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Abstract
In this paper, we propose two new iterative algorithms to discover solutions of bilevel pseu-
domonotone variational inequalities with non-Lipschitz continuous operators in real Hilbert
spaces. Our proposed algorithms need to compute the projection on the feasible set only once
in each iteration although they employ Armijo line search methods. Strong convergence the-
orems of the suggested algorithms are established under suitable and weaker conditions.
Some numerical experiments and applications are given to demonstrate the performance of
the offered algorithms compared to some known ones.

Keywords Bilevel variational inequality · Inertial method · Armijo stepsize ·
Pseudomonotone mapping · Non-Lipschitz operator

Mathematics Subject Classification 47J20 · 47J25 · 47J30 · 68W10 · 65K15

1 Introduction

Bilevel optimization problems are hierarchical optimization problems in which the feasible
region of the upper-level problem is restricted by the solution set of the lower-level problem.
For more details on the theory, algorithms and applications of bilevel optimization problems,
we refer the reader to the recent monograph [1]. In this paper, we focus on a special case of
the bilevel optimization problem, namely the bilevel variational inequality problem (shortly,
BVIP), where both the upper- and lower-level problems are restricted by variational inequali-
ties. BVIPs cover a number of nonlinear optimization problems, such as fixed point problems,
quasi-variational inequality problems, complementary problems, saddle problems, and min-
imum norm problems. Let C be a nonempty, closed, and convex subset of a real Hilbert
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space H with inner product 〈·, ·〉 and induced norm ‖ · ‖. Recall that the BVIP is described
as follows:

find x∗ ∈ � such that
〈
Fx∗, y − x∗〉 ≥ 0, ∀y ∈ �, (BVIP)

where F : C → H is an operator and � denotes the set of all solutions of the following
variational inequality problem (shortly, VIP):

find y∗ ∈ C such that
〈
My∗, z − y∗〉 ≥ 0, ∀z ∈ C, (VIP)

where M : C → H is an operator. It is known that VIPs play a significant role in applied
science and optimization theory. They provide a general and useful framework for solving
engineering problems, data sciences, and other fields; see, e.g., [2–4]. Thus, numerical meth-
ods for studying variational inequalities have attracted numerous interest among researchers.

In this paper, we are concerned with projection-based methods for solving the variational
inequality problem (VIP). The simplest projection-type method is the projected gradient
method (shortly, PGM).However, theweak convergence of thePGMrequires that the operator
M involved is Lipschitz continuous and strongly monotone. Korpelevich [5] proposed a
method called the extragradient method (EGM) to overcome the drawbacks of the PGM. It is
known that the EGM converges weakly to the solution of (VIP) under the condition that the
mapping M is monotone and Lipschitz continuous. In recent years, the EGMwas extensively
studied by scholars, and they proposed a large number of improved versions of the EGM for
solving variational inequalities in infinite-dimensional Hilbert spaces; see, e.g., [6–9] and
the references therein. On the other hand, the EGM and some of its improved methods will
fail if operator M does not satisfy Lipschitz continuity. To overcome this difficulty, Iusem
[10] proposed a new iterative algorithm that is based on the EGM and the Armijo line search
method for solving variational inequality problems in finite-dimensional spaces. Note that
the convergence of Iusem’s method is proved under the assumption that the mapping M
is not Lipschitz continuous. It should be noted that Iusem’s method may need to compute
multiple projections on the feasible set in each iteration due to its use of the Armijo line
search criterion. Solodov and Svaiter [11] introduced an improved algorithm with a new
Armijo-type step size to overcome this obstacle. They construct a new hyperplane which
separates the current iterate from the solution of (VIP). The convergence of the method is
also confirmed under the condition that the mapping M is uniformly continuous. Moreover,
the method of Solodov and Svaiter [11] requires only one projection onto the feasible set
in each iteration, which greatly improves the computational efficiency of the method of
Iusem [10]. Recently, a large number of improved algorithms of Solodov and Svaiter [11]
were proposed to solve monotone VIPs (see, e.g., [12–14]) and pseudomonotone VIPs (see,
e.g., [15–19]). The convergence of these methods is established under the assumption of the
mapping M without Lipschitz continuity.

Next we state some algorithms for solving the bilevel variational inequality problem
(BVIP), and these motivate us to develop several new efficient iterative schemes. Yamada
[20] investigated a bilevel problem associated with the BVIP, which is described as follows:

find x∗ ∈ Fix(T ) such that 〈Fx∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(T ), (BVIFPP)

where Fix(T ) := {x ∈ H : T x = x} denotes the set of fixed points of the nonexpansive
mapping T , and the mapping F is Lipschitz continuous and inverse strongly monotone. Let
λ > 0. If we set T x = PC (x − λMx), then x ∈ Fix(T ) ⇔ x ∈ � and thus the problem
(BVIP) becomes the problem (BVIFPP). Yamada [20] introduced the hybrid steepest descent
method xn+1 = (I −αn+1λF)(T xn) for solving (BVIFPP), where {λ} and {αn+1} are suitable
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sequences that satisfy some conditions. He proved that the iterative sequence generated by
the method converges strongly to the unique solution of (BVIFPP). Recently, a number of
numerical algorithms that based on the hybrid steepest descent method were presented for
solving themonotone (BVIP) (see, e.g., [21]) and the pseudomonotone (BVIP) (see, e.g., [22–
24]). A common characteristic enjoyed by these algorithms is that the operator M is required
to be Lipschitz continuous. In recent years, the study of acceleration algorithms has attracted
a great interest among researchers which is due to the need of practical problems. Recently,
scholars proposed a large number of acceleration algorithms based on inertial techniques
(see [25,26] for more detials) to address variational inequalities, splitting problems, fixed
point problems, and a variety of optimization problems; see, e.g., [27–32] and the references
therein. A common feature of these inertial algorithms is that the next iteration depends
on the combination of the previous two iterations. This small change greatly improves the
computational efficiency of inertial type algorithms.

Motivated and inspired by the works in [17,18,20] and by the ongoing research in these
directions, in this paper, we propose two accelerated projection-based methods for solving
the bilevel variational inequality problem (BVIP) with a pseudomonotone and uniformly
continuous operator. The paper is organized as follows. In the next section, we review some
definitions and lemmas that need to be used in the sequel. Section 3 states the suggested
iterative schemes and analyzes their convergence properties. In Sect. 4, we perform some
numerical examples to demonstrate the advantages of the proposed algorithms in comparison
with some related ones. Finally, we conclude the paper with a brief summary in Sect. 5, the
last section.

2 Preliminaries

Let C be a nonempty, closed, and convex subset of a real Hilbert spaceH. The weak conver-
gence and strong convergence of {xn} to x are represented by xn⇀x and xn → x , respectively.
Let PC : H → C denote the metric (nearest point) projection from H onto C , characterized
by PC (x) := argmin{‖x − y‖, y ∈ C}. It is known that PC is nonexpansive and PC (x) ∈ C
for all x ∈ H. Recall that a mapping M : H → H is said to be:

(i) L-Lipschitz continuous with L > 0 if ‖Mx − My‖ ≤ L‖x − y‖, ∀x, y ∈ H (if
L ∈ (0, 1) then mapping M is called a contraction. In particular, when L = 1, mapping
M is said to be nonexpansive).

(ii) α-strongly monotone if there exists a constant α > 0 such that 〈Mx − My, x − y〉 ≥
α‖x − y‖2, ∀x, y ∈ H.

(iii) monotone if 〈Mx − My, x − y〉 ≥ 0, ∀x, y ∈ H.
(iv) pseudomonotone if 〈Mx, y − x〉 ≥ 0 ⇒ 〈My, y − x〉 ≥ 0, ∀x, y ∈ H.
(v) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies

{Mxn} converges weakly to Mx .

The following lemmas will be used in the convergence analysis of our algorithms.

Lemma 2.1 ([33]) Assume that C is a closed and convex subset of a real Hilbert space H.
Let operator M : C → H be continuous and pseudomonotone. Then, x∗ is a solution of
(VIP) if and only if 〈Mx, x − x∗〉 ≥ 0, ∀x ∈ C .

Lemma 2.2 ([34]) Assume that C is a convex and closed nonempty subset of a real Hilbert
space H. Let h be a real-valued function on H and define K = {x ∈ C : h(x) ≤ 0}. If K is
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nonempty and h is θ -Lipschitz continuous on C , then

dist(x, K ) ≥ θ−1 max{h(x), 0}, ∀x ∈ C,

where dist(x, K ) denotes the distance function from x to K .

Lemma 2.3 ([20]) Let γ > 0 and α ∈ (0, 1]. Let F : H → H be a β-strongly monotone
and L-Lipschitz continuous mapping with 0 < β ≤ L . Associating with a nonexpansive
mapping T : H → H, define a mapping T γ : H → H by T γ x = (I −αγ F)(T x),∀x ∈ H.
Then, T γ is a contraction provided γ <

2β
L2 , that is,

‖T γ x − T γ y‖ ≤ (1 − αη)‖x − y‖, ∀x, y ∈ H,

where η = 1 −
√
1 − γ

(
2β − γ L2

) ∈ (0, 1).

Lemma 2.4 ([35]) Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and
{αn} be a sequence in (0, 1) such that

∑∞
n=1 αn = ∞. Assume that

pn+1 ≤ (1 − αn)pn + αnqn, ∀n ≥ 1.

If lim supk→∞ qnk ≤ 0 for every subsequence
{

pnk

}
of {pn} satisfying lim infk→∞ (pnk+1−

pnk ) ≥ 0, then limn→∞ pn = 0.

3 Main results

In this section, we introduce two new algorithms for finding the solutions of the bilevel pseu-
domonotone variational inequality problem (BVIP). The following assumptions are assumed
to be satisfied before introducing our algorithms.

(A1) The feasible set C is a nonempty, closed, and convex subset of a real Hilbert spaceH.
(A2) The solution set of the problem (VIP) is nonempty, that is, � �= ∅.
(A3) The operator M : H → H is pseudomonotone, uniformly continuous on H, and the

operator M : H → H satisfies the following assumption

whenever {xn} ⊂ C, xn⇀z, one has ‖Mz‖ ≤ lim inf
n→∞ ‖Mxn‖. (3.1)

(A4) The mapping F : H → H is L F -Lipschitz continuous and β-strongly monotone onH
such that L F ≥ β.

(A5) Let {εn} be a positive sequence such that limn→∞ εn
αn

= 0, where {αn} ⊂ (0, 1) satisfies

limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Remark 3.1 Note that the assumption (3.1) is used bymany recent works on pseudomonotone
variational inequalities (see, e.g., [18,36]). It is easy to check that Assumption (3.1) is weaker
than the sequential weak continuity of the mapping M (see [36, Remark 3.2]). Moreover, it
is not necessary to impose Assumption (3.1) when mapping M is monotone (see [9,37]). On
the other hand, the solution of problem (BVIP) is unique provided that Conditions (A1)–(A4)
are satisfied (see [21,38] for more details).

3.1 First type of projection algorithm

Based on the inertial method, the Algorithm 3.3 of Thong et al. [17] and the hybrid steepest
descent method [20], we introduce a new iterative scheme containing only one projection
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on the feasible set to address the bilevel variational inequality problem (BVIP) with a pseu-
domonotone and uniformly continuous operator. We now state the scheme in Algorithm 3.1.

Algorithm 3.1 Inertial extragradient method for solving (BVIP).

Initialization: Take θ > 0, � ∈ (0, 1), μ > 0, λ ∈ (0, 1/μ), γ ∈ (0, 2β/L2
F ) and let x0, x1 ∈ H.

Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute wn = xn + θn(xn − xn−1), where

θn =
⎧
⎨

⎩
min

{
εn

‖xn − xn−1‖ , θ

}
, if xn �= xn−1;

θ, otherwise.
(In-Cri)

Step 2. Compute yn = PC (wn − λMwn). Set rλ (wn) = wn − yn .
Step 3. Compute tn = wn − τnrλ (wn), where τn = �mn and mn is the smallest non-negative integer m
satisfying

〈
Mwn − M

(
wn − �mrλ (wn)

)
, rλ (wn)

〉 ≤ μ ‖rλ (wn)‖2 . (Ar-1)

Step 4. Compute zn = PHn (wn), where the half-space Hn is defined by

Hn = {x ∈ C : hn(x) ≤ 0} and hn(x) = 〈Mtn , x − tn〉 . (Hn-1)

Step 5. Compute xn+1 = zn − αnγ Fzn .
Set n := n + 1 and go to Step 1.

Remark 3.2 We note here that the inertial calculation criterion (In-Cri) is easy to implement
since the term ‖xn − xn−1‖ is known before calculating θn . It follows from (In-Cri) and the
assumptions on {αn} that limn→∞(θn‖xn − xn−1‖)/αn = 0. Furthermore, the assumption
(A5) is easily satisfied by, for example, taking αn = 1/(n + 1) and εn = 1/(n + 1)2.

The following lemmas are crucial for the convergence analysis of Algorithm 3.1.

Lemma 3.1 Suppose that Assumptions (A1)–(A3) hold. The Armijo line search rule (Ar-1) is
well defined.

Proof Since mapping M is uniformly continuous on C and � ∈ (0, 1), one obtains

lim
m→∞

〈
Mwn − M

(
wn − �mrλ (wn)

)
, rλ (wn)

〉 = 0.

Moreover, it can be easily seen that ‖rλ(wn)‖ > 0 (otherwise, yn is a solution of (VIP)).
Thus, there exists a non-negative integer mn satisfying (Ar-1). ��

Lemma 3.2 Suppose that Assumptions (A1)–(A3) hold. Let x∗ be a solution of (VIP). Then
hn (x∗) ≤ 0 and hn (wn) ≥ τn

(
λ−1 − μ

) ‖rλ (wn)‖2. In particular, if rλ (wn) �= 0 then
hn (wn) > 0.

Proof From x∗ ∈ �, tn ∈ C and Lemma 2.1, one obtains hn(x∗) = 〈Mtn, x∗ − tn〉 ≤ 0.
Using the definitions of hn and tn , one sees that

hn (wn) = 〈Mtn, wn − tn〉 = 〈Mtn, τnrλ (wn)〉 = τn 〈Mtn, rλ (wn)〉 . (3.2)

123



   64 Page 6 of 20 B. Tan, S. Y. Cho

By using the property of projection ‖x − PC (y)‖2 ≤ 〈x − y, x − PC (y)〉 ,∀x ∈ C, y ∈ H
and taking x = wn and y = wn − λMwn , we obtain

‖wn − PC (wn − λMwn)‖2 ≤ λ 〈Mwn, wn − PC (wn − λMwn)〉 ,

which yields that 〈Mwn, rλ (wn)〉 ≥ λ−1 ‖rλ (wn)‖2. From (Ar-1), one has

〈Mtn, rλ (wn)〉 ≥ 〈Mwn, rλ (wn)〉 − μ ‖rλ (wn)‖2
≥ (

λ−1 − μ
) ‖rλ (wn)‖2 .

(3.3)

Combining (3.2) and (3.3), we observe that hn (wn) ≥ τn
(
λ−1 − μ

) ‖rλ (wn)‖2. ��
Lemma 3.3 Suppose that Assumptions (A1)–(A3) hold. Let {wn} and {yn} be two sequences
formulated by Algorithm 3.1. If there exists a subsequence

{
wnk

}
of {wn} such that

{
wnk

}

converges weakly to z ∈ H and limk→∞ ‖wnk − ynk ‖ = 0, then z ∈ �.

Proof The proof of this lemma follows that of Lemma 3.11 in [17], and so it is omitted. ��
Lemma 3.4 Suppose that Assumptions (A1)–(A3) hold. Let the sequences {wn} and {yn} be
created by Algorithm 3.1. If limn→∞ τn‖rλ(wn)‖2 = 0 then limn→∞ ‖wn − yn‖ = 0.

Proof We show that limn→∞ ‖wn − yn‖ = 0 by consider two cases of τn . First, we assume
that lim infn→∞ τn > 0. Then, there exists a positive number τ such that τn ≥ τ > 0,∀k ∈ N.
Moreover, one sees that

‖wn − yn‖2 = 1

τn
τn ‖wn − yn‖2 ≤ 1

τ
· τn ‖wn − yn‖2 .

Therefore, we obtain limn→∞ ‖wn − yn‖ = 0 by the hypothesis. On the other hand, one
supposes that lim infn→∞ τn = 0. In this situation, we suppose that {nk} is a subsequence of
{n} such that

lim
k→∞ τnk = 0 and lim

k→∞
∥∥wnk − ynk

∥∥ = a > 0. (3.4)

Let yk = wnk − �−1τnk (wnk − ynk ). It follows that

lim
k→∞

∥∥yk − wnk

∥∥2 = lim
k→∞

1

�2
τnk · τnk

∥∥wnk − ynk

∥∥2 = 0,

which together with the fact that M is uniformly continuous, gives limk→∞
∥∥Mwnk − Myk

∥∥
= 0. From the definition of yk and (Ar-1), we obtain

〈
Mwnk − Myk, wnk − ynk

〉
> μ

∥∥wnk − ynk

∥∥2 , (3.5)

which further yields that limk→∞
∥∥wnk − ynk

∥∥ = 0. This contradicts the hypothesis (3.4).
Thus we conclude that limn→∞ ‖wn − yn‖ = 0. The proof is completed. ��
Theorem 3.1 Assume that Assumptions (A1)–(A5) hold. Then the sequence {xn} generated
by Algorithm 3.1 converges to the unique solution of the (BVIP) in norm.

Proof We divide the proof into four claims.
Claim 1. The sequence {xn} is bounded. Let p ∈ �. From Lemma 2.2 and the property of
projection ‖PC (x) − y‖2 ≤ ‖x − y‖2 − ‖x − PC (x)‖2, ∀y ∈ C , and take x = wn , y = p
and C = Hn , we deduce

‖zn − p‖2 ≤ ‖wn − p‖2 − ∥∥wn − PHn (wn)
∥∥2

= ‖wn − p‖2 − dist2 (wn, Hn) ,
(3.6)
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which means that

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ 1. (3.7)

By the definition of wn , one has

‖wn − p‖ ≤ αn · θn

αn
‖xn − xn−1‖ + ‖xn − p‖. (3.8)

According to Remark 3.2, we have θn
αn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there exists
a constant Q1 > 0 such that

θn

αn
‖xn − xn−1‖ ≤ Q1, ∀n ≥ 1. (3.9)

Combining (3.7), (3.8) and (3.9), we obtain

‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + αn Q1, ∀n ≥ 1. (3.10)

Using Lemma 2.3 and (3.10), it follows that

‖xn+1 − p‖ = ‖ (I − αnγ F) zn − (I − αnγ F) p − αnγ Fp‖
≤ (1 − αnη) ‖zn − p‖ + αnγ ‖Fp‖
≤ (1 − αnη) ‖xn − p‖ + αnη · Q1

η
+ αnη · γ

η
‖Fp‖

≤ max

{
Q1 + γ ‖Fp‖

η
, ‖xn − p‖

}

≤ · · · ≤ max

{
Q1 + γ ‖Fp‖

η
, ‖x1 − p‖

}
,

where η = 1−
√
1 − γ

(
2β − γ L2

F

) ∈ (0, 1). This implies that the sequence {xn} is bounded.
We obtain that the sequences {wn}, {yn}, {tn}, and {zn} are also bounded.
Claim 2.

‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn Q4

and
[
D−1τn

(
λ−1 − μ

) ‖rλ (wn)‖2 ]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn Q4

for some Q4 > 0. It follows from (3.10) that

‖wn − p‖2 ≤ ‖xn − p‖2 + αn
(
2Q1‖xn − p‖ + αn Q2

1

)

≤ ‖xn − p‖2 + αn Q3
(3.11)

for some Q3 > 0. Using the inequality ‖x + y‖2 ≤ ‖x‖2 +2〈y, x + y〉, ∀x, y ∈ H, one has

‖xn+1 − p‖2 = ‖ (I − αnγ F) zn − (I − αnγ F) p − αnγ Fp‖2
≤ (1 − αnη)2 ‖zn − p‖2 + 2αnγ 〈Fp, p − xn+1〉
≤ ‖zn − p‖2 + αn Q2

(3.12)

for some Q2 > 0. Combining (3.6), (3.11) and (3.12), we obtain
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‖xn+1 − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 + αn Q2

≤ ‖xn − p‖2 − ‖zn − wn‖2 + αn Q4,
(3.13)

where Q4 := Q2 + Q3. The first inequality can be obtained by a simple conversion.
From {Mtn} is bounded, there is D > 0 such that ‖Mtn‖ ≤ D,∀n. For any u, v ∈ H, we

derive

‖hn(u) − hn(v)‖ = ‖〈Mtn, u − v〉‖ ≤ ‖Mtn‖ ‖u − v‖ ≤ D‖u − v‖,
which means that hn(x) is D-Lipschitz continuous onH. From Lemmas 2.2 and 3.2, we find
that

dist (wn, Hn) ≥ D−1hn (wn) ≥ D−1τn
(
λ−1 − μ

) ‖rλ (wn)‖2 .

This together with (3.6) gives

‖zn − p‖2 ≤ ‖wn − p‖2 − [
D−1τn

(
λ−1 − μ

) ‖rλ (wn)‖2 ]2
.

From (3.11) and (3.12), we have

‖xn+1 − p‖2 ≤ ‖zn − p‖2 + αn Q2

≤ ‖xn − p‖2 − [
D−1τn

(
λ−1 − μ

) ‖rλ (wn)‖2 ]2 + αn Q4.

A simple transformation of the above equation can obtain the second inequality.
Claim 3.

‖xn+1 − p‖2 ≤ (1 − αnη) ‖xn − p‖2 + αnη

[
2γ

η
〈Fp, p − xn+1〉 + 3Qθn

αnη
‖xn − xn−1‖

]

for some Q > 0. Indeed, we have

‖wn − p‖2 ≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖ + θ2n ‖xn − xn−1‖2. (3.14)

Combining (3.7) and (3.12), we deduce

‖xn+1 − p‖2 ≤ (1 − αnη) ‖wn − p‖2 + 2αnγ 〈Fp, p − xn+1〉 . (3.15)

Substituting (3.14) into (3.15), we obtain

‖xn+1 − p‖2 ≤ (1 − αnη) ‖xn − p‖2 + 2αnγ 〈Fp, p − xn+1〉
+ θn‖xn − xn−1‖ (2‖xn − p‖ + θ‖xn − xn−1‖)

≤ (1 − αnη) ‖xn − p‖2 + αnη

[
2γ

η
〈Fp, p − xn+1〉 + 3Qθn

αnη
‖xn − xn−1‖

]
,

where Q := supn∈N {‖xn − p‖, θ‖xn − xn−1‖} > 0.
Claim 4. The sequence {‖xn − p‖} converges to zero. By Lemma 2.4, it needs to show
that lim supk→∞

〈
Fp, p − xnk+1

〉 ≤ 0 for every subsequence
{‖xnk − p‖} of {‖xn − p‖}

satisfying

lim inf
k→∞

(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. (3.16)

For this purpose, one assumes that
{‖xnk − p‖} is a subsequence of {‖xn − p‖} such that

(3.16) holds. Then

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2)

= lim inf
k→∞

[(‖xnk+1 − p‖ − ‖xnk − p‖) (‖xnk+1 − p‖ + ‖xnk − p‖)] ≥ 0.
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By Claim 2 and the assumption on {αn}, one obtains
lim sup

k→∞
(‖wnk − znk ‖2

) ≤ lim sup
k→∞

[
αnk Q4 + ‖xnk − p‖2 − ‖xnk+1 − p‖2]

≤ lim sup
k→∞

αnk Q4 + lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2]

= − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk − p‖2] ≤ 0,

and

lim sup
k→∞

[
D−1τnk

(
λ−1 − μ

) ∥∥rλ

(
wnk

)∥∥2 ]2 ≤ 0.

These imply that

lim
k→∞ ‖wnk − znk ‖ = 0 and lim

k→∞ τnk

∥∥rλ(wnk )
∥∥2 = 0.

It follows from Lemma 3.4 that limk→∞
∥∥wnk − ynk

∥∥ = 0. Moreover, we can show that

‖xnk+1 − znk ‖ = αnk γ ‖Fznk ‖ → 0 as n → ∞ (3.17)

and

‖xnk − wnk ‖ = αnk · θnk

αnk

‖xnk − xnk−1‖ → 0 as n → ∞. (3.18)

Combining (3.17) and (3.18), we arrive at

‖xnk+1 − xnk ‖ ≤ ‖xnk+1 − znk ‖ + ‖znk − wnk ‖ + ‖wnk − xnk ‖ → 0 as n → ∞.(3.19)

Since the sequence
{

xnk

}
is bounded, there exists a subsequence {xnk j

} of {xnk }, which
converges weakly to some z ∈ H. By (3.18), we obtain wnk ⇀z as k → ∞. This together
with limk→∞ ‖wnk − ynk ‖ = 0 and Lemma 3.3 yields that z ∈ �. From the assumption that
p is the unique solution of the (BVIP), we deduce

lim sup
k→∞

〈
Fp, p − xnk

〉 = lim
j→∞

〈
Fp, p − xnk j

〉 = 〈Fp, p − z〉 ≤ 0. (3.20)

Using (3.19) and (3.20), we obtain

lim sup
k→∞

〈Fp, p − xnk+1〉 = lim sup
k→∞

〈
Fp, p − xnk

〉 ≤ 0. (3.21)

From limn→∞ θn
αn

‖xn − xn−1‖ = 0 and (3.21), we observe

lim sup
k→∞

[
2γ

η

〈
Fp, p − xnk+1

〉 + 3Qθnk

αnk η
‖xnk − xnk−1‖

]
≤ 0. (3.22)

Combining Claim 3, Assumption (A5) and (3.22), in the light of Lemma 2.4, one concludes
that limn→∞ ‖xn − p‖ = 0. That is, xn → p as n → ∞. This completes the proof. ��

3.2 Second type of projection algorithm

Inspired by the inertial method, the Algorithm 4 proposed by Reich et al. [18] and the hybrid
steepest descent method [20], we present our second iterative scheme which employs a
different hyperplane from Algorithm 3.1 for solving the (BVIP). More precisely, the scheme
is shown in Algorithm 3.2.

We start the convergence analysis of Algorithm 3.2 by proving the following lemma.
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Algorithm 3.2 Modified inertial extragradient method for solving (BVIP).

Initialization: Take θ > 0, � ∈ (0, 1), μ > 0, λ ∈ (0, 1/μ), γ ∈ (0, 2β/L2
F ) and let x0, x1 ∈ H.

Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute wn = xn + θn(xn − xn−1), where θn is defined in (In-Cri).
Step 2. Compute yn = PC (wn − λMwn). Set rλ (wn) = wn − yn .
Step 3. Compute tn = wn − τnrλ (wn), where τn = �mn and mn is the smallest non-negative integer m
satisfying

〈
Mwn − M

(
wn − �mrλ (wn)

)
, rλ (wn)

〉 ≤ μ

2
‖rλ (wn)‖2 . (Ar-2)

Step 4. Compute zn = PHn (wn), where the half-space Hn is defined by

Hn = {x ∈ C : hn(x) ≤ 0} and hn(x) = 〈Mtn , x − wn〉 + τn

2λ
‖rλ (wn)‖2 . (Hn-2)

Step 5. Compute xn+1 = zn − αnγ Fzn .
Set n := n + 1 and go to Step 1.

Lemma 3.5 Suppose that Assumptions (A1)–(A3) hold. Let x∗ be a solution of (VIP). Then
hn (x∗) ≤ 0 and hn (wn) = τn

2λ ‖rλ (wn)‖2. In particular, if rλ (wn) �= 0 then hn (wn) > 0.

Proof From the definition of hn(x), one obtains hn (wn) = τn
2λ ‖rλ (wn)‖2. It follows from

Lemma 3.2 that 〈Mtn, x∗ − tn〉 ≤ 0 and 〈Mwn, rλ (wn)〉 ≥ λ−1 ‖rλ (wn)‖2. From (Ar-2),
one has

〈Mtn, rλ (wn)〉 ≥ 〈Mwn, rλ (wn)〉 − μ

2
‖rλ (wn)‖2 ≥

(
1

λ
− μ

2

)
‖rλ (wn)‖2 ,

which together with the definitions of hn(x) and tn yields that

hn
(
x∗) = −〈Mtn, wn − tn〉 + 〈

Mtn, x∗ − tn
〉 + τn

2λ
‖rλ (wn)‖2

≤ −τn 〈Mtn, rλ (wn)〉 + τn

2λ
‖rλ (wn)‖2

≤ −τn

2

(
2λ−1 − μ

) ‖rλ (wn)‖2 + τn

2λ
‖rλ (wn)‖2

= −τn

2

(
λ−1 − μ

) ‖rλ (wn)‖2 ≤ 0.

This completes the proof. ��
Theorem 3.2 Assume that Assumptions (A1)–(A5) hold. Then the sequence {xn} generated
by Algorithm 3.2 converges to the unique solution of the (BVIP) in norm.

Proof The proof of this theorem is very similar to Theorem 3.1. To avoid repetition of
expressions, we omit some details. We likewise divide this proof into four parts.
Claim 1. The sequence {xn} is bounded. Using the same facts as (3.6)–(3.10), we obtain that
the sequences {xn}, {wn}, {yn}, {tn}, and {zn} are bounded.
Claim 2.

‖zn − wn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn Q4

and
[ τn

2λD
‖rλ (wn)‖2

]2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn Q4.

123



Two projection-based methods for bilevel pseudomonotone. . . Page 11 of 20    64 

As stated in Claim 2 of Theorem 3.1, we can easily follow the first inequality. Moreover, we
also obtain that hn(x) is D-Lipschitz continuous onH. From Lemmas 2.2 and 3.5, we have

dist (wn, Hn) ≥ D−1hn (wn) = τn

2λD
‖rλ (wn)‖2 .

This together with (3.6), (3.11) and (3.12) implies that

‖xn+1 − p‖2 ≤ ‖wn − p‖2 − dist2 (wn, Hn) + αn Q2

≤ ‖xn − p‖2 −
[ τn

2λD
‖rλ (wn)‖2

]2 + αn Q4,

where Q4 is defined in Claim 2 of Theorem 3.1. A simple transformation of the above
equation can obtain the second inequality.
Claim 3.

‖xn+1 − p‖2 ≤ (1 − αnη) ‖xn − p‖2 + αnη

[
2γ

η
〈Fp, p − xn+1〉 + 3Qθn

αnη
‖xn − xn−1‖

]
.

The result can be obtained by using the same facts as declared in Claim 3 of Theorem 3.1.
Claim 4. The sequence {‖xn − p‖} converges to zero. Let {‖xnk − p‖} be a subsequence of
{‖xn − p‖} such that (3.16) holds. It follows from Claim 2 and Assumption (A5) that

lim sup
k→∞

∥∥wnk − znk

∥∥2 ≤ 0 and lim sup
k→∞

[ τnk

2λD

∥∥rλ

(
wnk

)∥∥2
]2 ≤ 0.

Therefore, we deduce that limk→∞ ‖wnk − znk ‖ = 0 and limk→∞ τnk

∥∥rλ(wnk )
∥∥2 = 0. By

means of Lemma 3.4, one has limk→∞
∥∥wnk − ynk

∥∥ = 0. Using the same arguments as
(3.17)–(3.21), we obtain

lim sup
k→∞

〈Fp, p − xnk+1〉 ≤ 0.

From Remark 3.2, Claim 3 and Lemma 2.4, we conclude that xn → p as n → ∞. The proof
is now complete. ��

Now, we give a special case of Theorems 3.1 and 3.2. Set F(x) = x − f (x) in Algo-
rithms 3.1 and 3.2, where mapping f : H → H is ρ-contraction. It can be easily verified that
mapping F : H → H is (1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly monotone (see
[22]). In this situation, by picking γ = 1, we obtain two new inertial iterative algorithms for
solving the variational inequality problem (VIP). More specifically, we have the following
results.

Corollary 3.1 Suppose that Assumptions (A1)–(A3) and (A5) hold. Let mapping f : H → H
be ρ-contraction with ρ ∈ [0, √5 − 2). Take θ > 0, � ∈ (0, 1), μ > 0 and λ ∈ (0, 1/μ).
Let x0, x1 ∈ H be two arbitrary initial points and the iterative sequence {xn} be generated
by the following:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − λMwn) , tn = wn − τn(wn − yn),

xn+1 = αn f (zn) + (1 − αn) zn, zn = PHn (wn) ,

θn, τn and Hn are defined in (I n − Cri), (Ar − 1) and (Hn − 1).

(3.23)
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and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wn = xn + θn (xn − xn−1) ,

yn = PC (wn − λMwn) , tn = wn − τn(wn − yn),

xn+1 = αn f (zn) + (1 − αn) zn, zn = PHn (wn) ,

θn, τn and Hn are defined in (I n − Cri), (Ar − 2) and (Hn − 2).

(3.24)

Then the iterative sequence {xn} formed by Algorithm (3.23) (or Algorithm (3.24)) converges
to p ∈ � in norm, where p = P�( f (p)).

Remark 3.3 The iterative schemes obtained in this paper have a wide range of applications
and a faster computational efficiency based on the following observations: (i) We replace the
Lipschitz continuity of the mapping M in [21–24] with the uniform continuity of mapping
M in the proposed algorithms. Furthermore, the suggested iterative schemes can solve the
pseudomonotone (BVIP), while the algorithm stated in [21] can only solve the monotone
(BVIP). (ii) Our Algorithms (3.23) and (3.24) improve many numerical methods in the
literature (see, e.g., [12,13,16–19]) for solving variational inequality problems due to the fact
that the mapping M involved in the proposed algorithms is pseudomonotone and uniformly
continuous. (iii) Our algorithms are embedded with inertial terms making them converge
faster than the algorithms without inertial [17,18] (see Sect. 4).

4 Numerical experiments and applications

In this section, we present some computational experiments to illustrate the numerical
performance of the proposed algorithms over some existing ones. All the programs were
implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz com-
puter with RAM 8.00 GB.

4.1 Numerical examples in finite- and infinite-dimensions

Example 4.1 We consider the following fractional programming problem:

min f (x) = xTQx + aTx + a0
bTx + b0

, x ∈ C := {
x ∈ R

5 : bTx + b0 > 0
}
,

where Q, a, b, a0 and b0 are defined in [24, Example 4.1]. Let the mapping M be created
by M(x) := ∇ f (x). It is known that the mapping M is pseudomonotone and Lipschitz
continuous (see [39]). We now consider the mapping F : Rm → R

m (m = 5) defined by
F(x) = Gx +q , where G = B BT+ D + K , and B is a m ×m matrix with their entries being
generated in (0, 1), D is a m × m skew-symmetric matrix with their entries being generated
in (−1, 1), K is a m × m diagonal matrix whose diagonal entries are positive in (0, 1) (so G
is positive semidefinite), q ∈ R

m is a vector with entries being generated in (0, 1). It is clear
that F is L F -Lipschitz continuous and β-strongly monotone with L F = max{eig(G)} and
β = min{eig(G)}, where eig(G) represents all eigenvalues of G.

We use the proposed Algorithms 3.1 and 3.2 to solve the (BVIP) with M , F and C given
above, and compare them with the Algorithm 1 introduced by Thong et al. [23] and the
Algorithm 3.2 suggested by Tan, Liu and Qin [24]. The parameters of all algorithms are set
as follows. Take αn = 1/(n + 1) and γ = 1.7β/L2

F for all algorithms. Choose μ = 0.1,
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(b)(a)

(d)(c)

Fig. 1 Numerical results of all algorithms for Example 4.1

λ1 = 0.6 for Thong et al.’s Algorithm 1 and Tan et al.’s Algorithm 3.2. Pick θ = 0.4,
εn = 100/(n + 1)2 for the proposed Algorithms 3.1 and 3.2, and Tan et al.’s Algorithm 3.2.
Set φ = 1.5 for Thong et al.’s Algorithm 1. Adopt � = 0.5, μ = 0.4, λ = 0.5/μ for the
proposed Algorithms 3.1 and 3.2. We use Dn = ‖xn+1 − xn‖ to measure the error of the
nth iteration since we do not know the exact solution to the problem (BVIP). The maximum
number of iterations 200 is used as a common stopping criterion for all algorithms. Numerical
results of all algorithms with four different initial values x0 = x1 are reported in Fig. 1.

Example 4.2 LetH = L2([0, 1]) be an infinite-dimensional Hilbert space with inner product
〈x, y〉 = ∫ 1

0 x(t)y(t) dt and induced norm ‖x‖ = (
∫ 1
0 |x(t)|2 dt)1/2. Assume that the feasible

set is given by C = {x ∈ H : ‖x‖ ≤ 2}. Define a mapping h : C → R by h(m) =
1/(1+‖m‖2). Recall that theVolterra integration operatorV : H → H is given byV (m)(t) =∫ t
0 m(s) ds, ∀t ∈ [0, 1], m ∈ H. Now, we define the mapping M : C → H as follows:

M(m)(t) = h(m)V (m)(t), ∀t ∈ [0, 1], m ∈ C . Notice that the operator M is Lipschitz
continuous and pseudomonotone but not monotone (see [16, Example 6.10]). We use the
proposed Algorithms (3.23) and (3.24) to solve the (VIP) with M and C given above, and
compare them with several previously known strongly convergent algorithms, including the
Algorithm 3.3 suggested by Thong, Shehu and Iyiola [17] (shortly, TSI Alg. 3.3) and the
Algorithm 4 proposed by Reich et al. [18] (shortly, RTDLD Alg. 4). The parameters of
all algorithms are set as follows. Take αn = 1/(n + 1), f (x) = 0.1x , � = 0.5, μ =
0.4, λ = 0.5/μ for all algorithms. Pick θ = 0.4, εn = 100/(n + 1)2 for the proposed
Algorithms (3.23) and (3.24). The numerical behavior of Dn = ‖xn+1(t) − xn(t)‖ of all
algorithms with four starting points x0(t) = x1(t) is shown in Fig. 2.
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(d)(c)

(a) (b)

Fig. 2 Numerical results of all algorithms for Example 4.2

Example 4.3 Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi , . . .) |∑∞
i=1 |xi |2 < +∞} equipped with inner product 〈x, y〉 = ∑∞

i=1 xi yi and induced norm
‖x‖ = √〈x, x〉 for any x, y ∈ H. Let the feasible set by given as C := {x ∈ H : |xi | ≤ 1/i}.
Define an operator M : C → H by Mx = (‖x‖ + 1/(‖x‖ + ϕ)

)
x for some ϕ > 0. It can be

verified that mapping M is pseudomonotone on H, uniformly continuous and sequentially
weakly continuous on C but not Lipschitz continuous on H (see [17, Example 1] for more
details). In the following cases, we take ϕ = 0.5, and H = R

m for different values of m.
Next, we consider two different forms of operator F .
Case 1. Let mapping F be the same as defined in Example 4.1. We apply the proposed
Algorithms 3.1 and 3.2 to address the problem (BVIP) with M and F given above. Choose
αn = 1/(n + 1), � = 0.5, μ = 0.4, λ = 0.5/μ, γ = 1.7β/L2

F , θ = 0.4, and εn =
100/(n + 1)2 for the proposed Algorithms 3.1 and 3.2. We use Dn = ‖xn+1 − xn‖ to denote
the iteration error of the nth step of all algorithms, and use the maximum number of iterations
200 as a common stopping criterion. The execution time and iteration error of the proposed
algorithms in four different dimensions are shown in Table 1, where “CPU” in Table 1
indicates the computation time in seconds.
Case 2. Take F(x) = x − f (x), x ∈ H, where mapping f : H → H is ρ-contraction.
Now, we can use the proposed Algorithms (3.23) and (3.24) to solve the problem (VIP).
We compare the proposed Algorithms (3.23) and (3.24) with the two schemes mentioned in
Example 4.2 (i.e., TSIAlg. 3.3 [17] andRTDLDAlg. 4 [18]). The parameters of all algorithms
are the same as in Example 4.2. The numerical performance of the sequence {‖xn+1 − xn‖}
of all algorithms with four different dimensions is reported in Fig. 3.
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Table 1 Numerical results of the proposed algorithms in Case 1 of Example 4.3

Algorithms m = 50 m = 200 m = 500 m = 2000

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 1.86E−09 0.0398 2.68E−11 0.0436 1.31E−12 0.0761 1.81E−12 0.8125

Our Alg. 3.2 2.92E−08 0.0309 5.84E−03 0.0394 5.60E−03 0.0712 1.33E−03 0.8355

(d)(c)

(a) (b)

Fig. 3 Numerical behavior of all algorithms in Case 2 of Example 4.3

Remark 4.1 From Examples 4.1, 4.2 and 4.3, we have the following observations: (i) From
Figs. 1, 2, 3 and Table 1, it can be seen that the proposed algorithms converge quickly.
Moreover, the suggested methods have a higher accuracy than the previously known ones
in [17,18,23,24] under the same stopping conditions. These results are independent of the
choice of initial values and the size of the dimension. Therefore, our suggested algorithms
are efficient and robust. (ii) Notice that the operator M in Example 4.2 is pseudomonotone
rather than monotone, and that the operator M in Example 4.3 is uniformly continuous but
not Lipschitz continuous. The algorithms used in the literature (see, e.g., [12–14]) for solving
monotone and Lipschitz continuous VIPs and the methods introduced in the literature (see,
e.g., [21–24]) for addressing bilevel monotone (or even pseudomonotone) BVIPs will not be
available in these cases. However, our proposed algorithms can work well and thus they have
a broader scope of applications.
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(a) (b)

Fig. 4 Numerical results of the proposed Algorithm (3.23) for Example 4.4

4.2 Application to optimal control problems

Next, we use the proposed algorithms to solve the (VIP) that appears in optimal control
problems. We recommend readers to refer to [15,40] for detailed description of the problem.
We compare the suggested Algorithms (3.23) and (3.24) with two strongly convergent ones
in the literature. Two methods used to compare here are the Algorithm (31) (shortly, TLDCR
Alg. (31)) introduced by Thong et al. [23] and theAlgorithm (3.39) (shortly, TLQAlg. (3.39))
proposed by Tan, Liu and Qin [24]. The parameters of all algorithms are set as follows. Set
N = 100, αn = 10−4/(n + 1) for all algorithms. Take θ = 0.01, εn = 10−4/(n + 1)2,
f (x) = 0.1x for the proposed Algorithms (3.23) and (3.24), and TLQ Alg. (3.39). Choose
μ = 0.1, λ1 = 0.4 for TLDCR Alg. (31) and TLQ Alg. (3.39). Adopt α = 1.5 for TLDCR
Alg. (31). Pick � = 0.1, μ = 0.5, λ = 0.5/μ for the proposed Algorithms (3.23) and (3.24).
The initial controls p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping criterion
is either Dn = ‖pn+1 − pn‖ ≤ 10−3, or the maximum number of iterations 500000 is
reached.

Example 4.4 (Control of a harmonic oscillator, see [41])

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π],
x(0) = 0,

p(t) ∈ [−1, 1].
The exact optimal control of Example 4.4 is known:

p∗(t) =
{

1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

Figure 4 shows the approximate optimal control and the corresponding trajectories of the
proposed Algorithm (3.23).

We now consider an example in which the terminal function is not linear.
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(a) (b)

Fig. 5 Numerical results of the suggested Algorithm (3.24) for Example 4.5

(a) (b)

Fig. 6 Error estimates of all algorithms for Examples 4.4 and 4.5

Example 4.5 (Rocket car [40])

minimize 0.5
(
(x1(5))

2 + (x2(5))
2) ,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 5],
x1(0) = 6, x2(0) = 1,

p(t) ∈ [−1, 1].
The exact optimal control of Example 4.5 is

p∗(t) =
{

1 if t ∈ (3.517, 5] ;
−1 if t ∈ (0, 3.517].

The approximate optimal control and the corresponding trajectories of the suggested Algo-
rithm (3.24) are plotted in Fig. 5.

Finally, we compare the offered Algorithms (3.23) and (3.24) with TLDCRAlg. (31) [23]
and TLQAlg. (3.39) [24] for Examples 4.4 and 4.5. Figure 6 presents the numerical behavior
of the error estimate ‖pn+1 − pn‖ with respect to the number of iterations for all algorithms.
Moreover, the number of terminated iterations and the execution time of all algorithms are
shown in Table 2.
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Table 2 Numerical results of all algorithms for Examples 4.4 and 4.5

Algorithms Example 4.4 Example 4.5

Iter. CPU (s) Dn Iter. CPU (s) Dn

Our Alg. (3.23) 78 0.0406 1.15E−05 212 0.1364 9.48E−04

Our Alg. (3.24) 26993 10.8031 1.00E−03 500000 407.5957 7.26E−02

TLQ Alg. (3.39) [24] 193 0.1007 2.47E−05 1586 0.5253 9.50E−04

TLDCR Alg. (31) [23] 131 0.0521 8.11E−04 1109 0.3656 9.93E−04

Remark 4.2 The suggested Algorithms (3.23) and (3.24) can be applied to solve optimal
control problems. As shown in Fig. 6 and Table 2, the proposed algorithms perform better
when the terminal function is linear than when it is nonlinear. Furthermore, the proposed
Algorithm (3.23) outperforms the existing methods in the literature [23,24]. However, it
should be noted that the suggested Algorithm (3.24) needs to perform a larger number of
iterations to obtain a good result (see Fig. 6 and Table 2). In future work, we will consider
how to improve the convergence speed and accuracy of the suggested Algorithm (3.24).

5 Conclusions

In this paper, we proposed two projection-based algorithms to solve the bilevel variational
inequality problem involving a pseudomonotone and uniformly continuous operator. Strong
convergence theorems of the proposed algorithms are establishedwithout assuming Lipschitz
continuity of the mapping involved. The computational efficiency of the stated algorithms
is verified by means of some numerical examples in finite- and infinite-dimensional spaces
and by applications in optimal control problems. The iterative schemes obtained in this paper
improved and extended some existing known results in the literature for solving bilevel
variational inequality problems and variational inequality problems.
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