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a b s t r a c t

We consider the bilevel variational inequality problem with a pseudomonotone operator
in real Hilbert spaces and investigate two modified subgradient extragradient methods
with inertial terms. Our first scheme requires the operator to be Lipschitz continuous
(the Lipschitz constant does not need to be known) while the second one only requires
it to be uniformly continuous. The proposed methods employ two adaptive stepsizes
making them work without the prior knowledge of the Lipschitz constant of the
mapping. The strong convergence properties of the iterative sequences generated by
the proposed algorithms are obtained under mild conditions. Some numerical tests
and applications are given to demonstrate the advantages and efficiency of the stated
schemes over previously known ones.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Throughout the paper, we always assume that C is a nonempty, closed, and convex subset of a real Hilbert space H
with inner product ⟨·, ·⟩ and induced norm ∥ · ∥. We first review the definition of some nonlinear mappings that are
relevant to this paper.

Definition 1.1. A mapping M : H → H is said to be

(i) L-Lipschitz continuous with L > 0 if ∥Mx − My∥ ≤ L∥x − y∥, ∀x, y ∈ H (If L ∈ (0, 1) then mapping M is called
contraction. In particular, when L = 1, mapping M is called nonexpansive).

(ii) α-strongly monotone if there exists a constant α > 0 such that ⟨Mx − My, x − y⟩ ≥ α∥x − y∥2, ∀x, y ∈ H.
(iii) monotone if ⟨Mx − My, x − y⟩ ≥ 0, ∀x, y ∈ H.
(iv) pseudomonotone if ⟨Mx, y − x⟩ ≥ 0 H⇒ ⟨My, y − x⟩ ≥ 0, ∀x, y ∈ H.
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(v) sequentially weakly continuous if for each sequence {xn} converging weakly to x, one has the weak convergence of
{Mxn} to Mx.

Note that the relation (ii) H⇒ (iii) H⇒ (iv) holds but its converse is generally incorrect (see, e.g., Example 3.2 in our
ection 3).
In this paper, we focus on the bilevel variational inequality problem (shortly, BVIP). BVIPs contain a number of nonlinear

ptimization problems and have many potential applications (see [1] for more details). Let F : C → H and M : C → H
e two operators. Recall that the BVIP is described as follows:

find x∗
∈ Ω such that

⟨
Fx∗, y − x∗

⟩
≥ 0, ∀y ∈ Ω , (BVIP)

where Ω denotes the set of all solutions of the following variational inequality problem (shortly, VIP):

find y∗
∈ C such that

⟨
My∗, z − y∗

⟩
≥ 0, ∀z ∈ C . (VIP)

t is known that VIPs provide a general and useful framework for solving engineering problems, image processing, data
ciences, electronics, and other fields; see, e.g., [2–9] and the references therein. Thus, numerical methods for studying
ariational inequalities have attracted numerous interests among researchers. For some recent advances in variational
nequalities, we recommend the readers to refer to [10].

Next we state some algorithms for solving the (VIP) and the (BVIP), and these motivate us to develop several new
fficient iterative schemes. One of the most popular projection-type methods for solving variational inequality problems
s the extragradient method (for short, EGM) proposed by Korpelevich [11]. It is known that the EGM obtains weak
onvergence in infinite-dimensional Hilbert spaces if the operator M involved is monotone and Lipschitz continuous. Note
hat the EGM is a two-step iterative scheme and requires the projection onto the feasible set to be computed twice in
ach iteration, which increases the computational burden of the method especially when the projection onto the feasible
et is difficult to evaluate. To overcome this drawback, a large number of variants of the EGM have been introduced to
olve variational inequalities in finite- and infinite-dimensional spaces; see, for example, [12–15]. One of the methods
o be highlighted is the subgradient extragradient method (for short, SEGM) proposed by Censor, Gibali, and Reich [13].
he SEGM replaces the projection onto the feasible set in the second step of the EGM with the projection onto a special
alf-space. This modification improves the computational efficiency of the EGM due to the fact that the projection onto
he half-space can be computed explicitly. Moreover, the weak convergence of the SEGM is established in an infinite-
imensional Hilbert space. Recently, Dong, Jiang, and Gibali [16] introduced a modified subgradient extragradient method
shortly, MSEGM) inspired by the SEGM and the projection contraction method (shortly, PCM) [14] to approximate the
olution of the (VIP). The basic idea of the MSEGM is to improve the stepsize in the second step of the SEGM. They provided
rimary numerical experiments to demonstrate the computational efficiency of the MSEGM compared to the SEGM and
he PCM.

Another issue of interest in the computational efficiency of the algorithm is the step size. A common feature enjoyed
y the EGM, the SEGM, and some of their variant forms is that the update of the stepsize requires the prior information
f the Lipschitz constant of the mapping involved. However, the Lipschitz constant is not readily available for practical
pplications or estimating a suitable range requires more computational burden. Recently, some adaptive methods have
een offered to solve the variational inequality problem when the Lipschitz constant is unknown; see, e.g., [17–19] and the
eferences therein. However, the schemes proposed in [17–19] generate a non-increasing sequence of stepsizes, which
ill further affect the computational efficiency of the algorithms used. Recently, Liu and Yang [20] introduced a new
tepsize criterion that generates a non-monotonic sequence of stepsizes. Their numerical experiments demonstrate the
erformance of the algorithms with this new stepsize. On the other hand, there are some mappings in real-world problems
hat do not satisfy the Lipschitz continuity condition, which will lead to the failure of those algorithms that require
he operator to be Lipschitz continuous. To overcome this shortcoming, some methods with Armijo-type stepsizes are
roposed for solving monotone and uniformly continuous VIPs (see, e.g., [21,22]) and pseudomonotone and uniformly
ontinuous VIPs (see, e.g., [23–26]).
In recent years, inertial terms have attracted the interest and research of scholars as a technique to accelerate

he convergence speed of algorithms. A common feature of inertial-type algorithms is that the next iteration depends
n the combination of the previous two iterations (see [27,28] for more details). This small change greatly improves
he computational efficiency of inertial-type algorithms. Recently, many researchers have constructed a large number
f inertial-type algorithms to solve variational inequality problems, fixed point problems, equilibrium problems, split
easibility problems, and other optimization problems; see, e.g., [29–32] and the references therein. The computational
fficiency of these inertial-type algorithms was demonstrated by a number of computational tests and applications.
We next state some algorithms and difficulties in the literature for solving the BVIP, which will lead us to the motivation

f our research in this paper. Yamada [33] introduces a new iterative algorithm (now known as the hybrid steepest descent
ethod) to solve the bilevel problem described as a variational inequality problem restricted by a fixed point problem.
ote that the method does not contain any projection step and obtains strong convergence in infinite-dimensional Hilbert
paces under some suitable conditions. It is known that the variational inequality problem and the fixed point problem are
nterconvertible and thus we can use the hybrid steepest descent method to approximate the solutions of BVIPs. Recently,
number of numerical algorithms that based on the hybrid steepest descent method have been proposed for solving

he bilevel monotone variational inequalities (see, e.g., [34,35]) and the bilevel pseudomonotone variational inequalities
2
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(see, e.g., [36–39]). Very recently, Thong and Hieu [37] introduced a new modified subgradient extragradient method
stimulated by the MSEGM of Dong et al. [16] for solving the BVIP involving a pseudomonotone operator. However, the
step size in their scheme is bounded by the inverse of the Lipschitz constant of the mapping, which means that the
Lipschitz constant of the mapping must be entered into the iterative process as a known parameter. To overcome this
difficulty, some adaptive algorithms for solving BVIPs have been proposed by scholars (see, e.g., [35,38,39]). These methods
can work without the prior knowledge of the Lipschitz constant of the mapping. Another thing we need to point out is
that the operator M of these algorithms is required to satisfy Lipschitz continuity. This condition is very strong will cause
that they will not be available in some cases.

A natural question is how to modify the algorithm suggested by Thong and Hieu [37] so that they can work
adaptively and obtain a faster convergence speed. To answer this question, in this paper we present two modified inertial
extragradient-type methods to solve the bilevel pseudomonotone variational inequality problem. Our first scheme requires
that the operator M be Lipschitz continuous while the second one only requires that it be uniformly continuous. The
strong convergence of the proposed methods is established under some mild conditions imposed on the parameters.
Some numerical experiments and applications are given to verify the theoretical results. The algorithms suggested in this
paper improve some known results in the literature for solving bilevel variational inequalities [34–39] and variational
inequalities [13,21,22].

To end this section, we review the following two lemmas that will be used in the convergence analysis of the
algorithms.

Lemma 1.1 ([33]). Let γ > 0 and α ∈ (0, 1]. Let F : H → H be a β-strongly monotone and L-Lipschitz continuous mapping.
ssociating with a nonexpansive mapping T : H → H, define a mapping T γ

: H → H by T γ x = (I − αγ F )(Tx), ∀x ∈ H. Then,
γ is a contraction provided γ <

2β
L2
, that is,

∥T γ x − T γ y∥ ≤ (1 − αη)∥x − y∥, ∀x, y ∈ H,

where η = 1 −

√
1 − γ

(
2β − γ L2

)
∈ (0, 1].

Lemma 1.2 ([40]). Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and {αn} be a sequence in (0, 1) such
hat

∑
∞

n=1 αn = ∞. Assume that

pn+1 ≤ (1 − αn)pn + αnqn, ∀n ≥ 1.

If lim supk→∞ qnk ≤ 0 for every subsequence
{
pnk

}
of {pn} satisfying lim infk→∞ (pnk+1 − pnk ) ≥ 0, then limn→∞ pn = 0.

. The algorithms and their convergence analysis

In this section, we introduce two adaptive modified subgradient extragradient methods for finding the solutions of the
ilevel pseudomonotone variational inequality problem (BVIP) in real Hilbert spaces. In the sequel, we use the notation
n → x (resp., xn ⇀ x) to denote the strong convergence (resp., weak convergence) of the sequence {xn} to x and use
C : H → C to represent the metric projection from H onto C , defined as PC (x) := argmin{∥x − y∥, y ∈ C}.

.1. Algorithm for Lipschitz continuous operators

In this subsection, we present an adaptive algorithm for solving the (BVIP) with a pseudomonotone and Lipschitz
ontinuous operator. Suppose that the following assumptions (A1)–(A5) hold for our Algorithm 2.1.

(A1) The feasible set C is a nonempty, closed, and convex subset of a real Hilbert space H.
(A2) The solution set of the problem (VIP) is nonempty, that is, Ω ̸= ∅.
(A3) The mapping F : H → H is LF -Lipschitz continuous and β-strongly monotone on H.
(A4) The operator M : H → H is pseudomonotone, LM-Lipschitz continuous on H and the operator M : H → H satisfies

the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ∥Mz∥ ≤ lim inf
n→∞

∥Mxn∥ . (2.1)

(A5) Assume {ξn} and {ϵn} are two non-negative positive sequences such that
∑

∞

n=1 ξn < ∞ and limn→∞
ϵn
αn

= 0, where
{α } ⊂ (0, 1) satisfies lim α = 0 and

∑
∞

α = ∞.
n n→∞ n n=1 n

3



B. Tan and S.Y. Cho Communications in Nonlinear Science and Numerical Simulation 107 (2022) 106160

L
λ

P

L
A
y

P

L

We now state the first scheme in Algorithm 2.1.

Algorithm 2.1 Adaptive-type inertial modified subgradient extragradient method for (BVIP).

Initialization: Take θ > 0, λ1 > 0, µ ∈ (0, 1), δ ∈ (0, 2/µ), τ ∈ (δ/2, 1/µ), γ ∈ (0, 2β/L2F ). Select three sequences {ξn},
{ϵn}, and {αn} to satisfy Assumption (A5). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute wn = xn + θn(xn − xn−1), where

θn =

⎧⎨⎩ min
{

ϵn

∥xn − xn−1∥
, θ

}
, if xn ̸= xn−1;

θ, otherwise.
(2.2)

Step 2. Compute yn = PC (wn − τλnMwn), where the next step size λn+1 is updated by

λn+1 =

⎧⎨⎩ min
{

µ ∥wn − yn∥
∥Mwn − Myn∥

, λn + ξn

}
, if Mwn ̸= Myn;

λn + ξn, otherwise.
(2.3)

Step 3. Compute zn = PTn (wn − δλnχnMyn), where the half-space Tn and χn are defined by

Tn := {x ∈ H | ⟨wn − τλnMwn − yn, x − yn⟩ ≤ 0} ,

χn :=
⟨wn − yn, cn⟩

∥cn∥2 , cn := wn − yn − τλn(Mwn − Myn) .
(2.4)

Step 4. Compute xn+1 = zn − αnγ Fzn.
Set n := n + 1 and go to Step 1.

Remark 2.1. We have the following observations for the hypotheses and the Algorithm 2.1.

• Note that the condition (2.1) is used by many recent works on pseudomonotone variational inequalities (see,
e.g., [25,41]). It is easy to check that Condition (2.1) is weaker than the sequential weak continuity of the mapping M
(see [41, Remark 3.2]). Moreover, it is not necessary to impose Condition (2.1) if mapping M is monotone (see [42]).

• The idea of the step size λn defined in (2.3) is derived from [20]. It is worth noting that the step size λn generated
in Algorithm 2.1 is allowed to increase when the iteration increases. Therefore, the use of this type of step size
reduces the dependence on the initial step size λ1. On the other hand, because of

∑
∞

n=1 ξn < +∞, which implies
that limn→∞ ξn = 0. Consequently, the step size λn may not increase when n is large enough. If ξn = 0, then the
step size λn in Algorithm 2.1 is similar to the approaches in [17–19].

• Notice that there is an explicit formula to calculate the projection on the half-space Tn (see, e.g., [43]). Thus, the
proposed Algorithm 2.1 needs to compute the projection on the feasible set C only once in each iteration.

• The step size used in Algorithm 2.1 to compute zn is δλnχn, which is larger than the step size λn used in the
subgradient extragradient method proposed by Censor et al. [13] to compute zn. The method involving this new
step size was introduced by Dong et al. in [16]. On the other hand, it is important to emphasize that the step size
used to compute yn in the second step of Algorithm 2.1 is τλn, where τ ∈ (δ/2, 1/µ). This small change can improve
the convergence speed of the algorithm with τ = 1 (see Section 3).

The following lemmas are important in the convergence analysis of Algorithm 2.1.

emma 2.1. Suppose that Assumption (A4) holds and the sequence {λn} is generated by (2.3). Then limn→∞ λn = λ and
∈

[
min {µ/LM , λ1} , λ1 +

∑
∞

n=1 ξn
]
.

roof. The proof of this lemma follows as that of Lemma 3.1 in [20] and thus it is omitted. □

emma 2.2. Suppose that Assumptions (A1), (A2), and (A4) hold. Let {wn} and {yn} be two sequences formulated by
lgorithm 2.1. If there exists a subsequence

{
wnk

}
of {wn} such that

{
wnk

}
converges weakly to z ∈ H and limk→∞ ∥wnk −

nk∥ = 0, then z ∈ Ω .

roof. The proof follows that of Lemma 3.8 in [38]. So it is omitted. □

emma 2.3. If y = w or c = 0 in Algorithm 2.1, then y ∈ Ω .
n n n n

4
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Proof. From the definition of cn and (2.3), one has

∥cn∥ ≥ ∥wn − yn∥ − τλn∥Mwn − Myn∥

≥ ∥wn − yn∥ −
τµλn

λn+1
∥wn − yn∥ =

(
1 −

τµλn

λn+1

)
∥wn − yn∥ .

It can be easily proved that ∥cn∥ ≤
(
1 +

τµλn
λn+1

)
∥wn − yn∥. Therefore(

1 −
τµλn

λn+1

)
∥wn − yn∥ ≤ ∥cn∥ ≤

(
1 +

τµλn

λn+1

)
∥wn − yn∥,

nd thus wn = yn if and only if cn = 0. Hence, if wn = yn or cn = 0, then yn = PC (yn − τλnMyn). This implies that yn ∈ Ω .
he proof is completed. □

emma 2.4. Suppose that Assumptions (A1), (A2), and (A4) hold. Let {zn}, {yn} and {wn} be three sequences created by
lgorithm 2.1. Then, for all p ∈ Ω ,

∥zn − p∥2
≤ ∥wn − p∥2

− ∥wn − zn −
δ

τ
χncn∥2

−
δ

τ 2 (2τ − δ)

(
1 −

τµλn
λn+1

)2(
1 +

τµλn
λn+1

)2 ∥wn − yn∥2.

roof. From the property of projection ∥PC (x) − PC (y)∥2
≤ ⟨PC (x) − PC (y), x − y⟩, ∀x, y ∈ H and p ∈ Ω ⊂ C ⊂ Tn, we

btain

2∥zn − p∥2
= 2∥PTn (wn − δλnχnMyn) − PTn (p)∥

2

≤ 2⟨zn − p, wn − δλnχnMyn − p⟩

= ∥zn − p∥2
+ ∥wn − δλnχnMyn − p∥2

− ∥zn − wn + δλnχnMyn∥2

= ∥zn − p∥2
+ ∥wn − p∥2

+ δ2λ2
nχ

2
n ∥Myn∥2

− 2⟨wn − p, δλnχnMyn⟩

− ∥zn − wn∥
2
− δ2λ2

nχ
2
n ∥Myn∥2

− 2⟨zn − wn, δλnχnMyn⟩

= ∥zn − p∥2
+ ∥wn − p∥2

− ∥zn − wn∥
2
− 2⟨zn − p, δλnχnMyn⟩ ,

hich implies that

∥zn − p∥2
≤ ∥wn − p∥2

− ∥zn − wn∥
2
− 2δλnχn⟨zn − p,Myn⟩ . (2.5)

y using yn ∈ C and p ∈ Ω , in the light of (VIP), one has ⟨Mp, yn − p⟩ ≥ 0. This together with the pseudo-monotonicity
f the mapping M yields ⟨Myn, yn − p⟩ ≥ 0, which means that ⟨Myn, zn − p⟩ ≥ ⟨Myn, zn − yn⟩. Hence,

− 2δλnχn⟨Myn, zn − p⟩ ≤ −2δλnχn⟨Myn, zn − yn⟩ . (2.6)

rom zn ∈ Tn and the definition of Tn, we have ⟨wn − τλnMwn − yn, zn − yn⟩ ≤ 0. This shows that

⟨wn − yn − τλn(Mwn − Myn), zn − yn⟩ ≤ τλn⟨Myn, zn − yn⟩ . (2.7)

y using (2.6), (2.7), and the definitions of cn and χn, we obtain

−2δλnχn⟨Myn, zn − p⟩ ≤ −2
δ

τ
χn⟨cn, zn − yn⟩

= −2
δ

τ
χn⟨cn, wn − yn⟩ + 2

δ

τ
χn⟨cn, wn − zn⟩

= −2
δ

τ
χ2
n ∥cn∥2

+ 2
δ

τ
χn⟨cn, wn − zn⟩ .

(2.8)

ow, we estimate 2 δ
τ
χn⟨cn, wn − zn⟩. According to the formula 2ab = a2 + b2 − (a − b)2, we deduce

2
δ

τ
χn⟨cn, wn − zn⟩ = ∥wn − zn∥2

+
δ2

τ 2 χ2
n ∥cn∥2

− ∥wn − zn −
δ

τ
χncn∥2 . (2.9)

t follows from (2.3) that ∥Mwn − Myn∥ ≤ (µ/λn+1)∥wn − yn∥, ∀n ≥ 1, which combining with the definition of χn yields
hat

χn∥cn∥2
= ⟨cn, wn − yn⟩ ≥ ∥wn − yn∥2

− τλn ∥Mwn − Myn∥ ∥wn − yn∥

≥

(
1 −

τµλn
)

∥wn − yn∥2 .

λn+1

5
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This together with the fact that ∥cn∥ ≤ (1 + τµλn/λn+1)∥wn − yn∥ implies

χ2
n ∥cn∥2

≥

(
1 −

τµλn

λn+1

)2 ∥wn − yn∥4

∥cn∥2 ≥

(
1 −

τµλn
λn+1

)2(
1 +

τµλn
λn+1

)2 ∥wn − yn∥2 . (2.10)

ombining (2.5), (2.8), (2.9), and (2.10), we conclude that

∥zn − p∥2
≤ ∥wn − p∥2

− ∥wn − zn −
δ

τ
χncn∥2

−
δ

τ 2 (2τ − δ)

(
1 −

τµλn
λn+1

)2(
1 +

τµλn
λn+1

)2 ∥wn − yn∥2.

his completes the proof. □

heorem 2.1. Assume that Assumptions (A1)–(A5) hold. Then the sequence {xn} generated by Algorithm 2.1 converges to the
nique solution of the (BVIP) in norm.

roof. We first show that the sequence {xn} is bounded. Let p ∈ Ω . From Lemma 2.4, δ ∈ (0, 2/µ), and τ ∈ (δ/2, 1/µ),
we have

∥zn − p∥ ≤ ∥wn − p∥, ∀n ≥ 1.

It follows from (2.2) and the assumptions on {αn} that θn
αn

∥xn − xn−1∥ → 0 as n → ∞. Therefore, there exists a constant
Q1 > 0 such that θn

αn
∥xn − xn−1∥ ≤ Q1, ∀n ≥ 1. By the definition of wn, one has ∥wn − p∥ ≤ αn · Q1 + ∥xn − p∥. Thus

∥zn − p∥ ≤ ∥wn − p∥ ≤ ∥xn − p∥ + αnQ1, ∀n ≥ 1 . (2.11)

rom Lemma 1.1 and (2.11), it follows that

∥xn+1 − p∥ = ∥ (I − αnγ F) zn − (I − αnγ F) p − αnγ Fp∥
≤ (1 − αnη) ∥zn − p∥ + αnγ ∥Fp∥

≤ (1 − αnη) ∥xn − p∥ + αnη ·
Q1

η
+ αnη ·

γ

η
∥Fp∥

≤ max
{
Q1 + γ ∥Fp∥

η
, ∥xn − p∥

}
≤ · · · ≤ max

{
Q1 + γ ∥Fp∥

η
, ∥x1 − p∥

}
,

where η = 1−

√
1 − γ

(
2β − γ L2F

)
∈ (0, 1]. This implies that the sequence {xn} is bounded. We obtain that the sequences

wn}, {yn}, and {zn} are also bounded.
Combining the inequality ∥x + y∥2

≤ ∥x∥2
+ 2⟨y, x + y⟩, ∀x, y ∈ H, (2.11), and Lemma 2.4, we have

∥xn+1 − p∥2
= ∥ (I − αnγ F) zn − (I − αnγ F) p − αnγ Fp∥2

≤ (1 − αnη)2 ∥zn − p∥2
+ 2αnγ ⟨Fp, p − xn+1⟩

≤ ∥zn − p∥2
+ αnQ2

≤ ∥xn − p∥2
+ αn

(
2Q1∥xn − p∥ + αnQ 2

1

)
+ αnQ2

− ∥wn − zn −
δ

τ
χncn∥2

−
δ

τ 2 (2τ − δ)

(
1 −

τµλn
λn+1

)2(
1 +

τµλn
λn+1

)2 ∥wn − yn∥2

or some Q2 > 0. Thus

∥wn − zn −
δ

τ
χncn∥2

+
δ

τ 2 (2τ − δ)

(
1 −

τµλn
λn+1

)2(
1 +

τµλn
λn+1

)2 ∥wn − yn∥2

≤ ∥xn − p∥2
− ∥xn+1 − p∥2

+ αnQ3 ,

(2.12)

here Q := sup
{
2Q ∥x − p∥ + α Q 2

+ Q
}

> 0.
3 n∈N 1 n n 1 2

6
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From the definition of wn and (2.11), we obtain

∥xn+1 − p∥2
≤ (1 − αnη) ∥wn − p∥2

+ 2αnγ ⟨Fp, p − xn+1⟩

≤ (1 − αnη) ∥xn − p∥2
+ 2αnγ ⟨Fp, p − xn+1⟩

+ θn∥xn − xn−1∥ (2∥xn − p∥ + θ∥xn − xn−1∥)

≤ αnη

[2γ
η

⟨Fp, p − xn+1⟩ +
3Q θn

αnη
∥xn − xn−1∥

]
+ (1 − αnη) ∥xn − p∥2 ,

(2.13)

where Q := supn∈N {∥xn − p∥, θ∥xn − xn−1∥} > 0.
Finally we show that the sequence

{
∥xn − p∥2

}
converges to zero. We set

pn = ∥xn − p∥2, qn =
2γ
η

⟨Fp, p − xn+1⟩ +
3Q θn

αnη
∥xn − xn−1∥.

Then the last inequality in (2.13) can be written as pn+1 ≤ (1 − αnη)pn + αnηqn, ∀n ≥ 1. Note that the sequence {αnη}

is in (0, 1) and
∑

∞

n=1 αnη = ∞. By Lemma 1.2, it remains to show that lim supk→∞ qnk ≤ 0 for every subsequence
{
pnk

}
f {pn} satisfying lim infk→∞

(
pnk+1 − pnk

)
≥ 0. For this purpose, we assume

{
pnk

}
is a subsequence of {pn} such that

im infk→∞

(
pnk+1 − pnk

)
≥ 0. Combining (2.12), the assumption on {αn}, δ ∈ (0, 2/µ), and τ ∈ (δ/2, 1/µ), one obtains

lim sup
k→∞

⎧⎨⎩∥wnk − znk −
δ

τ
χnkcnk∥

2
+

δ

τ 2 (2τ − δ)

(
1 −

τµλnk
λnk+1

)2(
1 +

τµλnk
λnk+1

)2 ∥wnk − ynk∥
2

⎫⎬⎭
≤ lim sup

k→∞

αnkQ3 + lim sup
k→∞

(
pnk − pnk+1

)
≤ − lim inf

k→∞

(
pnk+1 − pnk

)
≤ 0 ,

hich implies that

lim
k→∞

∥ynk − wnk∥ = 0 and lim
k→∞

∥wnk − znk −
δ

τ
χnkcnk∥ = 0.

From the definition of χn, we obtain

∥wnk − znk∥ ≤ ∥wnk − znk −
δ

τ
χnkcnk∥ +

δ

τ
χnk∥cnk∥

= ∥wnk − znk −
δ

τ
χnkcnk∥ +

δ

τ

⟨wnk − ynk , cnk⟩
∥cnk∥

≤ ∥wnk − znk −
δ

τ
χnkcnk∥ +

δ

τ
∥wnk − ynk∥ .

Hence, we have that limk→∞ ∥znk − wnk∥ = 0. Moreover, we can show that

∥xnk+1 − znk∥ = αnkγ ∥Fznk∥ → 0 as n → ∞,

and

∥xnk − wnk∥ = αnk ·
θnk

αnk
∥xnk − xnk−1∥ → 0 as n → ∞.

Thus

∥xnk+1 − xnk∥ ≤ ∥xnk+1 − znk∥ + ∥znk − wnk∥ + ∥wnk − xnk∥ → 0 as n → ∞.

Since the sequence
{
xnk

}
is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ z ∈ H as j → ∞ and

lim sup
k→∞

⟨
Fp, p − xnk

⟩
= lim

j→∞

⟨
Fp, p − xnkj

⟩
= ⟨Fp, p − z⟩ .

y using limk→∞ ∥xnk − wnk∥ = 0, we obtain wnkj
⇀ z as j → ∞. This combining with limk→∞ ∥wnk − ynk∥ = 0 and

emma 2.2 yields that z ∈ Ω . From the assumption that p is the unique solution of the (BVIP) and limk→∞ ∥xnk+1−xnk∥ =

, we deduce

lim sup
k→∞

⟨Fp, p − xnk+1⟩ ≤ lim sup
k→∞

⟨
Fp, p − xnk

⟩
= ⟨Fp, p − z⟩ ≤ 0 ,

hich together with limn→∞
θn
αn

∥xn−xn−1∥ = 0 yields that lim supk→∞ qnk ≤ 0. Therefore, we conclude that limn→∞ ∥xn−
p∥ = 0. That is, x → p as n → ∞. This completes the proof. □
n

7
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Now, we give a special case of Theorem 2.1. Set F (x) = x − f (x) in Algorithm 2.1, where mapping f : H → H is
-contraction. It can be easily verified that mapping F : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly
onotone. In this situation, by picking γ = 1, we obtain a new inertial modified subgradient extragradient algorithm for
olving the (VIP). More specifically, we have the following result.

orollary 2.1. Assume that Assumptions (A1), (A2), (A4), and (A5) hold. Let mapping f : H → H be ρ-contraction with
∈ [0,

√
5 − 2). Take θ > 0, λ1 > 0, µ ∈ (0, 1), δ ∈ (0, 2/µ) and τ ∈ (δ/2, 1/µ). Let x0, x1 ∈ H be two arbitrary initial

points and the iterative sequence {xn} be generated by⎧⎨⎩
wn = xn + θn (xn − xn−1) , yn = PC (wn − τλnMwn) ,
xn+1 = αnf (zn) + (1 − αn) zn, zn = PTn (wn − δλnχnMyn) ,
where θn, λn, χn and Tn are defined in (2.2), (2.3), and (2.4) .

(2.14)

hen the iterative sequence {xn} formed by (2.14) converges to p ∈ Ω in norm, where p = PΩ (f (p)).

.2. Algorithm for uniformly continuous operators

In this subsection, we propose an Armijo-type iterative scheme to approximate the solution of the (BVIP) with a
seudomonotone and non-Lipschitz continuous operator. We replace Assumptions (A4) and (A5) in Algorithm 2.1 with
he following Assumptions (A6) and (A7), respectively.

(A6) The operator M : H → H is pseudomonotone, uniformly continuous on H and satisfies the Assumption (2.1).
(A7) Suppose {ϵn} is a non-negative positive sequences such that limn→∞

ϵn
αn

= 0, where {αn} ⊂ (0, 1) satisfies
limn→∞ αn = 0 and

∑
∞

n=1 αn = ∞.

The second scheme is stated in Algorithm 2.2.

Algorithm 2.2 Armijo-type inertial modified subgradient extragradient method for (BVIP).

Initialization: Take θ > 0, σ > 0, ℓ ∈ (0, 1), µ ∈ (0, 1), δ ∈ (0, 2/µ), τ ∈ (δ/2, 1/µ), γ ∈ (0, 2β/L2F ). Select two
sequences {ϵn} and {αn} to satisfy Assumption (A7). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute wn = xn + θn(xn − xn−1), where θn is updated by (2.2).
Step 2. Compute yn = PC (wn − τλnMwn), where λn := σℓmn and mn is the smallest nonnegative integer m satisfying

σℓm⟨Mwn − Myn, wn − yn⟩ ≤ µ∥wn − yn∥2 . (Amj)

Step 3. Compute zn = PTn (wn − δλnχnMyn), where the half-space Tn and χn are defined in (2.4).
Step 4. Compute xn+1 = zn − αnγ Fzn.
Set n := n + 1 and go to Step 1.

We can obtain the following conclusions of Lemmas 2.5 and 2.6 by a simple modification of Lemmas 3.1 and 3.3 in [44],
respectively. To avoid repetitive expressions, we omit their proofs here.

Lemma 2.5 ([44]). Suppose that Assumption (A6) holds. Then the Armijo criteria (Amj) is well defined.

Lemma 2.6 ([44]). Suppose that Assumptions (A1), (A2), and (A6) hold. Let {wn} and {yn} be two sequences created by
lgorithm 2.2. If there exists a subsequence

{
wnk

}
of {wn} such that

{
wnk

}
converges weakly to z ∈ H and limk→∞ ∥wnk −

nk∥ = 0, then z ∈ Ω .

According to the proofs of Lemmas 2.3 and 2.4, we have the following Lemmas 2.7 and 2.8 without proof.

emma 2.7. If yn = wn or cn = 0 in Algorithm 2.2, then yn ∈ Ω . Moreover, we have

(1 − τµ)∥wn − yn∥ ≤ ∥cn∥ ≤ (1 + τµ)∥wn − yn∥.

emma 2.8. Suppose that Assumptions (A1), (A2), and (A6) hold. Let {zn}, {yn}, and {wn} be three sequences created by
lgorithm 2.2. Then, for all p ∈ Ω ,

∥zn − p∥2
≤ ∥wn − p∥2

− ∥wn − zn −
δ
χncn∥2

−
δ
(2τ − δ)

(1 − τµ)2
∥wn − yn∥2.
τ τ 2 (1 + τµ)2

8
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Theorem 2.2. Assume that Assumptions (A1)–(A3), (A6), and (A7) hold. Then the sequence {xn} generated by Algorithm 2.2
onverges to the unique solution of the (BVIP) in norm.

roof. The proof is very similar to Theorem 2.1. We leave it to the reader to verify. □

Similar to Corollary 2.1, we have the following result for the special case of Theorem 2.2.

orollary 2.2. Assume that Assumptions (A1), (A2), (A6), and (A7) hold. Let mapping f : H → H be ρ-contraction with
ρ ∈ [0,

√
5 − 2). Take θ > 0, σ > 0, ℓ ∈ (0, 1), µ ∈ (0, 1), δ ∈ (0, 2/µ) and τ ∈ (δ/2, 1/µ). Let x0, x1 ∈ H be two arbitrary

nitial points and the iterative sequence {xn} be generated by⎧⎨⎩
wn = xn + θn (xn − xn−1) , yn = PC (wn − τλnMwn) ,
xn+1 = αnf (zn) + (1 − αn) zn, zn = PTn (wn − δλnχnMyn) ,
where θn, λn, χn and Tn are defined in (2.2), (Amj), and (2.4) .

(2.15)

hen the iterative sequence {xn} formed by (2.15) converges to p ∈ Ω in norm, where p = PΩ (f (p)).

emark 2.2. We discuss further contributions of this paper in the comments below.

(i) In the proposed Algorithms 2.1, 2.2, (2.14), and (2.15), yn is computed as yn = PC (wn − τλnMwn). Notice that the
step size for computing yn is τλn, which is different from the methods that already exist in the literature [13,16].
The proposed Algorithms (2.14) and (2.15) can be viewed as a modification of Algorithm 3.1 introduced by
Dong et al. [16]. Our numerical experiments indicate that this modification can improve the convergence speed
of some known algorithms (see Section 3).

(ii) Our Algorithms 2.1 and 2.2 improve some known numerical methods for solving the (BVIP) in the literature [34–39].
More precisely, we base on the following considerations: (1) the algorithms introduced in [34,36] require computing
the projection onto the feasible set twice in each iteration, while our Algorithm 2.1 need to calculate it only once;
(2) the methods stated in the literature [34,35] are used to solve bilevel monotone variational inequalities, while
our algorithms can solve a wider range of bilevel pseudomonotone variational inequalities; (3) the update of the
step size of the Algorithm 3.1 suggested by Thong and Hieu [37] requires the prior knowledge of the Lipschitz
constant of the mapping, while our algorithms can adaptively update the step size without any prior information;
(4) it should be emphasized that the proposed Algorithm 2.2 is designed to solve the (BVIP) with a non-Lipschitz
continuous operator, which improves many algorithms in the literature [34–39] for solving the (BVIP) with a
Lipschitz continuous operator; and (5) inertial effects are added to the proposed algorithms, which accelerates
the convergence speed of the algorithm in [38] without inertial terms (see Section 3).

(iii) Our Algorithm (2.14) and Algorithm (2.15) can solve a wider range of variational inequalities with pseudomonotone
and non-Lipschitz continuous operators, and thus they improve and unify many of the methods proposed in the
literature (see, e.g., [13,16,21,22]) for solving variational inequalities. This is similar to the exposition in (ii) and
thus we omit the details.

. Numerical experiments and applications

In this section, we present some computational experiments to illustrate the numerical performance of the proposed
lgorithms over some existing ones. All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM)
5-8250U CPU @ 1.60 GHz computer with RAM 8.00 GB.

.1. Theoretical examples

xample 3.1. Consider the linear operator M : Rm
→ Rm (m = 20) in the form M(x) = Sx + q, where q ∈ Rm

nd S = NNT
+ Q + D, N is a m × m matrix, Q is a m × m skew-symmetric matrix, and D is a m × m diagonal

atrix with its diagonal entries being nonnegative (hence S is positive symmetric definite). The feasible set C is given by
= {x ∈ Rm

: −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is clear that M is monotone and Lipschitz continuous with constant L = ∥S∥.
n this experiment, all entries of N,Q are generated randomly in [−2, 2], D is generated randomly in [0, 2] and q = 0. It
s easy to check that the solution of the variational inequality problem is x∗

= {0}. The maximum number of iterations
00 is used as a stopping criterion and the function Dn = ∥xn − x∗

∥ is used to measure the error of the n-th iteration step.
e use the proposed Algorithms (2.14) and (2.15) to solve this problem. Take θ = 0.6, ϵn = 100/(n+1)2, αn = 1/(n+1),
= 1.5, and f (x) = 0.1x for the presented algorithms. Choose λ1 = 1, µ = 0.2, and ξn = 1/(n + 1)1.1 for the suggested
lgorithm (2.14). Select σ = 2, ℓ = 0.5, and µ = 0.2 for the proposed Algorithm (2.15). Fig. 1 shows the numerical
erformance of the proposed algorithms for different parameter τ .
9
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Fig. 1. Numerical results for Example 3.1.

Example 3.2. Let H = L2([0, 1]) be an infinite-dimensional Hilbert space with inner product

⟨x, y⟩ =

∫ 1

0
x(t)y(t) dt, ∀x, y ∈ H,

and induced norm

∥x∥ =

(∫ 1

0
|x(t)|2 dt

)1/2

, ∀x ∈ H.

Let r , R be two positive real numbers such that R/(k + 1) < r/k < r < R for some k > 1. Take the feasible set as
C = {x ∈ H : ∥x∥ ≤ r}. The operator M : H → H is given by

M(x) = (R − ∥x∥)x, ∀x ∈ H.

Note that the operator M is pseudomonotone rather than monotone (see [45, Section 4]). Let F : H → H be an operator
defined by (Fx)(t) = 0.5x(t), t ∈ [0, 1]. It is easy to see that operator F is 0.5-strongly monotone and 0.5-Lipschitz
continuous. We use the proposed Algorithms 2.1 and 2.2 to solve the (BVIP) with M , F and C given above, and compare
them with two previously known strongly convergent algorithms, including the Algorithm 1 suggested by Thong et al. [38]
(shortly, TLDCR Alg. 1) and the Algorithm 3.2 proposed by Tan et al. [39] (shortly, TLQ Alg. 3.2). The parameters of all
algorithms are set as follows.

• In the proposed Algorithms 2.1 and 2.2, we set θ = 0.4, ϵn = 1/(n + 1)2, αn = 1/(n + 1), τ = 0.8, δ = 1.5, and
γ = 1.7β/L2F . Pick λ1 = 0.5, µ = 0.1, and ξn = 1/(n + 1)1.1 for Algorithm 2.1. Adopt σ = 2, ℓ = 0.5, and µ = 0.1
for Algorithm 2.2.

• In the TLDCR Alg. 1 [38], we take µ = 0.1, λ1 = 0.5, δ = 1.5, αn = 1/(n + 1), and γ = 1.7β/L2F .
• In the TLQ Alg. 3.2 [39], we choose θ = 0.4, ϵn = 1/(n + 1)2, µ = 0.1, λ1 = 0.5, αn = 1/(n + 1), and γ = 1.7β/L2F .

For the experiment, we choose R = 1.5, r = 1, k = 1.1. The solution of this problem is x∗(t) = 0. The maximum number
of iterations 50 is used as a common stopping criterion. The numerical behavior of Dn = ∥xn(t) − x∗(t)∥ of all algorithms
with four starting points x0(t) = x1(t) is shown in Fig. 2.

Example 3.3. Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi, . . .) |
∑

∞

i=1 |xi|2 < +∞} equipped with inner
product

⟨x, y⟩ =

∞∑
i=1

xiyi, ∀x, y ∈ H,

and induced norm

∥x∥ =

√
⟨x, x⟩, ∀x ∈ H.

Let C := {x ∈ H : |xi| ≤ 1/i}. Define an operator M : C → H by

Mx = ∥x∥ + 1/(∥x∥ + ϕ) x
( )

10
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f

Fig. 2. Numerical results for Example 3.2.

for some ϕ > 0. It can be verified that mapping M is pseudomonotone on H, uniformly continuous and sequentially
weakly continuous on C but not Lipschitz continuous on H (see [46]). In the following cases, we take ϕ = 0.5, H = Rm

or different values of m. In this case, the feasible set C is a box C =
{
x ∈ Rm

: −1/i ≤ xi ≤ 1/i, i = 1, 2, . . . ,m
}
.

We compare the proposed Algorithm (2.15) with several strongly convergent algorithms that can solve the (VIP) with
uniformly continuous operators, including the Algorithm 4 proposed by Reich et al. [25] (shortly, RTDLD Alg. 4), the
Algorithm 3.1 introduced by Cai et al. [26] (shortly, CDP Alg. 3.1) and the Algorithm 3 suggested by Thong et al. [47]
(shortly, TSI Alg. 3). Take αn = 1/(n + 1), f (x) = 0.1x, σ = 2, ℓ = 0.5, and µ = 0.6 for all algorithms. Choose λ = 0.5/µ
for RTDLD Alg. 4. Set θ = 0.4, ϵn = 1/(n + 1)2, τ = 0.8, and δ = 1.5 for the suggested Algorithm (2.15). The initial values
x0 = x1 = 5rand(m, 1) are randomly generated by MATLAB. The maximum number of iterations 200 is used as a common
stopping criterion. The numerical performance of Dn = ∥xn − xn−1∥ of all algorithms with four different dimensions is
reported in Fig. 3.

Remark 3.1. We have the following observations for the results of Examples 3.1–3.3.

(i) The iterative methods proposed in this paper are efficient and robust. They have a better numerical performance
than the algorithms presented in the literature [25,26,38,39,47] for the same stopping criterion, and these results
are not significantly related to the choice of initial values and the size of the dimensions.

(ii) It can be seen from Fig. 1 that the values of the parameter τ have different effects on the proposed Algorithms (2.14)
and (2.15). Specifically, the algorithms with τ = {0.8, 0.9} can accelerate the convergence speed of the algorithms
with τ = 1. Therefore, our schemes have a faster convergence speed when a suitable τ is chosen.

(iii) Note that the operator M in Example 3.2 is pseudomonotone rather than monotone and that the Lipschitz constant
of the operator M is unknown. In these cases, the algorithms introduced in [34,35] for solving bilevel monotone
variational inequalities and the algorithms offered in [36,37] that require the prior knowledge of the Lipschitz
constant of the operator will be unavailable. On the other hand, as demonstrated in Example 3.3, the operator M is
11
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Fig. 3. Numerical results for Example 3.3.

uniformly continuous without satisfying Lipschitz continuity. Many algorithms in the literature (see, e.g., [13,16])
that solve the variational inequality problem involving a Lipschitz continuous operator will fail in this case.
However, the schemes stated in this paper can solve these problems well, and therefore they have a wider range
of applications.

(iv) It can be seen from Fig. 2 that the proposed Algorithm 2.2 requires more execution time in an infinite-dimensional
Hilbert space than the adaptive algorithm proposed in [38,39], because it uses an Armijo-type step size criterion
that may require multiple computations of the projection onto the feasible set in each iteration. However, the
proposed adaptive Algorithm 2.1 converges very fast due to the fact that it employs a new non-monotonic sequence
of stepsizes.

3.2. Application to optimal control problems

Next, we use the proposed algorithms to solve the (VIP) that appears in optimal control problems. We recommend
readers to refer to [23,48] for a detailed description of the problem. We compare the suggested Algorithm (2.14) and
Algorithm (2.15) with some strongly convergent algorithms in the literature. Two methods used to compare here are the
Algorithm (31) (shortly, TLDCR Alg. (31)) introduced by Thong et al. [38] and the Algorithm (3.39) (shortly, TLQ Alg. (3.39))
proposed by Tan et al. [39]. The parameters of all algorithms are set as follows.

• In the proposed Algorithms (2.14) and (2.15), we set N = 100, θ = 0.01, ϵn = 10−4/(n + 1)2, δ = 1.5,
αn = 10−4/(n + 1), τ = {0.8, 1}, and f (x) = 0.1x. Pick λ1 = 0.5, µ = 0.1, and ξn = 0.1/(n+1)1.1 for Algorithm (2.14).
Adopt σ = 2, ℓ = 0.5, and µ = 0.1 for Algorithm (2.15).

• In the TLDCR Alg. (31) [38], we choose N = 100, µ = 0.1, λ1 = 0.5, δ = 1.5, and αn = 10−4/(n + 1).
• In the TLQ Alg. (3.39) [39], we take N = 100, θ = 0.01, ϵn = 10−4/(n + 1)2, µ = 0.1, λ1 = 0.5, αn = 10−4/(n + 1),

and f (x) = 0.1x.
12
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Fig. 4. Numerical results of the proposed Algorithm (2.14) for Example 3.4.

The initial controls p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping criterion is either Dn = ∥pn+1 − pn∥ ≤

10−4 or the maximum number of iterations is reached 1000.

Example 3.4 (Rocket car [48]).

minimize 0.5
(
(x1(5))2 + (x2(5))2

)
,

subject to ẋ1(t) = x2(t) ,
ẋ2(t) = p(t), ∀t ∈ [0, 5] ,

x1(0) = 6, x2(0) = 1 ,

p(t) ∈ [−1, 1] .

he exact optimal control of Example 3.4 is

p∗
=

{
1 if t ∈ (3.517, 5] ;

−1 if t ∈ (0, 3.517] .

he approximate optimal control and the corresponding trajectories of the suggested Algorithm (2.14) (with τ = 0.8) are
lotted in Fig. 4.

xample 3.5 (see [49]).

minimize − x1(2) + (x2(2))2 ,

subject to ẋ1(t) = x2(t) ,
ẋ2(t) = p(t), ∀t ∈ [0, 2] ,

x1(0) = 0, x2(0) = 0 ,

p(t) ∈ [−1, 1] .

he exact optimal control of Example 3.5 is

p∗(t) =

{
1, if t ∈ [0, 1.2) ;

−1, if t ∈ (1.2, 2] .

ig. 5 shows the approximate optimal control and the corresponding trajectories of the proposed Algorithm (2.15) (with
= 0.8).

Finally, we compare the offered Algorithm (2.14) and Algorithm (2.15) with TLQ Alg. (3.39) and TLDCR Alg. (31) for
xamples 3.4 and 3.5. Fig. 6 presents the numerical behavior of the error estimate ∥pn+1−pn∥ with respect to the number
f iterations for all algorithms. Moreover, the number of terminated iterations and the execution time of all algorithms
re shown in Table 1.

emark 3.2. The suggested Algorithms (2.14) and (2.15) can be applied to solve optimal control problems. As shown in
ig. 6 and Table 1, the proposed Algorithms (2.14) and (2.15) outperform the existing methods in the literature [38,39].

oreover, when τ = 0.8, the proposed algorithms converge faster than the algorithms with τ = 1.0.
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Fig. 5. Numerical results of the proposed Algorithm (2.15) for Example 3.5.

Fig. 6. Error estimates of all algorithms for Examples 3.4 and 3.5.

Table 1
Numerical results of all algorithms for Examples 3.4 and 3.5.
Algorithms Example 3.4 Example 3.5

Iter. Time (s) Dn Iter. Time (s) Dn

Our Alg. (2.14), τ = 0.8 631 0.2453 9.94E−05 335 0.1137 9.89E−05
Our Alg. (2.14), τ = 1.0 676 0.2513 1.00E−04 371 0.1246 9.93E−05
Our Alg. (2.15), τ = 0.8 152 0.1473 6.02E−05 102 0.0434 9.93E−05
Our Alg. (2.15), τ = 1.0 218 0.1662 7.79E−05 115 0.0502 9.77E−05
TLQ Alg. (3.39) 1000 0.3389 5.69E−03 1000 0.3541 2.12E−03
TLDCR Alg. (31) 1000 0.3251 3.87E−03 1000 0.3241 7.48E−04

4. Conclusions

In this paper, we introduced two new modified subgradient extragradient methods to approximate the solution of
ilevel variational inequalities. The advantages of the proposed algorithms are that (1) only one projection onto the
easible set needs to be computed in each iteration; (2) the operator involved is pseudomonotone and Lipschitz continuous
or uniformly continuous); (3) the update of the step size does not require the prior knowledge of the Lipschitz constant
f the mapping; and (4) the embedding of the inertial terms accelerates the convergence speed of the algorithms. Strong
onvergence theorems of the presented algorithms are established in the framework of real Hilbert spaces. Finally, the
omputational efficiency of our iterative schemes compared to the known methods in the literature is verified by some
umerical tests and applications. The results obtained in this paper improved and extended many numerical methods in
he literature for solving variational inequalities and bilevel variational inequalities.
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