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Abstract
The goal of this paper is to construct several fast iterative algorithms for solving pseudomono-
tone variational inequalities in real Hilbert spaces.We introduce two extragradient algorithms
with inertial terms and give a strong convergence analysis under suitable assumptions. The
suggested algorithms need to compute the projection on the feasible set only once in each
iteration and can update the step size adaptively without any line search condition. Some
numerical experiments and applications are implemented to illustrate the advantages and
efficiency of the suggested algorithms over the related known methods.

Keywords Variational inequality problem · Subgradient extragradient method · Tseng’s
extragradient method · Inertial method · Pseudomonotone mapping

Mathematics Subject Classification 47J20 · 47J25 · 47J30 · 68W10 · 65K15

1 Introduction

The purpose of this paper is to construct several adaptive fast iterative algorithms
to solve the following variational inequality problem (shortly, VIP) in real Hilbert
spaces:

find x∗ ∈ C such that
〈
Ax∗, z − x∗〉 ≥ 0, ∀z ∈ C, (V I P)
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where C is a nonempty, closed, and convex subset in a real Hilbert space H associated
with inner product 〈·, ·〉 and induced norm ‖ · ‖, and A : H → H is a single-
valued nonlinear mapping. The solution set of the variational inequality problem (VIP)
is denoted by VI(C, A). For every point x ∈ H, there exists a unique nearest point
in C , denoted by PC (x), such that PC (x) := argmin{‖x − y‖, y ∈ C}. PC is called
the metric projection of H onto C . To begin with, let us recall the following concepts
in convex and nonlinear analysis. Recall that an operator A : H → H is said to
be:

(i) L-Lipschitz continuous with L > 0 if ‖Ax − Ay‖ ≤ L‖x − y‖, ∀x, y ∈ H (if L = 1,
then A is called nonexpansive);

(ii) β-strongly monotone if there exists β > 0 such that 〈Ax − Ay, x − y〉 ≥ β‖x −
y‖2, ∀x, y ∈ H;

(iii) monotone if 〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ H;
(iv) pseudomonotone if 〈Ax, y − x〉 ≥ 0 ⇒ 〈Ay, y − x〉 ≥ 0, ∀x, y ∈ H;
(v) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies

{Axn} converges weakly to Ax .

It is easy to see that the following relation: (ii)⇒(iii)⇒(iv). However, the opposite statements
do not hold in general.

Variational inequality problems provide an effective and critical tool for studying many
interesting problems that arise in different fields, such as physics, engineering, eco-
nomics, mathematical programming, and many more (see, e.g., Cuong et al. 2020; Tan
et al. 2020; An et al. 2021; Sahu et al. 2021). In the past few decades, many effec-
tive numerical methods were developed and investigated to solve variational inequalities
and related optimization problems; see, e.g., Thong and Hieu (2018), Gibali and Thong
(2020), Shehu et al. (2020), Shehu et al. (2019), Tan et al. (2020) and the references
therein. In this paper, we focus on the projection-type methods and their variants. In
particular, we recommend the reader to refer to the extragradient method introduced by
Korpelevich (Korpelevich 1976), the Tseng’s extragradient method (Tseng 2000), and the
subgradient extragradient method proposed by Censor et al. (2011). Notice that the extra-
gradient method in Korpelevich (1976) requires computing the projection on the feasible
set twice in each iteration, which affects its computational efficiency if the feasible set is
complex. In contrast, the two modified extragradient methods proposed in Tseng (2000),
Censor et al. (2011) only need to compute the projection on the feasible set once in
each iteration, which greatly improves the computational efficiency of the extragradient
method.

The extragradient-type methods for solving variational inequality problems introduced
in Shehu et al. (2020), Shehu et al. (2019), Korpelevich (1976), Tseng (2000), Censor
et al. (2011) all achieve weak convergence in infinite-dimensional Hilbert spaces. Since the
class of pseudomonotone operators contains the class of monotone operators and the pseu-
domonotone operators have a wider application in practice, recently some authors extended
the extragradient-type methods to solve pseudomonotone variational inequality problems
(see, e.g., Vuong 2018; Shehu et al. 2019). Under some suitable conditions, they obtained
weak convergence theorems for the algorithms presented in Vuong (2018), Shehu et al.
(2019). It is known that strong convergence is preferable to weak convergence in infinite-
dimensional spaces. When mapping A is pseudomonotone and L-Lipschitz continuous but
L is unknown, a natural problem is how to modify the extragradient-type algorithm to solve
the (VIP) and maintain the strong convergence of the algorithm used. Recently, Thong
and Vuong (Thong and Vuong 2019) introduced a modified Mann-type Tseng’s extragra-
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dient method to address pseudomonotone variational inequality problems in real Hilbert
spaces. They used an Armijo line search method to eliminate the dependence on the Lip-
schitz continuous modulus of the mapping A. Indeed, their algorithm has the following
form

⎧
⎪⎨

⎪⎩

yn = PC (xn − τn Axn) ,

zn = yn − τn (Ayn − Axn) ,

xn+1 = (1 − αn − βn) xn + βnzn, ∀n ≥ 1,

(MaTEGM)

where the mapping A : H → H is pseudomonotone, sequentially weakly continu-
ous on C , and uniformly continuous on bounded subsets of H, {αn} and {βn} are two
real sequences in (0, 1) such that {βn} ⊂ (a, 1 − αn) for some a > 0, limn→∞ αn =
0, and

∑∞
n=1 αn = ∞. The step size τn is updated by the Armijo line search cri-

terion (1.1). Set τn := γ �mn and mn is the smallest non-negative integer m satisfy-
ing

γ �m ‖Axn − Ayn‖ ≤ μ ‖xn − yn‖ , γ > 0, � ∈ (0, 1), μ ∈ (0, 1). (1.1)

They proved that the iterative sequence defined by Algorithm (MaTEGM) converges
strongly to an element p under the condition that VI(C, A) is nonempty, where p =
argmin{‖z‖ : z ∈ VI(C, A)}. Notice that the algorithm (MaTEGM) can work adap-
tively because it uses the Armijo criterion to automatically update the iteration step
sizes.

To accelerate the convergence rate of the algorithm used, Polyak (Polyak (1964)) consid-
ered the second-order dynamical system ẍ(t) + γ ẋ(t) + ∇ f (x(t)) = 0, where γ > 0, ∇ f
is the gradient of f , ẋ(t) and ẍ(t) denote the first and second derivatives of x at t , respec-
tively. This dynamic system is called the Heavy Ball with Friction (HBF). Next, consider the
discretization of this dynamic system (HBF), that is,

xn+1 − 2xn + xn−1

h2 + γ
xn − xn−1

h
+ ∇ f (xn) = 0, ∀n ≥ 1.

Through a direct calculation, we can obtain the following form

xn+1 = xn + β (xn − xn−1) − α∇ f (xn) , ∀n ≥ 1,

where β = 1 − γ h and α = h2. This can be thought of as the following two-step iterative
scheme

{
yn = xn + β (xn − xn−1) ,

xn+1 = yn − α∇ f (xn) , ∀n ≥ 1.

This iteration is now called the inertial extrapolation algorithm, and the term β (xn − xn−1)

is referred to as the extrapolation point. In recent years, the inertial technique, used as an
acceleration method, attracted extensive research and interest by scholars who constructed a
large number of fast iterative algorithms to address variational inequalities, split feasibility
problems, fixed point problems, and other optimization problems; see, e.g., Gibali and Hieu
(2019), Tan et al. (2021), Hieu and Gibali (2020), Shehu and Gibali (2021), Shehu and Iyiola
(2020), Sahu et al. (2021), Tan and Li (2020) and the references therein. These algorithms
demonstrate advantages in both theory and numerical experiments.

Note that the algorithm (MaTEGM) uses an Armijo line search criterion to eliminate the
Lipschitz constant thatmaybe unknown to the operator A. The use of theArmijo criterionmay
evaluatemultiple times the value of the operator A and the projection on the feasible set,which
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further affects the computational efficiency of such algorithms. Recently, many authors used
a new iteration step size rule in their algorithms to address variational inequality problems.
For example, Thong et al. (Thong et al. 2020) introduced a viscosity-type inertial subgradient
extragradient algorithm for solving pseudomonotone variational inequality problems in real
Hilbert spaces. Their algorithm is described as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − τn Awn) ,

Tn = {x ∈ H : 〈wn − τn Awn − yn, x − yn〉 ≤ 0} ,

zn = PTn (wn − τn Ayn) ,

xn+1 = αn f (zn) + (1 − αn) zn, ∀n ≥ 1.

(ViSEGM)

where the stepsize τn is generated by

τn+1 =
⎧
⎨

⎩
min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , τn

}
, if Awn − Ayn �= 0;

τn, otherwise.
(1.2)

The mapping A : H → H is pseudomonotone, L-Lipschitz continuous, and sequentially
weakly continuous on H, and the inertial parameter θn is updated by the following way:

θn =
⎧
⎨

⎩
min

{
εn

‖xn − xn−1‖ , θ

}
, if xn �= xn−1;

θ, otherwise.

Note that Algorithm (ViSEGM) applies a simple step size without any line search condition,
which is obtained at each iteration by a simple computation of previously known infor-
mation. Therefore, the algorithm (ViSEGM) can work without the prior knowledge of the
Lipschitz constant of the mapping A. They established a strong convergence theorem for
Algorithm (ViSEGM) under some mild conditions. It should be mentioned that the step size
criterion (1.2) used in Algorithm (ViSEGM) generates a non-increasing sequence of steps,
which may affect the execution efficiency of this algorithm. To overcome this drawback, a
modified version of the step size criterion (1.2), which generates a non-monotonic sequence
of step sizes, was recently introduced by Liu and Yang (Liu and Yang 2020).

Our concern now is the following: How to accelerate the subgradient extragradient
method and Tseng’s extragradient method for solving the variational inequality problem
without requiring the prior information of the Lipschitz constant of the operator and providing
strong convergence?

In this paper, we introduce two new inertial extragradient algorithms with non-monotone
step sizes for solving pseudomonotone variational inequality problems in real Hilbert spaces.
The suggested algorithms have several advantages over some known results in the literature.
More precisely, the contributions of this paper are stated as follows.

(1) Based on the subgradient extragradient method, the Tseng’s extragradient method, the
Mann-type method, and the inertial method, we present two new iterative schemes that
compute the projection on the feasible set only once in each iteration. This improves
the extragradient method introduced in Korpelevich (1976) that requires computing the
projection on the feasible set twice in each iteration. Moreover, the inertial effects are
also embedded in the proposed algorithms to accelerate their convergence.

(2) Our two algorithms interpolate a non-monotonic step size criterion introduced in Liu
and Yang (2020), which allows the suggested algorithms to work adaptively without
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the prior knowledge of the Lipschitz constant of the mapping. Moreover, this non-
monotonic step size criterion does not contain any line search process, which may
improve the computational efficiency of the method (MaTEGM) with the Armijo step
size criterion (1.1) introduced in Thong andVuong (2019) and the algorithm (ViSEGM)
with the non-increasing step size criterion (1.2) presented in Thong et al. (2020).

(3) The strong convergence of the iterative sequence generated by the proposed algorithms
is established in the case that the operator A is pseudomonotone. In other words, our
algorithms can solve pseudomonotone variational inequality problems in real Hilbert
spaces and can obtain strong convergence,which improves and generalizesmany results
in the literature (see, e.g., Thong and Hieu 2018; Shehu et al. 2020, 2019; Korpelevich
1976; Tseng 2000; Censor et al. 2011) for solving monotone variational inequality
problems. Our algorithms also improve many weakly convergent methods in the liter-
ature (see, e.g., (Gibali and Thong 2020; Korpelevich 1976; Tseng 2000; Censor et al.
2011; Vuong 2018)) for solving variational inequalities in real Hilbert spaces.

(4) Somenumerical examples occurring infinite- and infinite-dimensional spaces and appli-
cations in optimal control problems are given to support the theoretical results of this
paper.

The remainder of this paper is organized as follows. In Sect. 2, we recall some preliminary
results and lemmas that need to be used in the sequel. Section3 presents two adaptive inertial
extragradient algorithms and analyzes their convergence. Some numerical examples and
applications are provided in Sect. 4 to illustrate the numerical behavior of the proposed
algorithms and to compare them with some existing ones. Finally, a brief summary of this
paper is given in Sect. 5, the last section.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. The weak conver-
gence and strong convergence of {xn} to x are represented by xn⇀x and xn → x , respectively.
For each x, y, z ∈ H, we have the following inequalities:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (2.1)

and

‖αx + β y + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2 − αβ‖x − y‖2 − αγ ‖x − z‖2
− βγ ‖y − z‖2, where α, β, γ ∈ [0, 1] with α + β + γ = 1.

(2.2)

It is known that PC is nonexpansive and it has the following basic properties:

〈x − PC (x), y − PC (x)〉 ≤ 0, ∀x ∈ H, y ∈ C, (2.3)

and

‖PC (x) − PC (y)‖2 ≤ 〈PC (x) − PC (y), x − y〉 , ∀x, y ∈ H. (2.4)
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We need the following lemmas to prove the convergence of the suggested algorithms.

Lemma 2.1 (Cottle and Yao 1992) Let C be a nonempty, closed, and convex subset of a real
Hilbert space H and A : C → H be a continuous and pseudomonotone operator. Then,
x∗ ∈ C is a solution of VI(C, A) if and only if 〈Ax, x − x∗〉 ≥ 0, ∀x ∈ C.

Lemma 2.2 (Maingé 2008) Let {an} be a sequence of nonnegative real numbers such that
there exists a subsequence {an j } of {an} such that an j < an j +1 for all j ∈ N. Then, there
exists a nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following
properties are satisfied by all (sufficiently large) number k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that an < an+1.

Lemma 2.3 (Xu 2002) Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn) an + αnbn, ∀n > 1,

where {αn} ⊂ (0, 1),
∑∞

n=0 αn = ∞ and {bn} is a real sequence that satisfies
lim supn→∞ bn ≤ 0. Then, limn→∞ an = 0.

3 Main results

In this section, we introduce two new inertial extragradient algorithms with a new non-
monotonic step size rule for solving pseudomonotone variational inequality problems in real
Hilbert spaces and analyze their convergence. First, we assume that the proposed algorithms
satisfy the following conditions.

(C1) The feasible set C is a nonempty, closed, and convex subset of H, and the solution set
of (VIP) is nonempty, i.e., VI(C, A) �= ∅.

(C2) The mapping A : H → H is pseudomonotone and L-Lipschitz continuous on H, and
sequentially weakly continuous on C .

(C3) Let {ξn} and {εn} be two positive sequences such that∑∞
n=1 ξn < ∞ and limn→∞ εn

αn
=

0, where {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Let {βn} ⊂
(a, b) ⊂ (0, 1 − αn) for some a > 0 and b > 0.

3.1 TheMann-type inertial subgradient extragradient algorithm

Now, we introduce a Mann-type inertial subgradient extragradient algorithm to solve pseu-
domonotone variational inequality problems. The form of our Algorithm 3.1 is described as
follows.
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Algorithm 3.1 The Mann-type inertial subgradient extragradient algorithm
Initialization: Take θ > 0, τ1 > 0, μ ∈ (0, 1). Choose sequences {εn}, {αn}, and {ξn} to satisfy Condition
(C3). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate xn+1 as follows:
Step 1. Compute wn = xn + θn

(
xn − xn−1

)
, where

θn =
⎧
⎨

⎩
min

{
εn∥∥xn − xn−1

∥∥ , θ

}
, if xn �= xn−1;

θ, otherwise.
(3.1)

Step 2. Compute yn = PC (wn − τn Awn). If wn = yn , then stop and yn is a solution of (VIP). Otherwise,
go to Step 3.
Step 3. Compute zn = PTn (wn − τn Ayn), where the half space Tn is constructed as follows

Tn := {x ∈ H : 〈wn − τn Awn − yn , x − yn〉 ≤ 0} .

Step 4. Compute xn+1 = (1 − αn − βn) wn + βn zn , and update the step size τn+1 by

τn+1 =
⎧
⎨

⎩
min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , τn + ξn

}
, if Awn − Ayn �= 0;

τn + ξn , otherwise.
(3.2)

Set n := n + 1 and go to Step 1.

Remark 3.1 It follows from (3.1) that

lim
n→∞

θn

αn
‖xn − xn−1‖ = 0.

Indeed, we have θn ‖xn − xn−1‖ ≤ εn for all n ≥ 1, which together with limn→∞ εn
αn

= 0
implies that

lim
n→∞

θn

αn
‖xn − xn−1‖ ≤ lim

n→∞
εn

αn
= 0.

Applying similar statements as in the proof of (Liu and Yang 2020, Lemma 3.1), we can
obtain the following Lemma 3.1.

Lemma 3.1 Suppose that Conditions (C1) and (C2) hold. The sequence {τn} generated by
(3.2) is well defined and limn→∞ τn = τ and τ ∈ [

min
{

μ
L , τ1

}
, τ1 + �

]
, where � =∑∞

n=1 ξn.

Proof Since mapping M is L-Lipschitz continuous, one has

μ ‖wn − yn‖
‖Awn − Ayn‖ ≥ μ ‖wn − yn‖

L ‖wn − yn‖ = μ

L
, if Awn �= Ayn .

Thus, τn ≥ min
{

μ
L , τ1

}
. It follows from the definition of τn+1 that τn+1 ≤ τ1 + �. Conse-

quently, the sequence {τn} defined in (3.2) is bounded and τn ∈ [
min

{
μ
L , τ1

}
, τ1 + �

]
.

For simplicity, we define (τn+1 − τn)+ = max {0, τn+1 − τn} and (τn+1 − τn)− =
max {0,− (τn+1 − τn)}. By the definition of {τn}, one obtains

∑∞
n=1 (τn+1 − τn)+ ≤∑∞

n=1 ξn < +∞, which implies that the series
∑∞

n=1 (τn+1 − τn)+ is convergent. Next we
show the convergence of the series

∑∞
n=1 (τn+1 − τn)−. Suppose that

∑∞
n=1 (τn+1 − τn)− =

+∞. Note that τn+1 − τn = (τn+1 − τn)+ − (τn+1 − τn)−. Therefore,

τk+1 − τ1 =
k∑

n=1

(τn+1 − τn) =
k∑

n=1

(τn+1 − τn)+ −
k∑

n=1

(τn+1 − τn)− .
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Taking k → +∞ in the above equation, we obtain limk→+∞ τk → −∞. That is a contra-
diction. Hence, we deduce that limn→∞ τn = τ and τ ∈ [

min
{

μ
L , τ1

}
, τ1 + �

]
. ��

Remark 3.2 The idea of the step size τn defined in (3.2) is derived from Liu and Yang (2020).
It is worth noting that the step size τn generated in Algorithm 3.1 is allowed to increase from
iteration to iteration. Therefore, the use of this type of step size reduces the dependence on
the initial step size τ1. On the other hand, because of

∑∞
n=1 ξn < +∞, which implies that

limn→∞ ξn = 0. Consequently, the step size τn may not increase when n is large enough.
If ξn = 0, then the step size τn in Algorithm 3.1 is similar to the approaches in Shehu and
Iyiola (2020); Thong et al. (2020).

The following lemmas are quite helpful to analyze the convergence of our main results.

Lemma 3.2 Assume that Conditions (C1) and (C2) hold. Let {zn} be a sequence created by
Algorithm 3.1. Then, for all p ∈ VI(C, A),

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ

τn

τn+1

)
‖yn − wn‖2 −

(
1 − μ

τn

τn+1

)
‖zn − yn‖2 .

Proof Using the definition of {τn}, one obtains
‖Awn − Ayn‖ ≤ μ

τn+1
‖wn − yn‖ , ∀n ≥ 1. (3.3)

Indeed, if Awn = Ayn then inequality (3.3) holds. Otherwise, it implies from (3.2) that

τn+1 = min

{
μ ‖wn − yn‖
‖Awn − Ayn‖ , τn + ξn

}
≤ μ ‖wn − yn‖

‖Awn − Ayn‖ .

Consequently,

‖Awn − Ayn‖ ≤ μ

τn+1
‖wn − yn‖ .

Therefore, the inequality (3.3) holds in any case. Note that p ∈ Tn . By the definition of zn

and (2.4), one sees that

2 ‖zn − p‖2 = 2
∥∥PTn (wn − τn Ayn) − PTn (p)

∥∥2

≤ 2 〈zn − p, wn − τn Ayn − p〉
= ‖zn − p‖2 + ‖wn − τn Ayn − p‖2 − ‖zn − wn + τn Ayn‖2
= ‖zn − p‖2 + ‖wn − p‖2 + τ 2n ‖Ayn‖2 − 2 〈wn − p, τn Ayn〉

− ‖zn − wn‖2 − τ 2n ‖Ayn‖2 − 2 〈zn − wn, τn Ayn〉
= ‖zn − p‖2 + ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, τn Ayn〉 .

This implies that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2 〈zn − p, τn Ayn〉 . (3.4)

Since p is the solution of (VIP), we have 〈Ap, x − p〉 ≥ 0 for all x ∈ C . By the pseudomono-
tonicity of mapping A, we obtain 〈Ax, x − p〉 ≥ 0 for all x ∈ C . Taking x = yn ∈ C , one
infers that 〈Ayn, p − yn〉 ≤ 0. Consequently,

〈Ayn, p − zn〉 = 〈Ayn, p − yn〉 + 〈Ayn, yn − zn〉 ≤ 〈Ayn, yn − zn〉 . (3.5)
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Combining (3.4) and (3.5), one obtains

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 + 2τn 〈Ayn, yn − zn〉
= ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2

− 2 〈zn − yn, yn − wn〉 + 2τn 〈Ayn, yn − zn〉
= ‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2

+ 2 〈zn − yn, wn − τn Ayn − yn〉 .

(3.6)

From zn ∈ Tn , one has 〈wn − τn Awn − yn, zn − yn〉 ≤ 0. Thus,

2 〈wn − τn Ayn − yn, zn − yn〉
= 2 〈wn − τn Awn − yn, zn − yn〉 + 2τn 〈Awn − Ayn, zn − yn〉
≤ 2τn 〈Awn − Ayn, zn − yn〉 .

(3.7)

Next, we estimate 2τn 〈Awn − Ayn, zn − yn〉. In view of (3.3), we deduce

2τn 〈Awn − Ayn, zn − yn〉
≤ 2τn ‖Ayn − Awn‖ ‖yn − zn‖ ≤ 2μ

τn

τn+1
‖wn − yn‖ ‖yn − zn‖

≤ μ
τn

τn+1
‖wn − yn‖2 + μ

τn

τn+1
‖yn − zn‖2 .

(3.8)

Combining (3.6), (3.7), and (3.8), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ

τn

τn+1

)
‖yn − wn‖2 −

(
1 − μ

τn

τn+1

)
‖zn − yn‖2 .

This completes the proof. ��
Lemma 3.3 Assume that Conditions (C1) and (C2) hold. Let {wn} be a sequence formed by
Algorithm 3.1. If there exists a subsequence

{
wnk

}
of {wn} that converges weakly to z ∈ H

and limk→∞
∥∥wnk − ynk

∥∥ = 0, then z ∈ VI(C, A).

Proof From yn = PC (wn − τn Awn) and (2.3), we have
〈
wnk − τnk Awnk − ynk , x − ynk

〉 ≤ 0, ∀x ∈ C,

or equivalently
1

τnk

〈
wnk − ynk , x − ynk

〉 ≤ 〈
Awnk , x − ynk

〉
, ∀x ∈ C .

This implies that
1

τnk

〈
wnk − ynk , x − ynk

〉 + 〈
Awnk , ynk − wnk

〉 ≤ 〈
Awnk , x − wnk

〉
, ∀x ∈ C . (3.9)

We have {wnk } is bounded since {wnk } converges weakly to z ∈ H. From the Lipschitz
continuity of mapping A and ‖wnk − ynk ‖ → 0, we obtain {Awnk } and {ynk } are also
bounded. Since τnk ≥ min{τ1, μ

L }, one concludes from (3.9) that

lim inf
k→∞

〈
Awnk , x − wnk

〉 ≥ 0, ∀x ∈ C . (3.10)

Moreover, one sees that
〈
Aynk , x − ynk

〉 = 〈
Aynk − Awnk , x − wnk

〉 + 〈
Awnk , x − wnk

〉 + 〈
Aynk , wnk − ynk

〉
.

(3.11)
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According to the fact that A is Lipschitz continuous and limk→∞ ‖wnk − ynk ‖ = 0, it follows
that limk→∞ ‖Awnk − Aynk ‖ = 0. This together with (3.10) and (3.11) yields that

lim inf
k→∞

〈
Aynk , x − ynk

〉 ≥ 0.

Next, we show that z ∈ VI(C, A). We choose a positive numbers decreasing sequence
{ζk} such that ζk → 0 as k → ∞. For any k, we denote by Nk the smallest positive integer
such that

〈
Ayn j , x − yn j

〉 + ζk ≥ 0, ∀ j ≥ Nk . (3.12)

It is easy to see that the sequence {Nk} is increasing because of the sequence {ζk} is decreasing.
Furthermore, for any k, since {yNk } ⊂ C we can assume AyNk �= 0 (otherwise, yNk is a
solution) and set uNk = AyNk /‖AyNk ‖2. Then, we obtain

〈
AyNk , uNk

〉 = 1 for all k ≥ 1. It
follows from (3.12) that

〈
AyNk , x + ζkuNk − yNk

〉 ≥ 0, ∀k ≥ 1.

By the fact that A is pseudomonotone on H, we have
〈
A

(
x + ζkuNk

)
, x + ζkuNk − yNk

〉 ≥ 0.

This implies that
〈
Ax, x − yNk

〉 ≥ 〈
Ax − A

(
x + ζkuNk

)
, x + ζkuNk − yNk

〉 − ζk
〈
Ax, uNk

〉
. (3.13)

Now, we show that limk→∞ ζkuNk = 0. Indeed, we obtain yNk ⇀z since wnk ⇀z and
limk→∞ ‖wnk − ynk ‖ = 0. From {yn} ⊂ C , we have z ∈ C . Since A is sequentially weakly
continuous on C , {Aynk } converges weakly to Az. We can assume Az �= 0 (otherwise, z is a
solution). Using the fact that the normmapping is sequentially weakly lower semicontinuous,
we obtain 0 < ‖Az‖ ≤ lim infk→∞ ‖Aynk ‖. Since {yNk } ⊂ {ynk } and ζk → 0 as k → ∞,
we have

0 ≤ lim sup
k→∞

‖ζkuNk ‖ = lim sup
k→∞

(
ζk

‖Aynk ‖
)

≤ lim supk→∞ ζk

lim infk→∞ ‖Aynk ‖
= 0.

That is, limk→∞ ζkuNk = 0. Combining the Lipschitz continuity of mapping A, {yNk } and
{uNk } are bounded, and limk→∞ ζkuNk = 0, we can conclude from (3.13) that

lim inf
k→∞

〈
Ax, x − yNk

〉 ≥ 0.

Consequently, we have, for all x ∈ C ,

〈Ax, x − z〉 = lim
k→∞

〈
Ax, x − yNk

〉 = lim inf
k→∞

〈
Ax, x − yNk

〉 ≥ 0.

Thus we observe that z ∈ VI(C, A) by means of Lemma 2.1. This completes the proof. ��

Remark 3.3 It is not necessary to impose the sequential weak continuity of mapping A if A
is monotone (see (Denisov et al. 2015)).

Theorem 3.1 Assume that Conditions (C1)–(C3) hold. Then the sequence {xn} generated by
Algorithm 3.1 converges to p ∈ VI(C, A) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}.
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Proof According to Lemma 3.1, it follows that limn→∞
(
1 − μ τn

τn+1

) = 1 − μ > 0. Hence,
there exists n0 ∈ N such that

1 − μ
τn

τn+1
> 0, ∀n ≥ n0. (3.14)

Combining Lemma 3.2 and (3.14), we obtain

‖zn − p‖ ≤ ‖wn − p‖ , ∀n ≥ n0. (3.15)

We divided the proof into four claims.
Claim 1. The sequences {xn}, {wn}, and {zn} are bounded. By the definition of xn+1, one
has

‖xn+1 − p‖ = ‖(1 − αn − βn)wn + βnzn − p‖
= ‖(1 − αn − βn) (wn − p) + βn (zn − p) − αn p‖
≤ ‖(1 − αn − βn) (wn − p) + βn (zn − p)‖ + αn‖p‖.

(3.16)

It follows from (3.15) that

‖(1 − αn − βn) (wn − p) + βn (zn − p)‖2
= (1 − αn − βn)2 ‖wn − p‖2 + 2 (1 − αn − βn) βn 〈wn − p, zn − p〉 + β2

n ‖zn − p‖2
≤ (1 − αn − βn)2 ‖wn − p‖2 + 2 (1 − αn − βn) βn ‖zn − p‖ ‖wn − p‖ + β2

n ‖zn − p‖2
≤ (1 − αn − βn)2 ‖wn − p‖2 + 2 (1 − αn − βn) βn ‖wn − p‖2 + β2

n ‖wn − p‖2
= (1 − αn)2 ‖wn − p‖2 , ∀n ≥ n0,

which yields

‖(1 − αn − βn) (wn − p) + βn (zn − p)‖ ≤ (1 − αn) ‖wn − p‖ , ∀n ≥ n0. (3.17)

Using the definition of wn , we can write

‖wn − p‖ = ‖xn + θn (xn − xn−1) − p‖
≤ ‖xn − p‖ + αn · θn

αn
‖xn − xn−1‖ .

(3.18)

By Remark 3.1, we have θn
αn

‖xn − xn−1‖ → 0. Thus, there exists a constant M1 > 0 such
that

θn

αn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1. (3.19)

From (3.15), (3.18) and (3.19), we find that

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + αn M1, ∀n ≥ n0. (3.20)

Combining (3.16), (3.17) and (3.20), we deduce that

‖xn+1 − p‖ ≤ (1 − αn) ‖wn − p‖ + αn‖p‖
≤ (1 − αn) ‖xn − p‖ + αn(‖p‖ + M1)

≤ max {‖xn − p‖ , ‖p‖ + M1} , ∀n ≥ n0

≤ · · · ≤ max
{∥∥xn0 − p

∥∥ , ‖p‖ + M1
}
.
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That is, the sequence {xn} is bounded. By combining αn ⊂ (0, 1), M1 is a bounded constant,
the boundedness of {xn}, and relation (3.20), we can obtain that the sequences {zn} and {wn}
are also bounded.
Claim 2.

βn

(
1 − μ

τn

τn+1

)
‖wn − yn‖2 + βn

(
1 − μ

τn

τn+1

)
‖yn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2)

for some M2 > 0. Using the definition of xn+1 and (2.2), one obtains

‖xn+1 − p‖2 = ‖(1 − αn − βn)wn + βnzn − p‖2
= ‖(1 − αn − βn) (wn − p) + βn (zn − p) + αn(−p)‖2
= (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2 − αnβn ‖zn‖2

− βn (1 − αn − βn) ‖wn − zn‖2 − αn (1 − αn − βn) ‖wn‖2
≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2.

(3.21)

In view of (3.20), one sees that

‖wn − p‖2 ≤ (‖xn − p‖ + αn M1)
2

= ‖xn − p‖2 + αn
(
2M1 ‖xn − p‖ + αn M2

1

)

≤ ‖xn − p‖2 + αn M2

(3.22)

for some M2 > 0. Combining Lemma 3.2, (3.21) and (3.22), we obtain

‖xn+1 − p‖2≤(1 − αn − βn) ‖wn − p‖2+βn ‖wn − p‖2 − βn

(
1−μ

τn

τn+1

)
‖wn − yn‖2

− βn

(
1 − μ

τn

τn+1

)
‖yn − zn‖2 + αn‖p‖2

≤ ‖xn − p‖2 − βn

(
1 − μ

τn

τn+1

)
‖wn − yn‖2

− βn

(
1 − μ

τn

τn+1

)
‖yn − zn‖2 + αn(‖p‖2 + M2).

Therefore, we deduce that

βn

(
1 − μ

τn

τn+1

)
‖wn − yn‖2 + βn

(
1 − μ

τn

τn+1

)
‖yn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2).

Claim 3.

‖xn+1 − p‖2 ≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
, ∀n ≥ n0

for some M > 0. Indeed, by the definition of wn , one obtains

‖wn − p‖2 = ‖xn + θn (xn − xn−1) − p‖2
= ‖xn − p‖2 + 2θn 〈xn − p, xn − xn−1〉 + θ2n ‖xn − xn−1‖2
≤ ‖xn − p‖2 + 3Mθn ‖xn − xn−1‖ ,

(3.23)
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where M := supn∈N {‖xn − p‖ , θ ‖xn − xn−1‖} > 0. Setting tn = (1 − βn) wn +βnzn , one
has

‖tn − wn‖ = βn ‖wn − zn‖ . (3.24)

It follows from (3.20) that

‖tn − p‖ = ‖(1 − βn) (wn − p) + βn (zn − p)‖
≤ (1 − βn) ‖wn − p‖ + βn ‖wn − p‖
= ‖wn − p‖ , ∀n ≥ n0.

(3.25)

From (2.1), (3.23), (3.24), and (3.25), we obtain

‖xn+1 − p‖2 = ‖(1 − βn)wn + βnzn − αnwn − p‖2
= ‖(1 − αn) (tn − p) − αn (wn − tn) − αn p‖2
≤ (1 − αn)2 ‖tn − p‖2 − 2αn 〈wn − tn + p, xn+1 − p〉
= (1 − αn)2 ‖tn − p‖2 + 2αn 〈wn − tn, p − xn+1〉 + 2αn 〈p, p − xn+1〉
≤ (1 − αn) ‖tn − p‖2 + 2αn ‖wn − tn‖ ‖xn+1 − p‖ + 2αn 〈p, p − xn+1〉
≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
,∀n ≥ n0.

Claim 4. We prove that the sequence {‖xn − p‖2} converges to zero by considering two
possible cases on the sequence {‖xn − p‖2}.

Case 1. There exists an N ∈ N, such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for all n ≥ N .
This implies that limn→∞ ‖xn − p‖2 exists. Using limn→∞

(
1 − μ τn

τn+1

) = 1 − μ > 0 and
Condition (C3), it implies from Claim 2 that

lim
n→∞ ‖wn − yn‖ = 0 and lim

n→∞ ‖yn − zn‖ = 0.

This further yields limn→∞ ‖zn − wn‖ = 0, which together with the boundedness of {xn}
concludes that

lim
n→∞ βn ‖wn − zn‖ ‖xn+1 − p‖ = 0.

According to the definition of wn and Remark 3.1, one obtains

‖xn − wn‖ = θn ‖xn − xn−1‖ = αn · θn

αn
‖xn − xn−1‖ → 0 as n → ∞.

On the other hand, one sees that

‖xn+1 − wn‖ ≤ αn ‖wn‖ + βn ‖zn − wn‖ → 0 as n → ∞.

This together with limn→∞ ‖xn − wn‖ = 0 implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xn j } of {xn}, such that xn j ⇀q and

lim sup
n→∞

〈p, p − xn〉 = lim
j→∞

〈
p, p − xn j

〉 = 〈p, p − q〉.
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It follows fromLemma 3.1 that limn→∞ τn = τ > 0.We obtainwn j ⇀q since ‖xn − wn‖ →
0, which together with limn→∞ τn = τ > 0 and ‖wn − yn‖ → 0, in the light of Lemma 3.3,
yields that q ∈ VI(C, A). Since q ∈ VI(C, A) and ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}, that is
p = PVI(C,A)0, we deduce that

lim sup
n→∞

〈p, p − xn〉 = 〈p, p − q〉 ≤ 0.

From ‖xn+1 − xn‖ → 0, we obtain

lim sup
n→∞

〈p, p − xn+1〉 ≤ 0.

Therefore, using Claim 3 and Remark 3.1 in Lemma 2.3, we conclude that xn → p.
Case 2. There exists a subsequence {‖xn j − p‖2} of {‖xn − p‖2} such that

‖xn j − p‖2 < ‖xn j +1 − p‖2, ∀ j ∈ N.

In this case, it follows from Lemma 2.2 that there exists a nondecreasing sequence {mk} of
N such that limk→∞ mk = ∞ and the following inequalities hold for all k ∈ N:

∥∥xmk − p
∥∥2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2.

By Claim 2, we have

βmk

(
1 − μ

τmk

τmk+1

) ∥∥wmk − ymk

∥∥2 + βmk

(
1 − μ

τmk

τmk+1

) ∥∥ymk − zmk

∥∥2

≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + αmk (‖p‖2 + M2)

≤ αmk (‖p‖2 + M2).

By means of Condition (C3), we deduce

lim
k→∞

∥∥wmk − ymk

∥∥ = 0 and lim
k→∞

∥∥ymk − zmk

∥∥ = 0.

As proved in the first case, we obtain ‖xmk+1− xmk ‖ → 0 and lim supk→∞〈p, p− xmk+1〉 ≤
0. From Claim 3 and ‖xmk − p‖2 ≤ ‖xmk+1 − p‖2, we have

‖xmk+1 − p‖2 ≤ (
1 − αmk

) ‖xmk+1 − p‖2 + αmk

[
2βmk

∥∥wmk − zmk

∥∥ ‖xmk+1 − p‖

+ 2〈p, p − xmk+1〉 + 3Mθmk

αmk

‖xmk − xmk−1‖
]
.

This implies that

‖xk − p‖2≤2βmk

∥∥wmk − zmk

∥∥ ‖xmk+1− p‖ + 2
〈
p, p − xmk+1

〉 + 3Mθmk

αmk

‖xmk − xmk−1‖.

Therefore, we obtain lim supk→∞ ‖xk − p‖ ≤ 0, that is, xk → p. The proof is completed. ��

3.2 TheMann-type inertial Tseng’s extragradient algorithm

In this subsection, we present a Mann-type inertial Tseng’s extragradient algorithm that
contains only one projection step in each iteration for solving pseudomonotone variational
inequalities in real Hilbert spaces. The second iterative scheme proposed in this paper is
shown in Algorithm 3.2 below.
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Algorithm 3.2 The Mann-type inertial Tseng’s extragradient algorithm
Initialization: Take θ > 0, τ1 > 0, μ ∈ (0, 1). Choose sequences {εn}, {αn}, and {ξn} to satisfy Condition
(C3). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate xn+1 as follows:
Step 1. Compute wn = xn + θn

(
xn − xn−1

)
, where the inertial parameter θn is updated by (3.1).

Step 2. Compute yn = PC (wn − τn Awn). If wn = yn , then stop and yn is a solution of (VIP). Otherwise,
go to Step 3.
Step 3. Compute zn = yn − τn (Ayn − Awn).
Step 4. Compute xn+1 = (1 − αn − βn) wn + βn zn , and update the step size τn+1 through (3.2).
Set n := n + 1 and go to Step 1.

Lemma 3.4 Assume that Conditions (C1) and (C2) hold. Let {zn} be a sequence formed by
Algorithm 3.2. Then,

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 , ∀p ∈ VI(C, A)

and

‖zn − yn‖ ≤ μ
τn

τn+1
‖wn − yn‖ .

Proof It follows from (3.2) that

‖Awn − Ayn‖ ≤ μ

τn+1
‖wn − yn‖ , ∀n ≥ 1. (3.26)

By the definition of zn , one sees that

‖zn − p‖2 = ‖yn − τn (Ayn − Awn) − p‖2
= ‖yn − p‖2 + τ 2n ‖Ayn − Awn‖2 − 2τn 〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 + ‖yn − wn‖2 + 2 〈yn − wn, wn − p〉

+ τ 2n ‖Ayn − Awn‖2 − 2τn 〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 + ‖yn − wn‖2 − 2 〈yn − wn, yn − wn〉 + 2 〈yn − wn, yn − p〉

+ τ 2n ‖Ayn − Awn‖2 − 2τn 〈yn − p, Ayn − Awn〉
= ‖wn − p‖2 − ‖yn − wn‖2 + 2 〈yn − wn, yn − p〉

+ τ 2n ‖Ayn − Awn‖2 − 2τn 〈yn − p, Ayn − Awn〉 .

(3.27)

Using yn = PC (wn − τn Awn) and (2.3), we obtain

〈yn − wn + τn Awn, yn − p〉 ≤ 0,

or equivalently

〈yn − wn, yn − p〉 ≤ −τn 〈Awn, yn − p〉 . (3.28)
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Combining (3.26), (3.27) and (3.28), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖yn − wn‖2 − 2τn 〈Awn, yn − p〉

+ μ2 τ 2n

τ 2n+1

‖wn − yn‖2 − 2τn 〈yn − p, Ayn − Awn〉

≤ ‖wn − p‖2 −
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 − 2τn 〈yn − p, Ayn〉 .

(3.29)

Since p ∈ VI(C, A) and yn ∈ C , we deduce that 〈Ap, yn − p〉 ≥ 0. This together with the
pseudomonotonicity of mapping A, we arrive at

〈Ayn, yn − p〉 ≥ 0. (3.30)

Combining (3.29) and (3.30), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 −
(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 .

From the definition of zn and (3.3), we have

‖zn − yn‖ ≤ μ
τn

τn+1
‖wn − yn‖ .

This completes the proof. ��
Theorem 3.2 Assume that Conditions (C1)–(C3) hold. Then the sequence {xn} generated by
Algorithm 3.2 converges to p ∈ VI(C, A) in norm, where ‖p‖ = min{‖z‖ : z ∈ VI(C, A)}.
Proof The proof is similar to that of Theorem 3.1. We omit some details of the proof to avoid

redundancy. Since limn→∞
(
1 − μ2 τ 2n

τ 2n+1

) = 1 − μ2 > 0, there exists n1 ∈ N such that

1 − μ2 τ 2n

τ 2n+1

> 0, ∀n ≥ n1. (3.31)

Combining Lemma 3.4 and (3.31), we deduce

‖zn − p‖ ≤ ‖wn − p‖ , ∀n ≥ n1. (3.32)

Claim 1. The sequences {xn}, {wn}, and {zn} are bounded. This conclusion can be obtained
by applying the same statements as stated in Claim 1 of Theorem 3.1.
Claim 2.

βn

(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 + βn (1 − αn − βn) ‖wn − zn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(‖p‖2 + M2).

From the definition of xn+1 and (2.2), we have

‖xn+1 − p‖2 = ‖(1 − αn − βn) wn + βnzn − p‖2
≤ (1 − αn − βn) ‖wn − p‖2 + βn ‖zn − p‖2 + αn‖p‖2

− βn (1 − αn − βn) ‖wn − zn‖2 .

(3.33)
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Combining Lemma 3.4, (3.22) and (3.33), we obtain

‖xn+1 − p‖2≤(1−αn −βn) ‖wn − p‖2 + βn ‖wn − p‖2 − βn

(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2

+ αn‖p‖2 − βn (1 − αn − βn) ‖wn − zn‖2

≤ ‖xn − p‖2 − βn

(
1 − μ2 τ 2n

τ 2n+1

)
‖wn − yn‖2 + αn(‖p‖2 + M2)

− βn (1 − αn − βn) ‖wn − zn‖2 .

The desired result can be obtained by simple deformation.
Claim 3.

‖xn+1 − p‖2 ≤ (1 − αn) ‖xn − p‖2 + αn

[
2βn ‖wn − zn‖ ‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Mθn

αn
‖xn − xn−1‖

]
, ∀n ≥ n1.

The desired result can be achieved using the same arguments as in theClaim3 of Theorem3.1.
Claim 4. The sequence {‖xn − p‖2} converges to zero. The proof is similar to the Claim 4
of Theorem 3.1. We leave it for the reader to verify. ��
Remark 3.4 If the inertial parameter θn = 0 in the proposed Algorithms 3.1 and 3.2, we
can obtain two new Mann-type inertial extragradient algorithms with non-monotone step
sizes to address the pseudomonotone (VIP) in real Hilbert spaces. These results improve and
summarize some recent algorithms in the literature (see, e.g., Thong and Vuong (2019); Hieu
et al. (2020); Thong and Hieu (2019); Thong et al. (2019)).

4 Numerical examples and applications

In this section, we provide some numerical examples to show the behavior of the pro-
posed Algorithm 3.1 (shortly, MiSEGM) and Algorithm 3.2 (shortly, MiTEGM), and also to
compare them with the following strongly convergent algorithms: the modified Mann-type
Tseng’s extragradient method (MaTEGM) introduced in Thong and Vuong (2019) and the
viscosity-type inertial subgradient extragradient algorithm (ViSEGM) presented in Thong
et al. (2020). It is worth noting that these algorithms do not require the prior knowledge of
the Lipschitz constant of the operator. All the programs are implemented in MATLAB 2018a
on a personal computer.

4.1 Theoretical examples

Example 4.1 This example is taken from Harker and Pang (1990) and has been considered
by many authors for numerical experiments (see, e.g., Thong and Hieu (2018); Gibali and
Thong (2020); Shehu et al. (2020, 2019)). Choose a linear operator A : Rm → R

m as follows
A(x) = Mx + q , where q ∈ R

m and M = N N
T + U + D, and N is a m × m matrix, U is a

m × m skew-symmetric matrix, and D is a m × m diagonal matrix with its diagonal entries
being nonnegative (hence M is positive symmetric definite). The feasible set C is given by
C = {x ∈ R

m : −2 ≤ xi ≤ 5, i = 1, . . . , m}. It is clear that A is monotone and Lipschitz
continuous with constant L = ‖M‖. In this experiment, all entries of N , U are generated
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(a) (b)

Fig. 1 The behavior of our algorithms with different θ in Example 4.1 (m = 20)

(a) (b)

Fig. 2 The behavior of our algorithms with different μ in Example 4.1 (m = 20)

randomly and uniformly in [−2, 2], D is generated randomly in [0, 2] and q = 0. It is easy to
see that the solution of the problem (VIP) in this case is x∗ = {0}. The initial values x0 = x1
are randomly generated by rand(m,1) in MATLAB. We use Dn = ‖xn − x∗‖ to measure the
error of the nth iteration step and use the maximum number of iterations 500 as a common
stopping criterion for all algorithms. Next, we test the performance of the proposed methods
under different parameters. Specifically, we consider the following cases.

Case1:Compare the inertial parameter θ . Takeμ=0.8, τ1=1, θ ={0.1, 0.3, 0.5, 0.7, 1.0},
εn = 1/(n +1)2, αn = 1/(n +1), βn = 0.9(1−αn) and ξn = 1/(n +1)1.1 for the suggested
Algorithms 3.1 and 3.2. The numerical performance of ourmethodswith different parameters
θ is stated in Fig. 1.

Case 2: Compare the parameter μ. Take μ = {0.1, 0.3, 0.5, 0.7, 0.8}, τ1 = 1, θ = 0.7,
εn = 1/(n + 1)2, αn = 1/(n + 1), βn = 0.9(1− αn) and ξn = 1/(n + 1)1.1 for the proposed
Algorithms 3.1 and 3.2. The numerical behavior of our methods with different parameters θ

is given in Fig. 2.
Case 3: Compare the parameter ξn . Take μ = 0.8, τ1 = 1, θ = 0.7, εn = 1/(n + 1)2,

αn = 1/(n+1) and βn = 0.9(1−αn) for the proposedAlgorithms 3.1 and 3.2. The numerical
results of our methods with different parameters ξn are reported in Table 1.
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Table 1 Numerical results of our algorithms with different ξn in Example 4.1 (m = 20)

Algorithms ξn = 0 ξn = 1/(n + 1)1.1 ξn = 1/(n + 1)3

Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Alg. 3.1 4.30E-07 0.0434 2.72E-09 0.0340 5.97E-08 0.0297

Our Alg. 3.2 5.72E-08 0.0333 3.31E-10 0.0332 1.28E-08 0.0292

Table 2 Numerical results of our algorithms with different αn in Example 4.1 (m = 20)

Algorithms Our Algorithm 3.1 Our Algorithm 3.2

Dn CPU (s) Dn CPU (s)

αn = 1/(n + 1)0.2 1.26E-88 0.0440 2.08E-88 0.0338

αn = 1/(n + 1)0.4 1.53E-51 0.0341 5.09E-52 0.0311

αn = 1/(n + 1)0.6 1.98E-34 0.0321 8.47E-35 0.0404

αn = 1/(n + 1)0.8 8.35E-21 0.0363 1.93E-22 0.0337

αn = 1/(n + 1)1.0 8.62E-11 0.0314 5.24E-12 0.0305

Case 4: Compare the parameter αn . Take μ = 0.8, τ1 = 1, θ = 0.7, εn = 1/(n + 1)2,
βn = 0.9(1 − αn) and ξn = 1/(n + 1)1.1 for the suggested Algorithms 3.1 and 3.2. The
numerical results of our methods with different parameters αn are shown in Table 2.

Next, we compare the proposed algorithmswith Algorithm (MaTEGM)Thong andVuong
(2019) and Algorithm (ViSEGM) Thong et al. (2020). According to the parameters selection
of the algorithms presented in the literature (Thong and Vuong 2019; Thong et al. 2020) and
the previous analysis of the parameters of our algorithms, the parameters of all algorithms
in Example 4.1 are set as follows.

1. Take μ = 0.8, τ1 = 1, θ = 0.7, εn = 1/(n + 1)2, αn = 1/(n + 1)0.2, βn = 0.9(1 − αn)

and ξn = 1/(n + 1)1.1 for the suggested Algorithms 3.1 and 3.2.
2. Pick θ = 1, τ1 = 1, μ = 0.9, εn = 1/(n + 1)2, αn = 1/(n + 1) and f (x) = 0.1x for

the Algorithm (ViSEGM).
3. Choose γ = 0.1, � = 0.5, μ = 0.8, αn = 1/(

√
n + 2), βn = 0.5(1 − αn) for the

Algorithm (MaTEGM).

Fig. 3 shows that our algorithms may perform better in four different dimensions.
The following problem was used by many scholars to test the computational performance

of their proposed algorithms for solving pseudomonotone variational inequality problems in
infinite-dimensional Hilbert spaces (see, e.g., Hieu et al. (2021); Tan et al. (2021)).

Example 4.2 We consider an example that appears in the infinite-dimensional Hilbert space
H = L2[0, 1] with inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H

and induced norm

‖x‖ =
(∫ 1

0
|x(t)|2dt

)1/2

, ∀x ∈ H.
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(a)

(c) (d)

(b)

Fig. 3 Numerical results of all algorithms for Example 4.1

Let r , R be two positive real numbers such that R/(k + 1) < r/k < r < R for some k > 1.
Let the feasible set be given by C = {x ∈ H : ‖x‖ ≤ r} and the operator A : H → H be
defined as follows

A(x) = (R − ‖x‖)x, ∀x ∈ H.

Note that A is not monotone. Indeed, take a particular pair (x̃, kx̃), we choose x̃ ∈ C such
that R/(k + 1) < ‖x̃‖ < r/k, one can sees that kx̃ ∈ C . By a straightforward computation,
we have

〈A(x̃) − A(ỹ), x̃ − ỹ〉 = (1 − k)2‖x̃‖2(R − (1 + k)‖x̃‖) < 0.

Hence, the operator A is not monotone on C . Next we show that A is pseudomonotone.
Indeed, if 〈A(x), y − x〉 ≥ 0 for all x, y ∈ C , that is, 〈(R − ‖x‖)x, y − x〉 ≥ 0. Since
‖x‖ < R, we have 〈x, y − x〉 ≥ 0. Therefore,

〈A(y), y − x〉 = 〈(R − ‖y‖)y, y − x〉
≥ (R − ‖y‖)(〈y, y − x〉 − 〈x, y − x〉)
= (R − ‖y‖)‖y − x‖2 ≥ 0.

For the experiment, we choose R = 1.5, r = 1, k = 1.1. The solution of the problem (VIP)
with A and C given above is x∗(t) = 0. The parameters of all algorithms are set the same
as in Example 4.1 and the maximum number of iterations 50 is used as a common stopping
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(a)

(c)

(b)

(d)

Fig. 4 Numerical results of all algorithms for Example 4.2

criterion. Figure 4 shows the behaviors of Dn = ‖xn(t) − x∗(t)‖ generated by all algorithms
with four starting points x0 = x1. It can be seen from Fig. 4 that the proposed algorithms
may perform better.

Remark 4.1 Note that the algorithms obtained in this paper can automatically update the step
size through a simple calculation, which makes our algorithms work well without the prior
information of the Lipschitz constant of the mapping.

4.2 Application to optimal control problems

In this subsection, we use the proposed Algorithms 3.1 and 3.2 to solve the (VIP) that
appears in optimal control problems. We recommend the reader to refer to Preininger and
Vuong (2018); Vuong and Shehu (2019) for the detailed description of the problem.

Example 4.3 (Control of a harmonic oscillator, see Pietrus et al. (2018))

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t), ∀t ∈ [0, 3π],
x(0) = 0,

u(t) ∈ [−1, 1].
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(a) (b)

Fig. 5 Numerical results of the proposed Algorithm 3.1 for Example 4.3

The exact optimal control of Example 4.3 is known:

u∗(t) =
{

1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2);
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

We compare the proposed algorithms with Algorithm (MaTEGM) Thong and Vuong (2019)
and Algorithm (ViSEGM) Thong et al. (2020). Based on the choice of parameters of the
methods suggested in Thong and Vuong (2019); Thong et al. (2020) and the analysis of the
parameters of our algorithms in Example 4.1, the parameters of all algorithms in Example 4.3
are set as follows.

1. Take μ = 0.8, τ1 = 1, θ = 0.7, εn = 10−4/(n + 1)2, αn = 1/(n + 1), βn = 0.9(1−αn)

and ξn = 1/(n + 1)1.1 for the suggested Algorithms 3.1 and 3.2.
2. Pick θ = 1, τ1 = 1,μ = 0.9, εn = 10−4/(n +1)2, αn = 10−4/(n +1) and f (x) = 0.1x

for the Algorithm (ViSEGM).
3. Choose γ = 0.1, � = 0.5, μ = 0.8, αn = 10−4/(

√
n + 2), βn = 0.5(1 − αn) for the

Algorithm (MaTEGM).

The initial controls u0(t) = u1(t) are randomly generated in [−1, 1], and the stopping
criterion is Dn = ‖un+1 − un‖ ≤ 10−4. Figure5 shows the approximate optimal control and
the corresponding trajectories of the proposed Algorithm 3.1.

We now consider an example in which the terminal function is not linear.

Example 4.4 (Rocket car (Preininger and Vuong 2018))

minimize
1

2

(
(x1(5))

2 + (x2(5))
2) ,

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀t ∈ [0, 5],
x1(0) = 6, x2(0) = 1,

u(t) ∈ [−1, 1].
The exact optimal control of Example 4.4 is

u∗(t) =
{

1 if t ∈ (3.517, 5];
−1 if t ∈ (0, 3.517].

123



Inertial extragradient algorithms... Page 23 of 25   121 

(a) (b)

Fig. 6 Numerical results of the proposed Algorithm 3.2 for Example 4.4

(a) (b)

Fig. 7 Numerical behaviors of all algorithms for Examples 4.3 and 4.4

Table 3 Numerical results of all algorithms for Examples 4.3 and 4.4

Algorithms Example 4.3 Example 4.4

Iter CPU (s) Dn Iter CPU (s) Dn

MiSEGM 22 0.0351 6.4873E-05 180 0.0603 9.9526E-05

MiTEGM 22 0.0205 6.4873E-05 2029 0.6776 9.9787E-05

ViSEGM 60 0.0490 1.4997E-05 2162 0.7564 9.9912E-05

MaTEGM 1189 0.4610 7.2263E-05 2889 1.8460 9.8281E-05

In this example, the parameters of all algorithms are set the same as in Example 4.3.
The approximate optimal control and the corresponding trajectories of the suggested Algo-
rithm 3.2 are plotted in Fig. 6.

Finally, the numerical performances of the proposedmethods with Algorithm (MaTEGM)
Thong and Vuong (2019) and Algorithm (ViSEGM) Thong et al. (2020) in Examples 4.3 and
4.4 are shown in Fig. 7 and Table 3. As in the previous numerical experiments, the proposed
algorithms may perform better.
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5 Conclusions

In this paper, we proposed two self-adaptive inertial extragradient algorithms to address
the variational inequality problem involving L-Lipschitz continuous and pseudomonotone
operator but L is unknown. The algorithms are constructed around the inertial method, the
Mann-type method, the subgradient extragradient method, and the Tseng’s extragradient
method. Strong convergence theorems of the proposed methods are established without the
prior knowledge of the Lipschitz constant of the operator. Numerical examples show that the
proposed algorithms outperform some other relevant methods in the literature. The iterative
schemes obtained in this paper improved and extended some previously known results in the
field.
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