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where mapping M is monotone and L-Lipschitz continuous and the step size λ ∈
(0, 1/L). They convert the projection of the second step in the extragradient method
on the feasible set C to a projection on a half-space Tn. Note that the projection
on the half-space Tn can be calculated with a clear formula so that the SEGM only
needs to evaluate the projection on the feasible set C once in each iteration.

It should be noted that the subgradient extragradient method obtains weak con-
vergence in infinite-dimensional Hilbert spaces. It is known that strong convergence
results in infinite-dimensional spaces are better than weak convergence results due
to the need to model and analyze some practical problems in infinite-dimensional
spaces, such as quantum mechanics and medical imaging. In the past decades, a
large number of strongly convergent methods have been proposed to solve varia-
tional inequality problems in infinite-dimensional spaces, see, for example, Mann-
type methods [25,33], viscosity-type methods [23,34,37] and projection-based meth-
ods [6,7,17]. In this paper, we focus on projection-based methods to obtain strongly
convergent results. Nadezhkina and Takahashi [20] introduced a method called hy-
brid projection method to solve (VIP) and they established the strong convergence
of the scheme. In addition, Takahashi, Takeuchi and Kubota [30] also presented
a new projection-based method (now referred to as the shrinking projection algo-
rithm) and obtained the strong convergence of the scheme.

On the other hand, notice that the SGEM needs to know the prior information
about the Lipschitz constant of the mapping in order to work. However, this prior
information is unknown in practical applications or estimating it requires more ad-
ditional computations. Recently, some adaptive algorithms have been proposed to
solve the variational inequality problem when the Lipschitz constant of the map-
ping is unknown, see, e.g., [33,34,36,37]. It should be mentioned that the adaptive
schemes proposed in [33, 34, 36, 37] may affect the computational efficiency of such
algorithms due to the reason that they use a non-increasing sequence of stepsizes.
Recently, Liu and Yang [16] provided several methods with non-monotonic stepsize
sequences to overcome this difficulty. In addition, Cai, Dong and Peng [4] proposed
an iterative scheme with a new Armijo-type stepsize to solve pseudomonotone and
non-Lipschitz continuous variational inequalities, which extends the algorithms used
in the literature for solving Lipschitz continuous variational inequalities. In recent
years, the inertial idea has been studied by many researchers as a technique to
accelerate the convergence speed of algorithms. The main feature of the inertial
method is that the next iteration depends on the combination of the previous two
iterations. This small change can significantly improve the computational efficiency
of the algorithms without inertial terms. In recent years, many inertial-type itera-
tive schemes have been proposed for solving variational inequalities, split feasibility
problems, fixed point problems, image processing problems and other optimization
problems; see, e.g., [10, 22,26,27,33, 38] and the references therein.

Inspired and motivated by the above work, this paper introduces two new
projection-based adaptive modified subgradient extragradient methods with inertial
terms for solving pseudomonotone variational inequalities in real Hilbert spaces.
Our algorithms use two new non-monotonic stepsize criteria that allow them to
work adaptively. Strong convergence theorems for the proposed algorithms are es-
tablished under some suitable assumptions. Finally, a primary computational test
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is given to support the theoretical results. This paper is organized as follows. In
Section 2, we recall some preliminary results and lemmas for further use. Section 3
analyzes the convergence of the proposed algorithms. A primary numerical example
is given in Section 4 to illustrate the behavior of the proposed algorithms and com-
pare them with other ones. Finally, we conclude the paper with a brief summary
in Section 5, the last section.

2. Preliminaries

In the whole paper, we use the symbol xn → x (resp., xn ⇀ x) to represent
the strong convergence (resp., weak convergence) of the sequence {xn} to x, and
use PC : H → C to denote the metric projection from H onto C, i.e., PC(x) :=
argmin{∥x− y∥, y ∈ C}. It is known that PC has the following basic properties:

(2.1) ⟨x− PC(x), y − PC(x)⟩ ≤ 0, ∀x ∈ H, y ∈ C .

(2.2) ∥PC(x)− PC(y)∥2 ≤ ⟨PC(x)− PC(y), x− y⟩ , ∀x ∈ H, y ∈ H .

(2.3) ∥x− PC(x)∥2 ≤ ∥x− y∥2 − ∥y − PC(x)∥2 , ∀x ∈ H, y ∈ C .

Let ωw(xn) denote the set of all weak limits of {xn}, i.e., ωw(xn) := {x ∈ H :
xnj ⇀ x for some subsequence {nj} of {n}}. Recall that a mapping M : H → H
is called: (i) L-Lipschitz continuous if there is L > 0 such that ∥Mx − My∥ ≤
L∥x − y∥, ∀x, y ∈ H; (ii) monotone if ⟨Mx − My, x − y⟩ ≥ 0, ∀x, y ∈ H; (iii)
pseudomonotone if ⟨Mx, y−x⟩ ≥ 0 =⇒ ⟨My, y−x⟩ ≥ 0, ∀x, y ∈ H; (iv) sequentially
weakly continuous, if for any sequence {xn} converges weakly to a point x ∈ H, then
{Mxn} weakly converges to Mx.

The following lemmas are useful for the convergence analysis of our main results.

Lemma 2.1 ([13]). Let C be a nonempty closed and convex subset of a real Hilbert
space H. Given x, y, z ∈ H and a ∈ R. {v ∈ C : ∥y− v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a} is
convex and closed.

Lemma 2.2 ([19]). Let C be a closed convex subset of a real Hilbert space H, {xn} ⊂
H and u ∈ H. Let q = PC(u). If ωw(xn) ⊂ C and ∥xn − u∥ ≤ ∥u − q∥, ∀n ∈ N.
Then xn → q as n → ∞.

3. Main results

In this section, we introduce two new numerical algorithms for solving (VIP) in
real Hilbert spaces. These two schemes are inspired by the inertial method, the sub-
gradient extragradient method and the shrinking projection method. First, a new
iterative scheme with a non-monotonic step size criterion is given in Algorithm 3.1.
We assume that the suggested Algorithm 3.1 satisfies the following conditions.

(C1) The feasible set C is nonempty closed and convex. The solution set of (VIP)
is denoted as VI(C,M) and is assumed to be nonempty.

(C2) The mapping M : H → H is pseudomonotone, L-Lipschitz continuous on H
and sequentially weakly continuous on C.
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The Algorithm 3.1 is formulated as follows.

Algorithm 3.1 The modified SEGM with self-adaptive stepsizes

Initialization: Take θn ∈ [−θ, θ] for some θ > 0, λ1 > 0, µ ∈ (0, 1), β ∈
(1/(2− µ), 1/µ) and C1 = H. Choose a nonnegative real sequence {ξn} such that∑∞

n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given xn−1 and xn (n ≥ 1). Calculate xn+1 as follows:
Step 1. Compute un = xn + θn (xn − xn−1).
Step 2. Compute

yn = PC (un − βλnMun) .

If yn = un then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute

zn = PTn (un − λnMyn) ,

where Tn := {x ∈ H | ⟨un − βλnMun − yn, x− yn⟩ ≤ 0}. Update λn+1 by

(3.1) λn+1 =

 min

{
µ
∥un − yn∥2 + ∥zn − yn∥2

2 ⟨Mun −Myn, zn − yn⟩
, λn + ξn

}
, if ⟨Mun −Myn, zn − yn⟩ > 0,

λn + ξn, otherwise.

Step 4. Compute xn+1 = PCn+1(x0), where Cn+1 is defined by

Cn+1 :=
{
p ∈ Cn : ∥zn − p∥2 ≤ ∥un − p∥2 − β†(∥yn − un∥2 + ∥zn − yn∥2)

}
,

where β† = 2− 1
β − µλn

λn+1
when β ∈ (0, 1] and β† = 1

β − µλn

λn+1
when β > 1.

Set n := n+ 1 and go to Step 1.

The following lemmas are useful in the convergence analysis of Algorithm 3.1.

Lemma 3.1 ([16]). Suppose that Condition (C2) holds. Then the sequence {λn}
generated by (3.1) is well defined and limn→∞ λn = λ and λ ∈

[
min{µ/L, λ1}, λ1 +∑∞

n=1 ξn
]
.

Proof. The proof is very similar to Lemma 3.1 in [16]. So we omit the details. □

Lemma 3.2. Suppose that Condition (C2) holds. Let {zn} be a sequence generated
by Algorithm 3.1. Then, for all p ∈ VI(C,M),

∥zn − p∥2 ≤ ∥un − p∥2 − β†( ∥un − yn∥2 + ∥zn − yn∥2
)
,

where β† = 2− 1
β − µλn

λn+1
when β ∈ (0, 1] and β† = 1

β − µλn

λn+1
when β > 1.

Proof. From the definition of zn and the property of projection (2.3), we have

(3.2)

∥zn − p∥2 = ∥PTn (un − λnMyn)− p∥2

≤ ∥un − λnMyn − p∥2 − ∥un − λnMyn − zn∥2

= ∥un − p∥2 − ∥un − zn∥2 − 2 ⟨λnMyn, zn − p⟩

= ∥un − p∥2 − ∥un − zn∥2 − 2 ⟨λnMyn, zn − yn⟩
− 2 ⟨λnMyn, yn − p⟩ .
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Since p ∈ VI(C,M) and yn ∈ C, we have ⟨Mp, yn−p⟩ ≥ 0. By the pseudomontonicity
of mapping M , we get ⟨Myn, yn − p⟩ ≥ 0. Thus, (3.2) reduces to

(3.3) ∥zn − p∥2 ≤ ∥un − p∥2 − ∥un − zn∥2 − 2 ⟨λnMyn, zn − yn⟩ .
Now we estimate 2 ⟨λnMyn, zn − yn⟩. Note that

(3.4) −∥un − zn∥2 = −∥un − yn∥2 − ∥yn − zn∥2 + 2 ⟨un − yn, zn − yn⟩ .
In addition,

(3.5)

⟨un − yn, zn − yn⟩
= ⟨un − yn − βλnMun + βλnMun − βλnMyn + βλnMyn, zn − yn⟩
= ⟨un − βλnMun − yn, zn − yn⟩
+ βλn ⟨Mun −Myn, zn − yn⟩+ ⟨βλnMyn, zn − yn⟩ .

Since zn ∈ Tn, one gets

(3.6) ⟨un − βλnMun − yn, zn − yn⟩ ≤ 0 .

According to the definition of λn, it is easy to obtain

(3.7) ⟨Mun −Myn, zn − yn⟩ ≤
µ

2λn+1
∥un − yn∥2 +

µ

2λn+1
∥zn − yn∥2 .

Substituting (3.5), (3.6) and (3.7) into (3.4), we get

−∥un − zn∥2 ≤ −
(
1− βµλn

λn+1

)(
∥un − yn∥2 + ∥zn − yn∥2

)
+ 2β ⟨λnMyn, zn − yn⟩ ,

which implies that

−2 ⟨λnMyn, zn − yn⟩ ≤ −
( 1

β
− µλn

λn+1

)(
∥un − yn∥2 + ∥zn − yn∥2

)
+

1

β
∥un − zn∥2 .

This together with (3.3) concludes that

(3.8)

∥zn − p∥2 ≤ ∥un − p∥2 −
( 1

β
− µλn

λn+1

)(
∥un − yn∥2 + ∥zn − yn∥2

)
−
(
1− 1

β

)
∥un − zn∥2 .

Note that
∥un − zn∥2 ≤ 2

(
∥un − yn∥2 + ∥zn − yn∥2

)
,

which yields that

−
(
1− 1

β

)
∥un − zn∥2 ≤ −2

(
1− 1

β

)(
∥un − yn∥2 + ∥zn − yn∥2

)
, ∀β ∈ (0, 1] .

This together with (3.8) implies

∥zn − p∥2 ≤ ∥un − p∥2 −
(
2− 1

β
− µλn

λn+1

)(
∥un − yn∥2 + ∥zn − yn∥2

)
, ∀β ∈ (0, 1] .

On the other hand, if β > 1, then we get

∥zn − p∥2 ≤ ∥un − p∥2 −
( 1

β
− µλn

λn+1

)(
∥un − yn∥2 + ∥zn − yn∥2

)
, ∀β > 1 .

This completes the proof of the lemma. □



2528 B. TAN AND S. Y. CHO

Remark 3.3. From Lemma 3.1 and the assumptions of the parameters µ and β
(i.e., µ ∈ (0, 1) and β ∈ (1/(2− µ), 1/µ)), we can obtain that β† > 0 for all n ≥ n0

in Lemma 3.2 always holds.

Theorem 3.4. Suppose Conditions (C1) and (C2) hold. Then the sequence {xn}
created by Algorithm 3.1 converges to q ∈ VI(C,M) in norm, where q = PVI(C,M)(x0).

Proof. We divide our proof in three steps. To begin with, our first goal is to show
that VI(C,M) ⊂ Cn+1 for all n ≥ 1. Indeed, it follows from Lemma 2.1 that
Cn+1 is convex and closed. Moreover, one has p ∈ Cn+1 by means of Lemma 3.2.
Thus, we get VI(C,M) ⊂ Cn+1 ⊂ Cn for all n ≥ 1. So xn+1 = PCn+1(x0) is well
defined. The next thing to do in the proof is show that limn→∞ ∥xn+1 − xn∥ = 0
and limn→∞ ∥yn − un∥ = 0. From xn = PCn(x0) and VI(C,M) ⊂ Cn, we obtain
∥xn − x0∥ ≤ ∥z − x0∥ , ∀z ∈ VI(C,M). In particular, one has

(3.9) ∥xn − x0∥ ≤ ∥q − x0∥ , where q = PVI(C,M)(x0) .

This implies that the sequence {xn} is bounded. We get that the sequences {un},
{yn} and {zn} are also bounded. Since xn = PCn(x0) and xn+1 ⊂ Cn, one obtains
∥xn − x0∥ ≤ ∥xn+1 − x0∥, which indicates that limn→∞ ∥xn − x0∥ exists. Using the
property of projection (2.3), one has

(3.10) ∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2 , ∀n ≥ 1 .

Combining (3.9) and (3.10), we get∑N

n=1
∥xn+1 − xn∥2 ≤ ∥q − x0∥2 − ∥x1 − x0∥2 ,

which yields that
∑∞

n=1 ∥xn+1 − xn∥2 is convergent. Thus, limn→∞ ∥xn+1 − xn∥ =
0. From the definition of un, it follows that

∥un − xn∥ = |θn| ∥xn − xn−1∥ ≤ |θ| ∥xn − xn−1∥ → 0, as n → ∞ .

Therefore, we get that limn→∞ ∥un − xn+1∥ = 0. From xn+1 ∈ Cn+1 and the defini-

ton of Cn+1, one infers that ∥zn − xn+1∥2 ≤ ∥un − xn+1∥2. This together with
limn→∞ ∥un − xn+1∥ = 0 yields that limn→∞ ∥zn − xn+1∥ = 0 and ∥zn − un∥ = 0.
In addition, it follows from Lemma 3.2 and Remark 3.3 that

β†( ∥yn − un∥2 + ∥zn − yn∥2
)
≤

(
∥zn − p∥+ ∥un − p∥

)
∥zn − un∥ → 0, as n → ∞ .

This implies that limn→∞ ∥yn − un∥ = 0 and limn→∞ ∥zn − yn∥ = 0. Finally, we
need to show that the sequence {xn} converges to q ∈ VI(C,M) in norm. From [32,
Lemma 3.3], it can be easily seen that each sequential weak cluster point of {xn}
is in VI(C,M), i.e., ωw(xn) ⊂ VI(C,M). This together with (3.9), in the light of
Lemma 2.2, yields that xn → q as n → ∞. The proof is completed. □

Next, we present an iterative scheme (see Algorithm 3.2) for solving (VIP) with
a pseudomonotone and non-Lipschitz continuous operator. In our Algorithm 3.2,
we replace the condition (C2) in Algorithm 3.1 with the following condition (C3).

(C3) The operator M : H → H is pseudomonotone, uniformly continuous on H
and sequentially weakly continuous on C.
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Now we are ready to describe the proposed Algorithm 3.2.

Algorithm 3.2 The modified SEGM with Armijo-like stepsizes

Initialization: Take θn ∈ [−θ, θ] for some θ > 0, δ > 0, ℓ ∈ (0, 1), µ ∈ (0, 1),
β ∈ (1/(2− µ), 1/µ) and C1 = H. Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given xn−1 and xn (n ≥ 1). Calculate xn+1 as follows:
Step 1. Compute un = xn + θn (xn − xn−1).
Step 2. Compute

yn = PC (un − βλnMun) .

If yn = un then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute

zn = PTn (un − λnMyn) ,

where Tn := {x ∈ H | ⟨un − βλnMun − yn, x− yn⟩ ≤ 0}, λn := δℓmn and mn is
the smallest nonnegative integer m satisfying

(3.11) δℓm ⟨Myn −Mun, yn − zn⟩ ≤
µ

2

[
∥un − yn∥2 + ∥yn − zn∥2

]
.

Step 4. Compute xn+1 = PCn+1(x0), where Cn+1 is defined by

Cn+1 :=
{
p ∈ Cn : ∥zn − p∥2 ≤ ∥un − p∥2 − β†(∥yn − un∥2 + ∥zn − yn∥2)

}
,

where β† = 2− 1
β − µ when β ∈ (0, 1] and β† = 1

β − µ when β > 1.

Set n := n+ 1 and go to Step 1.

Remark 3.5. Suppose Condition (C3) holds. Let {un} and {yn} be two sequences
created by Algorithm 3.2. Following the proof of Lemma 3.1 in [32], we can get that
the Armijo criterion (3.11) is well defined. Moreover, by [4, Lemma 3.2], it can be
easily seen that each sequential weak cluster point of {xn} is in VI(C,M).

Lemma 3.6. Assume that Condition (C3) holds. Let {zn} be a sequence formed by

Algorithm 3.2. Then, ∥zn − p∥2 ≤ ∥un − p∥2 − β†(∥un − yn∥2 + ∥zn − yn∥2), ∀p ∈
VI(C,M), where β† = 2− 1

β − µ when β ∈ (0, 1] and β† = 1
β − µ when β > 1.

Proof. The proof follows the proof of Lemma 3.2 and thus it is omitted. □
Theorem 3.7. Assume Conditions (C1) and (C3) hold. Then the sequence {xn}
generated by Algorithm 3.2 converges to q ∈ VI(C,M) in norm, where q =
PVI(C,M)(x0).

Proof. The proof of this result follows almost in the same way as that of Theorem 3.4
but we apply Lemma 3.6 in place of Lemma 3.2. □
Remark 3.8. We have the following observations for the proposed algorithms.

(1) Note that the inertial parameter θn in the suggested Algorithms 3.1 and 3.2
are located in [−θ, θ] for some θ > 0. They are weaker than some known
inertial-type methods in the literature (see, e.g., [27, 33,36,37]).

(2) In our Algorithms 3.1 and 3.2, yn is computed as yn = PC(un − βλnMun).
Notice that the step size for computing yn is βλn, which is different from the
subgradient extragradient method introduced by Censor et al. [5]. Our main
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numerical example shows that this modification can improve the convergence
speed of the proposed algorithms (see Section 4).

(3) The algorithms presented in this paper can solve pseudomonotone varia-
tional inequality problems, which extend the methods used in the literature
for solving monotone variational inequalities (see, e.g., [11, 18, 28, 33, 37]).
On the other hand, note that the proposed Algorithm 3.2 requires the map-
ping M to be uniformly continuous rather than Lipschitz continuous, while
the algorithm presented in [11, 25, 28, 33, 37] can only solve variational in-
equalities with a Lipschitz continuous operator. Moreover, the step size in
the suggested Algorithm 3.1 is non-monotonic, i.e., the step size is allowed
to increase with iteration. Thus, the iterative schemes stated in this paper
have a wider range of applications and a faster convergence speed.

4. A fundamental numerical example

In this section, we implement a computational example to illustrate the numerical
performance of the presented methods and compare them with some known ones in
the literature [15,31]. All the programs were implemented in MATLAB 2018a on a
personal computer with RAM 8.00 GB.

First, we state the algorithms that need to be compared in [15,31] as follows.

Theorem 4.1 ( [15]). Suppose that Conditions (C1) and (C2) hold. Take θn ∈
(0,+∞), δ ∈ (0, 1), ℓ ∈ (0, 1) and µ ∈ (0, 1/

√
2). Let {xn} be a sequence created by

un = xn + θn (xn − xn−1) , yn = PC (xn − λnMun) ,

zn = yn − λn(Myn −Mun), xn+1 = PCn∩Qn(x0) ,

Cn :=
{
p ∈ H : ∥zn − p∥2 ≤ ∥xn − p∥2

−
(
1− 2µ2

)
∥xn − yn∥2 + 2µ2θ2n ∥xn−1 − xn∥2

}
,

Qn :=
{
p ∈ H : ⟨xn − p, xn − x0⟩ ≤ 0

}
,

where λn = δℓmn and mn is the smallest non-negative integer m satisfying
µ ∥yn − un∥ ≥ δℓm ∥Myn −Mun∥. Then the sequence {xn} converges to q =
PVI(C,M)(x0) in norm.

Theorem 4.2 ([31]). Assume that Conditions (C1) and (C2) hold. Let {xn} be a
sequence generated by

un = xn + θn (xn − xn−1) , yn = PC (un − λnMun) ,

Tn := {x ∈ H | ⟨un − λnMun − yn, x− yn⟩ ≤ 0} ,

zn = PTn (un − λnMyn) , xn+1 = PCn+1(x0) ,

where θn ∈ [−θ, θ] for some θ > 0, the next step size λn+1 is updated by

(4.1) λn+1 =

 min

{
µ ∥un − yn∥

∥Mun −Myn∥
, λn

}
, if Mun −Myn ̸= 0;

λn, otherwise.

where λ1 > 0, µ ∈ (0, 1), and Cn+1 is defined as follows

Cn+1 :=
{
p ∈ Cn : ∥zn − p∥2 ≤ ∥un − p∥2 −

(
1− µλn

λn+1

)(
∥yn − un∥2 + ∥zn − yn∥2

)}
.
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Then the sequence {xn} converges to q = PVI(C,M)(x0) in norm.

Theorem 4.3 ([31]). Suppose that Conditions (C1) and (C2) hold. Let {xn} be a
sequence formed by{

un = xn + θn (xn − xn−1) , yn = PC (un − λnMun) ,

zn = yn − λn (Myn −Mun) , xn+1 = PCn+1(x0) ,

where θn ∈ [−θ, θ] for some θ > 0, the next step size λn+1 is updated by (4.1) and
Cn+1 is defined as follows

Cn+1 :=
{
p ∈ Cn : ∥zn − p∥2 ≤ ∥un − p∥2 −

(
1− µ2λ2

n

λ2
n+1

)
∥un − yn∥2

}
.

Then the sequence {xn} converges to q = PVI(C,M)(x0) in norm.

Example 4.4. We consider the form of linear operator M : Rm → Rm (m = 5, 10)
as follows: M(x) = Gx + g, where g ∈ Rm and G = BBT + D + E, B ∈ Rm×m,
D ∈ Rm×m is skew-symmetric matrix and E ∈ Rm×m is diagonal matrix whose
diagonal terms are non-negative (hence G is positive symmetric definite). We choose
the feasible set as C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, . . . ,m}. It is known that
mapping M is monotone and Lipschitz continuous with constant L = ∥G∥. In this
example, both B,D entries are randomly created in [−2, 2], E is generated randomly
in [0, 2] and g = 0. It can be easily seen that the solution to the problem is x∗ = {0}.
We compare the porposed algorithms with the Algorithm 1 suggested by Liu and
Qin [15] (shortly, LQ Alg. 1) and the Algorithms 3.1 and 3.2 presented by Tan and
Cho [31] (shortly, TC Alg. 3.1 and TC Alg. 3.2). Take θn = 0.2 for all algorithms.
Choose λ1 = 0.05 and µ = 0.4 for the proposed Algorithm 3.1, TC Alg. 3.1 and
TC Alg. 3.2. Set ξn = 1/(n+ 1)1.1 for the suggested Algorithm 3.1. Pick δ = 0.05,
ℓ = 0.5 and µ = 0.4 for the proposed Algorithm 3.2 and LQ Alg. 1. The function
Dn = ∥xn − x∗∥2 is used to measure the calculation error of all algorithms in the
n-th step. The maximum number of iterations 400 as a common stopping criterion.
The numerical behaviors of the proposed algorithms with different parameters β and
θn are shown in Fig. 1 and Fig. 2, respectively. Numerical results of all algorithms
with two dimensions are reported in Fig. 3.

Figure 1. The behavior of our algorithms (θn = 0.2) with different β



2532 B. TAN AND S. Y. CHO

Figure 2. The behavior of our algorithms (β = 1.5) with different θn

Figure 3. Numerical results of all algorithms

Remark 4.5. From Fig. 1, it can be seen that the proposed Algorithm 3.1 and
Algorithm 3.2 converge faster at β = 1.5 than they do at β = 1. This means that our
algorithms can achieve a faster convergence speed when the parameter β is chosen
at a suitable value. Moreover, our algorithms converge faster than the iterative
schemes presented in the literature [15,31], and these results are independent of the
size of the dimension and the choice of the initial values (see Fig. 3). Thus, the
algorithms introduced in this paper are useful, efficient and robust. On the other
hand, the information expressed in Fig. 2 shows that the addition of the inertial
term has no positive effect on the algorithms proposed in this paper. However, this
is only a fundamental numerical example. It will be our future work about the
reasons for the generation of this phenomenon.

5. Conclusions

In this paper, we presented two projection-based methods to solve variational in-
equalities in infinite-dimensional Hilbert spaces. The proposed methods are inspired
by the inertial method, the subgradient extragradient method and the shrinking pro-
jection method. The strong convergence of the iterative sequences generated by the
presented algorithms is established without requiring the prior knowledge of the
Lipschitz constant of the mapping. Moreover, our algorithms apply two new non-
monotonic stepsize sequences, which makes them have a faster convergence speed
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than some known ones in the literature. Finally, we give a basic numerical example
to verify the advantages and computational efficiency of the proposed methods.
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Èkonom. i Mat. Metody 12 (1976), 747–756.
[15] L. Liu and X. Qin, Strong convergence of an extragradient-like algorithm involving pseudo-

monotone mappings, Numer. Algorithms 83 (2020), 1577–1590.
[16] H. Liu and J. Yang, Weak convergence of iterative methods for solving quasimonotone varia-

tional inequalities, Comput. Optim. Appl. 77 (2020), 491–508.
[17] Z. L. Ma, L. Wang, S. F. Zou and X. Sun, A hybrid projection algorithm for a split equality

problem in Banach spaces, J. Nonlinear Funct. Anal. 2021 (2021): Article ID 22.
[18] Y. Malitsky, Projected reflected gradient methods for monotone variational inequalities, SIAM

J. Optim. 25 (2015), 502–520.
[19] C. Martinez-Yanes and H.K. Xu, Strong convergence of the CQ method for fixed point iteration

processes, Nonlinear Anal. 64 (2006), 2400–2411.
[20] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonex-

pansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006),
1230–1241.

[21] L. V. Nguyen, Q. H. Ansari and X. Qin, Weak sharpness and finite convergence for solutions of
nonsmooth variational inequalities in Hilbert spaces, Appl. Math. Optim. 84 (2021), 807–828.

[22] X. Qin, L. Wang and J. C. Yao, Inertial splitting method for maximal monotone mappings, J.
Nonlinear Convex Anal. 21 (2020), 2325–2333.

[23] X. Qin and J. C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear
Convex Anal. 20 (2019), 1497–1506.



2534 B. TAN AND S. Y. CHO

[24] D. R. Sahu, J. C. Yao, M. Verma and K. K. Shukla, Convergence rate analysis of proximal gra-
dient methods with applications to composite minimization problems, Optimization 70 (2021),
75–100.

[25] Y. Shehu, Q. L. Dong and D. Jiang, Single projection method for pseudo-monotone variational
inequality in Hilbert spaces, Optimization 68 (2019), 385–409.

[26] Y. Shehu and A. Gibali, New inertial relaxed method for solving split feasibilities, Optimization
15 (2021), 2109–2126.

[27] Y. Shehu and O. S. Iyiola, Projection methods with alternating inertial steps for variational
inequalities: Weak and linear convergence, Appl. Numer. Math. 157 (2020), 315–337.

[28] Y. Shehu, X. H. Li and Q. L. Dong, An efficient projection-type method for monotone varia-
tional inequalities in Hilbert spaces, Numer. Algorithms 84 (2020), 365–388.

[29] Y. Shehu, O. S. Iyiola and F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive
mappings: applications to compressed sensing, Numer. Algo. 83 (2020), 1321–1347.

[30] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods
for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008),
276–286.

[31] B. Tan and S. Y. Cho, Self-adaptive inertial shrinking projection algorithms for solving pseu-
domonotone variational inequalities, J. Nonlinear Convex Anal. 22 (2021), 13–27.

[32] B. Tan and S. Y. Cho, Inertial extragradient methods for solving pseudomonotone variational
inequalities with non-Lipschitz mappings and their optimization applications, Appl. Set-Valued
Anal. Optim. 3 (2021), 165–192.

[33] B. Tan, J. Fan and S. Li, Self-adaptive inertial extragradient algorithms for solving variational
inequality problems, Comput. Appl. Math. 40 (2021), Article ID 19.

[34] D. V. Thong and D.V. Hieu, Some extragradient-viscosity algorithms for solving variational
inequality problems and fixed point problems, Numer. Algorithms 82 (2019), 761–789.

[35] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,
SIAM J. Control Optim. 38 (2000), 431–446.

[36] J. Yang, Self-adaptive inertial subgradient extragradient algorithm for solving pseudomonotone
variational inequalities, Appl. Anal. 100 (2021), 1067–1078.

[37] J. Yang and H. Liu, Strong convergence result for solving monotone variational inequalities in
Hilbert space, Numer. Algorithms 80 (2019), 741–752.

[38] Z. Zhou, B. Tan and S. Li, A new accelerated self-adaptive stepsize algorithm with excellent
stability for split common fixed point problems, Comput. Appl. Math. 39 (2020), Article ID
220.

Manuscript received March 10, 2021

revised July 10, 2021

Bing Tan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology
of China, Chengdu, China

E-mail address : bingtan72@gmail.com

Sun Young Cho
Gyeongsang National University, Jinju-Si, Korea

E-mail address : chosy@gnu.ac.kr


