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Abstract
We provide five techniques for solving variational inequality problems on Hadamard
manifolds that are based on the adaptive extragradient method. These algorithms oper-
ate adaptively, eliminating the need for prior knowledge of the Lipschitz constant
associated with the vector field. Furthermore, the iterative sequences produced by the
algorithms are shown to converge to the solution of the problem under the conditions
that the vector fields are pseudo-monotone and Lipschitz continuous. Additionally, we
establish global error bounds and R-linear convergence rates when the vector fields
exhibit strong pseudo-monotonicity. Lastly, the theoretical results are illustrated with
two numerical instances.
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1 Introduction

This paper aims to present adaptive extragradient algorithms for solving variational
inequality problems (VIPs) within Hadamard manifolds. The VIP serves as a versa-
tile framework applicable to a range of fields, including equilibrium programming,
economics, transportation regulation, optimal control and compressed sensing (see,
e.g., [1–4]). Over the past decades, extensive research has focused on VIPs and
related algorithms in linear spaces (see [5–11]). Extending numerical methods from
Euclidean spaces to Riemannian manifolds offers advantages, including the transfor-
mation of non-convex (resp., non-monotone) problems into convex (resp., monotone)
ones through suitable Riemannian metrics (see [12, Section 4]). This underlines the
necessity of developing algorithms for VIPs in manifold contexts. In recent years,
significant progress has been made in studying optimization problems and solution
techniques on manifolds (see, e.g., [13–31]).

1.1 Our contributions

This paper extends the study of VIPs and iterative algorithms on Hadamard mani-
folds. We address the open question from [14, Section 8] and enhance existing results
by developing adaptive algorithms that accommodate pseudo-monotone and Lips-
chitz continuous vector fields using a non-monotone step size criterion. The generated
sequences converge to a solution under mild conditions, assuming the solution’s exis-
tence.We establish global error bounds and linear convergence results when the vector
fields are strongly pseudo-monotone. Additionally, numerical examples are provided
to demonstrate the theoretical findings. The proposed algorithms improve and extend
several known methods in the literature (see [13–18]).

1.2 Background and organization

Hadamard manifold have several notable properties (see Section 2 for further details),
which have drawn considerable attention from researchers. Examples of optimization
problems set in Hadamard manifolds can be found in [32, Section 1]. This paper
focuses on developing novel extragradient algorithms to solve VIPs. We follow the
formulation of the VIP on Hadamard manifolds as introduced by Németh [13]. Let X
be aHadamardmanifold, and letC be a nonempty, closed, and convex subset ofX . The
tangent bundle of X is denoted by TX , and B : C → TX represents a single-valued
vector field. The VIP associated with B and C is formulated as follows:

Find u∗ ∈ C such that 〈Bu∗,E−1
u∗ u〉 ≥ 0 (∀u ∈ C), (1.1)

where E−1 denotes the inverse of the exponential map. Throughout this paper, we
assume that the solution set ofVIP (1.1) is nonempty.Notably, theVIP (1.1) generalizes
the classical variational inequality problem in linear Euclidean spaces. It is known that
there are two popular methods in the literature to solve VIP (1.1): one of which is the
proximal point method (see, e.g., [16, 23, 26]) and the other is the extragradient-based
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method (see, e.g., [14, 15, 18]). Note that the proximal point algorithm is actually
an implicit iterative scheme, which means that an optimization subproblem needs to
be solved in each iteration. In this case, the proximal point algorithm may be time-
consuming. On the other hand, our concern in this paper is mainly on extragradient-
based algorithms with explicit forms. Korpelevich [5] invented the projection-based
extragradient technique, which has been expanded to solve equilibrium issues in both
linear and nonlinear areas and is known to be a useful instrument for addressing VIP.
Each iteration of the extragradient method includes two projections on the feasible set,
which could reduce the program’s computational efficiency if the projections are hard
to calculate. To improve the numerical performance of the extragradient algorithm,
there are several main variants of the extragradient algorithm; see, e.g., [7–11].

In contrast to linear spaces, there are few papers studying solution algorithms for
VIP (1.1) on Hadamard manifolds. In [13], Németh extended some findings on the
existence and uniqueness of solutions for VIPs in Euclidean spaces to Hadamard
manifolds. Subsequently, an extragradient approach with Armijo line search step sizes
was devised by Ferreira et al. [14] to identify singularities of continuous monotone
vector fields on Hadamard manifolds. Inspired by the work of Iusem and Svaiter
[6], Tang et al. [15, 17] provided two extragradient methods with Armijo line search
step sizes to find the solution of VIP (1.1). When the vector field is continuous and
pseudo-monotone, they demonstrated that the sequences produced by the proposed
algorithms converge to the solution set. Recently, Batista et al. [18] extended the results
in [15] from univalued vector fields to multivalued maximal monotone vector fields.
Very recently, Sahu et al. [28] proposed an extragradient algorithm with an Armijo-
type step size rule to solve both monotone and non-monotone variational inequalities.
Comparing the algorithm to [15, 17], they showed its computational efficiency with
numerical examples. The drawback of the algorithms described in [15, 17, 18, 28]
is that using the Armijo-type rule to update the step size significantly increases the
computation time. Therefore, it is interesting and necessary to continuously develop
some new results based on extragradient algorithms.

The structure of this paper is outlined as follows: Section 2 introduces key results
within the framework of Riemannian geometry. Section 3 details adaptive numerical
methods developed to address the VIP (1.1) by utilizing pseudo-monotone vector
fields, along with a convergence analysis of these algorithms. We also establish global
error bounds and demonstrate R-linear convergence for cases where the vector field
exhibits strong pseudo-monotonicity. In Section 4, we present fundamental tests on
Hadamard manifolds to validate the convergence of our methods. Finally, Section 5
wraps up the paper and suggests future research directions.

2 Notation and terminology

This section aims to present some useful concepts and results regarding Hadamard
manifolds, essential for understanding the content of this paper. These concepts are
standard in Riemannian geometry (see, e.g., [15, 23, 33–36]).

LetX be a connected k-dimensional manifold. The tangent bundle ofX , rep-
resented as TX , is given as TX = ∪u∈X TuX , where TuX is the tangent space
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at u ∈ X which consists of all tangent vectors at that point. A Riemannian metric
on TuX is an inner product 〈· , ·〉u that maps pairs of tangent vectors to nonnega-
tive real numbers, 〈· , ·〉u : TuX × TuX → R≥0, and induces a norm ‖ · ‖u such that
‖u‖u = 〈u, u〉1/2u .When this inner product defines aRiemannianmetric for every point
u ∈ X , the collection of inner products 〈· , ·〉 constitutes a Riemannian metric
on X . Riemannian manifold is the name given to a differentiable manifold X
that has this metric enabled. To keep things simple, the inner product and norm on
TuX will be represented by the notations 〈· , ·〉 and ‖ · ‖, respectively.

The length of a piecewise smooth curve η : [a, b] → X connecting points u
and q (where η(a) = u and η(b) = q) is defined as L(η) := ∫ b

a

∥
∥η′(t)

∥
∥ dt , where

η′(t) = dη(t)
dt represents a tangent vector in Tη(t)X . The minimum length over all such

curves linking u and q is known as the Riemannian distance between u and
q, denoted by s(u, q). The topology induced by this distance function on X matches
the original topology of the manifold, making (X , s) a complete metric space, which
implies that any closed and bounded subsets of X are compact (see [33, p. 146,
Proposition 2.6 and Theorem 2.8]).

A smooth curve η is called a geodesic if its derivative η′ remains parallel along
η, which implies that

∥
∥η′∥∥ remains constant. A geodesic connecting points u and q in

X is termed minimal if its length is equal to s(u, q). The parallel transport
PTη(b),η(a) : Tη(a)X → Tη(b)X on the tangent bundle TX along a minimal geodesic
from η(a) to η(b) is given as PTη(b),η(a)(v) := B(η(b)), where B is the unique vector
field such that ∇η′(t)B = θ (where θ is the zero tangent vector) for all t ∈ [a, b] and
satisfies B(η(a)) = v. It is important to note that PTη(b),η(a) acts as an isometry from
Tη(a)X to Tη(b)X .

The exponential map Eu : TuX → X at a point u is denoted as Euv :=
ηv(1, u), where ηv(·, u) denotes the geodesic originating from u with initial velocity
v. For any t ∈ R, Eutv = ηv(t, u), and Euθ = ηv(0, u) = u. The exponential map has
an inverse E−1

u : X → TuX . Additionally, we have (see, e.g., [33, p. 146, Proposition
2.5] and [35, p. 39, Corollary 2.8]):

∥
∥
∥E−1

u g
∥
∥
∥ =

∥
∥
∥E−1

g u
∥
∥
∥ = s(u, g) = s(g, u) (∀u, g ∈ X ).

A Hadamard manifold refers to a complete, simply connected Riemannian
manifold characterized by nonpositive sectional curvature. Throughout this paper, we
denote an k-dimensional Hadamardmanifold byX and useC to represent a nonempty,
closed, and convex subset within X . According to the well-known Hadamard-Cartan
Theorem [35, p. 221, Theorem 4.1], the topology and differential structure of X are
identical to those of the Euclidean spaceRm .We now proceed to recall some geometric
properties relevant to Hadamard manifolds.

Consider points u1, u2, and u3 on X . Let Δ(u1, u2, u3) denote a geodesic triangle
on X formed by three minimal geodesics ηi that connect ui to ui+1, where i =
1, 2, 3 (mod 3). Let αi be the angles of Δ(u1, u2, u3) at the vertices ui . Based on
the comparison theorem for triangles (see [35, p. 223, Prop. 4.5] and [22, Thm. 2.2]),
alongwith properties of the exponential map and distance onX , we have the following
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results (refer to [23, Eq. (2.3)], [24, Eq. (9)], and [31, p. 280, Prop. 14.16]):

〈
E−1
ui+1

ui ,E
−1
ui+1

ui+2
〉 = s (ui , ui+1) s (ui+1, ui+2) cosαi+1, (2.1)

s2 (ui , ui+1) + s2 (ui+1, ui+2) − 2
〈
E−1
ui+1

ui ,E
−1
ui+1

ui+2
〉 ≤ s2 (ui+2, ui ) , (2.2)

s2 (ui , ui+2) ≤ 〈
E−1
ui+2

ui ,E
−1
ui+2

ui+1
〉 + 〈

E−1
ui ui+1,E

−1
ui ui+2

〉
.

By letting ui+2 = ui in (2.1), one obtains

〈
E−1
ui+1

ui ,E
−1
ui+1

ui
〉 = s2 (ui+1, ui ) = ∥

∥E−1
ui+1

ui
∥
∥2.

Let the triangle Δ
(
u′, q ′, t ′

)
represent the comparison triangle for the geodesic

triangle Δ(u, q, t). It is important to note that the comparison triangle is unique up to
isometry within X .

Lemma 2.1 ([40, p. 24, Lemma 2.14])Consider the geodesic triangleΔ(u1, u2, u3) in
X . There exist points u′

i ∈ R
2 (i = 1, 2, 3) such that s(ui , u j ) = ‖u′

i − u′
j‖, ∀i, j ∈

{1, 2, 3}, i �= j .

Lemma 2.2 ([30, Lemma 3.5]) Let Δ(u, g, t) be a geodesic triangle in X , and let
Δ

(
u′, g′, t ′

)
be its corresponding comparison triangle. Denote the angles at u, g, t

of Δ(u, g, t) by τ, δ, η, and the angles at u′, g′, t ′ of Δ(u′, g′, t ′) by τ ′, δ′, η′. Then
τ ′ ≥ τ , δ′ ≥ δ, and η′ ≥ η.

Proposition 2.1 ([23, p. 671]) Let u, q ∈ X and v ∈ TqX . Then

〈v,−E−1
q u〉 = 〈v,PTq,uE

−1
u q〉 = 〈PTu,qv,E−1

u q〉.

Lemma 2.3 below is crucial for the convergence analysis in this paper.

Lemma 2.3 Let tm, rm, gm, gm+1 ∈ X . Consider the geodesic triangle Δ(tm, rm, gm)

and its comparison triangle Δ(t ′m, r ′
m, g′

m). Similarly, consider the geodesic triangle
Δ(tm, rm, gm+1) and its comparison triangle Δ(t ′m, r ′

m, g′
m+1). It follows that

〈g′
m+1 − r ′

m, t ′m − g′
m〉 ≤ 〈PTgm ,rmE

−1
rm gm+1,E

−1
gm tm〉.

Proof Let Ψ = E−1
rm gm+1 and a = EgmPTgm ,rmE

−1
rm gm+1. The comparison point of

a is a′ = g′
m + g′

m+1 − r ′
m . Let δ (resp., δ′) be the angle of Δ(a, gm, tm) (resp.,

Δ(a′, g′
m, t ′m)) at the vertice gm (resp., g′

m). According to Lemma 2.2, it follows that
δ′ ≥ δ and thus cos δ′ ≤ cos δ since δ, δ′ ∈ (0, π). By using Lemma 2.1 and (2.1),
one deduces that

〈a′ − g′
m, t ′m − g′

m〉 = ∥
∥a′ − g′

m

∥
∥

∥
∥t ′m − g′

m

∥
∥ cos δ′

≤ s (a, gm) s (tm, gm) cos δ = 〈PTgm ,rmE
−1
rm gm+1,E

−1
gm tm〉.

This completes the proof. ��
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Proposition 2.2 ([23, Lemma 2.4],[18, Lemma 1.1]) Let g0, r0 ∈ X , with sequences
{gm} ⊂ X and {rm} ⊂ X . If limm→∞ gm = g0 and limm→∞ rm = r0, then the
following claims are true.

(i) For any point y ∈ X , we have limm→∞ E−1
gm y = E−1

g0 y and limm→∞ E−1
y gm =

E−1
y g0.

(ii) If am ∈ TgmX and limm→∞ am = a0, then a0 ∈ Tg0X .
(iii) Given sm, am ∈ TgmX and s0, a0 ∈ Tg0X , if limm→∞ sm = s0 and

limm→∞ am = a0, then limm→∞〈sm, am〉 = 〈s0, a0〉.
(iv) For any u ∈ Tg0X , the function B : X → TX , defined by B(x) = PTx,g0u for

each x ∈ X is continuous on X .
(v) We have limm→∞ E−1

gm rm = E−1
g0 r0.

Proposition 2.3 ([18, Lemma 1.2]) Let {gm} ⊂ X , {am} ⊂ TgmX , and {tm} ⊂
(0, 1), with g0 ∈ X , a0 ∈ Tg0X , and t0 ∈ [0, 1) such that limm→∞ gm = g0,
limm→∞ am = a0, and limm→∞ tm = t0. Define {rm} by rm := Egm tmam. Then, it
holds that limm→∞ PTrm ,gmam = PTr0,g0a0, where r0 := Eg0 t0a0 = limm→∞ rm.

Definition 2.1 ([34, p. 59, Definition 1.3]) A subset C ⊂ X is called (geodesic)
convex if for any two points p, q ∈ C , the geodesic connecting p to q lies com-
pletely within C . Specifically, if η : [a, b] → X is a geodesic with p = η(a) and
q = η(b), then η((1 − t)a + tb) ∈ C for all t ∈ [0, 1].
Definition 2.2 ([39, Theorem 1], [22, Proposition 3.2]) Let C ⊂ X and t ′ ∈ X . The
point t ∈ C is called the projection of t ′ onto C , denoted as PjC

(
t ′
)
, if it satisfies

s
(
t ′, t

) ≤ s
(
t ′, y

)
for all y ∈ C .

Let PjC : X → C denote the projection onto C . According to [39, Theorem 2], the
projection PjC is Lipschitz continuous and characterized by Proposition 2.4 below.

Proposition 2.4 ([39, Theorem 2], [22, Corollary 3.1]) For C ⊂ X and u ∈ X , we
have PjC is single-valued and z = PjC (u) if and only if

〈E−1
z u,E−1

z q〉 ≤ 0 (∀q ∈ C).

Remark 2.1 From Proposition 2.4, u∗ solves problem (1.1) if and only if u∗ =
PjC

(
Eu∗(−ϑBu∗)

)
for all ϑ > 0. When X = R

m in Proposition 2.4, it follows
that 〈

u − PjC (u), q − PjC (u)
〉 ≤ 0 (∀u ∈ R

m)(∀q ∈ C).

This inequality relates to the fundamental property of projection (see, e.g., [42, p. 53,
Theorem 3.16]).

Lemma 2.4 ([15, Lemmas 2.2 and 2.4]) Let C be a closed and convex subset in a
Hadamard manifold X . Let u ∈ X and q ∈ C. Then

(i) s2(q,PjC (u)) ≤ s2(q, u) − s2
(
u,PjC (u)

)
(∀q ∈ C);

(ii) s2(q,PjC (u)) ≤ 〈E−1
q u,E−1

q PjC (u)〉 (∀q ∈ C).
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Remark 2.2 It is established that a class of firmly quasi-nonexpansive mappings con-
tains firmly nonexpansive mappings and quasi-nonexpansive mappings (refer to [42,
p. 69, Definition 4.1] for definitions). From (i) of Lemma 2.4, it follows that the projec-
tion operatorPjC inHadamardmanifolds also exhibits firmly quasi-nonexpansiveness.
This observation is additionally noted in [24, Corollary 1].

Definition 2.3 ([37, Definition 2.2], [23, Definition 3.1], [15, Definition 3.1], [38, p.
702]) Let C ⊂ X . A vector field B on C is a mapping B : C → TX such that
Bu ∈ TuX for each u ∈ X . Then B is said to be:

(i) monotone if

〈Bu,E−1
u q〉 ≤ 〈Bq,−E−1

q u〉, ∀u, q ∈ C .

(ii) μ-strongly monotone (μ > 0) if

〈Bu,E−1
u q〉 − 〈Bq,−E−1

q u〉 ≤ −μs2(u, q), ∀u, q ∈ C .

(iii) μ-strongly pseudo-monotone (μ > 0) if

〈Bu,E−1
u q〉 ≥ 0 ⇒ 〈Bq,E−1

q u〉 ≤ −μs2(u, q), ∀u, q ∈ C .

(iv) pseudo-monotone if

〈Bu,E−1
u q〉 ≥ 0 ⇒ 〈Bq,E−1

q u〉 ≤ 0, ∀u, q ∈ C .

(v) L-Lipschitz continuous (L > 0) if

∥
∥PTq,u Bu − Bq

∥
∥ ≤ Ls(u, q), ∀u, q ∈ C .

Lemma 2.5 ([17, Lemma 2.8]) If vector field B : C → TX is continuous and C is
compact and convex, then VIP (1.1) has a solution.

The notion of R-linear convergence in linear spaces can be generalized to
Hadamard manifolds.

Definition 2.4 In a Hadamard manifold X , a sequence {gm} converges R-linearly to
u∗ with rate α ∈ [0, 1) if there is a constant c > 0 such that s(gm, u∗) ≤ cαm for all
m ∈ N.

Definition 2.5 ([22, p. 268, Eq. (25)]) Given a complete metric space X , let C be a
nonempty set. With regard to C , a sequence {gm} ⊂ X is Fejér convergent provided

s (gm+1, q) ≤ s (gm, q) (∀q ∈ C)(∀m ≥ 0).

Lemma 2.6 ([22, Lemma 6.1], [14, Lemma 7.2]) Let C be a nonempty subset of a
complete metric space X. If the sequence {gm} ⊂ X is Fejér convergent to C, then
{gm} is bounded. Furthermore, if every cluster point of {gm} lies within C, then {gm}
converges to a point in C.
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3 Main results

In this section,wegivefivenew iterative algorithmswith adaptive step sizes designed to
solve variational inequalities governed by pseudo-monotone vector fields inHadamard
manifolds. Our three algorithms utilize an adaptive step size rule (see (3.1)) that
does not require a line search. This rule automatically adjusts the step size for the
next iteration based on information from previous iterations. The adaptive step size
approach proposed in this paper demonstrates improved performance over Armijo-
type step size rules used in previous works such as [15, 17, 18, 28], particularly
regarding computational efficiency. A key benefit of these algorithms is that they do
not require prior knowledge of the Lipschitz constant for the pseudo-monotone vector
field. To analyze the convergence of the proposed algorithms, we assume that the
following three conditions are satisfied.

(C1) The solution set Γ (B,C) of VIP (1.1) is assumed to be nonempty, that is
Γ (B,C) �= ∅.
(C2) The feasible set C is a nonempty, closed, and convex subset of Hadamard
manifold X .
(C3) The vector field B : C → TX is pseudo-monotone and L-Lipschitz continu-
ous onC . Let {�m} ⊂ [1,∞) satisfies

∑∞
m=1(�m −1) < ∞, and {μm} ⊂ [0,∞)

such that
∑∞

m=1 μm < ∞.

3.1 Five self-adaptive extragradient algorithms

In this subsection, we provide five modified extragradient-type methods to solve VIP
(1.1) in Hadamard manifolds. The five proposed algorithms offer a dual advantage of
simplicity and efficiency. Thefirst three algorithms are explicit iterative schemes,while
the last two are implicit ones. Building upon the subgradient extragradient algorithm
in Euclidean spaces [9], we start by presenting an adaptive modified subgradient
extragradient algorithm (see Algorithm 3.1 below) to solve VIP (1.1) with a pseudo-
monotone and Lipschitz continuous vector field.

Remark 3.1 If gm = rm in Step 1 of Algorithm 3.1, then by Remark 2.1,

〈Bgm,E−1
gm z〉 ≥ 0 (∀z ∈ C).

This yields that gm ∈ Γ (B,C) by the definition of VIP (1.1) and thus the iterative
process of Algorithm 3.1 stops.

In all subsequent convergence analyses, we assume that the proposed algorithms
do not terminate in a finite number of steps. Before proving the convergence theorem
of Algorithm 3.1, we first present two important lemmas.

Lemma 3.1 Let step size {ϑm} be a sequence generated by (3.1). Then it is well defined.
Proof Since B is L-Lipschitz continuous, in the case of

∥
∥PTrm ,gm Bgm − Brm

∥
∥ �= 0,

one obtains
νs (gm, rm)

∥
∥PTrm ,gm Bgm − Brm

∥
∥ ≥ νs (gm, rm)

Ls (gm, rm)
= ν

L
.
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Algorithm 3.1 The first type of modified subgradient extragradient algorithm
Initialization: Take ϑ0 > 0, ν ∈ (0, 1), and β ∈ (0, 2/(1 + ν)). Let {�m } and {μm } satisfy Condition
(C3). Let g0 ∈ X and set m = 0.
Step 1. Compute

rm = PjC
(
Egm (−ϑm Bgm )

)
.

If gm = rm , then stop the iterative process and gm ∈ Γ (B,C); otherwise, go to Step 2.
Step 2. Compute

gm+1 = PjHm

(
Egm

(
PTgm ,rm (−βϑm Brm )

))
,

where
Hm :=

{
x ∈ X : 〈E−1

rm gm − ϑmPTrm ,gm Bgm ,E−1
rm x〉 ≤ 0

}
,

and update ϑm+1 by

ϑm+1 =

⎧
⎪⎨

⎪⎩

min

{
νs (gm , rm )

∥
∥PTrm ,gm Bgm − Brm

∥
∥ , �mϑm + μm

}

, if
∥
∥PTrm ,gm Bgm − Brm

∥
∥ �= 0;

�mϑm + μm , otherwise.
(3.1)

Set m := m + 1 and go to Step 1.

Here, PTrm ,gm Bgm represents the parallel transport of Bgm from TgmX to TrmX along
a minimal geodesic connecting gm and rm . Combining the above inequality with (3.1)
leads to ϑm+1 ≥ min{ϑm, ν/L}. By induction, it follows that ϑm ≥ min{ϑ0, ν/L}.
Additionally, from (3.1), we observe that ϑm+1 ≤ �mϑm + μm for any m ≥ 0. Given
condition (C3) and [41, Lemma 1], we can conclude that limm→∞ ϑm exists. Since
the sequence {ϑm} is bounded below by min{ϑ0, ν/L}, it follows that limm→∞ ϑm :=
ϑ > 0. ��

Lemma 3.2 Let {rm} and {gm} be created by Algorithm 3.1. Fix p ∈ Γ (B,C). It
follows that

s2 (gm+1, p) ≤ s2 (gm, p) − β∗ (
s2 (gm, rm) + s2 (rm, gm+1)

)
, (3.2)

where

β∗ :=
{
2 − β − βνϑm/ϑm+1, if β ∈ [1, 2/(1 + ν)),

β(1 − νϑm/ϑm+1), if β ∈ (0, 1).

Moreover, {gm} is Fejér monotone with respect to Γ (B,C). Analogously, both {rm}
and {gm} are bounded.

Proof Let tm := Egm

(
PTgm ,rm (−βϑmBrm)

)
. Consider Δ(tm, rm, gm) and its com-

parison triangle Δ
(
t ′m, r ′

m, g′
m

)
. The comparison point of tm is t ′m = g′

m − βϑmBr ′
m .

Similarly, consider the pair ofΔ(tm, gm, p) andΔ
(
t ′m, g′

m, p′). By using Lemma 2.1,
one has

s (tm, p) = ∥
∥t ′m − p′∥∥ , s (gm, p) = ∥

∥g′
m − p′∥∥ , s (tm, gm) = ∥

∥t ′m − g′
m

∥
∥ .
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Also, consider the geodesic triangle Δ(tm, gm+1, gm) and its comparison triangle
Δ

(
t ′m, g′

m+1, g
′
m

)
. By Lemma 2.1, one obtains

s (gm+1, gm) = ∥
∥g′

m+1 − g′
m

∥
∥ , s (tm, gm+1) = ∥

∥t ′m − g′
m+1

∥
∥ .

From the definitions of gm+1 and tm , and Lemma 2.4(i) (noting that p ∈ Γ (B,C) ⊂
C), we have

s2 (gm+1, p) = s2
(
PjHm

(
Egm

(
PTgm ,rm (−βϑmBrm)

))
, p

)

≤ s2
(
Egm

(
PTgm ,rm (−βϑmBrm)

)
, p

) − s2
(
Egm

(
PTgm ,rm (−βϑmBrm)

)
, gm+1

)

= s2 (tm, p) − s2 (tm, gm+1) .

Note that

s2 (tm, p) − s2 (tm, gm+1)

= ∥
∥t ′m − p′∥∥2 − ∥

∥t ′m − g′
m+1

∥
∥2

= ∥
∥g′

m − βϑmBr
′
m − p′∥∥2 − ∥

∥g′
m − βϑmBr ′

m − g′
m+1

∥
∥2

= ∥
∥g′

m − p′∥∥2 + (βϑm)2
∥
∥Br ′

m

∥
∥2 − 2〈g′

m − p′, βϑmBr ′
m〉

− ∥
∥g′

m − g′
m+1

∥
∥2 − (βϑm)2

∥
∥Br ′

m

∥
∥2 + 2〈g′

m − g′
m+1, βϑmBr ′

m〉
= s2 (gm, p) + 2〈g′

m − p′, t ′m − g′
m〉 − s2 (gm, gm+1) + 2〈g′

m+1 − g′
m, t ′m − g′

m〉.

Therefore, it follows that

s2 (gm+1, p) ≤ s2 (gm, p) + 2〈g′
m+1 − p′, t ′m − g′

m〉 − s2 (gm, gm+1) . (3.3)

According to p ∈ Γ (B,C) and rm ∈ C , one arrives at 〈Bp,E−1
p rm〉 ≥ 0, which

together with the pseudomonotonicity of B implies that

〈Brm,E−1
rm p〉 ≤ 0. (3.4)

By using (3.4), Lemma 2.3, and Proposition 2.1, one has

〈g′
m+1 − p′, t ′m − g′

m〉
= 〈g′

m+1 − r ′
m, t ′m − g′

m〉 + 〈r ′
m − p′, t ′m − g′

m〉
≤ 〈PTgm ,rmE

−1
rm gm+1,E

−1
gm tm〉 + 〈PTgm ,pE

−1
p rm,E−1

gm tm〉
= 〈PTgm ,rmE

−1
rm gm+1,E

−1
gm tm〉 + 〈−E−1

gm tm,PTgm ,rmE
−1
rm p〉

= −β〈ϑmBrm,E−1
rm gm+1〉 + βϑm〈Brm,E−1

rm p〉
≤ −β〈ϑmBrm,E−1

rm gm+1〉.

(3.5)
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Combining (3.3) and (3.5), one obtains

s2 (gm+1, p) ≤ s2 (gm, p) − s2 (gm, gm+1) − 2β〈ϑmBrm,E−1
rm gm+1〉. (3.6)

Consider the geodesic triangle Δ(gm, rm, gm+1). It follows from (2.2) that

s2(rm, gm+1) + s2(rm, gm) − 2〈E−1
rm gm,E−1

rm gm+1〉 ≤ s2(gm, gm+1). (3.7)

Note that

〈E−1
rm gm,E−1

rm gm+1〉
= 〈E−1

rm gm − ϑmPTrm ,gm Bgm,E−1
rm gm+1〉 + 〈ϑmPTrm ,gm Bgm,E−1

rm gm+1〉
= 〈E−1

rm gm − ϑmPTrm ,gm Bgm,E−1
rm gm+1〉 + 〈ϑmBrm,E−1

rm gm+1〉
+ 〈ϑmPTrm ,gm Bgm − ϑmBrm,E−1

rm gm+1〉.

(3.8)

From the definition of Hm and gm+1 ∈ Hm , one sees that

〈E−1
rm gm − ϑmPTrm ,gm Bgm,E−1

rm gm+1〉 ≤ 0. (3.9)

According to the definition of ϑm+1, one has

〈ϑmPTrm ,gm Bgm − ϑmBrm,E−1
rm gm+1〉 ≤ ϑm

∥
∥PTrm ,gm Bgm − Brm

∥
∥ ·

∥
∥
∥E−1

rm gm+1

∥
∥
∥

≤ νϑm

ϑm+1
s (gm, rm) s (gm+1, rm)

≤ 1

2

νϑm

ϑm+1

(
s2 (gm, rm) + s2 (gm+1, rm)

)
.

(3.10)
Combining (3.8), (3.9), and (3.10), we have

〈E−1
rm gm,E−1

rm gm+1〉 ≤ 1

2

νϑm

ϑm+1

(
s2 (gm, rm) + s2 (gm+1, rm)

)
+〈ϑmBrm,E−1

rm gm+1〉.

This together with (3.7) yields that

−s2(gm, gm+1) ≤ −s2(rm, gm+1) − s2(rm, gm) + 2〈ϑmBrm,E−1
rm gm+1〉

+ νϑm/ϑm+1

(
s2 (gm, rm) + s2 (gm+1, rm)

)

= − (1 − νϑm/ϑm+1)
(
s2 (gm, rm) + s2 (gm+1, rm)

)

+ 2〈ϑmBrm,E−1
rm gm+1〉,
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which is equivalent to

−2β〈ϑmBrm,E−1
rm gm+1〉 ≤ −β (1 − νϑm/ϑm+1)

(
s2 (gm, rm) + s2 (gm+1, rm)

)

+ βs2(gm, gm+1) (∀β > 0).
(3.11)

From (3.6) and (3.11), one has

s2 (gm+1, p) ≤ s2 (gm, p) − β (1 − νϑm/ϑm+1)
(
s2 (gm, rm) + s2 (gm+1, rm)

)

− (1 − β)s2(gm, gm+1) (∀β > 0).
(3.12)

Consider the geodesic triangle Δ(gm, rm, gm+1) and its comparison triangle Δ
(
g′
m,

r ′
m, g′

m+1

)
. It follows from Lemma 2.1 that

s (gm , rm) = ∥
∥g′

m − r ′
m

∥
∥, s

(
rm , gm+1

) = ∥
∥r ′

m − g′
m+1

∥
∥, s

(
gm , gm+1

) = ∥
∥g′

m − g′
m+1

∥
∥.

According to the Cauchy-Schwarz inequality,

∥
∥g′

m − g′
m+1

∥
∥2 = ∥

∥g′
m − r ′

m + r ′
m − g′

m+1

∥
∥2

≤ ∥
∥g′

m − r ′
m

∥
∥2 + ∥

∥g′
m+1 − r ′

m

∥
∥2 + 2

∥
∥g′

m − r ′
m

∥
∥ · ∥

∥r ′
m − g′

m+1

∥
∥

≤ 2
(∥
∥g′

m − r ′
m

∥
∥2 + ∥

∥g′
m+1 − r ′

m

∥
∥2

)
.

That is
s2 (gm, gm+1) ≤ 2

(
s2 (gm, rm) + s2 (rm, gm+1)

)
. (3.13)

The conclusion required in (3.2) can be directly derived from (3.12) and (3.13). On
the other hand, by virtue of Lemma 3.1, one has limm→∞ β∗ > 0 for any β ∈
(0, 2/(1 + ν)). That is, there exists a positive integer N such that β∗ > 0 for all
m ≥ N . Combining this with (3.2), we have

s2 (gm+1, p) ≤ s2 (gm, p) (∀m ≥ N ).

This implies that {gm} is Fejér monotone with respect to Γ (B,C) and {gm} is
bounded. By letting m → ∞ in (3.2), one arrives at limm→∞ s (gm, rm) = 0 and
limm→∞ s (rm, gm+1) = 0. Thus {rm} is also bounded. ��

Now we can prove the convergence of the proposed Algorithm 3.1.

Theorem 3.1 Let {gm} be generated by Algorithm 3.1 and let Conditions (C1)–(C3)
hold. Then {gm} converges to a solution of VIP (1.1).

Proof From Lemma 3.2, we know that {gm} is Fejér convergent to the solution set
Γ (B,C) of the VIP (1.1). According to Lemma 2.6, it is necessary to demonstrate
that the weak cluster points of {gm} belong to Γ (B,C). Let u∗ be a cluster point of
{gm}. Due to the boundedness of {gm}, there exists a subsequence {gm j } of {gm} such
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that gm j → u∗. From the condition limm→∞ s(gm, rm) = 0, it follows that rm j → u∗
and thus u∗ ∈ C . From rm j = PC

(
Egm j

(−ϑm j Bgm j )
)
and considering j → ∞, by

using Proposition 2.3, the Lipschitz continuous of B, and lim j→∞ ϑm j = ϑ > 0, one
obtains

u∗ = PC
(
Eu∗

(−ϑBu∗)).
This together with Remark 2.1 yields that u∗ ∈ Γ (B,C), as desired. ��

Next, we provide a modified version of the suggested Algorithm 3.1, which differs
from Algorithm 3.1 in the computation of rm and gm+1. This approach is shown in
Algorithm 3.2.

Algorithm 3.2 The second type of modified subgradient extragradient algorithm
Initialization: Take ϑ0 > 0, ν ∈ (0, 1), and β ∈ (1/(2− ν), 1/ν). Let {�m } and {μm } satisfy Condition
(C3). Let g0 ∈ X and set m = 0.
Iterative Steps: Assume that gm ∈ X is known, calculate gm+1 as follows.
Step 1. Compute

rm = PjC
(
Egm (−βϑm Bgm )

)
.

If gm = rm , then stop the iterative process and gm ∈ Γ (B,C); otherwise, go to Step 2.
Step 2. Compute

gm+1 = PjHm

(
Egm

(
PTgm ,rm (−ϑm Brm )

))
,

where
Hm :=

{
x ∈ X : 〈E−1

rm gm − βϑmPTrm ,gm Bgm ,E−1
rm x〉 ≤ 0

}
,

and update ϑm+1 by (3.1).
Set m := m + 1 and go to Step 1.

Theorem 3.2 Let {gm} be created by Algorithm 3.2 and Conditions (C1)–(C3) hold.
Then {gm} converges to a solution of VIP (1.1).

Proof In the light of (3.3)-(3.6), one sees that

s2 (gm+1, p) ≤ s2 (gm, p) − s2 (gm, gm+1) − 2〈ϑmBrm,E−1
rm gm+1〉. (3.14)

Consider the geodesic triangle Δ(gm, rm, gm+1). By using (2.2), one arrives at

s2(rm, gm+1) + s2(rm, gm) − 2〈E−1
rm gm,E−1

rm gm+1〉 ≤ s2(gm, gm+1). (3.15)

Note that

〈E−1
rm gm,E−1

rm gm+1〉
= 〈E−1

rm gm − βϑmPTrm ,gm Bgm,E−1
rm gm+1〉 + 〈βϑmBrm,E−1

rm gm+1〉
+ βϑm〈PTrm ,gm Bgm − Brm,E−1

rm gm+1〉.
(3.16)

From gm+1 ∈ Hm , one obtains

〈E−1
rm gm − βϑmPTrm ,gm Bgm,E−1

rm gm+1〉 ≤ 0. (3.17)
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Combining (3.10), (3.16), and (3.17), we have

〈E−1
rm gm,E−1

rm gm+1〉 ≤ βνϑm/(2ϑm+1)
(
s2 (gm, rm) + s2 (gm+1, rm)

)

+ β〈ϑmBrm,E−1
rm gm+1〉.

This combining with (3.15) infers that

−s2(gm, gm+1) ≤ − (1 − βνϑm/ϑm+1)
(
s2 (gm, rm) + s2 (gm+1, rm)

)

+ 2β〈ϑmBrm,E−1
rm gm+1〉.

This implies that

−2〈ϑmBrm,E−1
rm gm+1〉 ≤ − (1/β − νϑm/ϑm+1)

(
s2 (gm, rm) + s2 (gm+1, rm)

)

+ β−1s2(gm, gm+1) (∀β > 0).
(3.18)

Combining (3.14) and (3.18), one has

s2 (gm+1, p) ≤ s2 (gm, p) − (1/β − νϑm/ϑm+1)
(
s2 (gm, rm) + s2 (gm+1, rm)

)

−
(
1 − β−1

)
s2(gm, gm+1) (∀β > 0).

(3.19)
By using (3.13) and (3.19), we conclude that

s2 (gm+1, p) ≤ s2 (gm, p) − β†
(
s2 (gm, rm) + s2 (rm, gm+1)

)
, (3.20)

where

β† :=
{
2 − 1/β − νϑm/ϑm+1, if β ∈ (1/(2 − ν), 1);
1/β − νϑm/ϑm+1, if β ∈ [1, 1/ν).

Then limm→∞ β† > 0 for any β ∈ (1/(2−ν), 1/ν) by means of Lemma 3.1. In other
words, there exists a positive integer N1 such that β† > 0 for all m ≥ N1 and β† has
a positive bound from below. This together with (3.20) yields that

s (gm+1, p) ≤ s (gm, p) (∀m ≥ N1),

which implies that {gm} is Fejér monotone with respect to Γ (B,C) and thus {gm}
is bounded. By letting m → ∞ in (3.20), one obtains limm→∞ s (gm, rm) = 0 and
limm→∞ s (rm, gm+1) = 0. Thus {rm} is also bounded. The rest of the argument
proceeds identically to Theorem 3.1. ��

The projection and contraction algorithm [7] is an effective method for solving
variational inequalities in Euclidean spaces. It is important to note that this algorithm
only requires a single projection onto the feasible set at each iteration, which results in
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a computational complexity similar to that of the subgradient extragradient algorithm.
Numerical experiments by Cai et al. [43] showed that the projection and contraction
algorithm runs twice as fast as the extragradient algorithm [5]. In the following, we
introduce two adaptive modified projection and contraction algorithms to solve VIP
(1.1) with a pseudo-monotone and Lipschitz continuous vector field on Hadamard
manifolds. The first approach is outlined in Algorithm 3.3.

Algorithm 3.3 The first type of modified projection and contraction algorithm
Initialization: Take ϑ0 > 0, ν ∈ (0, 1), σ ∈ (0, 2/ν), and β ∈ (σ/2, 1/ν). Let {�m } and {μm } satisfy
Condition (C3). Let g0 ∈ X and set m = 0.
Step 1. Compute

rm = PjC
(
Egm (−βϑm Bgm )

)
.

If gm = rm , then stop the iterative process and gm ∈ Γ (B,C); otherwise, go to Step 2.
Step 2. Compute

gm+1 = PjHm

(
Egm

(
PTgm ,rm (−σζmϑm Brm )

))
,

where

ζm := 〈E−1
rm gm , αm 〉
‖αm‖2 , αm := E−1

rm gm + βϑm
(
Brm − PTrm ,gm Bgm

)
, (3.21)

and
Hm :=

{
x ∈ X : 〈E−1

rm gm − βϑmPTrm ,gm Bgm ,E−1
rm x〉 ≤ 0

}
,

and update the next step size ϑm+1 by (3.1).
Set m := m + 1 and go to Step 1.

Before starting the analysis of the convergence of Algorithm 3.3, we show that {ζm}
in (3.21) is well defined.

Lemma 3.3 Let {ζm} be generated by (3.21). Then αm = 0 if and only if gm = rm.

Proof From the definition of αm and (3.1), one has

‖αm‖ =
∥
∥
∥E−1

rm gm + βϑm
(
Brm − PTrm ,gm Bgm

)∥∥
∥

≥
∥
∥
∥E−1

rm gm
∥
∥
∥ − βϑm

∥
∥Brm − PTrm ,gm Bgm

∥
∥

≥ (1 − βνϑm/ϑm+1) s (gm, rm) .

(3.22)

Similarly, we have

∥
∥αm

∥
∥ ≤

∥
∥
∥E−1

rm gm
∥
∥
∥ + βϑm

∥
∥Brm − PTrm ,gm Bgm

∥
∥ ≤ (1 + βνϑm/ϑm+1) s (gm, rm) .

(3.23)
Combining (3.22) and (3.23), we obtain

(1 − βνϑm/ϑm+1) s (gm, rm) ≤ ‖αm‖ ≤ (1 + βνϑm/ϑm+1) s (gm, rm) .

123



Numerical Algorithms

By using Lemma 3.1, one obtains that limm→∞ ϑm exists. Due to β < 1/ν, one sees
that

lim
m→∞ (1 − βνϑm/ϑm+1) > 0.

Therefore, we conclude that αm = 0 if and only if gm = rm . According to Remark 3.1,
we know that the iteration of Algorithm 3.3 stops when gm = rm . That is, the Step 2
in Algorithm 3.3 is not performed if gm = rm , so ζm is well defined. ��

Theorem 3.3 Let {gm} be formed by Algorithm 3.3 and let Conditions (C1)–(C3) hold.
Then {gm} converges to a solution of VIP (1.1).

Proof By means of Lemma 3.1 and β < 1/ν, one has 1 − βνϑm/ϑm+1 > 0 for all
m ≥ m0. It should be noted that ζm > 0 for all m ≥ m0. Indeed, in view of the
definition of αm and (3.1), we deduce that

ζm ‖αm‖2 = 〈E−1
rm gm, αm〉

= 〈E−1
rm gm,E−1

rm gm〉 − 〈E−1
rm gm, βϑm

(
PTrm ,gm Bgm − Brm

)〉
= s2 (gm, rm) − βϑm〈PTrm ,gm Bgm − Brm,E−1

rm gm〉
≥ s2 (gm, rm) − βϑm

∥
∥PTrm ,gm Bgm − Brm

∥
∥ ·

∥
∥
∥E−1

rm gm
∥
∥
∥

≥ s2 (gm, rm) − βνϑm/ϑm+1s
2 (gm, rm)

= (1 − βνϑm/ϑm+1) s
2 (gm, rm) .

(3.24)

By using the definitions of ζm and αm , (3.23), and (3.24), one has

ζm = 〈E−1
rm gm, αm〉
‖αm‖2 ≥ (1 − βνϑm/ϑm+1) s2 (gm, rm)

‖αm‖2

≥ (1 − βνϑm/ϑm+1)

(1 + βνϑm/ϑm+1)
2 > 0, (∀m ≥ m0).

Let tm := Egm

(
PTgm ,rm (−σζmϑmBrm)

)
. Consider Δ(tm, rm, gm) and its compari-

son triangle Δ
(
t ′m, r ′

m, g′
m

)
. The comparison point of tm is t ′m = g′

m − σζmϑmBr ′
m .

Similarly to the derivation (3.3), one gives

s2 (gm+1, p) ≤ s2 (gm, p) − s2 (gm, gm+1) + 2〈g′
m+1 − p′, t ′m − g′

m〉. (3.25)

Let a = EgmPTgm ,rmαm . Consider Δ(rm, gm, a) and its comparison triangle
Δ

(
r ′
m, g′

m, a′). The comparison point of a is a′ = 2g′
m − r ′

m + βϑm
(
Br ′

m − Bg′
m

)
.

Let b = Egm+1PTgm+1,rmαm . Consider a pair of Δ(rm, gm, b) and Δ
(
r ′
m, g′

m, b′). The
comparison point of b is b′ = g′

m+1 + g′
m − r ′

m + βϑm
(
Br ′

m − Bg′
m

)
. Note that

〈g′
m+1 − p′, t ′m − g′

m〉 = 〈g′
m+1 − r ′

m, t ′m − g′
m〉 + 〈r ′

m − p′, t ′m − g′
m〉, (3.26)
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and

〈g′
m+1 − r ′

m, t ′m − g′
m〉 = 〈g′

m+1 − r ′
m,−σζmϑmBr

′
m〉

= σζmβ−1〈g′
m+1 − r ′

m,−(
g′
m − r ′

m + βϑm
(
Br ′

m − Bg′
m

))

+ (
g′
m − r ′

m − βϑmBg′
m

)〉

= σζmβ−1〈r ′
m − g′

m+1, a
′ − g′

m〉 + σζmβ−1〈g′
m+1 − r ′

m, g′
m − r ′

m − βϑmBg′
m〉

= σζmβ−1(〈r ′
m − g′

m, a′ − g′
m〉 + 〈g′

m − g′
m+1, b

′ − g′
m+1〉

)

+ σζmβ−1〈g′
m+1 − r ′

m, g′
m − r ′

m − βϑmBg′
m〉.

Therefore, by Lemma 2.3 we have

〈a′ − g′
m, r ′

m − g′
m〉 ≤ 〈PTgm ,rmαm,E−1

gm rm〉.

Similarly, we obtain

〈g′
m − g′

m+1, b
′ − g′

m+1〉 ≤ 〈PTgm+1,rmαm,E−1
gm+1

gm〉,

〈g′
m+1 − r ′

m, g′
m − r ′

m − βϑmBg
′
m〉 ≤ 〈E−1

rm gm − βϑmPTrm ,gm Bgm,E−1
rm gm+1〉,

and
〈r ′
m − p′, t ′m − g′

m〉 ≤ 〈PTgm ,pE
−1
p rm,E−1

gm tm〉.
It follows from gm+1 ∈ Hm that

〈E−1
rm gm − βϑmPTrm ,gm Bgm,E−1

rm gm+1〉 ≤ 0. (3.27)

From (3.4), (3.26), and (3.27), by using Proposition 2.1, and the definition of ζm , we
deduce that

〈g′
m+1 − p′, t ′m − g′

m〉 ≤ σζmβ−1(〈PTgm ,rmαm ,E−1
gm rm〉 + 〈PTgm+1,rmαm ,E−1

gm+1
gm〉)

+ σζmβ−1〈E−1
rm gm − βϑmPTrm ,gm Bgm ,E−1

rm gm+1〉
+ 〈PTgm ,pE

−1
p rm ,E−1

gm tm〉
≤ σζmβ−1(〈αm , PTrm ,gmE

−1
gm rm〉 + 〈αm , PTrm ,gm+1E

−1
gm+1

gm〉)

+ 〈PTrm ,pE
−1
p rm , PTrm ,gmE

−1
gm tm〉

≤ σζmβ−1(〈αm , PTrm ,gmE
−1
gm rm〉 + 〈αm , PTrm ,gm+1E

−1
gm+1

gm〉)

+ σζmϑm〈E−1
rm p, Brm〉

≤ σζmβ−1(〈αm , −E−1
rm gm〉 + ‖αm‖ · ‖E−1

gm+1
gm‖)

≤ −σζ 2
mβ−1 ‖αm‖2 + 2−1σ 2ζ 2

mβ−2 ‖αm‖2 + 2−1s2 (gm , gm+1) .

(3.28)

Combining (3.25) and (3.28), one obtains

s2 (gm+1, p) ≤ s2 (gm, p) − σζ 2
m(2β − σ)β−2 ‖αm‖2 . (3.29)
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By using (3.23) and (3.24), one arrives at

ζ 2
m‖αm‖2 = ζ 2

m‖αm‖4
‖αm‖2 ≥ (1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 s

2 (gm, rm) . (3.30)

Combining (3.25), (3.29), and (3.30), we have

s2 (gm+1, p) ≤ s2 (gm , p) − σ

β2 (2β − σ)
(1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 s

2 (gm , rm) (∀p ∈ Γ (B,C)).

(3.31)

Since σ ∈ (0, 2/ν) and β ∈ (σ/2, 1/ν), one sees that σβ−2(2β − σ) > 0, which
combining with (3.31) implies that

s2 (gm+1, p) ≤ s2 (gm, p) (∀m ≥ m0).

This means that {gm} is Fejér monotone with respect to Γ (B,C) and thus {gm} is
bounded. By letting m → ∞ in (3.31), one concludes that limm→∞ s (gm, rm) = 0.
Hence {rm} is also bounded. The continuation of the proof is analogous to that of
Theorem 3.1. ��

It is important to note that the proposed Algorithms 3.1–3.3 involve computing
projections onto the set C and the half-space Hm at each iteration. Next, we present
two implicit iterative algorithms to address VIP (1.1). Now, we propose another type
of projection and contraction algorithm, which requires solving a convex optimization
problem at each iteration and does not involve projection onto a half-space. This
approach is displayed in Algorithm 3.4 below.

Algorithm 3.4 The second type of modified projection and contraction algorithm
Initialization: Take ϑ0 > 0, ν ∈ (0, 1), σ ∈ (0, 2), and β ∈ (0, 1/ν). Let {�m } and {μm } satisfy
Condition (C3). Let g0 ∈ X and set m = 0.
Step 1. Compute rm ∈ C such that

〈E−1
rm gm − βϑmPTrm ,gm Bgm , E−1

rm y〉 ≤ 0, ∀y ∈ C .

If gm = rm , then stop the iterative process and gm ∈ Γ (B,C); otherwise, go to Step 2.
Step 2. Compute

gm+1 = Egm
(
PTgm ,rm (−σζmαm )

)
,

where ζm and αm are defined in (3.21). Update ϑm+1 by (3.1).
Set m := m + 1 and go to Step 1.

Theorem 3.4 Let {gm} be created by Algorithm 3.4 and Conditions (C1)–(C3) hold.
Then {gm} converges to a solution of VIP (1.1).
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Proof Fix p ∈ Γ (B,C). Consider Δ(p, gm+1, gm) and its comparison triangle
Δ

(
p′, g′

m+1, g
′
m

)
. By using Lemma 2.1, one arrives at

s (p, gm) = ∥
∥p′ − g′

m

∥
∥, s (gm+1, gm) = ∥

∥g′
m+1 − g′

m

∥
∥ , s (p, gm+1) = ∥

∥p′ − g′
m+1

∥
∥ .

The comparison point for gm+1 is g′
m+1 = g′

m−σζm
(
g′
m − r ′

m + βϑm(Br ′
m − Bg′

m)
)
.

For convenience, we let χ ′
m = g′

m − r ′
m + βϑm(Br ′

m − Bg′
m). From the definitions of

gm+1 and g′
m+1, we have

σζm
∥
∥αm

∥
∥ = s (gm+1, gm) = ∥

∥g′
m+1 − g′

m

∥
∥ = σζm

∥
∥χ ′

m

∥
∥.

By using the definition of gm+1, one sees that

s2 (gm+1, p) = ‖g′
m+1 − p′‖2 = ‖g′

m − σζmχ ′
m − p′‖2

= ‖g′
m − p′‖2 − 2σζm〈g′

m − p′, χ ′
m〉 + σ 2ζ 2

m‖χ ′
m‖2

= s2 (gm, p) + 2σζm〈p′ − g′
m, χ ′

m〉 + σ 2ζ 2
m‖αm‖2.

(3.32)

Let a := Ermαm and b := EgmPTgm ,rmαm . The comparison points of a and b are
a′ = g′

m +βϑm
(
Br ′

m − Bg′
m

)
and b′ = 2g′

m −r ′
m +βϑm

(
Br ′

m − Bg′
m

)
, respectively.

It follows from the definition of χ ′
m and Lemma 2.3 that

〈p′ − g′
m, χ ′

m〉 = 〈r ′
m − g′

m, χ ′
m〉 + 〈p′ − r ′

m, χ ′
m〉

= 〈r ′
m − g′

m, b′ − g′
m〉 + 〈p′ − r ′

m, a′ − r ′
m〉

≤ 〈E−1
gm rm,E−1

gm b〉 + 〈E−1
rm p,E−1

rm a〉
= 〈E−1

gm rm,PTgm ,rmαm〉 + 〈E−1
rm p, αm〉.

(3.33)

From the definition of αm and Proposition 2.1, one obtains

〈E−1
gm rm,PTgm ,rmαm〉 = −〈E−1

rm gm, αm〉 = −ζm ‖αm‖2 . (3.34)

By using the definition of rm and p ∈ C , one sees that

〈E−1
rm gm − βϑmPTrm ,gm Bgm,E−1

rm p〉 ≤ 0. (3.35)

Owing to p ∈ Γ (B,C) and rm ∈ C , one gives that 〈Bp,E−1
p rm〉 ≥ 0. It follows from

the pseudomonotonicity of B that 〈Brm,E−1
rm p〉 ≤ 0. This combining with (3.35)

yields that
〈E−1

rm gm + βϑm
(
Brm − PTrm ,gm Bgm

)
,E−1

rm p〉 ≤ 0. (3.36)

Combining (3.33), (3.34), and (3.36), we have

〈p′ − g′
m, χ ′

m〉 ≤ −ζm ‖αm‖2 .
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This together with (3.30) and (3.32) yields

s2 (gm+1, p)≤s2 (gm, p) − 2σζ 2
m ‖αm‖2 + σ 2ζ 2

m‖αm‖2

≤s2 (gm, p) − σ (2 − σ)
(1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 s

2 (gm, rm) (∀m ≥ m0).

(3.37)
By using σ ∈ (0, 2) and (3.37), one has

s (gm+1, p) ≤ s (gm, p) (∀m ≥ m0),

which implies that {gm} is Fejér monotone with respect to Γ (B,C). Thus {gm} is
bounded by means of Lemma 2.6. By setting m → ∞ in (3.37), we can show that
limm→∞ s (gm, rm) = 0. Thus {rm} is bounded. By means of Lemma 2.6, it is left to
prove that any cluster point of {gm} belongs to Γ (B,C). Let u∗ be a cluster point of
{gm}. From the fact that {gm} is bounded, there exists a subsequence {

gm j

}
of {gm}

satisfies lim j→∞ gm j = u∗. We also have lim j→∞ rm j = u∗ and u∗ ∈ C due to
limm→∞ s (gm, rm) = 0. By using the definition of rm , one has

〈
E−1
rm j

gm j ,E
−1
rm j

x
〉 ≤ βϑm j

〈
PTrm j ,gm j

Bgm j ,E
−1
rm j

x
〉

(∀x ∈ C).

Note that lim j→∞ ϑm j = ϑ > 0 and β > 0. Letting j → ∞ in the above inequality
and applying Propositions 2.2 and 2.3, we obtain

〈Bu∗,E−1
u∗ x〉 ≥ 0 (∀x ∈ C).

This implies that u∗ ∈ Γ (B,C), as required. ��
Finally, we introduce an implicit modified Tseng’s extragradient method, as shown

in Algorithm 3.5.

Algorithm 3.5 The modified Tseng’s extragradient algorithm
Initialization: Take ϑ0 > 0 and ν ∈ (0, 1). Let {�m } and {μm } satisfy Condition (C3). Let g0 ∈ X and
set m = 0.
Step 1. Compute rm ∈ C such that

〈
E−1
rm gm − ϑmPTrm ,gm Bgm , E−1

rm y
〉 ≤ 0, ∀y ∈ C .

If gm = rm , then stop the iterative process and gm ∈ Γ (B,C); otherwise, go to Step 2.
Step 2. Compute

gm+1 = Erm
(
ϑm

(
PTrm ,gm Bgm − Brm

))
,

and update ϑm+1 by (3.1).
Set m := m + 1 and go to Step 1.

Theorem 3.5 Let {gm} be formed by Algorithm 3.5 and Conditions (C1)–(C3) hold.
Then {gm} converges to a solution of VIP (1.1).
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Proof Fix p ∈ Γ (B,C). Consider Δ(gm, rm, p) and its comparison triangle
Δ

(
g′
m, r ′

m, p′). By 2.1, one has

s (gm, p) = ∥
∥g′

m − p′∥∥ , s (rm, p) = ∥
∥r ′

m − p′∥∥ , s (gm, rm) = ∥
∥g′

m − r ′
m

∥
∥ .

Similarly, consider a pair of Δ(gm+1, rm, p) and Δ
(
g′
m+1, r

′
m, p′). By using

Lemma 2.1, one has

s (gm+1, p) = ∥
∥g′

m+1 − p′∥∥ , s (rm , p) = ∥
∥r ′

m − p′∥∥, s (gm+1, rm) = ∥
∥g′

m+1 − r ′
m

∥
∥ .

From the definition of gm+1 in Algorithm 3.5, one obtains that the comparison point
of gm+1 is g′

m+1 = r ′
m + ϑm

(
Bg′

m − Br ′
m

)
. Moreover,

∥
∥
∥E−1

rm gm+1

∥
∥
∥ =

∥
∥
∥E−1

rm Erm
(
ϑm

(
PTrm ,gm Bgm − Brm

))∥∥
∥ .

Thusϑm
∥
∥PTrm ,gm Bgm − Brm

∥
∥=s (gm+1, rm) = ‖g′

m+1−r ′
m‖ = ϑm

∥
∥Br ′

m − Bg′
m

∥
∥.

This together with Lemma 2.3 yields

s2 (gm+1, p) = ‖g′
m+1 − p′‖2 = ∥

∥r ′
m + ϑm

(
Bg′

m − Br ′
m

) − p′∥∥2

= ∥
∥r ′

m − p′∥∥2 + ϑ2
m

∥
∥Bg′

m − Br ′
m

∥
∥2

+ 2ϑm〈Br ′
m − Bg′

m, p′ − r ′
m〉

≤ ∥
∥r ′

m − p′∥∥2 + ϑ2
m

∥
∥PTrm ,gm Bgm − Brm

∥
∥2

+ 2ϑm
〈
Brm − PTrm ,gm Bgm,E−1

rm p
〉
.

(3.38)

By using Lemma 2.3 again, one has

∥
∥r ′

m − p′∥∥2 = ∥
∥r ′

m − g′
m

∥
∥2 + ∥

∥g′
m − p′∥∥2 + 2〈r ′

m − g′
m, g′

m − p′〉
= ∥

∥g′
m − p′∥∥2 + ∥

∥r ′
m − g′

m

∥
∥2 − 2〈r ′

m − g′
m, r ′

m − g′
m〉

+ 2〈r ′
m − g′

m, r ′
m − p′〉

= ∥
∥g′

m − p′∥∥2 − ∥
∥r ′

m − g′
m

∥
∥2 + 2〈g′

m − r ′
m, p′ − r ′

m〉
≤ s2 (gm, p) − s2 (gm, rm) + 2〈E−1

rm gm,E−1
rm p〉.

(3.39)

By using the definition of rm and p ∈ C , one sees that

〈E−1
rm gm − ϑmPTrm ,gm Bgm,E−1

rm p〉 ≤ 0. (3.40)
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From p ∈ Γ (B,C) and rm ∈ C , one arrives at
〈
Bp,E−1

p rm
〉 ≥ 0. It follows from the

pseudomonotonicity of B that

〈Brm,E−1
rm p〉 ≤ 0. (3.41)

Combining (3.1), (3.38), (3.39), (3.40), and (3.41), we have

s2 (gm+1, p) ≤ s2 (gm, p) − s2 (gm, rm) + ϑ2
m

∥
∥PTrm ,gm Bgm − Brm

∥
∥2

≤ s2 (gm, p) −
(
1 − ν2ϑ2

m/ϑ2
m+1

)
s2 (gm, rm) .

(3.42)

From Lemma 3.1, it follows that 1− ν2ϑ2
m/ϑ2

m+1 > 0 for all m ≥ m0. The rest of the
proof is the same as Theorem 3.4. ��

Remark 3.2 We have the following observations for the proposed algorithms.

(i) If Condition (C2) in Section 3 adds the restriction that C is a bounded set,
one knows by Lemma 2.5 that VIP (1.1) always has a unique solution. In this
case, Condition (C1) is no longer required for the convergence analysis of our
algorithms.

(ii) TheAlgorithms 3.1-3.5 proposed in this paper employ a newnon-monotonic step
size criterion. The advantage of our algorithms is that they can perform simple
calculations to update the step size using some previously known information
without involving the computation of projections, which greatly improves their
convergence speed. Notice that our step size criterion (3.1) generates a non-
monotonic sequence of step sizes,which is better in practice than theArmijo-type
step size applied in [15, 17, 18, 28].

(iii) It should be noted that the Algorithms 3.1–3.5 are all explicit, which makes
them easier to implement than the implicit proximal point methods in [16, 23,
26]. On the other hand, the convergence analysis of our algorithms only requires
that the vector fields involved are pseudo-monotone, which is weaker than the
monotonicity imposed by the approaches in [14, 18] and the strongly pseudo-
monotonicity required by the method in [15].

(iv) The proposed Algorithms 3.1–3.5 insert a new parameter β making them use
different step sizes when computing rm and gm+1 in each iteration. This new
technique improves the range of parameters of the corresponding original algo-
rithms and these algorithms have a better performance when the appropriate
parameter β is chosen (see the numerical results in Section 4). Note that if β = 1
in Algorithms 3.1 and 3.2, then Algorithms 3.1 and 3.2 are equivalent.

In theEuclidean spaceRn , theHadamardmanifoldX reduces toRn , the exponential
map Eu(v) becomes Eu(v) = u + v, and the parallel transport PTu,v reduces to the
identity mapping. Under these simplifications, Algorithm 3.1 can be rewritten in the
Euclidean setting as follows.
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Algorithm 3.6 The Algorithm 3.1 in Euclidean space
Initialization: Take ϑ0 > 0, ν ∈ (0, 1), and β ∈ (0, 2/(1 + ν)). Let g0 ∈ R

n and set m = 0.
Step 1. Compute

rm = PjC (gm − ϑm Bgm ) .

If gm = rm , then stop the iterative process; otherwise, go to Step 2.
Step 2. Compute

gm+1 = PjHm (gm − βϑm Brm ) ,

where
Hm := {

x ∈ R
n : 〈gm − rm − ϑm Bgm , x − rm 〉 ≤ 0

}
,

and update ϑm+1 by

ϑm+1 =
⎧
⎨

⎩
min

{
ν‖gm − rm‖

‖Bgm − Brm‖ , �mϑm + μm

}

, if ‖Bgm − Brm‖ �= 0;

�mϑm + μm , otherwise.

Set m := m + 1 and go to Step 1.

Theorem 3.6 Let {gm} be the sequence generated by Algorithm 3.6 in the Euclidean
space Rn. Suppose that the following conditions hold:

1. The solution set of the variational inequality problem

Find u∗ ∈ C such that 〈Bu∗, u − u∗〉 ≥ 0, ∀u ∈ C

is nonempty.
2. The feasible set C is a nonempty, closed, and convex subset of Rn.
3. The mapping B : C → R

n is pseudo-monotone and L-Lipschitz continuous on C.
The sequences {�m} ⊂ [1,∞) and {μm} ⊂ [0,∞) satisfy

∞∑

m=1

(�m − 1) < ∞,

∞∑

m=1

μm < ∞.

Then the sequence {gm} converges to a solution of the variational inequality problem.

3.2 Error bound and linear convergence

In this section, we analyze the global error bounds and establish the R-linear con-
vergence of the proposed algorithms for solving variational inequalities with strongly
pseudo-monotone vector fields on Hadamard manifolds. Error bounds are essential
for developing stopping criteria and assessing the convergence rate of algorithms. For
further theoretical insights on error bounds for variational inequalities in Euclidean
spaces and Hilbert spaces, see [1, Chapter 6], [45, Section 4], and [46, Section 3].
Recently, Nguyen et al. [44, Theorem 3.2] established the existence and uniqueness
of solutions for the VIP (1.1) arising from strongly pseudo-monotone vector fields. To
advance our analysis, we replace Condition (C3) from Section 3 with the following
slightly stronger Condition (C3′).
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(C3′) The vector field B : C → TX is strongly pseudo-monotone with a modulus
μ and L-Lipschitz continuous on C . Let {�m} ⊂ [1,∞) satisfies

∑∞
m=1(�m −

1) < ∞, and {μm} ⊂ [0,∞) such that
∑∞

m=1 μm < ∞.

Next, we establish global error bounds for our algorithms embedding the adaptive
step size criterion (3.1).

Theorem 3.7 Let {gm} be generated by Algorithm 3.1 (or Algorithm 3.5). If Conditions
(C1), (C2), and (C3′) hold, then

s(gm, p) ≤
(

1 + 1 + νϑm/ϑm+1

μϑm

)

s(gm, rm),

where p is the unique solution of VIP (1.1). Moreover, {gm} converges R-linearly to
p.

Proof From [44, Theorem 3.2], it yields that VIP (1.1) has a unique solution. Set
Γ (B,C) := {p}. From the definition of Hm in Algorithm 3.1 (or by the definition of
rm in Algorithm 3.5), one has

〈E−1
rm gm,E−1

rm p〉 ≤ ϑm〈PTrm ,gm Bgm,E−1
rm p〉. (3.43)

Combining p ∈ Γ (B,C) with rm ∈ C , one yields 〈Bp,E−1
p rm〉 ≥ 0, which together

with the μ-strongly pseudomonotonicity of B implies that

〈Brm,E−1
rm p〉 ≤ −μs2(rm, p). (3.44)

From (3.1), (3.43), and (3.44), it follows that

〈E−1
rm gm,E−1

rm p〉 ≤ ϑm〈PTrm ,gm Bgm − Brm,E−1
rm p〉 + ϑm〈Brm,E−1

rm p〉
≤ ϑm

∥
∥PTrm ,gm Bgm − Brm

∥
∥ s(rm, p) − μϑms

2(rm, p)

≤ νϑm/ϑm+1s(gm, rm)s(rm, p) − μϑms
2(rm, p),

which implies that

μϑms
2(rm, p) ≤ νϑm/ϑm+1s(gm, rm)s(rm, p) + 〈E−1

rm gm,−E−1
rm p〉

≤ νϑm/ϑm+1s(gm, rm)s(rm, p) + s(gm, rm)s(rm, p).

Thus

s(rm, p) ≤ 1 + νϑm/ϑm+1

μϑm
s(gm, rm).

Let ψm := (1 + νϑm/ϑm+1)/(μϑm). Then

s(gm, p) ≤ s(gm, rm) + s(rm, p) ≤ (1 + ψm)s(gm, rm). (3.45)
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This provides the required error bound for s(gm, p). By using (3.45), one has

s(gm, rm) ≥ (1 + ψm)−1s(gm, p). (3.46)

Let us show the linear convergence of the sequences generated by Algorithm 3.1
and Algorithm 3.5, respectively.

Case 1: Consider {gm} generated by Algorithm 3.1. From Lemma 3.2 and (3.46),
one obtains

s2 (gm+1, p) ≤ s2 (gm, p)−β∗s2 (gm, rm) ≤ (
1−β∗(1+ψm)−2)s2 (gm, p) . (3.47)

By using the definition of β∗ in (3.2) and Lemma 3.1, one sees that 0 < limm→∞ β∗ <

1. Moreover, we have 0 < limm→∞(1 + ψm)−2 < 1. Thus

0 < φ0 := lim
m→∞

(
β∗(1 + ψm)−2

)
< 1.

Therefore, there exists a positive constant N1 ∈ N such that β∗(1 + ψm)−2 ≥ φ0 for
all m ≥ N1. By letting φ1 := (1 − φ0)

1/2 and using (3.47), we have

s (gm+1, p)≤ φ1s (gm, p)≤ φ2
1s (gn−1, p)

≤ · · · ≤ φ
k+1−N1
1 s

(
gN1, p

)= s
(
gN1, p

)

φ
N1−1
1

φn
1 (∀m ≥ N1).

Thus we deduce that {gm} converges R-linearly to p. ��
Case 2: Consider {gm} generated by Algorithm 3.5. According to the inequalities

(3.42) and (3.46), one has

s2 (gm+1, p) ≤ (
1 − (1 − ν2ϑ2

m/ϑ2
m+1)(1 + ψm)−2)s2 (gm, p) .

Let φ2 := limm→∞(1 − ν2ϑ2
m/ϑ2

m+1)(1 + ψm)−2. Note that φ2 ∈ (0, 1). By using
Lemma 3.1, there exists a positive constant N2 ∈ N such that

(
1 − ν2ϑ2

m/ϑ2
m+1

)
(1+

ψm)−2 ≥ φ2 for all m ≥ N2. Let φ3 := (1 − φ2)
1/2. Consequently,

s (gm+1, p) ≤ φ3s (gm, p) ≤ · · · ≤ φ
k+1−N2
3 s

(
gN2 , p

) = s
(
gN2 , p

)

φ
N2−1
3

φn
3 (∀m ≥ N2).

This implies that {gm} converges R-linearly to p. ��
Similar to the proof of Theorem3.7,we can easily arrive at the R-linear convergence

of the proposed Algorithms 3.2–3.4.

Theorem 3.8 Let {gm} be generated by Algorithm 3.2 (or Algorithms 3.3 and 3.4). If
Conditions (C1), (C2), and (C3′) hold, then

s(gm, p) ≤
(

1 + 1 + βνϑm/ϑm+1

βμϑm

)

s(gm, rm),
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where p is the unique solution of VIP (1.1). Furthermore, {gm} converges R-linearly
to p.

Proof By means of [44, Theorem 3.2], one has that Γ (B,C) is a singleton. Set
Γ (B,C) := {p}. By using the definition of Hm in Algorithm 3.2 (or by the defi-
nition of Hm in Algorithm 3.3, or by the definition of rm in Algorithm 3.4), one arrives
at

〈E−1
rm gm,E−1

rm p〉 ≤ βϑm〈PTrm ,gm Bgm,E−1
rm p〉.

According to a proof similar to Theorem3.7, we obtain s(gm, p) ≤ (1+ψm)s(gm, rm),
where ψm := (1 + βνϑm/ϑm+1)/(βμϑm). Hence,

s(gm, rm) ≥ (1 + ψm)−1s(gm, p). (3.48)

Next, we show the linear convergence of the sequences formed by Algorithms 3.2,
3.3, and 3.4, respectively.

Case 1: Consider {gm} generated by Algorithm 3.2. The linear convergence of {gm}
can be obtained through a statement similar to Case 1 of Theorem 3.7.

Case 2: Consider {gm} generated by Algorithm 3.3. From (3.31) and (3.48), one
has

s2 (gm+1, p) ≤ s2 (gm, p) − σ

β2 (2β − σ)
(1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 (1 + ψm)−2s2(gm, p).

(3.49)
Note that 0 < f (σ ) := σ

β2 (2β − σ) ≤ 1 ( f (σ ) = 1 when σ = β). Let

φ4 := lim
m→∞

σ

β2 (2β − σ)
(1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 (1 + ψm)−2.

Combining Lemma 3.1 with the definition of ψm , we have

σ

β2 (2β − σ)
(1 − βνϑm/ϑm+1)

2

(1 + βνϑm/ϑm+1)
2 (1 + ψm)−2 ≥ φ4 (∀m ≥ N3).

Let φ5 := (1 − φ4)
1/2. This together with (3.49) gives

s (gm+1, p) ≤ s
(
gN3, p

)

φ
N3−1
5

φn
5 (∀m ≥ N3),

which implies that {gm} converges R-linearly to u∗.
Case 3: Consider {gm} generated by Algorithm 3.4. Notice that f (σ ) := 0 <

σ(2− σ) ≤ 1 ( f (σ ) = 1 when σ = 1). The linear convergence of {gm} can be easily
obtained by using (3.37) and following a proof process similar to the one in Case 2
above. ��
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Remark 3.3 Theorems 3.7 and 3.8 demonstrate that the distance s(gm, p) between the
m-th iteration point gm of the proposed algorithms and the unique solution p of VIP
(1.1) is bounded by certain known parameters and values from the iteration. Impor-
tantly, the right-hand side of the resulting inequalities is known at each iteration. This
enables us to establish a stopping criterion that meets any desired accuracy level when
the VIP (1.1) is driven by strongly pseudo-monotone vector fields. Furthermore, our
results on the error bounds of the algorithms generalize the findings of [45, Theorem
4.2] and [46, Theorem 3.2], extending them from linear Hilbert spaces to Hadamard
manifolds.

4 Numerical experiments

In this section, we provide two fundamental numerical examples (see, e.g., [25–27])
to illustrate the computational performance of the proposed algorithms. All our code
was implemented in MATLAB R2023b and executed on a MacBook with 8 GB of
memory.

Example 4.1 Let R++ = {z ∈ R : z > 0}, and define the Riemannian metric 〈· , ·〉 as
follows:

〈q, w〉 := qw

z2
(∀q, w ∈ TzX , ∀z ∈ X ).

Consequently, X = (R++, 〈· , ·〉) forms a Riemannian manifold. The Riemannian
distance s : X × X → R++ for points z, q ∈ X is defined as

s(z, q) =
∣
∣
∣
∣ln

(
z

q

)∣
∣
∣
∣ (∀z, q ∈ X ),

as referenced in [25, Example 1]. Hence, X qualifies as a Hadamard manifold. We

have Ez(tv) = ze

(
v
z

)
t
for all z ∈ X , t ∈ R, and v ∈ TzX and the inverse of the

exponential map is

E−1
z q = z ln

(
q

z

)

(∀z, q ∈ X ).

Consider the set C = [1, 100], which is a bounded, closed, and convex subset
of X , thereby making C compact within X . Define the single-valued vector field
B : C → TX as:

Bz = z(5 − ln z) (∀z ∈ C).

We first demonstrate that B is pseudo-monotone but not monotone on C . For any
z, q ∈ C , we have:

〈Bz,E−1
z q〉 = (5 − ln z) ln

(
q

z

)

≥ 0.
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Since 5 − ln z > 0 for all z ∈ C , it follows that ln
(
q
z

)
≥ 0. Therefore,

〈Bq,E−1
q z〉 = (5 − ln q) ln

(
z

q

)

≤ 0.

This confirms that B is pseudo-monotone on C . In contrast, for any z, q ∈ C ,

〈Bz,E−1
z q〉 + 〈Bq,E−1

q z〉 =
(

ln

(
z

q

))2

= s2(z, q) ≥ 0.

This shows that B is not monotone on C .
Next, we demonstrate that B is Lipschitz continuous on C . According to [25,

Example 1], for a function f : R++ → R that is twice differentiable, the gradient and
Hessian are given by

grad f (z) = z2 f ′(z), Hess f (z) = f ′′(z) + z−1 f ′(z),

where f ′ and f ′′ denote the first and second derivatives of f in the Euclidean context.

We define f : C → R as f (z) = 5 ln z − (ln z)2

2 for all z ∈ C . This function is twice
continuously differentiable on X in the Euclidean sense. From the previous formulas,
we find:

grad f (z) = z(5 − ln z) = Bz, Hess f (z) = − 1

z2
. (4.1)

It follows that B is L-Lipschitz continuous on C with Lipschitz constant L = 1, since
‖Hess f (z)‖ ≤ 1 for all z ∈ C (see [47, Lemma 2.3] for further details). To verify
that B is 1-Lipschitz continuous, we can also apply Definition 2.3. For any z, q ∈ C ,
we have: ∥

∥PTq,z Bz − Bq
∥
∥ = ‖q(5 − ln z) − q(5 − ln q)‖

= ‖q ln(q/z)‖ = s(z, q).

Let u∗ denote the solution to the VIP (1.1). This requires us to find u∗ such that:

〈Bu∗,E−1
u∗ z〉 ≥ 0 (∀z ∈ C) ⇔ (5 − ln u∗) ln

( z

u∗
)

≥ 0 (∀z ∈ [1, 100]).

This leads to the conclusion that u∗ = 1, which is the unique solution to the VIP (1.1)
as established by Lemma 2.5.

Example 4.2 Let 〈· , ·〉, s, and X be the same as in Example 4.1. Let C = [1, 100] be
a subset of R++. Let the single-valued vector field B : C → TX be given by

Bz = z ln z (∀z ∈ C).

One obtains that B is pseudo-monotone and monotone on C . Let f : C → R be given

by f (z) = (ln z)2

2 for all z ∈ C . It follows from (4.1) that grad f (z) = z ln z = Bz
and Hess f (z) = 1

z2
. Consequently, B is 1-Lipschitz continuous. It is obvious that the

VIP (1.1) with B and C given above has a unique solution u∗ = 1.
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Next, we use the proposed algorithms to solve Examples 4.1 and 4.2 and compare
them with the Algorithm 2 of Sahu et al. [28] (shortly, SFS Alg. 2), the Algorithm
3.1 of Tang et al. [17] (shortly, TWL Alg. 3.1), the Algorithm 4.1 of Tang and Huang
[15] (shortly, TH Alg. 4.1). The parameters of the algorithms are set as follows. Take
ν = 0.5, �m = 1 + 0.1/(m + 1)2, ϑ0 = 0.5, and μm = 0.1/(m + 1)2 for the
proposed Algorithms 3.1–3.5. Set β ∈ {0.8, 0.9, 1.0, 1.2, 1.3} for Algorithms 3.1–
3.4. Pick σ = 1.5 for Algorithms 3.3 and 3.4. Set ϑ = 1, σ = 0.8, and η = 0.5
for SFS Alg. 2. Choose ϑm = 0.5 and α = 0.9 for TH Alg. 4.1. Select σ = 0.8
and ν = 0.5 for TWL Alg. 3.1. In Examples 4.1 and 4.2, we denote the iteration
error at step m of algorithms by s(gm, u∗) (where u∗ = 1 for both examples) and use
s(gm, u∗) < 10−5 or themaximumnumber of iterations 100 as their common stopping
condition. Table 1 and Fig. 1 present the numerical performance of Algorithms 3.1–3.4
with different parameters β in Example 4.2. Finally, we choose two initial points to
test the convergence performance of the proposed algorithms with β = 1.3 and the
compared ones in [15, 17, 28] for Examples 4.1 and 4.2, as shown in Table 2 and
Fig. 2.

Remark 4.1 Based on the numerical results from Examples 4.1 and 4.2, we can draw
the following conclusions:

Table 1 The results of
Algorithms 3.1–3.4 in Example
4.2 for different parameters β

and initial values

Algorithms β g0
20 40 60 80 100

Our Alg. 3.1 0.8 32 30 31 29 31

0.9 27 29 28 33 29

1.0 29 28 30 26 31

1.2 25 30 27 27 28

1.3 25 27 25 25 25

Our Alg. 3.2 0.8 31 30 32 32 31

0.9 30 28 30 30 33

1.0 29 28 30 26 31

1.2 24 24 34 20 27

1.3 22 26 23 19 24

Our Alg. 3.3 0.8 13 13 12 15 15

0.9 14 13 12 15 13

1.0 13 13 14 14 13

1.2 12 12 12 11 12

1.3 11 10 11 11 11

Our Alg. 3.4 0.8 14 14 15 15 15

0.9 12 12 12 12 12

1.0 10 10 10 10 10

1.2 6 6 6 6 6

1.3 4 4 4 4 4
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Fig. 1 Numberical behavior of our algorithms with different β in Example 4.2 (g0 = 100)

(i) The numerical results presented in Examples 4.1 and 4.2 demonstrate that the
algorithms proposed in this paper are effective for solving variational inequality
problems with Lipschitz continuous vector fields on Hadamard manifolds.

Table 2 The number of iterations and execution time for all algorithms in Examples 4.1 and 4.2

Algorithms Example 4.1 Example 4.2
g0 = 50 g0 = 90 g0 = 50 g0 = 90
Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 3.1 3 0.0057 6 0.0049 26 0.0079 27 0.0089

Our Alg. 3.2 3 0.0006 4 0.0009 27 0.0074 22 0.0044

Our Alg. 3.3 3 0.0007 5 0.0011 10 0.0014 12 0.0025

Our Alg. 3.4 19 0.5477 20 0.4862 4 0.3220 4 0.3114

Our Alg. 3.5 20 0.2257 19 0.2311 45 0.5294 46 0.5143

SFS Alg. 2 3 0.9390 4 1.4161 100 48.6086 100 79.0538

TH Alg. 4.1 23 0.5316 26 0.4916 100 0.8488 100 0.7630

TWL Alg. 3.1 20 0.3986 22 0.6514 93 0.9285 97 0.9847
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(ii) Our algorithms converge faster than the compared one in [15, 17, 28] based on
observations of iteration count and execution time. These results are independent
of the initial value selection, demonstrating the efficiency and robustness of the
proposed algorithms.

(iii) From the numerical results in Table 2, we can see the following:

(1) The explicit subgradient extragradient type algorithms (Algorithms 3.1–3.3)
require less execution time compared to the implicit proximal point type
algorithms (Algorithms 3.4 and 3.5).

(2) The projection and contraction type algorithms (Algorithms 3.3 and 3.4)
converge faster than the subgradient extragradient algorithms (Algorithms
3.1 and 3.2) and the Tseng’s extragradient algorithm (Algorithm 3.5).

(3) The proposed algorithms (Algorithms 3.1–3.5) using the adaptive step size
rule (3.1) require less execution time compared to those using the Armijo-
type rule (the algorithms in [15, 17, 28]). This is because the latter requires
multiple evaluations of projections in each iteration to find a suitable step
size (notably, SFS Alg. 2 requires many projection evaluations when updat-
ing gm+1 as the number of iterations increases, significantly increasing the
execution time).

(iv) On the other hand, Figures 1 and 2 verify the theoretical results obtained in
Section3 about the distance s(gm, u∗)beingFejérmonotone. Indeed, the iteration
errors in the y-axis of Figs. 1 and 2 indicate that the iterative sequences generated
by our proposed algorithms are Fejér monotone with respect to the solution set
Γ (B,C) of VIP (1.1). That is, s (gm+1, u∗) ≤ s (gm, u∗) for all u∗ ∈ Γ (B,C).

(v) The performance of our algorithms improves when the parameter β is appropri-
ately selected, as shown in Table 1 and Fig. 1.

(vi) It should be pointed out that the vector fields in Example 4.1 is pseudo-monotone
rather than monotone, which means that algorithms proposed in the literature

Fig. 2 Convergence behavior of all algorithms in Example 4.2
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(see, e.g., [14, 18, 23]) for solving variational inequality problems induced by
monotone vector fields on Hadamard manifolds will not be available in this case.

5 Conclusions

This paper introduces five adaptive numerical algorithms for finding solutions to vari-
ational inequality problems (VIPs) on Hadamard manifolds. The proposed algorithms
draw inspiration from the extragradient method, subgradient extragradient algorithm,
and the projection and contraction approach. They incorporate adaptive step size
strategies, allowing for dynamic adjustment throughout the process. Under the con-
ditions of a pseudo-monotone and Lipschitz continuous vector field, we demonstrate
that the generated sequences converge to the solution of the VIP, provided that a
solution exists. Additionally, we establish global error bounds and prove R-linear
convergence for the algorithms when the vector fields governing the VIP are strongly
pseudo-monotone. Some computational experiments indicate the efficiency of these
algorithms. Our results extend and improve upon existing algorithms for solving
VIPs on Hadamard manifolds. Given that the VIP is a specific case of equilibrium
programming, futureworkwill aim to extend the proposed algorithms to tackle equilib-
rium problems on Hadamard manifolds. Another promising direction is to investigate
practical applications of these algorithms within Hadamard manifolds. Furthermore,
exploring the application of inertial techniques to accelerate the convergence rate of
the extragradient-type algorithms could be a promising direction.
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