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algorithm is described as follows:

(1.1)

{
yn = PC (xn − λAxn) ,

xn+1 = PC (xn − λAyn) , ∀n ≥ 0,

where λ ∈ (0, 1/L). The algorithm defined by (1.1) converges to an element of
VI(C,A) provided that VI(C,A) is nonempty. Note that Algorithm (1.1) needs
to calculate two projections from H onto the feasibility set C. If C is a general
convex-closed set, this might require a prohibitive amount of computation time. To
overcome this computational drawback, many authors have modified this method
in various ways. Next, we introduce two modifications of the EGM.

The first approach is the Tseng’s extragradient method (also known as the
forward-backward-forward method) proposed by Tseng [32]. The advantage of this
method is that the projection on the feasible set only needs to be calculated once
in each iteration. More precisely, the method is stated as follows:

(1.2)

{
yn = PC (xn − λAxn) ,

xn+1 = yn − λ (Ayn −Axn) , ∀n ≥ 0,

where mapping A is L-Lipschitz continuous monotone and λ ∈ (0, 1/L). In 2011,
Censor, Gibali and Reich [5] modified the extragradient algorithm by replacing the
second projection onto the convex and closed subset with the one onto a subgra-
dient half-space. The algorithm is now called subgradient extragradient algorithm
(SEGM) and its form is expressed as follows:

(1.3)


yn = PC (xn − λAxn) ,

Tn = {x ∈ H | ⟨xn − λAxn − yn, x− yn⟩ ≤ 0} ,

xn+1 = PTn (xn − λAyn) , ∀n ≥ 0 ,

where mapping A is L-Lipschitz continuous monotone and λ ∈ (0, 1/L). Note that
the projection on the half-space Tn can be calculated with a clear formula so that
SEGM only needs to evaluate the projection on the feasible set C once in each itera-
tion. We point out here that Algorithm (1.2) and Algorithm (1.3) only obtain weak
convergence in an infinite-dimensional Hilbert space. Some practical problems that
occur in the fields of image processing, quantum mechanics, medical imaging and
machine learning need to be modeled and analyzed in infinite-dimensional space.
Therefore, strong convergence results are preferable to weak convergence results in
infinite-dimensional spaces. In 2011, inspired by the hybrid projection method sug-
gested in [20] and Algorithm (1.3), Censor, Gibali and Reich [6] proposed a hybrid
subgradient extragradient algorithm to solve the monotone variational inequality
problem in real Hilbert spaces. The algorithm is stated as follows:

(1.4)



yn = PC (xn − λAxn) ,

zn = αnxn + (1− αn)PTn (xn − λAyn) ,

Cn = {p ∈ H : ∥zn − p∥ ≤ ∥xn − p∥} ,

Qn = {p ∈ H : ⟨xn − p, xn − x0⟩ ≤ 0} ,

xn+1 = PCn∩Qnx0 , ∀n ≥ 0 ,
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where mapping A is L-Lipschitz continuous monotone, the half-space Tn is as in
(1.3), αn ⊂ [0, α] for some α ∈ [0, 1) and λ ∈ (0, 1/L). They proved that the
iterative sequence {xn} provided by (1.4) converges strongly to an element z of
VI(C,A), where z = PVI(C,A)x0. In addition, Takahashi, Takeuchi and Kubota [26]
also presented a new projection-based method and obtained the strong convergence
of the method. This method is now referred to as the shrinking projection algorithm.
For the projection-based methods for solving various problems, readers can refer
to [22,27,29] and the references therein.

On the other hand, we notice that the above algorithms are based on the con-
dition that the prior information of the Lipschitz constant of the cost operator is
known. This implies that the Lipschitz constant of the operator must be input to
the algorithms as a priori parameter. However, the Lipschitz constant is difficult
to obtain in practical nonlinear problems, which will further affect the feasibility
of the algorithms used. To handle the case where the Lipschitz constant of the
operator A is unknown, Armijo-type search methods are used by many scholars
in the literature. However, this method requires multiple evaluations of the value
of the operator in each iteration, which increases the calculation time of the algo-
rithms. Recently, Yang and Liu [33] introduced the following self-adaptive step size
algorithm for solving (VIP) in Hilbert spaces.

yn = PC (xn − λAxn) ,

zn = yn − λ (Ayn −Axn) ,

xn+1 = αnf (xn) + (1− αn) zn , ∀n ≥ 0,

where {αn} ⊂ (0, 1), f : H → H is a contraction mapping and step size λn is
updated by the following:

λn+1 =

 min

{
µ ∥xn − yn∥
∥Axn −Ayn∥

, λn

}
, if Axn −Ayn ̸= 0;

λn, otherwise,

where µ ∈ (0, 1) and λ0 > 0. This criterion only needs to use some previously
known information for a simple calculation to complete the step size update in each
iteration.

In recent years, the development of fast iterative algorithms has attracted enor-
mous interest, especially for inertial technology, which is based on discrete ver-
sions of a second-order dissipative dynamic system. Many researchers have con-
structed various fast iterative algorithms by using inertial technology, see, e.g.,
[10, 11, 21, 25, 28, 30, 34] and the references therein. One of the common features of
these algorithms is that the next iteration depends on the combination of the previ-
ous two iterations. Note that this minor change greatly improves the performance of
the algorithms. Recently, Liu and Qin [15] combined the inertial method, the hybrid
projection method and the Tseng’s extragradient method with an Armijo-like line
search rule and proposed a new iterative algorithm for solving the pseudomonotone
variational inequality problem in real Hilbert spaces. More precisely, the form of
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their algorithm is as follows:

(1.5)



wn = xn + θn (xn − xn−1) ,

yn = PC (xn − λnAwn) ,

zn = yn − λn(Ayn −Awn) ,

Cn =
{
p ∈ H : ∥zn − p∥2 ≤ ∥xn − p∥2 −

(
1− 2µ2

)
∥xn − yn∥2

+ 2µ2θ2n ∥xn−1 − xn∥2
}
,

Qn = {p ∈ H : ⟨xn − p, xn − x0⟩ ≤ 0} ,

xn+1 = PCn∩Qnx0 , ∀n ≥ 1 ,

where the mapping A : H → H is pseudomonotone, L-Lipschitz continuous, se-
quentially weakly continuous on C, θn ∈ (0,+∞), µ ∈ (0, 1/

√
2), λn := γℓmn(γ, ℓ ∈

(0, 1)) and mn is the smallest non-negative integer m satisfying γℓm ∥Ayn −Awn∥ ≤
µ ∥yn − wn∥. Under some conditions, the algorithm defined by (1.5) converges
strongly to z = PVI(C,A)x0. Very recently, based on the inertial method, the subgra-
dient extragradient algorithm and the hybrid projection algorithm, Thong et al. [31]
introduced a new Armijo-type iterative scheme to solve the pseudomonotone varia-
tional inequality problem in a Hilbert space and established the strong convergence
theorem of the proposed algorithm.

Motivated and stimulated by results as mentioned above, in this study, we pro-
pose two inertial projection-type extragradient algorithms with adaptive step size
for solving the pseudomonotone variational problem in real Hilbert spaces. These
stepsizes can be updated in each iteration through some prior information without
performing any line search process. Furthermore, these iterative schemes are em-
bedded with inertial terms to accelerate the convergence speed of the algorithms.
Under reasonable assumptions about the parameters, the strong convergence theo-
rems of the suggested algorithms are obtained. Finally, we give several numerical
examples to support the theoretical results.

The remainder of this paper is organized as follows. In Section 2, we recall some
preliminary results and lemmas for further use. Section 3 analyzes the convergence
of the proposed algorithms. In Section 4, some numerical examples are provided
to illustrate the numerical behavior of the proposed algorithms and compare them
with other ones. Finally, we give some conclusion remarks in the last section.

2. Preliminaries

Let C be a nonempty closed and convex subset in a real Hilbert space H. The
weak convergence and strong convergence of {xn}∞n=1 to x are represented by xn ⇀ x
and xn → x, respectively. Let ωw(xn) denote the set of all weak limits of {xn}, i.e.,
ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {nj} of {n}}.

Let us review some nonlinear mappings in functional analysis for further use. For
any elements p, q ∈ H, recall that a mapping A : H → H is said to be:

(1) η-strongly monotone if there is a positive number η such that ⟨Ap−Aq, p−
q⟩ ≥ η∥p− q∥ .

(2) monotone if ⟨Ap−Aq, p− q⟩ ≥ 0 .
(3) pseudomonotone if ⟨Ap, q − p⟩ ≥ 0 =⇒ ⟨Aq, q − p⟩ ≥ 0 .
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(4) L-Lipschitz continuous if there is L > 0 such that ∥Ap−Aq∥ ≤ L∥p− q∥ .
(5) sequentially weakly continuous, if for any sequence {pn} weakly converges to

a point p ∈ H, then {Apn} weakly converges to Ap.

Recall that a mapping PC : H → C is called the metric projection from H onto C,
if for all x ∈ H, there is a unique nearest point in C, which is represented by PC(x),
such that PCx := argmin{∥x − y∥, y ∈ C}. It is known that PC is nonexpansive
and PCx has the following basic properties (2.1)–(2.3):

(2.1) ⟨x− PCx, y − PCx⟩ ≤ 0, ∀y ∈ C

(2.2) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ , ∀y ∈ H

(2.3) ∥x− PC(x)∥2 ≤ ∥x− y∥2 − ∥y − PC(x)∥2 , ∀y ∈ C

We give some projection calculation formulas that need to be used in numerical
experiments. For more calculations on projections on specific sets, see [3].

(1) The projection of x onto a half-space Hu,v = {x : ⟨u, x⟩ ≤ v} is computed
by

PHu,v(x) = x−max{[⟨u, x⟩ − v]/∥u∥2, 0}u .
(2) The projection of x onto a box Box[a, b] = {x : a ≤ x ≤ b} is computed by

PBox[a,b](x)i = min {bi,max {xi, ai}} .

(3) The projection of x onto the intersection of a hyperplane and a box C =
Hu,v ∩ Box[a, b] =

{
x ∈ Rn : uTx = v, a ≤ x ≤ b

}
is computed by

PC(x) = PBox[a,b](x− µ∗u) ,

where µ∗ is a solution of the equation φ(µ) = uTPBox[a,b](x− µu)− v.

To prove the convergence of the proposed algorithms, we need the following
lemmas.

Lemma 2.1 ([8]). Let C be a nonempty, closed and convex subset of a real Hilbert
space H and A : C → H be a continuous and pseudomonotone operator. Then, x∗

is a solution of VI(C,A) if and only if ⟨Ax, x− x∗⟩ ≥ 0, ∀x ∈ C.

Lemma 2.2 ([13]). Let C be a nonempty closed and convex subset of a real Hilbert
space H. Given x, y, z ∈ H and a ∈ R. {v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a}
is convex and closed.

Lemma 2.3 ([16]). Let C be a closed convex subset of H, {xn} ⊂ H and u ∈ H. Let
q = PCu. If ωw(xn) ⊂ C and satisfies the condition ∥xn − u∥ ≤ ∥u − q∥, ∀n ∈ N .
Then xn → q.

3. Main results

In this section, we introduce two inertial shrinking projection extragradient meth-
ods to approximate the solution of (VIP). The advantage of our suggested al-
gorithms is that no prior knowledge of the Lipschitz constants of the variational
inequality mapping is required. The strong convergence theorems of these two it-
erative schemes are established under some standard and mild conditions. Before
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starting to state our main results, assume that our algorithms meet the following
two conditions.

(C1) The feasible set C is nonempty closed and convex, and the solution set
VI(C,A) is nonempty.

(C2) The mapping A : H → H is pseudomonotone and L-Lipschitz continuous
on H, and sequentially weakly continuous on C.

3.1. The self-adaptive inertial shrinking subgradient extragradient algo-
rithm. The first algorithm is described as follows.

Algorithm 3.1 The self-adaptive inertial shrinking subgradient extragradient al-
gorithm

Initialization: Set θn ∈ [−θ, θ] for some θ > 0, λ1 > 0, µ ∈ (0, 1), C1 = H. Let
x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + θn (xn − xn−1).
Step 2. Compute yn = PC (wn − λnAwn). If yn = wn then stop and yn is a
solution of (VIP). Otherwise, update the step size λn+1 of the next iteration in
the following way.

(3.1) λn+1 =

 min

{
µ ∥wn − yn∥
∥Awn −Ayn∥

, λn

}
, if Awn −Ayn ̸= 0;

λn, otherwise.

Step 3. Compute zn = PTn (wn − λnAyn), where the half-space Tn is defined by
Tn := {x ∈ H | ⟨wn − λnAwn − yn, x− yn⟩ ≤ 0}.
Step 4. Compute xn+1 = PCn+1x0, where Cn+1 is defined by

Cn+1 := {p ∈ Cn : ∥zn − p∥2 ≤ ∥wn−p∥2−
(
1−µ

λn

λn+1

)
(∥yn−wn∥2+∥zn−yn∥2)}.

Set n := n+ 1 and go to Step 1.

The following lemmas are quite helpful to analyze the convergence of the algo-
rithm.

Lemma 3.1. The sequence {λn} generated by (3.1) is nonincreasing and

lim
n→∞

λn = λ ≥ min
{
λ1,

µ

L

}
.

Proof. It follows from (3.1) that λn+1 ≤ λn for all n ∈ N. Hence, {λn} is nonincreas-
ing. On the other hand, we get ∥Awn −Ayn∥ ≤ L ∥wn − yn∥ since A is L-Lipschitz
continuous. Thus,

µ
∥wn − yn∥

∥Awn −Ayn∥
≥ µ

L
, if Awn ̸= Ayn ,

which together with (3.1) implies that λn ≥ min{λ1,
µ
L}. Therefore, limn→∞ λn =

λ ≥ min
{
λ1,

µ
L

}
since the sequence {λn} is nonincreasing and lower bounded. □
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Lemma 3.2. Assume that Conditions (C1) and (C2) hold. Let {zn} be a sequence
generated by Algorithm 3.1. Then, for all p ∈ VI(C,A),

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− µ

λn

λn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2) .

Proof. First, using the definition of {λn}, one obtains

(3.2) ∥Awn −Ayn∥ ≤ µ

λn+1
∥wn − yn∥ , ∀n .

Indeed, if Awn = Ayn then the inequality (3.2) holds. Otherwise, it implies from
(3.1) that

λn+1 = min

{
µ ∥wn − yn∥
∥Awn −Ayn∥

, λn

}
≤ µ ∥wn − yn∥

∥Awn −Ayn∥
.

Consequently, ∥Awn −Ayn∥ ≤ µ/λn+1 ∥wn − yn∥. Therefore, the inequality (3.2)
holds when Awn = Ayn and Awn ̸= Ayn. By the definition of zn and (2.2), one sees
that

2 ∥zn − p∥2 ≤2 ⟨zn − p, wn − λnAyn − p⟩

= ∥zn − p∥2 + ∥wn − λnAyn − p∥2 − ∥zn − wn + λnAyn∥2

= ∥zn − p∥2 + ∥wn − p∥2 + λ2
n ∥Ayn∥

2 − 2 ⟨wn − p, λnAyn⟩

− ∥zn − wn∥2 − λ2
n ∥Ayn∥

2 − 2 ⟨zn − wn, λnAyn⟩

= ∥zn − p∥2 + ∥wn − p∥2 − ∥zn − wn∥2 − 2 ⟨zn − p, λnAyn⟩ .

This implies that

(3.3) ∥zn − p∥2 ≤ ∥wn − p∥2 − ∥zn − wn∥2 − 2 ⟨zn − p, λnAyn⟩ .

Since p is the solution of (VIP), we have ⟨Ap, x − p⟩ ≥ 0 for all x ∈ C. By the
pseudomontonicity of A on H, we get ⟨Ax, x − p⟩ ≥ 0 for all x ∈ C. Taking
x = yn ∈ C, one infers that ⟨Ayn, p− yn⟩ ≤ 0. Consequently,

(3.4) ⟨Ayn, p− zn⟩ = ⟨Ayn, p− yn⟩+ ⟨Ayn, yn − zn⟩ ≤ ⟨Ayn, yn − zn⟩ .

Combining (3.3) and (3.4), one obtains

(3.5)

∥zn − p∥2 ≤∥wn − p∥2 − ∥zn − wn∥2 + 2λn ⟨Ayn, yn − zn⟩

= ∥wn − p∥2 − ∥zn − yn∥2 − ∥yn − wn∥2

− 2 ⟨zn − yn, yn − wn⟩+ 2λn ⟨Ayn, yn − zn⟩

= ∥wn − p∥2 − ∥zn − yn∥2 − ∥yn − wn∥2

+ 2 ⟨zn − yn, wn − λnAyn − yn⟩ .
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Using zn ∈ Tn and (3.2), we have

(3.6)

2 ⟨wn − λnAyn − yn, zn − yn⟩
= 2 ⟨wn − λnAwn − yn, zn − yn⟩+ 2λn ⟨Awn −Ayn, zn − yn⟩
≤ 2λn ∥Ayn −Awn∥ ∥yn − zn∥

≤ 2µ
λn

λn+1
∥wn − yn∥ ∥yn − zn∥

≤ µ
λn

λn+1
∥wn − yn∥2 + µ

λn

λn+1
∥yn − zn∥2 .

Combining (3.5) and (3.6), we obtain

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− µ

λn

λn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2) .

This completes the proof of the lemma. □
Remark 3.3. From Lemma 3.1 and µ ∈ (0, 1), one sees that 1−µλn/λn+1 > ϵ > 0
for all n ≥ n0. For all p ∈ VI(C,A) and n ≥ n0, it follows from Lemma 3.2 that

∥zn − p∥2 ≤ ∥wn − p∥2 − ϵ(∥yn − wn∥2 + ∥zn − yn∥2) .

Theorem 3.4. Assume that Conditions (C1) and (C2) hold. Then the sequence
{xn} generated by Algorithm 3.1 converges to q ∈ VI(C,A) in norm, where q =
PVI(C,A)x0.

Proof. First, we show that VI(C,A) ⊂ Cn+1 for all n. Indeed, by Lemma 2.2, it
follows that Cn+1 is convex and closed. Moreover, one has p ∈ Cn+1 by means of
Lemma 3.2. Thus, we get VI(C,A) ⊂ Cn+1 ⊂ Cn for all n and thus xn+1 = PCn+1x0
is well defined. Next, we show that limn→∞ ∥xn+1 − xn∥ = 0 and limn→∞ ∥yn − wn∥ =
0. From xn = PCnx0 and VI(C,A) ⊂ Cn, we have ∥xn − x0∥ ≤ ∥z − x0∥ , ∀z ∈
VI(C,A). In particular, one has

(3.7) ∥xn − x0∥ ≤ ∥q − x0∥ , where q = PVI(C,A)x0 .

This indicates that sequence {xn} is bounded and thus sequences {wn}, {yn} and
{zn} are also bounded. Since xn = PCnx0 and xn+1 ⊂ Cn, one obtains ∥xn − x0∥ ≤
∥xn+1 − x0∥, which implies that limn→∞ ∥xn − x0∥ exists. Using (2.3), one has

(3.8) ∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2 , ∀n ≥ 0 .

Combining (3.7) and (3.8), we can show that

N∑
n=1

∥xn+1 − xn∥2 ≤
N∑

n=1

(
∥xn+1 − x0∥2 − ∥xn − x0∥2

)
≤ ∥q − x0∥2 − ∥x1 − x0∥2 ,

which implies that
∑∞

n=1 ∥xn+1−xn∥2 is convergent and hence limn→∞ ∥xn+1−xn∥=
0. From the definition of wn, it follows that ∥wn − xn∥ = |θn| ∥xn − xn−1∥ ≤
|θ| ∥xn − xn−1∥ → 0. Therefore, we get limn→∞ ∥wn − xn+1∥ = 0. Since
xn+1 = PCn+1x0 ∈ Cn+1, by the definiton of Cn+1, one infers that

∥zn − xn+1∥2 ≤ ∥wn − xn+1∥2, which implies that limn→∞ ∥zn − xn+1∥ = 0 and
∥zn − wn∥ = 0. Moreover, from Lemma 3.2 and Remark 3.3, it follows that

ϵ(∥yn − wn∥2 + ∥zn − yn∥2) ≤ (∥zn − p∥+ ∥wn − p∥)∥zn −wn∥ → 0. Thus, one gets
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limn→∞ ∥yn − wn∥ = 0 and limn→∞ ∥zn − yn∥ = 0. Finally, we easily see that each
sequential weak cluster point of {xn} is in VI(C,A), that is, ωw(xn) ⊂ VI(C,A).
This together with (3.7), in the light of Lemma 2.3, yields that xn → q. The proof
is completed. □
3.2. The self-adaptive inertial shrinking Tseng extragradient algorithm.
Next, we introduce the second self-adaptive iterative scheme, which combines the
inertial method, the Tseng’s extragradient method and the shrinking projection
method. More precisely, the method is stated in Algorithm 3.2.

Algorithm 3.2 The self-adaptive inertial shrinking Tseng extragradient algorithm

Initialization: Set θn ∈ [−θ, θ] for some θ > 0, λ1 > 0, µ ∈ (0, 1), C1 = H. Let
x0, x1 ∈ H be arbitrary.
Iterative Steps: Calculate the next iteration point xn+1 as follows:

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − λnAwn) ,

zn = yn − λn (Ayn −Awn) ,

xn+1 = PCn+1x0 ,

where the step size λn is updated by (3.1), and Cn+1 is defined as follows

Cn+1 := {p ∈ Cn : ∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− µ2 λ2

n

λ2
n+1

)
∥wn − yn∥2}.

The following lemma plays an important role in the convergence analysis of Al-
gorithm 3.2.

Lemma 3.5. Assume that Conditions (C1) and (C2) hold. Let {zn} be a sequence
generated by Algorithm 3.2. Then,

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− µ2 λ2

n

λ2
n+1

)
∥wn − yn∥2 , ∀p ∈ VI(C,A) ,

and ∥zn − yn∥ ≤ µ λn
λn+1

∥wn − yn∥ .

Proof. First, using the definition of {λn}, one obtains

(3.9) ∥Awn −Ayn∥ ≤ µ

λn+1
∥wn − yn∥ , ∀n .

By the definition of zn, one sees that

∥zn − p∥2 = ∥wn − p∥2 + ∥yn − wn∥2 + 2 ⟨yn − wn, wn − p⟩

+ λ2
n ∥Ayn −Awn∥2 − 2λn ⟨yn − p,Ayn −Awn⟩

= ∥wn − p∥2 + ∥yn − wn∥2 − 2 ⟨yn − wn, yn − wn⟩

+ 2 ⟨yn − wn, yn − p⟩+ λ2
n ∥Ayn −Awn∥2(3.10)

− 2λn ⟨yn − p,Ayn −Awn⟩

= ∥wn − p∥2 − ∥yn − wn∥2 + 2 ⟨yn − wn, yn − p⟩
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+ λ2
n ∥Ayn −Awn∥2 − 2λn ⟨yn − p,Ayn −Awn⟩ .

Since yn = PC (wn − λnAwn), using the property of projection (2.1), we obtain
⟨yn − wn + λnAwn, yn − p⟩ ≤ 0 , or equivalently

(3.11) ⟨yn − wn, yn − p⟩ ≤ −λn ⟨Awn, yn − p⟩ .

From (3.9), (3.10) and (3.11), we have

(3.12)

∥zn − p∥2 ≤∥wn − p∥2 − ∥yn − wn∥2 − 2λn ⟨Awn, yn − p⟩

+ µ2 λ2
n

λ2
n+1

∥wn − yn∥2 − 2λn ⟨yn − p,Ayn −Awn⟩

≤ ∥wn − p∥2 −
(
1− µ2 λ2

n

λ2
n+1

)
∥wn − yn∥2 − 2λn ⟨yn − p,Ayn⟩ .

Since p ∈ VI(C,A), we have ⟨Ap, yn − p⟩ ≥ 0. From the pseudomonotonicity of A,
we get

(3.13) ⟨Ayn, yn − p⟩ ≥ 0 .

Combining (3.12) and (3.13), we obtain

∥zn − p∥2 ≤ ∥wn − p∥2 −
(
1− µ2 λ2

n

λ2
n+1

)
∥wn − yn∥2 .

From the definition of zn and (3.2), we have ∥zn − yn∥ ≤ µ λn
λn+1

∥wn − yn∥ . The

proof of the lemma is now complete. □

Theorem 3.6. Assume that Conditions (C1) and (C2) hold. Then the sequence
{xn} created by Algorithm 3.2 converges to q ∈ VI(C,A) in norm, where q =
PVI(C,A)x0.

Proof. The proof of the theorem is very similar to Theorem 3.4, so we omit it
here. □

Remark 3.7. We comment on algorithms 3.1 and 3.2 as follows.

(1) According to the definition of Cn+1, we can easily see that Cn+1 is the inter-
section of a series of half-spaces. In fact, we have the following observations:

H = C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ · · ·

Therefore, this is why iterative schemes 3.1 and 3.2 are called the “shrinking
projection algorithms”.

(2) Note that the inertial parameters {θn} in Algorithm 3.1 are located in [−θ, θ]
for some θ > 0 and other additional conditions are not required. They are
weaker than some known algorithms in the literature [7, 11,25,34].

(3) Note that our suggested methods use a new step size criterion without any
line search process, which enables them to work without the prior informa-
tion of the Lipschitz constant of the variational inequality mapping. In ad-
dition, we comment here that the Armijo-type line search methods [15, 31]
require multiple evaluation of the value of operator A, which further in-
creases the execution time of the algorithms used.
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(4) It should be noted that the mapping related to (VIP) is pseudomonotone,
which is a broader set of mappings than monotone mappings. Therefore,
the two iterative algorithms proposed in this paper have more extensive
applications in practical problems.

4. Numerical examples

In this section, we perform some numerical examples to demonstrate the com-
putational performance of the proposed algorithms and compare them with some
known strongly convergent algorithms in the literature, including the Algorithm 1
suggested by Liu and Qin [15] (shortly, LQ Alg. 1) and the Algorithm 3.2 proposed
by Thong et al. [31] (shortly, TSIT Alg. 3.2). We use the FOM Solver [4] to effec-
tively calculate the projections onto Cn ∩Qn. All the programs were implemented
in Matlab 2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz computer
with RAM 8.00 GB.

Example 4.1. Our first test example is the nonlinear complementarity problem
(NCP) considered by many researchers. Recall that the NCP is described as follows:

find x∗ ∈ C such that x∗ ≥ 0, Ax∗ ≥ 0 and ⟨x∗, Ax∗⟩ = 0 .

It should be noted that NCP is a special case of (VIP) when the constraint of (VIP)
is non-negative. In other words, the feasible set of NCP is C = Rn

+. Assume that
the mapping A : R4 → R4 is given by

Ax =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3

 .

The feasible set C is expressed as C =
{
x ∈ R4

+ | x1 + x2 + x3 + x4 = 4
}
. The

parameters of all algorithms are set as follows. In all algorithms, set inertial pa-
rameters θn = 0.2. Take µ = 0.5 and λ0 = 0.05 in the suggested iterative schemes.
In LQ Alg. 1 and TSIT Alg. 3.2, choose γ = 0.5, ℓ = 0.5, µ = 0.4. Note that
the Lipschitz constant of mapping A in this example is unknown, which will affect
the implementation of algorithms that need to know the prior information of the
Lipschitz constant. Therefore, our suggested self-adaptive step-size methods are
more useful than the fixed step-size algorithms in the literature. Moreover, we do
not know the exact solution of the problem, so we use Dn = ∥wn − yn∥2 to study
the error of the n-th iteration and use the maximum iteration 500 as a common
stopping criterion. It is known that yn ∈ VI(C,A) if and only if Dn = 0. The initial
values x0, x1 ∈ C are randomly generated and the numerical results are shown in
Fig. 1.

Example 4.2. In the second example, we consider the form of linear operator
A : Rm → Rm (m = 5, 10, 15, 20) as follows: A(x) = Gx + g, where g ∈ Rm

and G = BBT + M + E, matrix B ∈ Rm×m, matrix M ∈ Rm×m is skew-
symmetric, and matrix E ∈ Rm×m is diagonal matrix whose diagonal terms are
non-negative (hence G is positive symmetric definite). We choose the feasible set as
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Figure 1. Numerical behavior of all algorithms in Example 4.1

C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is known that mapping A is mono-
tone and Lipschitz continuous with constant L = ∥G∥. In this numerical example,
both B,M entries are randomly created in [−2, 2], E is generated randomly in [0, 2]
and g = 0. It can be easily seen that the solution to the problem is x∗ = {0}. The
parameters of all algorithms are set the same as in Example 4.1, and Dn = ∥xn−x∗∥2
is used to measure the calculation error of all algorithms in the n-th step. The max-
imum iteration 500 as a common stopping criterion and the initial values x0 = x1
are randomly generated by rand(m,1) in Matlab. The numerical behavior of all
algorithms under different dimensions is shown in Fig. 2.
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(b) m = 10
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(c) m = 15
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(d) m = 20

Figure 2. Numerical results for Example 4.2
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Remark 4.3. From Figs.1–2, we can see that the proposed iterative schemes con-
verge faster and have better computational performance than the existing algo-
rithms. In addition, these results are independent of the selection of initial values
and the size of dimensions. Therefore, our algorithms are robust and efficient.

5. Final remarks

In this paper, we combined the inertial method, the subgradient extragradient
method, the Tseng extragradient method and the shrinking projection method to
proposed two new algorithms for discovering the solution set of pseudomonotone
and Lipschitz continuous (the Lipschitz constant does not need to be known) vari-
ational inequality problems in real Hilbert spaces. Under some standard and re-
laxed assumptions, we have proved the strong convergence of the proposed iterative
schemes. Finally, some numerical experiments are given to demonstrate the com-
putational efficiency and competitive advantages of the suggested approaches. The
methods obtained in this paper improved and extended some existing results in the
literature.
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