known information for a simple calculation in each iteration to complete the step size update.
Therefore, our self-adaptive iterative schemes (especially for Algorithms 3.3 and 3.4) are more
preferable than the fixed stepsize methods and the Armijo-type methods [24].

(iii) In the methods introduced by [20,21], they combined FBA with the projection methods to
ensure the strong convergence of the proposed algorithms. It is known that calculating projec-
tion requires additional cost and is not easy to implement. However, our suggested algorithms
do not involve any projection calculations, so they are easier to implement.

(iv) Our presented methods are strongly convergent in real Hilbert spaces, which is more preferable
than the weak convergence results of Tseng [17] and Zhang and Wang [18].

(v) If the inertial parameter θn = 0, then the suggested Algorithms 3.1, 3.3 and Algorithm 3.4
degenerate into [24, Algorithm 3.1], [23, Algorithm 1] and [23, Algorithm 2], respectively. Our
algorithms embed inertial terms so that they converge faster than algorithms without inertial
terms (see Section 5).

4. Applications

In this section, we apply our proposed Algorithms 3.1–3.4 to some problems, including convex min-
imization problems, variational inequality problems, split feasibility problems and image processing
problems.

5404 B. TAN AND S. Y. CHO

4.1. Application to convexminimization problems

Recall that the convex minimization problem is stated as follows:

find x∗ ∈ H , such that h(x∗) + g(x∗) = min
x∈H

{h(x) + g(x)},

where h : H → R is a convex differentiable function with L-Lipschitz continuous gradient and
monotone, and g : H → R is a proper convex and lower semicontinuous function. In fact, the above
problem is a special form of the inclusion problem (MIP), that is, it is equivalent to the following
problem: 0 ∈ ∇h(x∗) + ∂g(x∗), where ∇h and ∂g represent the gradient of function h and the sub-
differential of function g, respectively. Set A = ∇h and B = ∂g in Theorem 3.1, it is known that B is
maximal monotone, then we have the following result.

Corollary 4.1: Assume that H is a real Hilbert space. Let mapping ∇h : H → H be L-Lipschitz
continuous monotone and let ∂g : H → 2H be maximal monotone. Suppose that � = (∇h +
∂g)−1(0) �= ∅ and Conditions (C3)–(C4) hold. Set A = ∇h and B = ∂g. Let x0, x1 ∈ H and {xn} be
a sequence defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),
yn = (I + λn∂g)−1(I − λn∇h)wn,
zn = wn − γ ηndn,
xn+1 = αnf (xn) + (1 − αn)zn,

where {θn}, {λn} and {dn} are defined in (5)–(7), respectively. Then the iterative sequence {xn} provided
above converges to p ∈ � in norm, where p = P� ◦ f (p).

Theorems 3.2–3.4 can also have a similar sub-results, which we omit here.

4.2. Application to variational inequality problems

Let C be a nonempty convex subset of Hilbert space H . Set B = ∂ϕ : H → 2H , where ∂ϕ is the
subdifferential of the proper convex and lower semicontinuous function ϕ. Then problem (MIP) is
equivalent to the following mixed quasi-variational inequality problem (MQVIP):

find x∗ ∈ H , such that 〈Ax∗, y − x∗〉 + ϕ(y) − ϕ(x∗) ≥ 0, ∀y ∈ H .

On the other hand, if ϕ = δC is the indicator function of C, then the above (MQVIP) can be written
as the following variational inequality problem (VIP):

find x∗ ∈ C, such that 〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C. (VIP)

We shall denote� the solution set of (VIP) and assume� �= ∅. It is easy to check that the above (VIP)
is a special case of (MIP), that is, x∗ ∈ (A + ∂ϕ)−1(0) ⇔ x∗ ∈ �. Moreover, we know that B = ∂ϕ is
maximal monotone and (I + λnB)−1(x) = PC(x). Thus, the following corollary follows directly from
Theorem 3.2.

Corollary 4.2: Assume that mapping A : H → H is L-Lipschitz continuous monotone and mapping
PC : H → 2H is maximal monotone. Suppose that � �= ∅, and Conditions (C3) and (C5) hold. Let

APPLICABLE ANALYSIS 5405

x0, x1 ∈ H and {xn} be a sequence generated by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn = xn + θn(xn − xn−1),
yn = PC(wn − λnAwn),
zn = wn − γ ηndn,
xn+1 = (1 − αn − βn)wn + βnzn,

where {θn}, {λn} and {dn} are defined in (5)–(7), respectively. Then the iterative sequence {xn} created
above converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.

4.3. Application to split feasibility problems

Suppose that C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. The split feasibility problem (SFP) is described as follows:

find x∗ ∈ C such that Tx∗ ∈ Q, (SFP)

where T : H1 → H2 is a bounded linear operator. We also use � to represent the solution set of
(SFP). Problem (SFP) appears in image reconstruction and signal processing. From an optimization
point of view, x∗ ∈ � iff x∗ is a solution of the following minimization problem with zero optimal
value:

min
x∈C

h(x) := 1
2
‖Tx − PQTx‖2.

It should be noted that h is convex differentiable. Moreover, note that ∇h(x) = T∗(I − PQ)Tx and it
is ‖T‖2-Lipschitz continuous monotone. Thus, x∗ solves (SFP) iff x∗ solves the following variational
inclusion problem:

find x ∈ H1, such that 0 ∈ ∇h(x) + ∂δC(x),

where δC is the indicator function of C. In Theorem 3.3, choosing A = ∇h and B = ∂δC, then we
obtain the following result.

Corollary 4.3: Let the mappings A and B be defined above. Suppose that � �= ∅, and Conditions (C3)
and (C5) hold. Let x0, x1 ∈ H and {xn} be a sequence formed by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
wn = xn + θn(xn − xn−1),
yn = PC(I − λn∇h)wn,
zn = yn − λn(∇h(yn) − ∇h(xn)),
xn+1 = (1 − αn − βn)wn + βnzn,

where {θn} and {λn} are defined in (5) and (38), respectively. Then the iterative sequence {xn} constructed
above converges to p ∈ � in norm, where ‖p‖ = min{‖z‖ : z ∈ �}.

4.4. Application to image processing problems

Using known information from the contaminated signal/image to estimate the original and clean
signal/image is called the signal processing/image restoration problem. This kind of problem can
usually be expressed as the following linear inverse problem:

b = Cx + w,

where C, x, b and w represent degradation operator, unknown real image, contaminated image and
noise function, respectively. Regularization methods have aroused considerable interest in many

5406 B. TAN AND S. Y. CHO

researchers for dealing with such problems. In particular, the l1 regularization method considers
finding the solution to the following problem:

min
x

{
1
2
‖Cx − b‖2 + γ ‖x‖1

}
,

where γ stands for the regularization parameter, and ‖x‖1 represents the sum of the absolute values
of the components of x. Set h(x) = 1

2‖Cx − b‖2 and g(x) = ‖x‖1, then ∇h(x) = C∗(Cx − b) and
thus it is Lipschitz continuous with constant L(h) = ‖C∗C‖. The proximal map of g(x) = γ ‖x‖1 is
expressed as proxλg(x) = (I + λ∂g)−1 and it can be calculated by the following:

proxλg(x) = proxλγ ‖·‖1(x) = (proxλγ |·|1(x1), . . . , proxλγ |·|1(xn))

= (p1, . . . , pn),

where pk = sgn(xk)max{|xk| − λγ , 0} for k = 1, 2, . . . , n. Set A = ∇h and B = ∂g, then we imme-
diately get the following result by using Theorem 3.4.

Corollary 4.4: Let the mappings A and B be defined above. Suppose that � �= ∅, and Conditions
(C3)–(C4) hold. Let x0, x1 ∈ H and {xn} be a sequence produced by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn = xn + θn(xn − xn−1) ,
yn = proxλng(I − λn∇h)wn,
zn = yn − λn(∇h(yn) − ∇h(xn)),
xn+1 = αnf (xn) + (1 − αn)zn,

where {θn} and {λn} are defined in (5) and (38), respectively. Then the iterative sequence {xn} presented
above converges to p ∈ � in norm, where p = P� ◦ f (p).

5. Numerical experiments

In this section, we provide some numerical examples occurring in finite- and infinite-dimensional
spaces to show the advantages of our algorithms and compare them with some known strongly
convergent algorithms, including Gibali and Thong’s Algorithm 1 (GT Alg. 1) and Algorithm 2
(GT Alg. 2) [23], Thong and Cholamjiak’s Algorithm 3.1 (TC Alg. 3.1) [24], and Gibali et al.’s
Algorithm 3 (GTVAlg. 3) [25]. All the programs were implemented inMATLAB 2018a on a Intel(R)
Core(TM) i5-8250U CPU @ 1.60GHz computer with RAM 8.00GB.

In the following numerical experiments, the parameters of all algorithms are set as follows:

• In our Algorithms 3.1–3.2 and TC Alg. 3.1, set δ = 2, l = 0.5, μ = 0.5, γ = 1, αn = 1/(n + 1),
βn = 0.5(1 − αn) and f (x) = 0.5x.

• In our Algorithms 3.3–3.4, GT Alg. 1 and GT Alg. 2, choose λ0 = 1, μ = 0.5, αn = 1/(n + 1),
βn = 0.5(1 − αn) and f (x) = 0.5x.

• In GTV Alg. 3, update the inertia parameter αn through (5), adopt stepsize λn = 0.2/L, γ = 1,
θn = 1/(n + 1) and f (x) = 0.5. In GTV Alg. 3 and our Algorithms 3.1–3.4, take εn = 100/(n +
1)2 and θ = 0.5.

Example 5.1: In the first example, we study the proposed algorithms to solve the variational inequal-
ity problem (VIP). Consider the form of linear operatorA : R

m → R
m (m = 5, 10, 20, 50) as follows:

APPLICABLE ANALYSIS 5407

Table 1. The number of termination iterations and execution time of all algorithms under different dimensions (Example 5.1).

m = 5 m = 10 m = 20 m = 50

Algorithms Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 43 0.0107 63 0.0117 167 0.0176 199 0.0255
Our Alg. 3.2 25 0.0097 27 0.0100 38 0.0128 60 0.0146
Our Alg. 3.3 32 0.0057 31 0.0051 42 0.0078 96 0.0059
Our Alg. 3.4 83 0.0057 81 0.0056 188 0.0073 199 0.0074
TC Alg. 3.1 135 0.0174 199 0.0221 199 0.027 199 0.0307
GTV Alg. 3 107 0.0068 140 0.0089 199 0.0119 199 0.0093
GT Alg. 1 192 0.0077 187 0.0088 199 0.0069 199 0.0082
GT Alg. 2 199 0.0062 199 0.0067 199 0.0067 199 0.0068

Figure 1. Numerical behavior of all algorithms under different dimensions (Example 5.1).

A(x) = Gx + g, where g ∈ R
m andG = DDT + S + E, matrixD ∈ R

m×m, matrix S ∈ R
m×m is skew-

symmetric, and matrix E ∈ R
m×m is diagonal matrix whose diagonal terms are non-negative (hence

G is positive symmetric definite). We choose the feasible set C is a box constraint with the form
C = [−2, 5]m. It is easy to see that A is Lipschitz continuous monotone and its Lipschitz constant
L = ‖G‖. In this numerical example, all entries ofD, E are generated randomly in [0, 2] and S is gen-
erated randomly in [−2, 2]. Let q = 0, then the solution set is x∗ = {0}. Note that 1/L is much smaller
than 0.01 in this example, so we adjust λ0 = 1 to λ0 = 0.01. We use En = ‖xn − x∗‖ to measure the
n-th iteration error of all algorithms. The stopping condition is En < 10−3 or the maximum number
of iterations is 199 times. The numerical results of all algorithms in different dimensions are shown
in Table 1 and Figure 1.

5408 B. TAN AND S. Y. CHO

Remark 5.1: From the numerical results of Example 5.1, we have the following observations.

(1) The four iterative schemes proposed in this paper are efficient and easy to implement. The most
important thing is that they converge quickly.

(2) Ourmethods converge faster than some known algorithms in the literature in terms of the num-
ber of iterations and execution time, and these observations have no significant relationship with
the dimensions of the problem and the selection of initial values (cf. Table 1 and Figure 1).

(3) Note that the execution time of self-adaptive methods (our Algorithms. 3.3–3.4, GT Alg. 1 and
GTAlg. 2) is less than that of Armijo-typemethods (our Algorithms 3.1–3.2 and TCAlg. 3.1) on
average. The reason for this result is that Armijo-type methods take extra time to find the appro-
priate step size, while adaptive-type methods only need some previous iteration information to
calculate the next iteration step size. In addition, it should be pointed out that GTV Alg. 3 has
great limitations because it needs to know the prior information of the Lipschitz constant of the
variational inequality mapping before it can work.

(4) It should be noted that the numerical behavior of the algorithms (our Algorithms 3.3–3.4,
GT Alg. 1 and GT Alg. 2) in Figure 1(c) and 1(d) has a sudden change when the dimensions
of the problem are equal to 20 and 50. Since 1/L is much smaller than λ0 = 0.01 in these cases,
the step size of the algorithms mentioned above is much larger than 1/L in the previous dozens
of iterations. It is known that a small step size means slow convergence and a large step size will
cause the algorithms to oscillate.

Example 5.2: In the second example, we explore the proposed methods to solve the split feasi-
bility problem (SFP) in infinite-dimensional Hilbert spaces. For any x, y ∈ L2([0, 1]), we consider
H1 = H2 = L2([0, 1]) embedded with the inner product 〈x, y〉 := ∫ 1

0 x(t)y(t) dt and the induced
norm ‖x‖ := (

∫ 1
0 |x(t)|2 dt) 1

2 . Consider the following nonempty closed and convex subsets C and Q
in L2([0, 1]):

C =
{
x ∈ L2([0, 1])

∣∣∣∣
∫ 1

0
x(t) dt ≤ 1

}
,

Q =
{
x ∈ L2([0, 1])

∣∣∣∣
∫ 1

0
|x(t) − sin(t)|2 dt ≤ 16

}
.

Let T : L2([0, 1]) → L2([0, 1]) be the Volterra integration operator, which is given by (Tx)(t) =∫ t
0 x(s) ds, ∀t ∈ [0, 1], x ∈ H . Then T is a bounded linear operator (see [34, Exercise 20.16]) and
its operator norm is ‖T‖ = 2

π
. Moreover, the adjoint T∗ of T is defined by (T∗x)(t) = ∫ 1

t x(s) ds.
Note that x(t) = 0 is a solution of (SFP) and thus the solution set of the problem is nonempty. On the
other hand, it is known that projections on sets C and Q have display formulas, that is,

PC(x) =
{

1 − a + x, a > 1;
x, a ≤ 1 and PQ(x) =

⎧⎨
⎩ sin(·) + 4(x − sin(·))√

b
, b > 16;

x, b ≤ 16,

where a := ∫ 1
0 x(t) dt and b := ∫ 1

0 |x(t) − sin(t)|2 dt.
We use symbolic computation in MATLAB to implement these algorithms for generating the

sequences of iterates and use En = ‖(I − PC)xn‖2 + ‖T∗(I − PQ)Txn‖2 < 10−5 or the maximum
iteration 49 times as the stopping criterion. Table 2 and Figure 2 show the numerical behavior of
all algorithms under four different initial values x0 = x1.

Remark 5.2: It can be seen fromTable 2 and Figure 2 that the proposed approaches are easy to imple-
ment and efficient. In addition, our suggested methods (especially the Mann-type Algorithms 3.2

APPLICABLE ANALYSIS 5409

Table 2. The number of termination iterations and execution time of all algorithms under different initial values (Example 5.2).

x1 = 600 sin(t) x1 = 800t2 x1 = 500(t3 + 2t) x1 = 300 log(t)

Algorithms Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 13 33.717 20 26.997 26 74.9293 20 124.447
Our Alg. 3.2 6 11.503 8 7.7113 12 27.9015 10 51.1319
Our Alg. 3.3 6 12.545 9 8.2073 14 32.1083 12 46.0236
Our Alg. 3.4 16 43.161 24 28.891 34 111.492 26 197.977
TC Alg. 3.1 20 27.571 26 27.144 32 40.9894 26 118.734
GTV Alg. 3 22 45.361 36 51.580 49 120.534 34 284.084
GT Alg. 1 10 9.8095 13 8.7694 20 19.8141 18 49.3417
GT Alg. 2 25 33.668 32 24.672 40 57.3985 34 151.074

Figure 2. Numerical behavior of all algorithms under different initial values (Example 5.2).

and 3.3) require fewer iterations than some algorithms in the literature to achieve the same error
accuracy, and these results are independent of the selection of initial values. It is worth noting that
our Algorithms 3.1 and 3.4 enjoy fewer iterations while accompanied by more execution time. More-
over, it should be pointed out that the operator norm ‖T‖ of this problem is not easy to obtain, which
means that the fixed step size algorithm (GTV Alg. 3) will fail. However, the self-adaptive algorithms
presented in this paper can work well.

Example 5.3: Compressed sensing is an effective method to recover a clean signal from a polluted
signal. This requires us to solve the following underdetermined system problems:

y = Cx + ε,

5410 B. TAN AND S. Y. CHO

Figure 3. Structure of compressive sensing matrices.

where y ∈ R
M is the observed noise data,C : R

M×N is a bounded linear observation operator, x ∈ R
N

with k (k � N) non-zero elements is the original and clean data that needs to be restored, and ε

is the noise observation encountered during data transmission. An important consideration of this
problem is that the signal x is sparse, that is, the number of non-zero elements in the signal x is much
smaller than the dimension of the signal x. Figure 3 visually shows the matrix structure expression of
compressed sensing.

A successful model used to solve the above problem can be translated into the following convex

Figure 4. The original signal and the signal recovered by our algorithms.

APPLICABLE ANALYSIS 5411

constraint minimization problem:

min
x∈RN

1
2
‖y − Cx‖2 subject to ‖x‖1 ≤ t, (LASSO)

where t is a positive constant. It should be pointed out that this problem is related to the least abso-
lute shrinkage and selection operator (LASSO) problem. Note that the (LASSO) problem described
above can be regarded as a special case of (SFP) when C = {x ∈ R

N : ‖x‖1 ≤ t} and Q = {y}. In this
situation, we can use the projection formulas described in Section 2 to calculate PC and PQ.

Table 3. The numerical results of all algorithms for solving (LASSO) under different situations (Example 5.3).

M = 256,
N = 512,
k = 20

M = 256,
N = 512,
k = 40

M = 512,N = 1024
k = 40

M = 512,N = 1024
k = 80

Algorithms MSE (×10−4) Time (s) MSE (×10−3) Time (s) MSE (×10−4) Time (s) MSE (×10−3) Time (s)

Our Alg. 3.1 0.3675 0.4426 0.0769 0.4657 0.3205 1.5904 0.0989 1.4212
Our Alg. 3.2 0.4294 0.4573 0.1120 0.4543 0.3934 1.5970 0.1408 1.4111
Our Alg. 3.3 0.4627 0.1862 0.1290 0.1978 0.4280 0.7325 0.1603 0.6410
Our Alg. 3.4 0.3742 0.1875 0.0793 0.1823 0.3274 0.7264 0.1020 0.6264
TC Alg. 3.1 0.3675 0.5043 0.0769 0.4781 0.3205 1.7834 0.0990 1.5341
GTV Alg. 3 0.3975 0.1927 0.0941 0.1944 0.3558 0.7795 0.1211 0.6446
GT Alg. 1 0.4632 0.1897 0.1303 0.1909 0.4285 0.7627 0.1612 0.6366
GT Alg. 2 0.3742 0.1819 0.0794 0.1818 0.3275 0.7700 0.1021 0.6166

Figure 5. The original signal and the signal recovered by our Algorithm 3.1.

5412 B. TAN AND S. Y. CHO

Figure 6. The discrepancy of mean squared error (MSE) of all algorithms.

We now consider using our proposed iterative schemes to solve (LASSO) and compare them with
some known algorithms in the literature. In our numerical experiments, the matrix C : R

M×N is
created from a standard normal distribution with zero mean and unit variance and then orthonor-
malizing the rows. The clean signal x ∈ R

N contains k (k � N) randomly generated ±1 spikes. The
observation y is formed by y = Cx + ε with white Gaussian noise ε of variance 10−4. The recovery
process starts with the initial signals x0 = x1 = 0 and ends after 2000 iterations. We use the mean
squared error MSE = (1/N)‖x∗ − x‖2 (x∗ is an estimated signal of x) to measure the restoration
accuracy of all algorithms. In our first test, we setM = 256,N = 512 and k = 10. The recovery results
of our suggested algorithms are shown in Figure 4.

Next, in order to demonstrate the robustness of the proposed algorithms, we conduct signal
recovery tests with different dimensions and different sparsity. The numerical results are reported
in Table 3, Figures 5 and 6.

Remark 5.3: As can be seen from the numerical results of Example 5.3, the proposed algorithms can
be applied to signal processing problems in compressed sensing, and they can work well (see Figures
4 and 5). Under the same number of iterations, the presented algorithms have smaller mean squared
error and cpu time than the compared algorithms (cf. Table 3), which implies that our proposed
algorithms perform better and converge faster in the signal recovery tests (cf. Figure 6). Moreover,
it is worth noting that the Armijo-type methods (our Algorithms 3.1–3.2 and TC Alg. 3.1) also take
more time than the others. Furthermore, as shown in the previous two examples, our algorithms
are still robust in this example, because the dimension and sparsity of the signal have no significant
influence on our results.

APPLICABLE ANALYSIS 5413

6. The conclusion

In this paper, we introduced four modified inertial forward–backward splitting methods for find-
ing a zero of the sum of two monotone operators. The proposed algorithms are constructed based
on several existing methods, including the inertial method, the forward–backward splitting method,
the Tseng method, the projection and contractionmethod, theMann-type method and the viscosity-
typemethod. Strong convergence theorems of the suggested algorithms are built without knowing the
prior information of the Lipschitz constant of the single-valued operator. As applications, our meth-
ods are applied to convex minimization problems, variational inequality problems, split feasibility
problems and image processing problems. Finally, we give some numerical experiments to illustrate
the computational efficiency of our proposed algorithms compared with other ones. The approaches
obtained in this paper improved and summarized some relevant results in the literature.

Acknowledgements
The authors are very grateful to the anonymous referees for their constructive comments, which significantly improved
the original manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID
Bing Tan http://orcid.org/0000-0003-1509-1809

References
[1] Combettes PL, Wajs VR. Signal recovery by proximal forward–backward splitting. Multiscale Model Simul.

2005;4:1168–1200.
[2] Sahu DR, Yao JC, Verma M, et al. Convergence rate analysis of proximal gradient methods with applications to

composite minimization problems. Optimization. 2021;70:75–100.
[3] QinX,AnNT. Smoothing algorithms for computing the projection onto aMinkowski sumof convex sets. Comput

Optim Appl. 2019;74:821–850.
[4] Cuong TH, Yao JC, Yen ND. Qualitative properties of the minimum sum-of-squares clustering problem. Opti-

mization. 2020;69:2131–2154.
[5] Wang Y, Zhang H. Strong convergence of the viscosity Douglas-Rachford algorithm for inclusion problems. Appl

Set-Valued Anal Optim. 2020;2:339–349.
[6] Qin X, Yao JC. A viscosity iterative method for a split feasibility problem. J Nonlinear Convex Anal.

2019;20:1497–1506.
[7] Tan B, Xu S, Li S. Inertial shrinking projection algorithms for solving hierarchical variational inequality problems.

J Nonlinear Convex Anal. 2020;21:871–884.
[8] Ansari QH, Islam M, Yao JC. Nonsmooth variational inequalities on Hadamard manifolds. Appl Anal.

2020;99:340–358.
[9] Lions PL, Mercier B. Splitting algorithms for the sum of two nonlinear operators. SIAM J Numer Anal.

1979;16:964–979.
[10] Passty GB. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J Math Anal Appl.

1979;72:383–390.
[11] AttouchH, Peypouquet J. The rate of convergence of Nesterov’s accelerated forward–backwardmethod is actually

faster than 1/k2. SIAM J Optim. 2016;26:1824–1834.
[12] Boţ RI, Csetnek ER. Convergence rates for forward–backward dynamical systems associated with strongly

monotone inclusions. J Math Anal Appl. 2018;457:1135–1152.
[13] Malitsky Y, TamMK. A forward–backward splittingmethod for monotone inclusions without cocoercivity. SIAM

J Optim. 2020;30:1451–1472.
[14] Moudafi A, Shehu Y. Convergence of the forward–backward method for split null-point problems beyond

coerciveness. J Nonlinear Convex Anal. 2019;20:1659–1672.
[15] Shehu Y, Yao JC. Rate of convergence for inertial iterative method for countable family of certain quasi-

nonexpansive mappings. J Nonlinear Convex Anal. 2020;21:533–541.

http://orcid.org/0000-0003-1509-1809

5414 B. TAN AND S. Y. CHO

[16] Tan B, Xu S. Strong convergence of two inertial projection algorithms in Hilbert spaces. J Appl Numer Optim.
2020;2:171–186.

[17] Tseng P. A modified forward–backward splitting method for maximal monotone mappings. SIAM J Control
Optim. 2000;38:431–446.

[18] Zhang C, Wang Y. Proximal algorithm for solving monotone variational inclusion. Optimization. 2018;67:1197–
1209.

[19] Wang Y, Wang F. Strong convergence of the forward–backward splitting method with multiple parameters in
Hilbert spaces. Optimization. 2018;67:493–505.

[20] Dong QL, Jiang D, Cholamjiak P, et al. A strong convergence result involving an inertial forward–backward
algorithm for monotone inclusions. J Fixed Point Theory Appl. 2017;19:3097–3118.

[21] Cholamjiak W, Cholamjiak P, Suantai S. An inertial forward–backward splitting method for solving inclusion
problems in Hilbert spaces. J Fixed Point Theory Appl. 2018;20:42.

[22] Shehu Y, Cai G. Strong convergence result of forward–backward splitting methods for accretive operators in
Banach spaces with applications. Rev R Acad Cienc Exactas Fís Nat Ser A Mat. 2018;112:71–87.

[23] Gibali A, Thong DV. Tseng type methods for solving inclusion problems and its applications. Calcolo. 2018;55:49.
[24] Thong DV, Cholamjiak P. Strong convergence of a forward–backward splitting method with a new step size for

solving monotone inclusions. Comput Appl Math. 2019;38:94.
[25] Gibali A, Thong DV, Vinh NT. Three new iterative methods for solving inclusion problems and related problems.

Comput Appl Math. 2020;39:187.
[26] Lorenz DA, Pock T. An inertial forward–backward algorithm for monotone inclusions. J Math Imaging Vision.

2015;51:311–325.
[27] Qin X, Wang L, Yao JC. Inertial splitting method for maximal monotone mappings. J Nonlinear Convex Anal.

2020;21:2325–2333.
[28] Gibali A, Hieu DV. A new inertial double-projection method for solving variational inequalities. J Fixed Point

Theory Appl. 2019;21:97.
[29] Cholamjiak P, Shehu Y. Inertial forward–backward splitting method in Banach spaces with application to

compressed sensing. Appl Math. 2019;64:409–435.
[30] Shehu Y, Dong QL, Liu LL, et al. New strong convergence method for the sum of two maximal monotone

operators. Optim Eng. 2020. doi:10.1007/s11081-020-09544-5.
[31] Tan B, Li S. Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems. J

Nonlinear Var Anal. 2020;4:337–355.
[32] Brézis H, Chapitre II. Operateurs maximaux monotones; 1973. North-Holland Math Stud. 1973;5:19–51.
[33] Saejung S, YotkaewP.Approximation of zeros of inverse stronglymonotone operators in Banach spaces. Nonlinear

Anal. 2012;75:742–750.
[34] Bauschke HH, Combettes PL. Convex analysis and monotone operator theory in Hilbert spaces. 2nd ed. New

York: Springer; 2017.

https://doi.org/10.1007/s11081-020-09544-5

	1. Introduction
	2. Preliminaries
	3. Main results
	3.1. The inertial viscosity-type projection algorithm
	3.2. The inertial Mann-type projection algorithm
	3.3. The inertial Mann-type Tseng algorithm
	3.4. The inertial viscosity-type Tseng algorithm

	4. Applications
	4.1. Application to convex minimization problems
	4.2. Application to variational inequality problems
	4.3. Application to split feasibility problems
	4.4. Application to image processing problems

	5. Numerical experiments
	6. The conclusion
	Acknowledgements
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [493.483 703.304]
>> setpagedevice

