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Abstract

We provide five techniques for solving variational inequality problems on Hadamard
manifolds that are based on the adaptive extragradient method. These algorithms oper-
ate adaptively, eliminating the need for prior knowledge of the Lipschitz constant
associated with the vector field. Furthermore, the iterative sequences produced by the
algorithms are shown to converge to the solution of the problem under the conditions
that the vector fields are pseudo-monotone and Lipschitz continuous. Additionally, we
establish global error bounds and R-linear convergence rates when the vector fields
exhibit strong pseudo-monotonicity. Lastly, the theoretical results are illustrated with
two numerical instances.
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1 Introduction

This paper aims to present adaptive extragradient algorithms for solving variational
inequality problems (VIPs) within Hadamard manifolds. The VIP serves as a versa-
tile framework applicable to a range of fields, including equilibrium programming,
economics, transportation regulation, optimal control and compressed sensing (see,
e.g., [1-4]). Over the past decades, extensive research has focused on VIPs and
related algorithms in linear spaces (see [5—11]). Extending numerical methods from
Euclidean spaces to Riemannian manifolds offers advantages, including the transfor-
mation of non-convex (resp., non-monotone) problems into convex (resp., monotone)
ones through suitable Riemannian metrics (see [12, Section 4]). This underlines the
necessity of developing algorithms for VIPs in manifold contexts. In recent years,
significant progress has been made in studying optimization problems and solution
techniques on manifolds (see, e.g., [13-31]).

1.1 Our contributions

This paper extends the study of VIPs and iterative algorithms on Hadamard mani-
folds. We address the open question from [14, Section 8] and enhance existing results
by developing adaptive algorithms that accommodate pseudo-monotone and Lips-
chitz continuous vector fields using a non-monotone step size criterion. The generated
sequences converge to a solution under mild conditions, assuming the solution’s exis-
tence. We establish global error bounds and linear convergence results when the vector
fields are strongly pseudo-monotone. Additionally, numerical examples are provided
to demonstrate the theoretical findings. The proposed algorithms improve and extend
several known methods in the literature (see [13—18]).

1.2 Background and organization

Hadamard manifold have several notable properties (see Section 2 for further details),
which have drawn considerable attention from researchers. Examples of optimization
problems set in Hadamard manifolds can be found in [32, Section 1]. This paper
focuses on developing novel extragradient algorithms to solve VIPs. We follow the
formulation of the VIP on Hadamard manifolds as introduced by Németh [13]. Let X’
be a Hadamard manifold, and let C be a nonempty, closed, and convex subset of X'. The
tangent bundle of X is denoted by T X, and B: C — T X represents a single-valued
vector field. The VIP associated with B and C is formulated as follows:

Find u* € C such that (Bu*,E.'u) > 0 (Yu € C), (1.1)

where E~! denotes the inverse of the exponential map. Throughout this paper, we
assume that the solution set of VIP (1.1) is nonempty. Notably, the VIP (1.1) generalizes
the classical variational inequality problem in linear Euclidean spaces. It is known that
there are two popular methods in the literature to solve VIP (1.1): one of which is the
proximal point method (see, e.g., [16, 23, 26]) and the other is the extragradient-based
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method (see, e.g., [14, 15, 18]). Note that the proximal point algorithm is actually
an implicit iterative scheme, which means that an optimization subproblem needs to
be solved in each iteration. In this case, the proximal point algorithm may be time-
consuming. On the other hand, our concern in this paper is mainly on extragradient-
based algorithms with explicit forms. Korpelevich [5] invented the projection-based
extragradient technique, which has been expanded to solve equilibrium issues in both
linear and nonlinear areas and is known to be a useful instrument for addressing VIP.
Each iteration of the extragradient method includes two projections on the feasible set,
which could reduce the program’s computational efficiency if the projections are hard
to calculate. To improve the numerical performance of the extragradient algorithm,
there are several main variants of the extragradient algorithm; see, e.g., [7-11].

In contrast to linear spaces, there are few papers studying solution algorithms for
VIP (1.1) on Hadamard manifolds. In [13], Németh extended some findings on the
existence and uniqueness of solutions for VIPs in Euclidean spaces to Hadamard
manifolds. Subsequently, an extragradient approach with Armijo line search step sizes
was devised by Ferreira et al. [14] to identify singularities of continuous monotone
vector fields on Hadamard manifolds. Inspired by the work of Iusem and Svaiter
[6], Tang et al. [15, 17] provided two extragradient methods with Armijo line search
step sizes to find the solution of VIP (1.1). When the vector field is continuous and
pseudo-monotone, they demonstrated that the sequences produced by the proposed
algorithms converge to the solution set. Recently, Batista et al. [ 18] extended the results
in [15] from univalued vector fields to multivalued maximal monotone vector fields.
Very recently, Sahu et al. [28] proposed an extragradient algorithm with an Armijo-
type step size rule to solve both monotone and non-monotone variational inequalities.
Comparing the algorithm to [15, 17], they showed its computational efficiency with
numerical examples. The drawback of the algorithms described in [15, 17, 18, 28]
is that using the Armijo-type rule to update the step size significantly increases the
computation time. Therefore, it is interesting and necessary to continuously develop
some new results based on extragradient algorithms.

The structure of this paper is outlined as follows: Section 2 introduces key results
within the framework of Riemannian geometry. Section 3 details adaptive numerical
methods developed to address the VIP (1.1) by utilizing pseudo-monotone vector
fields, along with a convergence analysis of these algorithms. We also establish global
error bounds and demonstrate R-linear convergence for cases where the vector field
exhibits strong pseudo-monotonicity. In Section 4, we present fundamental tests on
Hadamard manifolds to validate the convergence of our methods. Finally, Section 5
wraps up the paper and suggests future research directions.

2 Notation and terminology

This section aims to present some useful concepts and results regarding Hadamard
manifolds, essential for understanding the content of this paper. These concepts are
standard in Riemannian geometry (see, e.g., [15, 23, 33-36]).

Let X be a connected k-dimensional manifold. The tangent bundle of &, rep-
resented as T X, is given as TX = U, cxy T, X, where T, X is the tangent space
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at u € X which consists of all tangent vectors at that point. A Riemannian metric
on T, X is an inner product (-, -), that maps pairs of tangent vectors to nonnega-
tive real numbers, (-, -),: T, X x T,X — R>o, and induces a norm || - ||, such that
lull, = (u, u) th/ 2 When this inner product defines a Riemannian metric for every point
u € X, the collection of inner products (-, -) constitutes a Riemannian metric
on X. Riemannian manifold is the name given to a differentiable manifold X
that has this metric enabled. To keep things simple, the inner product and norm on
T, X will be represented by the notations (-, -) and || - ||, respectively.

The length of a piecewise smooth curve n: [a, b] — X connecting points u
and ¢ (where (a) = u and n(b) = q) is defined as L(n) := f(f |n’(@)|| dt, where
n'(t) = % represents a tangent vector in Ty ;) X'. The minimum length over all such
curves linking u and ¢ is known as the Riemannian distance between u and
q, denoted by s(u, g). The topology induced by this distance function on X matches
the original topology of the manifold, making (X, s) a complete metric space, which
implies that any closed and bounded subsets of X are compact (see [33, p. 146,
Proposition 2.6 and Theorem 2.8]).

A smooth curve 7 is called a geodesic if its derivative 1’ remains parallel along
n, which implies that || n || remains constant. A geodesic connecting points # and g in
X istermed minimal ifits lengthis equal to s(u, g). The parallel transport
PT,).n@) : Ty@yX — Typ)&X on the tangent bundle T X" along a minimal geodesic
from n(a) to n(b) is given as PT; ), ) (v) := B(n(b)), where B is the unique vector
field such that V,/;) B = 6 (where 6 is the zero tangent vector) for all ¢ € [a, b] and
satisfies B(n(a)) = v. Itis important to note that PT, ) ;) acts as an isometry from
Tn(a)X to Tr;(b)X-

The exponential map E,: T,X — X at a point u is denoted as E,v :=
Ny (1, u), where 1, (-, u) denotes the geodesic originating from u with initial velocity
v.Foranyt € R,E,tv = n,(t, u),and E,60 = 1n,(0, u) = u. The exponential map has
an inverse Eu_1 : X — T, X. Additionally, we have (see, e.g., [33, p. 146, Proposition
2.5] and [35, p. 39, Corollary 2.8]):

A Hadamard manifold refers to a complete, simply connected Riemannian
manifold characterized by nonpositive sectional curvature. Throughout this paper, we
denote an k-dimensional Hadamard manifold by X and use C to represent a nonempty,
closed, and convex subset within X'. According to the well-known Hadamard-Cartan
Theorem [35, p. 221, Theorem 4.1], the topology and differential structure of X" are
identical to those of the Euclidean space R™. We now proceed to recall some geometric
properties relevant to Hadamard manifolds.

Consider points u1, up, and u3 on X'. Let A (u1, uz, u3) denote a geodesic triangle
on X formed by three minimal geodesics n; that connect u; to u;y1, where i =
1,2,3 (mod 3). Let «; be the angles of A (u1, uz, u3) at the vertices u;. Based on
the comparison theorem for triangles (see [35, p. 223, Prop. 4.5] and [22, Thm. 2.2]),
along with properties of the exponential map and distance on X, we have the following

E;‘gH - HE;‘MH = s(u, g) = s(g,u) (Vu,g € X).
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results (refer to [23, Eq. (2.3)], [24, Eq. (9)], and [31, p. 280, Prop. 14.16]):

—1 -1
(ELlH,]ui’ Eui+1ui+2) =S (ui, u,'_;,_l) S (u,'_;,_l, Lt,'_;,_z) COSj+1, (2.1)
32(. . 2. . 2y BTy < <2 (y. . 20
Ui, wiv1) + 87 Wiy1, Uiy2) < i Wi ui+1ut+2>_s (Uit ui), (2.2)

2 —1 —1 —1 ~1
$7 (uj, ujt2) < (Euiuui,EquMiH)—F(Eui wit1, By, Wiy2).

By letting ©; 4 = u; in (2.1), one obtains

(E;iilui’ E;’_ilu,‘) = 82 Uit1,ui) = HEu_,IHMI ”2

Let the triangle A (u/ ,q', ) represent the comparison triangle for the geodesic
triangle A(u, g, t). It is important to note that the comparison triangle is unique up to
isometry within X'.

Lemma 2.1 ([40, p. 24, Lemma 2.14]) Consider the geodesic triangle A(uy, uz, u3) in
X. There exist points u; € R? (i = 1,2, 3) such that s(u;, uj) = |lu; — u’j||, Vi, j €
{1,2,3}, i # .

Lemma 2.2 ([30, Lemma 3.5]) Let A(u, g,t) be a geodesic triangle in X, and let
A (u’ gt ) be its corresponding comparison triangle. Denote the angles at u, g, t
of A(u, g, t) by t,8,n, and the angles at u’, g',t' of A(u', g',t") by ©/, 8, 1. Then
/>1,8 >68,andn > n.

Proposition 2.1 (23, p. 671]) Letu,q € X and v € Ty X. Then
(v, —E_'u) = (v, PT, uE, 'q) = (PT, 0. E; 'q).

Lemma 2.3 below is crucial for the convergence analysis in this paper.

Lemma 2.3 Let ty;, ¥m, &m» 8m+1 € X. Consider the geodesic triangle A(ty,, Y, &m)

and its comparison triangle A(t),, r),, g,). Similarly, consider the geodesic triangle

A(tm, 'm, 8m+1) and its comparison triangle A(t,’n, ";;w g;n_H). It follows that

(St = ot — 8n) < (PTg, Bl 1. By ).
Proof Let ¥ = E g, 11 and a = B, PT, . E g, 1. The comparison point of
aisa = g, + g,. — 'y Let 8 (tesp., §') be the angle of A(a, gm,tm) (resp.,
Ad', g, 1)) at the vertice gy, (resp., g,,). According to Lemma 2.2, it follows that

8’ > § and thus cos 8’ < cosd since §,8" € (0, 7). By using Lemma 2.1 and (2.1),
one deduces that

(@ =gt — &) =@ — gn| 15, — &3 || cos &'

<5(a.gm) s (tm. gm) €088 = (PTy, 1 Bl i1 Epty).

This completes the proof. O
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Proposition 2.2 ([23, Lemma 2.4],[18, Lemma 1.1]) Let go, ro € X, with sequences
{gm} C X and {r,,} C X. Iflimy,,00gn = go and lim,,_s 1y, = ro, then the
following claims are true.

(i) For any point y € X, we have lim,,_, 5, Eg_’:y = Egoly and lim,_, oo Ey_lgm =

Ey_lg().
(ii) If am € Ty, X and limy, o0 ap, = ao, then ag € Ty, X.
(iii) Given sy,an € T, X and so,a0 € Tg X, if limysoosm = so and

limy, — 00 @ = ag, then limy,— oo (S, am) = (S0, ag).

(iv) For any u € Ty X, the function B: X — T X, defined by B(x) = PTy g u for
each x € X is continuous on X.

(v) We have lim,,,_, E;mlrm = Egolro.

Proposition 2.3 ([18, Lemma 1.2]) Let {g,} C X, {aw} C T,, &, and {tn} C
0,1), with go € &, ap € Tg, X, and ty € [0, 1) such that limy_00 gn = &os
limy, 0 ay = ao, and limy, o t;; = to. Define {ry,} by ry = Eg, tiwam. Then, it
holds that lim, . o PT},, o, am = PTyy a0, where ro := Egqtoag = limyy— oo 1.

Definition 2.1 ([34, p. 59, Definition 1.3]) A subset C C X is called (geodesic)
convex if for any two points p,q € C, the geodesic connecting p to g lies com-
pletely within C. Specifically, if n: [a, b] — X is a geodesic with p = n(a) and
g =n(b),then n((1 —t)a +tb) € C forall ¢ € [0, 1].

Definition 2.2 ([39, Theorem 1], [22, Proposition 3.2]) Let C ¢ X and ¢’ € X. The
point 7 € C is called the projection of #’ onto C, denoted as Pj¢ (1), if it satisfies
s(t',1) <s(t',y)forally € C.

LetPj-: X — C denote the projection onto C. According to [39, Theorem 2], the
projection Pj is Lipschitz continuous and characterized by Proposition 2.4 below.

Proposition 2.4 ([39, Theorem 2], [22, Corollary 3.1]) For C C X and u € X, we
have Pj is single-valued and z = Pj(u) if and only if

(E-'u,EZ'q) <0 (Vg € C).

Remark 2.1 From Proposition 2.4, u* solves problem (1.1) if and only if u* =
PjC(Eu* (—ﬂBu*)) for all ¥ > 0. When X = R™ in Proposition 2.4, it follows
that

(u —Pjcu),g —Pjcw)) <0 (Yu € R")(Vq € C).

This inequality relates to the fundamental property of projection (see, e.g., [42, p. 53,
Theorem 3.16]).

Lemma 2.4 ([15, Lemmas 2.2 and 2.4]) Let C be a closed and convex subset in a
Hadamard manifold X. Letu € X and q € C. Then

(i) (g, Pjcw)) < s*(g,u) — s*(u, Pjc(w)) (Vg € C);
(ii) s*(q, Picw) < (E;'u, B '"Pjc(w) (Vg € C).
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Remark 2.2 Tt is established that a class of firmly quasi-nonexpansive mappings con-
tains firmly nonexpansive mappings and quasi-nonexpansive mappings (refer to [42,
p. 69, Definition 4.1] for definitions). From (i) of Lemma 2.4, it follows that the projec-
tion operator Pj~ in Hadamard manifolds also exhibits firmly quasi-nonexpansiveness.
This observation is additionally noted in [24, Corollary 1].

Definition 2.3 ([37, Definition 2.2], [23, Definition 3.1], [15, Definition 3.1], [38, p.
702]) Let C C X. A vector field B on C is a mapping B: C — TX such that
Bu € T, X foreach u € X. Then B is said to be:

(i) monotone if

(Bu.E,'q) < (Bq.—E_;'u), Vu,qeC.
(il) p-strongly monotone (u > 0) if

(Bu.E;'q) — (Bq. —E;'u) < —us*(u.q). Vu.q€C.
(iii) p-strongly pseudo-monotone (u > 0)if
(Bu.E;'q) = 0= (Bq.E;'u) < —us’(u.q). Vu.qeC.
(iv) pseudo-monotone if
(Bu.E,'q) > 0= (Bq.E;'u) <0, Vu,qeC.

(v) L-Lipschitz continuous (L > 0)if

HPTq,uBu — Bg ” < Ls(u,q), Yu,q € C.

Lemma 2.5 ([17, Lemma 2.8]) If vector field B: C — T X is continuous and C is
compact and convex, then VIP (1.1) has a solution.

The notion of R-linear convergence in linear spaces can be generalized to
Hadamard manifolds.

Definition 2.4 In a Hadamard manifold X, a sequence {g,,} converges R-linearly to
u™ with rate @ € [0, 1) if there is a constant ¢ > 0 such that s(g,,, u*) < ca™ for all
m € N.

Definition 2.5 ([22, p. 268, Eq. (25)]) Given a complete metric space X, let C be a

nonempty set. With regard to C, a sequence {g,} C X is Fejér convergent provided

s(gm+1,9) <s(&m,q) (Vg € C)(Ym > 0).

Lemma 2.6 ([22, Lemma 6.1], [14, Lemma 7.2]) Let C be a nonempty subset of a
complete metric space X. If the sequence {g,} C X is Fejér convergent to C, then
{gm} is bounded. Furthermore, if every cluster point of {g,,} lies within C, then {g,,}
converges to a point in C.
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3 Main results

Inthis section, we give five new iterative algorithms with adaptive step sizes designed to
solve variational inequalities governed by pseudo-monotone vector fields in Hadamard
manifolds. Our three algorithms utilize an adaptive step size rule (see (3.1)) that
does not require a line search. This rule automatically adjusts the step size for the
next iteration based on information from previous iterations. The adaptive step size
approach proposed in this paper demonstrates improved performance over Armijo-
type step size rules used in previous works such as [15, 17, 18, 28], particularly
regarding computational efficiency. A key benefit of these algorithms is that they do
not require prior knowledge of the Lipschitz constant for the pseudo-monotone vector
field. To analyze the convergence of the proposed algorithms, we assume that the
following three conditions are satisfied.

(C1) The solution set I"(B, C) of VIP (1.1) is assumed to be nonempty, that is
Ir'(B,C) #0.

(C2) The feasible set C is a nonempty, closed, and convex subset of Hadamard
manifold X.

(C3) The vector field B: C — T X is pseudo-monotone and L-Lipschitz continu-
ouson C. Let {w,,} C [1, 00) satisfies Z,fle(wm —1) < o0, and {u,,} C [0, 00)
such that >_0° | p, < 00.

3.1 Five self-adaptive extragradient algorithms

In this subsection, we provide five modified extragradient-type methods to solve VIP
(1.1) in Hadamard manifolds. The five proposed algorithms offer a dual advantage of
simplicity and efficiency. The first three algorithms are explicit iterative schemes, while
the last two are implicit ones. Building upon the subgradient extragradient algorithm
in Euclidean spaces [9], we start by presenting an adaptive modified subgradient
extragradient algorithm (see Algorithm 3.1 below) to solve VIP (1.1) with a pseudo-
monotone and Lipschitz continuous vector field.

Remark 3.1 If g,, = ry, in Step I of Algorithm 3.1, then by Remark 2.1,
(Bgm.Eg'z) =0 (Vz€C).

This yields that g,, € I'(B, C) by the definition of VIP (1.1) and thus the iterative
process of Algorithm 3.1 stops.

In all subsequent convergence analyses, we assume that the proposed algorithms
do not terminate in a finite number of steps. Before proving the convergence theorem
of Algorithm 3.1, we first present two important lemmas.

Lemma 3.1 Let step size {U,,} be a sequence generated by (3.1). Then it is well defined.

Proof Since B is L-Lipschitz continuous, in the case of ||PTrm, on B&m — Bri || #0,

one obtains
VS (&m,> T'm) VS (8m» Fm) v

||PTrmsgmBgm - Brm || ~ Ls (gmsrm) B Z
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Algorithm 3.1 The first type of modified subgradient extragradient algorithm

Initialization: Take 99 > 0, v € (0, 1), and 8 € (0,2/(1 + v)). Let {zy, } and {14, } satisfy Condition
(C3).Let gg € X and set m = 0.
Step 1. Compute

'm = PjC (Egm (=Vm Bgm)) .

If gm = rm, then stop the iterative process and g, € I"(B, C); otherwise, go to Step 2.
Step 2. Compute
8m+1 = Pme (Egm (PTé’ma"m (_ﬁﬁmBr’"))) s
where
Hy = {x € X: (B em — 9mPTy,, g, Bgm By 1 x) < 0} .

T'm

and update ¥, 1 by

. Vs (&ms 'm)
min ,
Ul = |PTr..0m Bgm — Brm |
DmIm + W, otherwise.

@mVm + tm } . if [PTy,, g Bgm — Brm || # 0

3.
Setm :=m + 1 and go to Step 1.

Here, PT,,, ,, Bgn represents the parallel transport of Bg,, from T, X to T,,, X along
a minimal geodesic connecting g, and r,,,. Combining the above inequality with (3.1)
leads to ¥,41 > min{v,, v/L}. By induction, it follows that ¥, > min{Jy, v/L}.
Additionally, from (3.1), we observe that ¥,,11 < @, %, + i for any m > 0. Given
condition (C3) and [41, Lemma 1], we can conclude that lim,,_, o 1, exists. Since
the sequence {1, } is bounded below by min{d¢, v/L}, it follows that lim,,—, s ¥y, :=
¥ > 0. O

Lemma 3.2 Let {r,,} and {gm} be created by Algorithm 3.1. Fix p € I'(B,C). It
follows that

2 (gmets p) < 5 (gms p) — B* (s2 (8m.Tm) + 52 (P, gm+1)) , 3.2)
where

g* = 2—=B—=Bv0y/Unt1, B e[l,2/(14v)),
T B =00, /Omin),  ifB (O, 1),

Moreover, {gn} is Fejér monotone with respect to I' (B, C). Analogously, both {r,}
and {gm} are bounded.

Proof Let t,,, := Eg, (PTg,,,,rm (=B Brm)). Consider A (t,, 'm, gm) and its com-
parison triangle A (1), 7}, g,,)- The comparison point of ,, is t,, = g/, — O Br},.
Similarly, consider the pair of A (tyy, gm, p) and A (), g}, p'). By using Lemma 2.1,
one has

/

sn.p) = |ts, =Pl s@m.p)=|gn =01 sUn gm) =15, — g0l -
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Also, consider the geodesic triangle A (,,, gm+1, &n) and its comparison triangle
A, 1> &m)- By Lemma 2.1, one obtains

S (&m+1, &m) = ”g;/n—&-l - g;/n| s S(ms &m+1) = Htr/n - 8;n+1“ :

From the definitions of g, and #,,, and Lemma 2.4(i) (noting that p € I'(B, C) C
C), we have

82 (gm+ls P) = Sz (Pme (Egm (PTng’m (_ﬁﬁmBrm))) ’ p)
E 52 (Egm (PTgmsrm (—,BﬂmBrm)) ’ p) - Sz (Egm (PTgm>rm (_ﬂﬁmBrm)) ’ ngr])
= 5> (tm. p) = ” (tm: §m+1) -

Note that

S* (s p) = S (tm gm41)
= [tn = 217 = 15, = g ®
= |gr = BBy = P'” = |8 — BOnBrs, — ghrsa |
=g, — P'|” + BO? | B, | =208l — P\ BOmBrL)
— g = g |* = B9 [ Bry|* + 260, = prs1: BOm By
=52 (gm. P) + 208 — Pty — &) — > (G 8m1) + 2(8hr1 = &+ Loy — o)~

Therefore, it follows that

2 (Gm+1, P) < 5% (8ms P) +2(8pst — Doty — &) — 5° (8 gm+1) - (3.3)

According to p € I'(B,C) and r,, € C, one arrives at (Bp,E;lrm) > 0, which
together with the pseudomonotonicity of B implies that

(Brm,E;'p) <0. (3.4)
By using (3.4), Lemma 2.3, and Proposition 2.1, one has

(8t = Pty — &)
e A A L T L M )
< (PTg,.n,Er  8mt1. B tm) + (PTg, pE, i By )

'm ™=y

= (PTq,,.r, B, @mt1. By t) + (—Eg | tw, PTy, 1, Ex 1 p)

—B(OmBrm. B, gmi1) + BOm(Brm. E; ' p)
< —BOuBru. E; gmi1).

(3.5)
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Combining (3.3) and (3.5), one obtains

> (Gmt1:P) < 8° (@ms P) = S° (@ Gm+1) — 2B(OmBr. By gmi1). (3.6

Consider the geodesic triangle A(gy, 'm, &m+1)- It follows from (2.2) that

52(rmv gm+1) + S2(7‘m7 &m) — 2(E;n1gma Er_mlgm—i-l) =< Sz(gmv gm+1)-

3.7
Note that

(Bl em E,  gms1)

= (E; "gm — 9uPTs, 0, B&m. B ' gms1) + (OwPTr, 00 BEm. By ' g1

" " ° 3.8)
= <Erm &n — UmPTy, ¢, B&m, Erm 8m+1) + (Im Brm, Erm 8m+1)
+ (9mPTs, g, BEm — Om Brm, Er_mlgm+])-

From the definition of H,, and g,,+1 € H,,, one sees that

(E; ' gm — 0mPTy, 00 Bgm: E;  gm1) < 0. (3.9)
According to the definition of 11, one has

(ﬁmPTrm,gmBgm — U Bry, E;;llgm+l> < Un ||PT"m’gmBgm — Bry, “ ’ ‘

E;n]gm+1 H
vy,
S (&msTm) S (m+1sTm)
ﬂm+l
- l vy,

< 55 (5 Gmrm) 5 et ) )
Combining (3.8), (3.9), and (3.10), we have

IA

(3.10)

(Bl em B, gm1)

<= = (52 (&msTm) + 52 (&m+1, Vm))'i‘(l?mBrmv E;nlgm+1>-
2ﬁm-i-l

This together with (3.7) yields that

=52 (gm. 8mt1) < —S> (s Gm1) — * (. 8m) + 2(0m Brm By L gmp)

+ v /Pt (52 (&m»Tm) + s? (gm+1, rm))

(= V0 /D) (5% s 7n) + 5% (81, 7))
+ 2(0m Brm. By, 'gm1),
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which is equivalent to

—2B(0mBrm. By "gmi1) < =B (1= 10 /Onr1) (5> (8m. Fm) + 87 (gm1, 'm))
+ B> (gm- gm+1) (VB > 0).

(3.11)
From (3.6) and (3.11), one has

S @mt1s P) 87 (@mo p) = B =0 /P 1) (5% (@ ) + 5 (@t Tm))
— (1= B)S*(gm- gmt1) (VB > 0).
(3.12)
Consider the geodesic triangle A (g, rm, gm+1) and its comparison triangle A (gj,,
8 +1). It follows from Lemma 2.1 that

S(gm»>rm) = ”g;n - rr/n

o 8 (rme gmt1) = |rm = gyt |- 5 (8m- 8mt1) = |8 — gt |-
According to the Cauchy-Schwarz inequality,

[ e A ] b
< g =l + lgrr = rinl> 2l g0 = il - 1rie = & |
= 2(Jlgn =l + lgmsr =7 l) -

That is
2 @ 8m+1) = 2 (5 (8ms 7n) + 57 (s gns) ) (3.13)

The conclusion required in (3.2) can be directly derived from (3.12) and (3.13). On
the other hand, by virtue of Lemma 3.1, one has lim,,_,o 8* > 0 for any 8 €
(0,2/(1 4 v)). That is, there exists a positive integer N such that g* > 0 for all
m > N. Combining this with (3.2), we have

s> (gm+1, p) < 5° (gm, p) (Ym = N).

This implies that {g,} is Fejér monotone with respect to I'(B,C) and {g,} is
bounded. By letting m — oo in (3.2), one arrives at lim,;,— o S (g, ') = 0 and
limy,— 00 S (Fim, €n+1) = 0. Thus {r,,} is also bounded. O

Now we can prove the convergence of the proposed Algorithm 3.1.

Theorem 3.1 Let {g,,} be generated by Algorithm 3.1 and let Conditions (C1)—(C3)
hold. Then {g,,} converges to a solution of VIP (1.1).

Proof From Lemma 3.2, we know that {g,,} is Fejér convergent to the solution set
I'(B, C) of the VIP (1.1). According to Lemma 2.6, it is necessary to demonstrate
that the weak cluster points of {g,,} belong to I' (B, C). Let u* be a cluster point of
{gm}. Due to the boundedness of {g,, }, there exists a subsequence {gy; } of {gm} such

@ Springer



Numerical Algorithms

that g, ; — u*. From the condition lim,;,— o $(g/n, Fm) = 0, it follows that Fmj = u*
and thus u* € C. From r,,; = PC(Egmj (=0m; Bgm,)) and considering j — 00, by
using Proposition 2.3, the Lipschitz continuous of B, and lim; , oo ﬂmj =19 > 0, o0ne
obtains

u* = Pc(E, (=9 Bu™)).

This together with Remark 2.1 yields that u™ € I'(B, C), as desired. O

Next, we provide a modified version of the suggested Algorithm 3.1, which differs
from Algorithm 3.1 in the computation of r,, and g,,+1. This approach is shown in
Algorithm 3.2.

Algorithm 3.2 The second type of modified subgradient extragradient algorithm
Initialization: Take 99 > 0,v € (0, 1), and B € (1/(2 —v), 1/v). Let {z};; } and {14, } satisfy Condition
(C3). Let gg € X and set m = 0.

Iterative Steps: Assume that g, € X is known, calculate g, 41 as follows.
Step 1. Compute

m = PjC (Egm (_,BﬁmBgm)) .
If g = rim. then stop the iterative process and g;; € I"(B, C); otherwise, go to Step 2.
Step 2. Compute
gm+1 = Piy,, (Eg,y (PTg,.ry (—0mBrm))).
where
Hy = {x € X: (B gm — BOmPTr,, g0 Bem, By x) < o},

and update 9,1 by (3.1).
Setm :=m + 1 and go to Step 1.

Theorem 3.2 Let {g,,} be created by Algorithm 3.2 and Conditions (C1)—(C3) hold.
Then {gn} converges to a solution of VIP (1.1).

Proof In the light of (3.3)-(3.6), one sees that

S (@m1. P) < 8° (@mo P) = S° (@m- g4 1) = 2(0mBru. B, Lgmy1).  (3.14)
Consider the geodesic triangle A(gy,, r'm, &m+1)- By using (2.2), one arrives at

S (s 8mr1) + 87 s 8m) — 2B g By gmg1) < 8% (8. gmy1). (3.15)
Note that

By 'gm. E; 'gms1)
= (B} 'gm — BOwPTs, 0, B&m. E; ' gms1) + (BOwmBrm. B 'gmy1)  (3.16)
+ ﬂﬁm <PTrm,gm Bgm — Bry, E,_mlgm+1)-

From g,,+1 € H,,, one obtains

(B, gm — BOmPT,, g, Bem, By gmi1) < 0. (3.17)

Tm
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Combining (3.10), (3.16), and (3.17), we have

(B g By gnit) < 809/ Qi) (5% s ) +5% 1 7))

+ B(Om Brm. By gmy1).

This combining with (3.15) infers that

=52 (gms 1) = = (1= Bt D) (5 s ) + 5% @t 7))
+ 2B8(0m Brm, By ' gmi1).

This implies that

200 Brs By gmt) < = (1/B = V0 /D) (52 @ ) + 5% (Gt 7))

+ B2 (gms gms1) (VB > 0).
(3.18)
Combining (3.14) and (3.18), one has

2 @nts P) = 52 Qs ) = (1B = v /D) (5 s ) + 5% @t 7))

—(1=87") (s gm) (VB > 0),
(3.19)
By using (3.13) and (3.19), we conclude that

2 @12 P) = 52 @ ) = BT (2 (@) +52 G gan)) . (3.20)

where
B {2 —1/B = v /Omy1, ifBe(1/2—v),1);
/B = vOu/Dm+1, if B e[l,1/v).

Then lim,, oo BT > 0 forany g € (1/(2—v), 1/v) by means of Lemma 3.1. In other
words, there exists a positive integer N such that ,BJf > 0 forall m > N; and 8" has
a positive bound from below. This together with (3.20) yields that

S (gm+1, p) < s(gm, p) (Ym = Ny),

which implies that {g,,} is Fejér monotone with respect to I"(B, C) and thus {g,,}
is bounded. By letting m — oo in (3.20), one obtains lim,;,— oo S (gm, ¥m) = 0 and
lim;;— 00 S "m» 8m+1) = 0. Thus {r,,} is also bounded. The rest of the argument
proceeds identically to Theorem 3.1. O

The projection and contraction algorithm [7] is an effective method for solving
variational inequalities in Euclidean spaces. It is important to note that this algorithm
only requires a single projection onto the feasible set at each iteration, which results in
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a computational complexity similar to that of the subgradient extragradient algorithm.
Numerical experiments by Cai et al. [43] showed that the projection and contraction
algorithm runs twice as fast as the extragradient algorithm [5]. In the following, we
introduce two adaptive modified projection and contraction algorithms to solve VIP
(1.1) with a pseudo-monotone and Lipschitz continuous vector field on Hadamard
manifolds. The first approach is outlined in Algorithm 3.3.

Algorithm 3.3 The first type of modified projection and contraction algorithm

Initialization: Take 99 > 0, v € (0,1), 0 € (0,2/v), and B € (0/2, 1/v). Let {wy, } and {u;,} satisfy
Condition (C3). Let gg € X and set m = 0.
Step 1. Compute

'm = PjC (Egm (_/319m38m)) .

If gm = rm, then stop the iterative process and g, € I"(B, C); otherwise, go to Step 2.
Step 2. Compute
Em+1 = Pme (Egm (PTgm,rm (=0 &mVm Brm))) s

where

-1
._ (Erm &m>s Am)

Cm - Uy = Er_ml gm + ﬂﬂm (Brm - PTrm.gm Bgm) 5 (321)

Ham\lz
and
Hy = {x € X: (E; gm — BOmPTr g Bem, By lx) < o},
and update the next step size ,,41 by (3.1).
Setm :=m + 1 and go to Step 1.

Before starting the analysis of the convergence of Algorithm 3.3, we show that {¢,}
in (3.21) is well defined.

Lemma 3.3 Let {¢,} be generated by (3.21). Then oy, = 0 if and only if g = rim.

Proof From the definition of «,, and (3.1), one has

Er_mlgm + Bm (Brm —PT,,, ¢, Bgm)

— By HBrm - PTrm,gm Bgm H (3.22)

ltw = |

2 ‘

E;nlgm
> (L= BvOm/Om+1) 8 (§msTm) -

Similarly, we have

B g | + B0 | Bri = PTy,, 0, Ben | < (L BY0n/D0s1)S (@ )
(3.23)

Jan] < |
Combining (3.22) and (3.23), we obtain

(I = Bviu /Pms1) s (gms Tm) < llamll < (1 + BvPiu/Pmi1) S (&ms Tm) -
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By using Lemma 3.1, one obtains that lim,,—, o ¥, exists. Due to 8 < 1/v, one sees
that

lim (1 — Bvd,/Pmn4+1) > 0.
m— o0

Therefore, we conclude that o, = 0 if and only if g,, = r;,. According to Remark 3.1,
we know that the iteration of Algorithm 3.3 stops when g,, = r,. That is, the Step 2
in Algorithm 3.3 is not performed if g,, = r,;, so ¢, is well defined. O

Theorem 3.3 Let {g,,} be formed by Algorithm 3.3 and let Conditions (C1)—(C3) hold.
Then {gn} converges to a solution of VIP (1.1).

Proof By means of Lemma 3.1 and 8 < 1/v, one has 1 — Bvd,,/¥,4+1 > O for all
m > my. It should be noted that ¢,, > O for all m > myg. Indeed, in view of the
definition of «,, and (3.1), we deduce that

Em latm|I* = (E; g, otm)
= (B, gm- B gm) — (B, gm. BOm (PT1,, 0, B&m — Bru))
=57 (m- rm) — B (PTy,, g, B&m — Bru. B} gm)
> 5% (gns ) = B0 [PTr, .00 Bgm — Bra - |
> 5% (gm. m) — BV /i1 ” (8. Tm)
= (1 = BV /Pnt1) S (8m. Fm) -

. (3.24)
Erm gm

By using the definitions of ¢, and «,,, (3.23), and (3.24), one has

(Bry gms@m) (1= B0/ Ous1) S (G )
o2~ lletm 1>
(= BV /Ous1)

T (14 BV /Oms1)?

m =

>0, (Vm > myg).

Let t;;, := Eg, (PTgm,rm (—0&m ﬁmBrm)). Consider A (¢, rm, gn) and its compari-
son triangle A (t;,, r,,. g,,)- The comparison point of t,, is t,, = g}, — 0 {uOm Br},.
Similarly to the derivation (3.3), one gives

s (gm+1, P) < 5% (my P) — 5° (s Gm+1) + 2(8hsy — Pty — &) (3.25)

Let a = Eg,PTg, ;,an. Consider A (ry,gn,a) and its comparison triangle
A(r},. gy a’). The comparison point of a is a’ = 2g,, — r}, + BV (Br), — Bg),).
Letb = Eq, \PT,, .| r,0m. Consider a pair of A (r, gm, b) and A (r},, g, b). The
comparison point of b is b’ = g, | + &, — 7, + B (Br;, — Bg;,). Note that

/ /

<g}/n+1 - p/’ t}/n - g;n) = <g;/n+1 _r1;17t;{n - g;n> + (rm - D, ty/n - g}/n)’ (326)
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and

/! /

(g;n+1 — s by _g;n> (gm-l,-l U§m19 Br, >
=U§mﬂ (gm+] (gm _r +/319 ( - Bgm))
=0LnB ™ (= &rui1> @ — &) + 0B (Ghst = T &y — T — BOmBEy,)
=0lmB ((rhy — 8r ' — &) + (80 — gyt b — gi1))
+ 0GB N8t = Tgs & — Ty — BOmBE,,).
Therefore, by Lemma 2.3 we have
(@ —gnrh — &) < (PTg,, rpOm, E;n]rm).

Similarly, we obtain

—1
<g;n - gl/n—l—l’ b/ - g;n—‘rl) = <PT8771+13r111am’ Engr]gM)

(€1 = > 8 — Try — BOmBE) < (Bl gy — BOWPT,, ¢, Bgm, E; ' gm 1),

and
(= Pty = &) < (PTg, By, i By L),
It follows from g,,+1 € H,, that
(E;.'gm — BOWPTs, g, Bgm, B, gmi1) < 0. (3.27)

From (3.4), (3.26), and (3.27), by using Proposition 2.1, and the definition of ¢,,, we
deduce that

(g;/n+1 - P/v t,/n - g;n) =< O’;mﬂ71 ((PTgmA,rmama E;m] Tm) + <PTgm+1.rm05m ;711+1gm>)

+ O'g-mﬂil <E;",1 8m — ﬂﬁmPTrm.gm Bgm, E;ml Em+1)
+ (PTg, pE, ' rm B )

<olmB” ((am PTrm ngg lrm) + {am., PTr,,,,gmH ;,:Hgm))
+ (PTy,, pE, 1, PT,, 0By l) (3.28)
< 0GB ((em: Py 0, Bg ) + (o, P, 0 Bl 2m))
+ O'é-ml}m<E;m P, Brm)
<oimp! (< —E;lgm) + ol - 1Eg), gmll)
< —ogp B lamll® +27 022 B2 laml* + 2752 (g, gm+1) -
Combining (3.25) and (3.28), one obtains
2 2 2 -2 2
s“ (gm+1, P) <8 (&m, P) — 08, 2B — ) B llaml”. (3.29)
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By using (3.23) and (3.24), one arrives at

_ Gallomll® (L= Bvdn/Pms)?
leom 7 (14 BV /On+1)?

£ Nl |12 (8m»Tm) - (3.30)

Combining (3.25), (3.29), and (3.30), we have

L (1 = BV /Dmt1)

2= e 1)2s2 (gm>rm) (¥p € ['(B,C)).
m/ VYm+

(3.31)

Since 0 € (0,2/v) and B € (0/2, 1/v), one sees that 0,3_2(2;3 — o) > 0, which
combining with (3.31) implies that

s% (gm+1, P) < 8 (gm. ) —

s (gm+1, P) < 8% (gm, p) (Ym > mo).

This means that {g;,} is Fejér monotone with respect to I'(B, C) and thus {g;,} is
bounded. By letting m — oo in (3.31), one concludes that lim;,— o0 S (gm, rm) = O.
Hence {r,,} is also bounded. The continuation of the proof is analogous to that of
Theorem 3.1. O

It is important to note that the proposed Algorithms 3.1-3.3 involve computing
projections onto the set C and the half-space H,, at each iteration. Next, we present
two implicit iterative algorithms to address VIP (1.1). Now, we propose another type
of projection and contraction algorithm, which requires solving a convex optimization
problem at each iteration and does not involve projection onto a half-space. This
approach is displayed in Algorithm 3.4 below.

Algorithm 3.4 The second type of modified projection and contraction algorithm

Initialization: Take 99 > 0, v € (0,1), 0 € (0,2), and B € (0, 1/v). Let {wy;,} and {im} satisfy
Condition (C3). Let gg € X and set m = 0.
Step 1. Compute ry; € C such that

(B em — BOmPTy,, ¢, Bem. B ly) <0, ¥y ec.

If gm = rm, then stop the iterative process and g, € I"(B, C); otherwise, go to Step 2.
Step 2. Compute
8m+1 = Eg,,, (PTgm,rm (_Ufmam)),
where ¢, and «y, are defined in (3.21). Update 9,1 by (3.1).
Setm :=m + 1 and go to Step 1.

Theorem 3.4 Let {g,,} be created by Algorithm 3.4 and Conditions (C1)-(C3) hold.
Then {gn} converges to a solution of VIP (1.1).
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Proof Fix p € I'(B,C). Consider A (p, gm+1,8&m) and its comparison triangle
A(p'. 81 8))- By using Lemma 2.1, one arrives at

s(pogm) =P =gl s@mits&m) = |gnsr — &l s gm+) =P — gpi| -

The comparison point for g, +1 s g, | = &, —0 {m (g5, — rp + BOm(Br;, — Bg),)).
For convenience, we let x,, = g, — ), + B9m(Br,, — Bg,,). From the definitions of
gm+1 and g, .|, we have

0&m ||Olm ” =S (8m+1, 8m) = ”g;n-q-] - g;n ” =08m ” X;;; H

By using the definition of g1, one sees that

2 (gm+1, ) = Ngpar — P IF = llghy — mxs — P12
=gy, — P'II> = 20Gmlgy — P\ xp) + 022 x> (3.32)
=52 (gm» ) + 205 (P’ — & Xp) + 02 E5 |12

Leta := E,,ap and b := Eg PT,, . ay. The comparison points of a and b are
a' =gy, +pBVn (Br), — Bg,,) and b’ = 2g/, —r}, + BV (Br,, — Bg,), respectively.
It follows from the definition of x;, and Lemma 2.3 that

/ /
_rms Xm)
/ !/ /!

= (rpy = & b — &) + (P — 1y d —1y)

< E;; s E;,,lb) + (Er_,,llpv Er—mla> (3.33)
= (E; ' Fm. PTg, iy tm) + (E; ' . ).
From the definition of «,, and Proposition 2.1, one obtains
By rm PTy, rttm) = —(Ex g, &) = =G llotm > (3.34)
By using the definition of r,, and p € C, one sees that
(B, gm — BOmPT,, 4, Bem B! p) <0. (3.35)

Owingto p € I'(B, C) and r,, € C, one gives that (Bp, E;lrm) > 0. It follows from

the pseudomonotonicity of B that (Bry, E, 11 p) < 0. This combining with (3.35)
yields that
(Er,) gm + BOm (Brm — PTy,, ¢, Bem) . E; [p) < 0. (3.36)

Combining (3.33), (3.34), and (3.36), we have
(P = & Xom) < —Cm >
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This together with (3.30) and (3.32) yields

s (gm+1, P) <5% (gms ) — 20¢5 lotmI* + 0 2¢ 2 Nlom |1
(1 = BV /Omt1)?
(1 + BV /Omt1)?

By using o € (0, 2) and (3.37), one has

s (gm,rm) (Ym > mo).
(3.37)

<% (gm, p) — 0 2 —0)

s (&m+1, P) <s(gm,p) (Ym > my),

which implies that {g,,} is Fejér monotone with respect to I" (B, C). Thus {g,,} is
bounded by means of Lemma 2.6. By setting m — oo in (3.37), we can show that
lim;,— 00 S (gms ¥m) = 0. Thus {r,,} is bounded. By means of Lemma 2.6, it is left to
prove that any cluster point of {g,,} belongs to I"(B, C). Let u* be a cluster point of
{gm}. From the fact that {g,,} is bounded, there exists a subsequence { gm j} of {gm}
satisfies limj_ o0 gm; = u*. We also have limj o0 rm; = u* and u* € C due to
lim;;;— 00 S (gm, ¥m) = 0. By using the definition of r,,, one has

(E;mlj gmj,E,_mljx) < B, (PTs, g, B, E;ll x) (Vx € O).

Note that limj—, o0 ¥n; = ¥ > 0 and B > 0. Letting j — 00 in the above inequality
and applying Propositions 2.2 and 2.3, we obtain

(Bu*,E;'x) >0 (Vx € O).
This implies that u™ € I'(B, C), as required. O

Finally, we introduce an implicit modified Tseng’s extragradient method, as shown
in Algorithm 3.5.

Algorithm 3.5 The modified Tseng’s extragradient algorithm
Initialization: Take ¥y > O and v € (0, 1). Let {e; } and {1, } satisfy Condition (C3). Let gy € X and
setm = 0.
Step 1. Compute ry;, € C such that

(Er_mlgm — UmPTry,, g Bgm, Er_ml y) <0, ¥yeC.
If g;m = rm, then stop the iterative process and g, € I'(B, C); otherwise, go to Step 2.
Step 2. Compute

8m+1 = Erm (ﬁm (PT’mvgm Bgm — Brm))’

and update 9,1 by (3.1).
Setm :=m + 1 and go to Step 1.

Theorem 3.5 Let {g;,} be formed by Algorithm 3.5 and Conditions (C1)—(C3) hold.
Then {gm} converges to a solution of VIP (1.1).
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Proof Fix p € I'(B,C). Consider A (gu,"m,p) and its comparison triangle
A (g, s P). By 2.1, one has

/

s@m.p) =g, =P, stw.0)=|r, =P, s@m.rm) =g, —10]-

Similarly, consider a pair of A (gu+1,7m, p) and A(g”nﬂ,r,’n,p/). By using
Lemma 2.1, one has

s(mi1:P) = g1 — P s sGu.p)=|rp =P sC@uitsmm) = | gpgr — 7 -

From the definition of g,,; in Algorithm 3.5, one obtains that the comparison point
of gmy11s g, =rh, + 9w (Bg,, — Br},). Moreover,

|

Thus &, |PT},, ¢, Bgm — Brm | =3 (gmi1.rm) = g1 =1\l = Om | Br), — Bg), |-
This together with Lemma 2.3 yields

Er—ml 8m+1 H = ‘Er_,,,lE’m (Om (PTy,,. g Bgm — Brm))H .

2 (mi1s P) = gt — P17 = |1y + Om (Bgl — Briy) — 1’|

= |, = p'|* + 02 | Bs), — Brj,|’

+ 20, (Bry, — Bgy,. p' — 1) (3.38)
< |ty = p'|* + 92 |PTy,, 00 Bem — Bra|”

+ 20m(Brm — PTy, g, Bgm. E;. ' p).
By using Lemma 2.3 again, one has
Iro =217 = N = &l + g = P'[* + 213, — 800 80— )
= lgm = /I + N = & = 2010, — 10 s — 1)

+2(ry, = &ms T — P') (3.39)

/

= llgr, = /17 = I = gnll” + 2(gp, = 1o 0 = 1)
<5 (@m» P) = 5" (@mTm) + 2(E; ' gm. B 1 ).

By using the definition of r,, and p € C, one sees that

(B, gm — OwPT,, ¢, Bem, B, ! p) <0. (3.40)
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From p € I'(B, C) and r,, € C, one arrives at (Bp, E;lrm) > 0. It follows from the
pseudomonotonicity of B that

(Brm,E; 'p) <0. (3.41)

Combining (3.1), (3.38), (3.39), (3.40), and (3.41), we have

2
> (gm+1, P) < 5% (gm» P) — 5° (m» 'm) + 0% |PTr,,.00 Bgm — Brm||

(3.42)
= Sz (gmv p) - (1 - Vzl?}%l/ﬁnz/ki»]) Sz (gmv rm) .

From Lemma 3.1, it follows that 1 — 1)21931/1931+1 > 0 for all m > mgq. The rest of the

proof is the same as Theorem 3.4. O

Remark 3.2 We have the following observations for the proposed algorithms.

(i) If Condition (C2) in Section 3 adds the restriction that C is a bounded set,
one knows by Lemma 2.5 that VIP (1.1) always has a unique solution. In this
case, Condition (C1) is no longer required for the convergence analysis of our
algorithms.

(i) The Algorithms 3.1-3.5 proposed in this paper employ a new non-monotonic step
size criterion. The advantage of our algorithms is that they can perform simple
calculations to update the step size using some previously known information
without involving the computation of projections, which greatly improves their
convergence speed. Notice that our step size criterion (3.1) generates a non-
monotonic sequence of step sizes, which is better in practice than the Armijo-type
step size applied in [15, 17, 18, 28].

(iii) It should be noted that the Algorithms 3.1-3.5 are all explicit, which makes
them easier to implement than the implicit proximal point methods in [16, 23,
26]. On the other hand, the convergence analysis of our algorithms only requires
that the vector fields involved are pseudo-monotone, which is weaker than the
monotonicity imposed by the approaches in [14, 18] and the strongly pseudo-
monotonicity required by the method in [15].

(iv) The proposed Algorithms 3.1-3.5 insert a new parameter 8 making them use
different step sizes when computing r,, and g,,+1 in each iteration. This new
technique improves the range of parameters of the corresponding original algo-
rithms and these algorithms have a better performance when the appropriate
parameter 8 is chosen (see the numerical results in Section 4). Note thatif 8 = 1
in Algorithms 3.1 and 3.2, then Algorithms 3.1 and 3.2 are equivalent.

In the Euclidean space R", the Hadamard manifold X reduces to R", the exponential
map E, (v) becomes E, (v) = u + v, and the parallel transport PT, , reduces to the
identity mapping. Under these simplifications, Algorithm 3.1 can be rewritten in the
Euclidean setting as follows.
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Algorithm 3.6 The Algorithm 3.1 in Euclidean space

Initialization: Take ¥y > 0, v € (0, 1), and B8 € (0,2/(1 4+ v)). Let gy € R”" and set m = 0.
Step 1. Compute

rm = Pjc (gm — Om Bgm) .

If g = rm. then stop the iterative process; otherwise, go to Step 2.
Step 2. Compute
8m+1 = Pme (gm — BOmBrm) ,

where
Hpy = {X €R": (gm — rm — Om Bgm, X —rm) 50},

and update ¥, 1 by

1Bgm — Brml| '

vV — T

min {M @O +Mm} , if ”Bgm — Bry | 75 0;

U1 =
DmOm + Lms otherwise.

Setm :=m + 1 and go to Step 1.

Theorem 3.6 Let {g,,} be the sequence generated by Algorithm 3.6 in the Euclidean
space R"™. Suppose that the following conditions hold:

1. The solution set of the variational inequality problem
Find u* € C such that (Bu™,u —u*) >0, YueC

is nonempty.

The feasible set C is a nonempty, closed, and convex subset of R".

3. The mapping B : C — R" is pseudo-monotone and L-Lipschitz continuous on C.
The sequences {w,,} C [1, 00) and {i,} C [0, 00) satisfy

o0 o0
Z(wm—l)<oo, Zum<oo.
m=1

m=1

N

Then the sequence {g,,} converges to a solution of the variational inequality problem.

3.2 Error bound and linear convergence

In this section, we analyze the global error bounds and establish the R-linear con-
vergence of the proposed algorithms for solving variational inequalities with strongly
pseudo-monotone vector fields on Hadamard manifolds. Error bounds are essential
for developing stopping criteria and assessing the convergence rate of algorithms. For
further theoretical insights on error bounds for variational inequalities in Euclidean
spaces and Hilbert spaces, see [1, Chapter 6], [45, Section 4], and [46, Section 3].
Recently, Nguyen et al. [44, Theorem 3.2] established the existence and uniqueness
of solutions for the VIP (1.1) arising from strongly pseudo-monotone vector fields. To
advance our analysis, we replace Condition (C3) from Section 3 with the following
slightly stronger Condition (C3').
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(C3') The vector field B: C — T X is strongly pseudo-monotone with a modulus
u and L-Lipschitz continuous on C. Let {w,,} C [1, 00) satisfies Z,o,f’:l (om —
1) < 00, and {11} C [0, 00) such that 7| ju,, < 00.

Next, we establish global error bounds for our algorithms embedding the adaptive
step size criterion (3.1).

Theorem 3.7 Let{g,,} be generated by Algorithm 3.1 (or Algorithm 3.5). If Conditions
(C1), (C2), and (C3’) hold, then

1+ Uﬁm/0m+1

S(gm’ P) S (1 +
U

) $(&msTm),

where p is the unique solution of VIP (1.1). Moreover, {g,,} converges R-linearly to
p.

Proof From [44, Theorem 3.2], it yields that VIP (1.1) has a unique solution. Set
I'(B, C) := {p}. From the definition of H,, in Algorithm 3.1 (or by the definition of
rm in Algorithm 3.5), one has

(B 'gm. E; ' p) < 0w (PT,, ¢, Bgm. E; ' p). (3.43)

Combining p € I'(B, C) with r,, € C, one yields (Bp, E;lrm) > 0, which together
with the p-strongly pseudomonotonicity of B implies that

(Brw.E; ' p) < —pus*(rm. p).- (3.44)
From (3.1), (3.43), and (3.44), it follows that

(B, em B p) < 9 (PTy,, o, Bgm — Brun, By p) + 0 (Bru, By p)
< Un ”PTrm,g,,,Bgm — Bry “ $(rm» p) — ,le?msz(rms P)
< v/ Yms15(8m, rm)Sm, p) — Mﬁmsz(rm’ D),

which implies that

1S (T P) < VO /Om418(8m . Fm)S(rm. p) + (E; ' g, —E; ' p)
Vi /O 18(&ms Tm)SFm,s P) + $(&ms Tm)S(Fm, D).

IA

Thus 1+vd,/9
v 1
S(rm, p) < #S(gma Fm)-
U

Let ¥, := (1 + vy, /Vm+1)/ (). Then

S(8m» P) < s(&m, tm) +srm, p) < (1 + Y)s(&m, r'm)- (3.45)
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This provides the required error bound for s(g,,, p). By using (3.45), one has

$(gm>rm) = (1 + V) " 's(gm. p). (3.46)

Let us show the linear convergence of the sequences generated by Algorithm 3.1
and Algorithm 3.5, respectively.

Case 1: Consider {g,,} generated by Algorithm 3.1. From Lemma 3.2 and (3.46),
one obtains

> (gm+1, P) < 8% (&my P)—B*S* (gms rm) < (1= B* (L +¥m) "2)s* (gm, p) . (3.47)

By using the definition of 8* in (3.2) and Lemma 3.1, one sees that 0 < lim,,_, o, 8* <
1. Moreover, we have 0 < lim,;,_, 5o (1 + llfm)_z < 1. Thus

0< o= lim (ﬂ*(l + 1//,”)—2) <1

Therefore, there exists a positive constant Ny € N such that 8*(1 + wm)’z > ¢ for
all m > Nj. By letting ¢1 := (1 — ¢0)1/2 and using (3.47), we have

S (gmt1s P) < $15 (gm> P) < ¢35 (81, P)

. < ¢k+l Ny (ngP): S(qflilv+l)¢l (Vm > Nyp).

1

Thus we deduce that {g,,} converges R-linearly to p. O
Case 2: Consider {g,,} generated by Algorithm 3.5. According to the inequalities
(3.42) and (3.46), one has

2 (gma1, p) < (L= (1 =020 /00 . )L+ ¥) " 2)s* (g, P) -

Let ¢ = limyoo(1 — V292 /92 (1 + ¥n) 2. Note that ¢, € (0, 1). By using
Lemma 3.1, there exists a positive constant N € N such that ( 2192 /0 +1) +
wm)_z > ¢y forallm > Np. Let ¢p3 := (1 — ¢2)1/2. Consequently,

S(gNz’P) = SE;II\ZZ,] )¢3 Vm > N»).

3

k4+1—N:
S(gmt1, P) < @3S (g, p) < --- <5 2

This implies that {g,,} converges R-linearly to p. O

Similar to the proof of Theorem 3.7, we can easily arrive at the R-linear convergence
of the proposed Algorithms 3.2-3.4.

Theorem 3.8 Let {g,,} be generated by Algorithm 3.2 (or Algorithms 3.3 and 3.4). If
Conditions (C1), (C2), and (C3') hold, then

1+ Bvdm/Omt1

mo S 1 +
Sgm. ) ( Budm

) s(gm>Tm),
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where p is the unique solution of VIP (1.1). Furthermore, {g,,} converges R-linearly
to p.

Proof By means of [44, Theorem 3.2], one has that I'(B, C) is a singleton. Set
I'(B, C) := {p}. By using the definition of H,, in Algorithm 3.2 (or by the defi-
nition of H,, in Algorithm 3.3, or by the definition of r,, in Algorithm 3.4), one arrives
at

(B, 'gm.E; ' p) < BOm(PTs, ¢, Bgm. E; ' p).

According to a proof similar to Theorem 3.7, we obtain s(g,,, p) < (1+v,)s(&m» rm),
where ¥, = (1 4+ Bvdm/Pm+1)/(Budnm). Hence,

$(gm>rm) = (1 + V) " 's(gm. p). (3.48)

Next, we show the linear convergence of the sequences formed by Algorithms 3.2,
3.3, and 3.4, respectively.

Case I: Consider {g,,} generated by Algorithm 3.2. The linear convergence of {g,, }
can be obtained through a statement similar to Case I of Theorem 3.7.

Case 2: Consider {g,,} generated by Algorithm 3.3. From (3.31) and (3.48), one
has

(1 — v, /Oms1)? L
(1 +ﬂvz9m/19m+l)2( +Ym) 7S (8m, ).

(3.49)
Note that 0 < f (o) := ﬁ2(2;3—0)< 1(f(o) =1wheno = ). Let

s (gm+1, P) < 8% (&m,> P) — %(2;3 —0)

_ (1 IBVﬂm/ﬁm+l) -2
(]54 = hm ﬂ2(2ﬂ 0)(1—|—,Bvﬁm/l9m+1)2( +¢m) .

Combining Lemma 3.1 with the definition of ¥,,, we have

(1 = BV /Omt1)?
(14 B /Omi1)?

%(2/9 —0) A+ ¥m) 2> s (Ym > N3).

Let ¢5 := (1 — ¢4)'/2. This together with (3.49) gives

S(gm+l»p) fji\zj,l )¢ (vaN:”)a

5

which implies that {g,,} converges R-linearly to u*.

Case 3: Consider {g,,} generated by Algorithm 3.4. Notice that f(c) := 0 <
0(2—0) <1(f(oc)=1wheno = 1). The linear convergence of {g,,} can be easily
obtained by using (3.37) and following a proof process similar to the one in Case 2
above. m|
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Remark 3.3 Theorems 3.7 and 3.8 demonstrate that the distance s(g;,, p) between the
m-th iteration point g, of the proposed algorithms and the unique solution p of VIP
(1.1) is bounded by certain known parameters and values from the iteration. Impor-
tantly, the right-hand side of the resulting inequalities is known at each iteration. This
enables us to establish a stopping criterion that meets any desired accuracy level when
the VIP (1.1) is driven by strongly pseudo-monotone vector fields. Furthermore, our
results on the error bounds of the algorithms generalize the findings of [45, Theorem
4.2] and [46, Theorem 3.2], extending them from linear Hilbert spaces to Hadamard
manifolds.

4 Numerical experiments

In this section, we provide two fundamental numerical examples (see, e.g., [25-27])
to illustrate the computational performance of the proposed algorithms. All our code
was implemented in MATLAB R2023b and executed on a MacBook with 8 GB of
memory.

Example 4.1 Let R, = {z € R: z > 0}, and define the Riemannian metric (-, -) as
follows: quw

(g.w):=— (g, weTX, VzeX).
Z

Consequently, X = (R4, (-, -)) forms a Riemannian manifold. The Riemannian
distance s: X x X — R, for points z, g € X is defined as

s(z,q) = |In (2)‘ (Vz,q € X),

as referenced in [25, Example 1]. Hence, X’ qualifies as a Hadamard manifold. We

have E,(tv) = ze(g)t forall z € X, ¢t € R, and v € T, X and the inverse of the
exponential map is

E g =z <%) (Vz.q € X).

Consider the set C = [1, 100], which is a bounded, closed, and convex subset
of X, thereby making C compact within &X'. Define the single-valued vector field
B:C —> TX as:

Bz=z(5—-1Inz) (VzeO).

We first demonstrate that B is pseudo-monotone but not monotone on C. For any
z,q € C, we have:

(Bz, E;]q) =0GB-Inz)In (6—1> > 0.
z

@ Springer



Numerical Algorithms

Since 5 —Inz > O forall z € C, it follows that In (%) > 0. Therefore,

(BCI,E,I_IZ) =05 —-Ing)In (2) <0.

This confirms that B is pseudo-monotone on C. In contrast, for any z, g € C,

2
(Bz, E;lq) + (Bgq, E;lz) = <ln <§1)> =5%(z,¢q) > 0.

This shows that B is not monotone on C.

Next, we demonstrate that B is Lipschitz continuous on C. According to [25,
Example 1], for a function f: Ry — R thatis twice differentiable, the gradient and
Hessian are given by

grad f(z) = 22 f'(z), Hess f(2) = f"(@) +z ' f(2),

where f’" and f” denote the first and second derivatives of f in the Euclidean context.

We define f: C — Ras f(z) =5Inz — % for all z € C. This function is twice

continuously differentiable on X in the Euclidean sense. From the previous formulas,
we find:

grad f(z) = z(5 —Inz) = Bz, Hess f(z) = —Ziz. “.1)

It follows that B is L-Lipschitz continuous on C with Lipschitz constant L = 1, since
[[Hess f(z)|| < 1forall z € C (see [47, Lemma 2.3] for further details). To verify
that B is 1-Lipschitz continuous, we can also apply Definition 2.3. For any z,q € C,

we have:
|PT,..Bz — Bq| = lg(5 —Inz) — q(5 —ng)|

= llgIn(g/2)|| = s(z. q).
Let u* denote the solution to the VIP (1.1). This requires us to find #* such that:

(Bu*,E;)2) >0 (VzeC) & (5—Inu*)ln (i*) >0 (Vzell,100]).
u

This leads to the conclusion that u* = 1, which is the unique solution to the VIP (1.1)
as established by Lemma 2.5.

Example 4.2 Let (-, -), s, and X be the same as in Example 4.1. Let C = [1, 100] be
a subset of R ;. Let the single-valued vector field B: C — T X be given by
Bz =zInz (Vz € C).

One obtains that B is pseudo-monotone and monotone on C. Let f: C — R be given
by f(z) = % for all z € C. It follows from (4.1) that grad f(z) = zIlnz = Bz
and Hess f(z) = Ziz Consequently, B is 1-Lipschitz continuous. It is obvious that the
VIP (1.1) with B and C given above has a unique solution u* = 1.
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Next, we use the proposed algorithms to solve Examples 4.1 and 4.2 and compare
them with the Algorithm 2 of Sahu et al. [28] (shortly, SFS Alg. 2), the Algorithm
3.1 of Tang et al. [17] (shortly, TWL Alg. 3.1), the Algorithm 4.1 of Tang and Huang
[15] (shortly, TH Alg. 4.1). The parameters of the algorithms are set as follows. Take
v =05 @, = 1+0.1/(m+ 1% 9 = 0.5, and w,, = 0.1/(m + 1)2 for the
proposed Algorithms 3.1-3.5. Set 8 € {0.8,0.9, 1.0, 1.2, 1.3} for Algorithms 3.1-
3.4. Pick o = 1.5 for Algorithms 3.3 and 3.4. Set ¥ = 1,0 = 0.8, and n = 0.5
for SFS Alg. 2. Choose ¥, = 0.5 and @« = 0.9 for TH Alg. 4.1. Select 0 = 0.8
and v = 0.5 for TWL Alg. 3.1. In Examples 4.1 and 4.2, we denote the iteration
error at step m of algorithms by s(g,,, u*) (where u™ = 1 for both examples) and use
s(gm, u™) < 1073 or the maximum number of iterations 100 as their common stopping
condition. Table 1 and Fig. 1 present the numerical performance of Algorithms 3.1-3.4
with different parameters B in Example 4.2. Finally, we choose two initial points to
test the convergence performance of the proposed algorithms with 8 = 1.3 and the
compared ones in [15, 17, 28] for Examples 4.1 and 4.2, as shown in Table 2 and
Fig. 2.

Remark 4.1 Based on the numerical results from Examples 4.1 and 4.2, we can draw
the following conclusions:

Table 1 The results of
Algorithms 3.1-3.4 in Example
4.2 for different parameters

and initial values Our Alg. 3.1 0.8 32 30 31 29 31
0.9 27 29 28 33 29

1.0 29 28 30 26 31

12 25 30 27 27 28

1.3 25 27 25 25 25

Our Alg. 3.2 0.8 31 30 2 2 31

0.9 30 28 30 30 33

1.0 29 28 30 26 31

12 24 24 34 20 27

Algorithms B 20
20 40 60 80 100

1.3 22 26 23 19 24
Our Alg. 3.3 0.8 13 13 12 15 15
0.9 14 13 12 15 13
1.0 13 13 14 14 13

1.2 12 12 12 11 12
1.3 11 10 11 11 11

Our Alg. 3.4 0.8 14 14 15 15 15
0.9 12 12 12 12 12
1.0 10 10 10 10 10
1.2 6 6 6 6 6
1.3 4 4 4 4 4
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~Our Alg. 3.1, 3=0.8|

-~Our Alg. 3.1, 8= 0.9

-Our Alg.

*Z“i B} *&i B}
g 107 g 107
S S
107 104
6L ] 6.
10 0 5 10 15 20 25 30 35 10 0
Number of iterations
(a) Our Alg. 3.1
(O ] ol
10 ~Our Alg. 3.3, 3=0.8 10
~Our Alg. 3.3, 6=10.9
<+Our Alg. 3.3, 6=1.0
—Our Alg. 3.3, 6=1.2
2 -=-Our Alg. 3.3, 6=1.3 )
10 L 107
D *a»
S S
10 10*
6L 1 6L
10 0 5 10 15 10 0

Number of iterations

(c) Our Alg. 3.3

-+Our Alg. 3.1, 8 = 1.0 S
—Our Alg. 3.1, 6 =1.2- 10°:
. 3.1,8=13

~Our Alg. 3.2, 3=0.8|
-Our Alg. 3.2, 8 =0.9
-+Our Alg. 3.2, 8 = 1.0
—~Our Alg. 3.2, 3 =1.2"
-Our Alg. 3.2, 8= 1.3

10 15 20 25 30 35
Number of iterations

(b) Our Alg. 3.2

~Our Alg. 3.4, 3= 0.8/
-Our Alg. 3.4, 3=0.9
<Our Alg. 34, 6=1.0
—Our Alg. 3.4, 3=1.2
-=Our Alg. 34, =13

5 10 15
Number of iterations

(d) Our Alg. 3.4

Fig. 1 Numberical behavior of our algorithms with different 8 in Example 4.2 (g = 100)

(i) The numerical results presented in Examples 4.1 and 4.2 demonstrate that the
algorithms proposed in this paper are effective for solving variational inequality
problems with Lipschitz continuous vector fields on Hadamard manifolds.

Table 2 The number of iterations and execution time for all algorithms in Examples 4.1 and 4.2

Algorithms Example 4.1 Example 4.2

g0 =50 g0 =90 go =50 g0 =90

Iter. Time (s) Iter. Time (s) Tter. Time (s) Iter. Time (s)
Our Alg. 3.1 3 0.0057 0.0049 26 0.0079 27 0.0089
Our Alg. 3.2 3 0.0006 0.0009 27 0.0074 22 0.0044
Our Alg. 3.3 3 0.0007 0.0011 10 0.0014 12 0.0025
Our Alg. 34 19 0.5477 20 0.4862 4 0.3220 4 0.3114
Our Alg. 3.5 20 0.2257 19 0.2311 45 0.5294 46 0.5143
SES Alg. 2 3 0.9390 4 1.4161 100 48.6086 100 79.0538
TH Alg. 4.1 23 0.5316 26 0.4916 100 0.8488 100 0.7630
TWL Alg. 3.1 20 0.3986 22 0.6514 93 0.9285 97 0.9847
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(i)

(iii)

(iv)

)
(vi)

Fig. 2

Our algorithms converge faster than the compared one in [15, 17, 28] based on
observations of iteration count and execution time. These results are independent
of the initial value selection, demonstrating the efficiency and robustness of the
proposed algorithms.

From the numerical results in Table 2, we can see the following:

(1) The explicit subgradient extragradient type algorithms (Algorithms 3.1-3.3)
require less execution time compared to the implicit proximal point type
algorithms (Algorithms 3.4 and 3.5).

(2) The projection and contraction type algorithms (Algorithms 3.3 and 3.4)
converge faster than the subgradient extragradient algorithms (Algorithms
3.1 and 3.2) and the Tseng’s extragradient algorithm (Algorithm 3.5).

(3) The proposed algorithms (Algorithms 3.1-3.5) using the adaptive step size
rule (3.1) require less execution time compared to those using the Armijo-
type rule (the algorithms in [15, 17, 28]). This is because the latter requires
multiple evaluations of projections in each iteration to find a suitable step
size (notably, SFS Alg. 2 requires many projection evaluations when updat-
ing gm+1 as the number of iterations increases, significantly increasing the
execution time).

On the other hand, Figures 1 and 2 verify the theoretical results obtained in
Section 3 about the distance s(g,, , u*) being Fejér monotone. Indeed, the iteration
errors in the y-axis of Figs. 1 and 2 indicate that the iterative sequences generated
by our proposed algorithms are Fejér monotone with respect to the solution set
(B, C) of VIP (1.1). That is, s (gm+1, u™) < s(gm, u™) forallu* € I'(B, C).

The performance of our algorithms improves when the parameter  is appropri-
ately selected, as shown in Table 1 and Fig. 1.
It should be pointed out that the vector fields in Example 4.1 is pseudo-monotone
rather than monotone, which means that algorithms proposed in the literature
2 ]02
~-Our Alg. 3.1 —Our Alg. 3.5 ~-Our Alg. 3.1 —Our Alg. 3.5
Our Alg. 3.2 +SFS Alg. 2 -Our Alg. 3.2 «SFS Alg. 2
-+-Our Alg. 3.3 = TH Alg. 4.1 R -+-Our Alg. 3.3 = TH Alg. 4.1
M\ —Our Alg. 3.4 ~TWL Alg. 3.1 10°4 —Our Alg. 3.4 ~TWL Alg. 3.1
1 \ \ \\ i k\}\ \ \
VL
L L L L 10—6 L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Number of iterations Number of iterations
(@) go =50 (®) go =90
Convergence behavior of all algorithms in Example 4.2
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(see, e.g., [14, 18, 23]) for solving variational inequality problems induced by
monotone vector fields on Hadamard manifolds will not be available in this case.

5 Conclusions

This paper introduces five adaptive numerical algorithms for finding solutions to vari-
ational inequality problems (VIPs) on Hadamard manifolds. The proposed algorithms
draw inspiration from the extragradient method, subgradient extragradient algorithm,
and the projection and contraction approach. They incorporate adaptive step size
strategies, allowing for dynamic adjustment throughout the process. Under the con-
ditions of a pseudo-monotone and Lipschitz continuous vector field, we demonstrate
that the generated sequences converge to the solution of the VIP, provided that a
solution exists. Additionally, we establish global error bounds and prove R-linear
convergence for the algorithms when the vector fields governing the VIP are strongly
pseudo-monotone. Some computational experiments indicate the efficiency of these
algorithms. Our results extend and improve upon existing algorithms for solving
VIPs on Hadamard manifolds. Given that the VIP is a specific case of equilibrium
programming, future work will aim to extend the proposed algorithms to tackle equilib-
rium problems on Hadamard manifolds. Another promising direction is to investigate
practical applications of these algorithms within Hadamard manifolds. Furthermore,
exploring the application of inertial techniques to accelerate the convergence rate of
the extragradient-type algorithms could be a promising direction.
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