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Abstract
In this paper, we introduce four inertial extragradient algorithms with non-mono-

tonic step sizes to find the solution of the convex feasibility problem, which consists

of a monotone variational inequality problem and a fixed point problem with a

demicontractive mapping. Strong convergence theorems of the suggested algo-

rithms are established under some standard conditions. Finally, we implement some

computational tests to show the efficiency and advantages of the proposed algo-

rithms and compare them with some existing ones.
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1 Introduction

Let C be a nonempty closed convex set in a real Hilbert space H whose induced

norm and inner product are denoted by k � k and h�; �i, respectively. One recalls that
the variational inequality problem (shortly, VIP) is described as follows:

find u 2 C such that hAu; x� ui� 0; 8x 2 C; ðVIPÞ

where A : H ! H is a nonlinear operator. Let VIðC;AÞ represent the solution set of

the problem (VIP). Variational inequality is an essential tool for studying many

fields of mathematics and applied sciences (such as physics, regional, social,

engineering, and other issues); see, for example, [1, 10, 15, 16]. The theories and

methods of variational inequalities have been implemented in numerous areas of

science and have proven to be successful and creative. The theory has been shown

to provide an easy, common and consistent structure for dealing with possible

issues. In the past few decades, researchers have been very interested in developing

effective and robust numerical approaches for solving variational inequality prob-

lems. In particular, there has been great interest in projection-based methods and

their variants. To see various projection-type methods, one refers to

[2, 6, 11, 17, 23] and the references therein. It should be mentioned that the

extragradient method [11] needs to perform two projection calculations on the

feasible set in each iteration, while the subgradient extragradient method [2] and the

Tseng’s extragradient method [23] only require one projection on the feasible set. It

is well known that calculating the projection on a non-empty closed convex set is

not easy, especially when it has a complex structure. Thus, these two methods

greatly improve computational performance in the actual environment.

On the other hand, the fixed point problem is closely related to variational

inequalities. A point u 2 H is called a fixed point of mapping T : H ! H if Tu ¼ u.
We use FixðTÞ to denote the fixed point set of T. Our main objective in this paper is

to find general solutions to variational inequality problems and fixed point problems.

The reason for exploring these problems is that they can be applied to mathematical

models, and their constraints can be represented as fixed-point problems and/or

variational inequality problems. In recent years, researchers have investigated and

proposed many efficient iterative approaches to find common solutions for

variational inequality problems and fixed point problems, see, for instance,

[3, 7, 18, 29] and the references therein. Recently, Kraikaew and Saejung [12]

proposed an algorithm for finding a common solution to monotone variational

inequalities and fixed point problems. This algorithm is based on the Halpern

method and the subgradient extragradient method, and is now called the Halpern

subgradient extragradient method (HSEGM). Indeed, the algorithm is of the form:
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yk ¼ PCðxk � cAxkÞ;

zk ¼ hkx
0 þ ð1� hkÞPHk

ðxk � cAykÞ;

Hk ¼
�
x 2 H j hxk � cAxk � yk; x� yki� 0

�
;

xkþ1 ¼ gkx
k þ ð1� gkÞTzk;

8
>>>>>><

>>>>>>:

ðHSEGMÞ

where PC stands for the metric projection of H onto C
(PCðxÞ :¼ argminfkx� yk; y 2 Cg), mapping A : H ! H is monotone and L-Lip-
schitz continuous, the step size c is a fixed number and belongs to (0, 1/L) , and
mapping T : H ! H is quasi-nonexpansive (see below for the definition). They

proved that the iterative sequence fxkg defined in (HSEGM) converges to

PFixðTÞ\VIðC;AÞðx0Þ in norm under some suitable conditions. However, Algo-

rithm (HSEGM) needs to know the prior information of the Lipschitz constant of

the mapping, which may limit the use of some related algorithms. To overcome

such difficulty, a large number of algorithms have been proposed to update the step

size through certain adaptive criteria, see, for example, [4, 19, 24]. Recently, Tong

and Tian [24] proposed a new self-adaptive iterative algorithm to solve variational

inequality problems and fixed point problems in a Hilbert space. Their algorithm is

motivated by the Tseng’s extragradient method, the hybrid steepest descent method

and the Mann-type method. The adaptive criterion adopted can guarantee that the

algorithm works without knowing the Lipschitz constant of the mapping. Their

algorithm is described as follows:

yk ¼ PCðxk � ckAx
kÞ;

zk ¼ yk � ckðAyk � AxkÞ;

tk ¼ ð1� gkÞzk þ gkTz
k;

xkþ1 ¼ ðI � khkFÞtk;

8
>>>>>><

>>>>>>:

ðSTEGMÞ

where mapping A : H ! H is monotone and L-Lipschitz continuous, mapping T :
H ! H is quasi-nonexpansive with a demiclosedness property and mapping F :
H ! H is strongly monotone and Lipschitz continuous. The step size ck will be

automatically updated in each iteration by selecting the maximum c 2
q; ql; ql2; . . .

� �
that satisfies ckAxk � Aykk�/kxk � ykk (this rule is called the

Armijo-like line search criterion). Under some suitable conditions, the iterative

sequence generated by (STEGM) converges to z ¼ PFixðTÞ\VIðC;AÞðI � cFÞz in norm.

In this paper, we focus on the situation that T is a demicontractive mapping,

which covers quasi-nonexpansive mappings. In 2018, Thong and Hieu [25]

proposed two Mann-type subgradient extragradient algorithms to find common

elements of variational inequalities and fixed point problems involving a demicon-

tractive mapping. More precisely, their iterative algorithms are as follows:
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yk ¼ PCðxk � cAxkÞ;

zk ¼ PHk
ðxk � cAykÞ;

Hk ¼
�
x 2 H j hxk � cAxk � yk; x� yki� 0

�
;

xkþ1 ¼ ð1� hk � gkÞzk þ gkTz
k;

8
>>>>>><

>>>>>>:

ðMSEGMÞ

and

yk ¼ PCðxk � cAxkÞ;

zk ¼ PHk
ðxk � cAykÞ;

Hk ¼
�
x 2 H j hxk � cAxk � yk; x� yki� 0

�
;

xkþ1 ¼ ð1� gkÞðhkzkÞ þ gkTz
k;

8
>>>>>><

>>>>>>:

ðMMSEGMÞ

where mapping A : H ! H is monotone and L-Lipschitz continuous, step size c 2
ð0; 1=LÞ and mapping T : H ! H is k-demicontractive with 0� k\1. They

obtained strong convergence theorems of the suggested algorithms in real Hilbert

spaces under some suitable and mild assumptions.

Note that algorithms (MSEGM) and (MMSEGM) require to know the prior

information of the Lipschitz constant of the cost mapping. In addition, we point out

that the method of updating the step size through the Armijo-like criterion may be

computationally expensive because it needs to calculate the value of operator A and

the projection PC many times in each iteration. To overcome these shortcomings, an

effective method is to automatically update the step size through some simple

calculations in each iteration. Recently, Thong and Hieu [26] introduced two

extragradient viscosity-type iterative algorithms with a new simple step size to solve

variational inequalities and fixed point problems. Their algorithms are of the

following forms:

yk ¼ PCðxk � ckAx
kÞ;

zk ¼ PHk
ðxk � ckAy

kÞ;

Hk ¼
�
x 2 H j hxk � ckAx

k � yk; x� yki� 0
�
;

xkþ1 ¼ hkf ðxkÞ þ ð1� hkÞ
�
ð1� gkÞzk þ gkTz

k
�
;

8
>>>>>><

>>>>>>:

ðVSEGMÞ

and

yk ¼ PCðxk � ckAx
kÞ;

zk ¼ yk � ckðAyk � AxkÞ;

xkþ1 ¼ hkf ðxkÞ þ ð1� hkÞ
�
ð1� gkÞzk þ gkTz

k
�
;

8
>><

>>:
ðVTEGMÞ

where mapping A : H ! H is monotone and L-Lipschitz continuous, mapping T :
H ! H is k-demicontractive and mapping f is contractive. Algorithms (VSEGM)

and (VTEGM) update the step size fckg by the following rule:
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ckþ1 ¼
min

/kxk � ykk
kAxk � Aykk ; ck

� �
; if Axk � Ayk 6¼ 0;

ck; otherwise :

8
<

:

Note that the step size ck updated by the above method is non-increasing, i.e.,

ckþ1 � ck ðk� 1Þ. This means that the method may depend on the choice of the

initial step size. It should be highlighted that algorithms (STEGM), (VSEGM) and

(VTEGM) only need to compute the projection on the feasible set C once in each

iteration, and they can work without the prior information of the Lipschitz constant

of the cost mapping. These algorithms have achieved strong convergence theorems

in real Hilbert spaces under some suitable conditions.

In recent years, the development of fast iterative algorithms has aroused great

interest from scientific researchers. The inertial algorithm is a two-stage iterative

procedure. Its main feature is to use the previous two iterations to represent the next

iteration. Many authors have used inertial methods to build a large number of

iterative algorithms that can improve the convergence speed; see, for instance,

[5, 8, 9, 20–22, 27, 30] and the references therein. These inertial-type algorithms

have a better numerical performance than algorithms without inertial terms.

Motivated and stimulated by results as mentioned above, in this paper, we

suggest four new inertial Mann-type extragradient algorithms by inserting the

inertial terms into the Tseng’s extragradient algorithm and the subgradient

extragradient algorithm. They are used to find a common element of the solution

set of the monotone variational inequality problem and the fixed point set of a

demicontractive mapping. We use a new non-monotonic step size in each iteration,

which allows the algorithms to work without knowing the Lipschitz constant of the

mapping in advance. We obtain strong convergence of these algorithms under some

standard and mild hypotheses. Finally, we give several numerical examples to

support the theoretical results. Numerical results show that the new algorithms

converge faster than the existing ones [12, 24–26].

The remaining part of the paper proceeds as follows. In the next Section, we

recall some preliminary results. In Sect. 3, we analyze the convergence of the

proposed algorithms. In Sect. 4, some computational tests are provided to illustrate

the numerical behavior of the proposed algorithms and compare them with some

existing ones. Finally, a brief summary is given in Sect. 5, the last section.

2 Preliminaries

Throughout this paper, we always assume that H represents a Hilbert space and C
denotes the nonempty convex and closed subset of H. The weak convergence and

strong convergence of fxkg1k¼1 to x are represented by xk * x and xk ! x,
respectively. For each x; y 2 H and h 2 R, we have the following basic inequalities:

• kxþ yk2 �kxk2 þ 2hy; xþ yi;
• khxþ ð1� hÞyk2 ¼ hkxk2 þ ð1� hÞkyk2 � hð1� hÞkx� yk2.
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It is known that metric projection PC has the following basic properties:

• hx� PCðxÞ; y� PCðxÞi� 0; 8y 2 C;

• kPCðxÞ � PCðyÞk2 �hPCðxÞ � PCðyÞ; x� yi; 8y 2 H.

Definition 2.1 Suppose that a nonlinear operator T : H ! H satisfies FixðTÞ 6¼ ;.
If for any fxkg � H, xk * x and ðI � TÞxk ! 0 implies that x 2 FixðTÞ. Then

I � T is said to be demiclosed at zero.

Definition 2.2 For any x; y 2 H; z 2 FixðAÞ, an operator A : H ! H is said to be

• L-Lipschitz continuous with L[ 0 if

kAx� Ayk� Lkx� yk:

• monotone if

hAx� Ay; x� yi� 0:

• quasi-nonexpansive if

kAx� zk�kx� zk:

• k-strictly pseudocontractive with 0� k\1 if

kAx� Ayk2 �kx� yk2 þ kkðI � AÞx� ðI � AÞyk2:

• g-demicontractive with 0� g\1 if

kAx� zk2 �kx� zk2 þ gkðI � AÞxk2; ð2:1Þ

or equivalently

hAx� x; x� zi� g� 1

2
kx� Axk2; ð2:2Þ

or equivalently

hAx� z; x� zi� kx� zk2 þ g� 1

2
kx� Axk2: ð2:3Þ

Remark 2.3 According to the above definitions, we can easily see the following

facts:

• Every strictly pseudocontractive mapping with a nonempty fixed point set is

demicontractive.

• The type of demicontractive mappings includes the type of quasi-nonexpansive

mappings.
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The following lemmas are crucial in the proof of convergence of our main

results.

Lemma 2.4 [12] Suppose that A : H ! H is a monotone and L-Lipschitz

continuous mapping. Let T ¼ PCðI � /AÞ, where /[ 0. If fxkg � H satisfying

xk * u and xk � Txk ! 0, then u 2 VIðC;AÞ ¼ FixðTÞ.

Lemma 2.5 [14] Suppose that fbkg is a nonnegative sequence. If there exists a

subsequence fbkjg of bk
� �

satisfies bkj\bkjþ1; 8j 2 N. Then there exists a

nondecreasing sequence mkf g of N satisfies limk!1 mk ¼ 1. Moreover, for all

(sufficiently large) k 2 N, the following inequalities are satisfied: bmk � bmkþ1 and

bk � bmkþ1. Actually, mk is the largest number n in the set f1; 2; . . .; kg satisfies

bn\bnþ1.

Lemma 2.6 [28] Suppose that fakg is a nonnegative sequence satisfying

akþ1 � hkbk þ ð1� hkÞak; 8k[ 0, where hkf g � ð0; 1Þ and fbkg is a sequence such

that
P1

k¼0 hk ¼ 1 and lim supk!1 bk � 0. Then limk!1 ak ¼ 0.

Lemma 2.7 [25] Suppose that T : H ! H is g-demicontractive with FixðTÞ 6¼ ;.
Set Tk ¼ kT þ ð1� kÞI, where I stands for identity mapping and k 2 ð0; 1� gÞ.
Then

(i) FixðTÞ ¼ FixðTkÞ;
(ii)

kTkx� uk2 �kx� uk2 � 1
k ð1� g� kÞkðI � TkÞxk2; 8u 2 FixðTÞ; x 2 H;

(iii) FixðTÞ is a convex and closed set.

3 Main results

In this section, we present four inertial extragradient approaches to solve variational

inequality problems and fixed point problems, and analyze their convergence. These

algorithms are inspired and driven by the subgradient extragradient method, the

Tseng’s extragradient method and the Mann-type method. In particular, we have

added an inertial term and a new non-monotonic step size, which makes these

algorithms have a faster convergence speed and do not need to know the prior

information of Lipschitz constant in advance. First, we assume that our proposed

Algorithm 1 and Algorithm 2 satisfy the subsequent four assumptions.

(C1) The mapping A : H ! H is monotone and L-Lipschitz continuous on H.

(C2) The mapping T : H ! H is k-demicontractive such that ðI � TÞ is

demiclosed at zero.

(C3) The solution set FixðTÞ \ VIðC;AÞ 6¼ ;.
(C4) Let ffkg and fnkg be two nonnegative sequences such that limk!1

fk
hk
¼ 0

and
P1

k¼1 nk\þ1, where fhkg is a sequence of (0, 1) , and satisfies
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P1
k¼1 hk ¼ 1 and limk!1 hk ¼ 0. Let the positive sequence gkf g satisfy

gk 2 ða; bÞ � ð0; ð1� kÞð1� hkÞÞ for some a[ 0, b[ 0.

3.1 The inertial Mann-type subgradient extragradient algorithm

Now, we present an inertial Mann-type subgradient extragradient algorithm to solve

variational inequality problems and fixed point problems. The details of the

algorithm are described as follows:

Remark 3.1 It follows from (3.1) that

lim
k!1

dk
hk

kxk � xk�1k ¼ 0:

Indeed, we get that dkkxk � xk�1k� fk for all k� 0, which, together with

limk!1
fk
hk
¼ 0 implies that

lim
k!1

dk
hk

kxk � xk�1k� lim
k!1

fk
hk

¼ 0:

The following two lemmas are very important for the convergence analysis of the

algorithms.
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Lemma 3.2 Suppose that Condition (C1) holds. Then the sequence fckg generated

by (3.2) is well defined and limk!1 ck ¼ c and c 2
�
minf/L ; c1g; c1 þ N

�
, where

N ¼
P1

k¼1 nk.

Proof Since mapping A is L-Lipschitz continuous, one has

/ksk � ykk
kAsk � Aykk � /ksk � ykk

Lksk � ykk ¼ /
L
; if Ask 6¼ Ayk:

Thus, ck � minf/L ; c1g. It follows from the definition of ckþ1 that ckþ1 � c1 þ N.
Consequently, the sequence fckg defined in (3.2) is bounded and

ck 2
�
minf/L ; c1g; c1 þ N

�
. For simplicity, we define ckþ1 � ck

� 	þ¼ maxf0; ckþ1 �
ckg and ckþ1 � ck

� 	�¼ maxf0;� ckþ1 � ck
� 	

g. By the definition of fckg, one

obtains
P1

k¼1 ckþ1 � ck
� 	þ �

P1
k¼1 nk\þ1, which implies that the series

P1
k¼1 ckþ1 � ck

� 	þ
is convergent. Next we show the convergence of the series

P1
k¼1 ckþ1 � ck

� 	�
. Suppose that

P1
k¼1 ckþ1 � ck

� 	�¼ þ1. Note that

ckþ1 � ck ¼ ckþ1 � ck
� 	þ� ckþ1 � ck

� 	�
. Therefore,

cmþ1 � c1 ¼
Xm

k¼1

ckþ1 � ck
� 	

¼
Xm

k¼1

ckþ1 � ck
� 	þ�

Xm

k¼1

ckþ1 � ck
� 	�

:

Taking m ! þ1 in the above equation, we get limm!þ1 cm ! �1. That is a

contradiction. Hence, we deduce that limk!1 ck ¼ c and c 2
�
minf/L ; c1g; c1 þ N

�
.

h

Remark 3.3 The idea of the step size ck defined in (3.2) is derived from [13]. It is

worth noting that the step size ck generated in Algorithm 1 is allowed to increase

when the iteration increases. Therefore, the use of this type of step size reduces the

dependence on the initial step size c1. On the other hand, because ofP1
k¼1 nk\þ1, which implies that limk!1 nk ¼ 0. Consequently, the step size

ck may not increase when k is large enough. If nk ¼ 0, then the step size ck in

Algorithm 1 is similar to the approaches in [26].

Lemma 3.4 Suppose that Conditions (C1) and (C3) hold. Let the sequence fzkg be
generated by Algorithm 1. Then, for all u 2 VIðC;AÞ,

kzk � uk2 �ksk � uk2 �


1� /

ck
ckþ1

�
kyk � skk2 �



1� /

ck
ckþ1

�
kzk � ykk2:

Proof By the definition of ck, one has

kAsk � Aykk� /
ckþ1

ksk � ykk; 8k� 0:

Using u 2 VIðC;AÞ � C � Hk, we have
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2kzk � uk2 ¼ 2kPHk
ðsk � ckAy

kÞ � PHk
uk2

� 2hzk � u; sk � ckAy
k � ui

¼ kzk � uk2 þ ksk � ckAy
k � uk2 � kzk � sk þ ckAy

kk2

¼ kzk � uk2 þ ksk � uk2 þ c2kkAykk
2 � 2hsk � u; ckAy

ki

� kzk � skk2 � c2kkAykk
2 � 2hzk � sk; ckAy

ki

¼ kzk � uk2 þ ksk � uk2 � kzk � skk2 � 2hzk � u; ckAy
ki;

which implies that

kzk � uk2 �ksk � uk2 � kzk � skk2 � 2hzk � u; ckAy
ki: ð3:3Þ

We have hAu; yk � ui� 0 since u 2 VIðC;AÞ. In addition, since A is monotone, one

obtains 2ckhAyk � Au; yk � ui� 0. Thus, adding this item to the right side of (3.3),

we get

kzk � uk2 �ksk � uk2 � kzk � skk2 � 2hzk � u; ckAy
ki

þ 2ckhAyk � Au; yk � ui

¼ ksk � uk2 � kzk � skk2 þ 2hyk � zk; ckAy
ki

� 2ckhAu; yk � ui

� ksk � uk2 � kzk � skk2 þ 2ckhyk � zk;Ayk � Aski

þ 2ckhAsk; yk � zki:

ð3:4Þ

Note that

2ckhyk � zk;Ayk � Aski

� 2ckkAyk � Askkkyk � zkk� 2/
ck
ckþ1

ksk � ykkkyk � zkk

�/
ck
ckþ1

ksk � ykk2 þ /
ck
ckþ1

kyk � zkk2:

ð3:5Þ

Next, we estimate 2ckhAsk; yk � zki. It follows from zk ¼ PHk
sk � ckAy

k
� 	

that

zk 2 Hk. Moreover,

hsk � ckAs
k � yk; zk � yki� 0;

which implies that
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2ckhAsk; yk � zki� 2hyk � sk; zk � yki

¼ kzk � skk2 � kyk � skk2 � kzk � ykk2:
ð3:6Þ

Substituting (3.5) and (3.6) into (3.4), we obtain

kzk � uk2 �ksk � uk2 �


1� /

ck
ckþ1

�
kyk � skk2 �



1� /

ck
ckþ1

�
kzk � ykk2:

This completes the proof of the lemma. h

Theorem 3.5 Suppose that Conditions (C1)–(C4) hold. Then the iterative sequence

fxkg generated by Algorithm 1 converges to u 2 Fix ðTÞ \ VIðC;AÞ in norm,
where kuk ¼ minfkpk : p 2 Fix ðTÞ \ VIðC;AÞg.

Proof It follows from Lemma 2.7 that FixðTÞ is a convex and closed set. Note that

VIðC;AÞ is also a closed and convex set. According to the definition of u, we have

u ¼ PVIðC;AÞ\FixðTÞð0Þ. By Lemma 3.2, we get limk!1ð1� / ck
ckþ1

Þ ¼ 1� /[ 0,

which means that there exists k0 2 N such that ð1� / ck
ckþ1

Þ[ 0; 8k� k0. On

account of Lemmas 3.2 and 3.4, we deduce that

kzk � uk�ksk � uk; 8k� k0: ð3:7Þ

We next divide the proof into four parts.

Claim 1. The sequence fxkg is bounded. According to the definition of xkþ1, one

has

kxkþ1 � uk ¼ kð1� hk � gkÞðzk � uÞ þ gkðTzk � uÞ � hkuk

�kð1� hk � gkÞðzk � uÞ þ gkðTzk � uÞk þ hkkuk:
ð3:8Þ

Combining (2.1), (2.3) and (3.7), we have

kð1� hk � gkÞðzk � uÞ þ gkðTzk � uÞk2

¼ ð1� hk � gkÞ2kzk � uk2 þ g2kkTzk � uk2

þ 2ð1� hk � gkÞgkhTzk � u; zk � ui

� ð1� hk � gkÞ
2kzk � uk2 þ g2k

�
kzk � uk2 þ kkzk � Tzkk2

�

þ 2ð1� hk � gkÞgk
�
kzk � uk2 � 1� k

2
kzk � Tzkk2

�

¼ ð1� hkÞ2kzk � uk2 þ gkðgk � ð1� kÞð1� hkÞÞkzk � Tzkk2

�ð1� hkÞ2ksk � uk2;

which implies that
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kð1� hk � gkÞðzk � uÞ þ gkðTzk � uÞk� ð1� hkÞksk � uk: ð3:9Þ

From the definition of sk, we can write

ksk � uk�kxk � uk þ hk �
dk
hk

kxk � xk�1k: ð3:10Þ

By Remark 3.1, we get that dk
hk
kxk � xk�1k ! 0 as k ! 1. Thus, there exists a

constant Q1 [ 0 such that

dk
hk

kxk � xk�1k�Q1; 8k� 1: ð3:11Þ

From (3.7), (3.10) and (3.11), we find that

kzk � uk�ksk � uk�kxk � uk þ hkQ1; 8k� k0: ð3:12Þ

Combining (3.8), (3.9) and (3.12), we obtain

kxkþ1 � uk� ð1� hkÞksk � uk þ hkkuk

� ð1� hkÞkxk � uk þ hkðkuk þ Q1Þ

� max
�
kxk � uk; kuk þ Q1

�

� � � � � maxfkxk0 � uk; kuk þ Q1g:

Thus, the sequence fxkg is bounded. So the sequences fskg and fzkg are also

bounded.

Claim 2.


1� /

ck
ckþ1

�
kyk � skk2 þ



1� /

ck
ckþ1

�
kzk � ykk2

þ gk ð1� kÞ � gk½ �kzk � Tzkk2

�kxk � uk2 � kxkþ1 � uk2 þ hkQ4:

Indeed, it follows from (3.12) that

ksk � uk2 �ðkxk � uk þ hkQ1Þ2

¼ kxk � uk2 þ hkð2Q1kxk � uk þ hkQ
2
1Þ

� kxk � uk2 þ hkQ2

ð3:13Þ

for some Q2 [ 0. Using (2.2), (3.12), (3.13) and Lemma 3.4, we obtain
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kxkþ1 � uk2 ¼ kðzk � uÞ þ gkðTzk � zkÞ � hkz
kk2

�kðzk � uÞ þ gkðTzk � zkÞk2 � 2hkhzk; xkþ1 � ui

¼ kzk � uk2 þ g2kkTzk � zkk2 þ 2gkhTzk � zk; zk � ui

þ 2hkhzk; u� xkþ1i

� kzk � uk2 þ g2kkTzk � zkk2 þ gkðk� 1Þkzk � Tzkk2 þ hkQ3

�kxk � uk2 þ hkQ4 � gk ð1� kÞ � gk½ �kzk � Tzkk2

�


1� /

ck
ckþ1

�
kyk � skk2 �



1� /

ck
ckþ1

�
kzk � ykk2;

where Q4 ¼ Q2 þ Q3. Thus, we can obtain the desired result through a direct cal-

culation.

Claim 3.

kxkþ1 � uk2 �ð1� hkÞkxk � uk2 þ hk
h
2gkkzk � Tzkkkxkþ1 � uk

þ 2hu; u� xkþ1i þ 3Qdk
hk

kxk � xk�1k
i
; 8k� k0:

Setting tk ¼ ð1� gkÞzk þ gkTz
k. Using (2.1) and (2.3), we obtain

ktk � uk2 ¼ kð1� gkÞðzk � uÞ þ gkðTzk � uÞk2

¼ ð1� gkÞ2kzk � uk2 þ g2kkTzk � uk2

þ 2ð1� gkÞgkhTzk � u; zk � ui

� ð1� gkÞ2kzk � uk2 þ g2kkzk � uk2 þ g2kkkTzk � zkk2

þ 2ð1� gkÞgk
�
kzk � uk2 � 1� k

2
kTzk � zkk2

�

¼ kzk � uk2 þ gk gk � ð1� kÞ½ �kTzk � zkk2:

ð3:14Þ

In view of fgkg � ð0; 1� kÞ and (3.12), we get

ktk � uk�ksk � uk; 8k� k0: ð3:15Þ

According to the definition of sk, one obtains

ksk � uk2 ¼ kxk � uk2 þ 2dkhxk � u; xk � xk�1i þ d2kkxk � xk�1k2

�kxk � uk2 þ 3Qdkkxk � xk�1k;
ð3:16Þ

where Q :¼ supk2N kxk � uk; dkxk � xk�1k
� �

[ 0. Moreover, one sees that
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xkþ1 ¼ tk � hkz
k ¼ ð1� hkÞtk � hkðzk � tkÞ

¼ ð1� hkÞtk � hkgkðzk � TzkÞ:

From (3.15) and (3.16), we obtain

kxkþ1 � uk2

¼ kð1� hkÞðtk � uÞ � hkðgkðzk � TzkÞ þ uÞk2

�ð1� hkÞ2ktk � uk2 � 2hkhgkðzk � TzkÞ þ u; xkþ1 � ui

¼ ð1� hkÞ2ktk � uk2 þ hk
�
2gkhzk � Tzk; u� xkþ1i þ 2hu; u� xkþ1i

�

�ð1� hkÞkxk � uk2 þ hk
�
2gkkzk � Tzkkkxkþ1 � uk þ 2hu; u� xkþ1i

þ 3Qdk
hk

kxk � xk�1k
�
; 8k� k0:

Claim 4. The sequence fkxk � uk2g converges to zero. We regard to two reasonable

situations on the sequence fkxk � uk2g.
Case 1: There exists an N 2 N such that kxkþ1 � uk2 �kxk � uk2 for all k�N.

This implies that limk!1 kxk � uk2 exists. From limk!1
�
1� / ck

ckþ1

	
¼ 1� /[ 0

and Claim 2, we obtain

lim
k!1

ksk � ykk ¼ 0; lim
k!1

kzk � Tzkk ¼ 0; lim
k!1

kzk � ykk ¼ 0; ð3:17Þ

which implies that limk!1 kzk � skk ¼ 0. According to the definition of sk, one has

kxk � skk ¼ dkkxk � xk�1k ¼ hk �
dk
hk

kxk � xk�1k ! 0: ð3:18Þ

This together with limk!1 kzk � skk ¼ 0 implies that

lim
k!1

kzk � xkk ¼ 0: ð3:19Þ

Combining Condition (C4), (3.17) and (3.19), we have

kxkþ1 � xkk�kzk � xkk þ hkkzkk þ gkkzk � Tzkk ! 0:

We suppose that there exists a subsequence fxkjg of fxkg such that xkj * q since

fxkg is bounded. Moreover,

lim sup
k!1

hu; u� xki ¼ lim
j!1

hu; u� xkji ¼ hu; u� qi:

One sees that skj * q because of (3.18), which combining limk!1 ck ¼ c, (3.17)
and Lemma 2.4, yields that q 2 VIðC;AÞ. Furthermore, we get that zkj * q by

(3.19), which together with limk!1 kzk � Tzkk ¼ 0 implies that q 2 FixðTÞ. Thus,
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we have q 2 VIðC;AÞ \ Fix ðTÞ. From u ¼ PVIðC;AÞ\FixðTÞð0Þ, one infers that

lim supk!1hu; u� xki ¼ hu; u� qi� 0. By kxkþ1 � xkk ! 0, we obtain

lim sup
k!1

hu; u� xkþ1i� 0:

Thus, combining Claim 3 and Lemma 2.6, we deduce that limk!1 kxkþ1 � uk2 ¼ 0.

This means that xk ! u as k ! 1.

Case 2: There is a subsequence fkxkj � uk2g of fkxk � uk2g, which, for all

j 2 N, satisfies kxkj � uk2\kxkjþ1 � uk2. In this situation, according to Lemma 2.5,

there is a nondecreasing sequence mkf g of N such that limk!1 mk ¼ 1, and the

following conclusions hold for all k 2 N:

kxmk � uk2 �kxmkþ1 � uk2; and kxk � uk2 �kxmkþ1 � uk2: ð3:20Þ

From Claim 2, we have



1� /

cmk

cmkþ1

�
kymk � smkk2 þ



1� /

cmk

cmkþ1

�
kzmk � ymkk2

þ gmk
ð1� kÞ � gmk

� �
kzmk � Tzmkk2

�kxmk � uk2 � kxmkþ1 � uk2 þ hmk
Q4 � hmk

Q4:

From Condition (C4), we obtain

lim
k!1

ksmk � ymkk ¼ lim
k!1

kzmk � ymkk ¼ lim
k!1

kzmk � Tzmkk ¼ 0:

As proved in the first situation, we get that lim supk!1hu; u� xmkþ1i� 0. From

Claim 3 and (3.20), we obtain

kxmkþ1 � uk2 �ð1� hmk
Þkxmkþ1 � uk2 þ hmk

�
2gmk

kzmk � Tzmkkkxmkþ1 � uk

þ 2hu; u� xmkþ1i þ 3Qdmk

hmk

kxmk � xmk�1k
�
;

which implies that

kxk � uk2 �kxmkþ1 � uk2 � 2gmk
kzmk � Tzmkkkxmkþ1 � uk

þ 2hu; u� xmkþ1i þ 3Qdmk

hmk

kxmk � xmk�1k:

Thus, lim supk!1 kxk � uk� 0, that is xk ! u as k ! 1. We have thus proved the

theorem. h
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3.2 The inertial Mann-type Tseng’s extragradient algorithm

In this subsection, we introduce a new iterative scheme which combining the inertial

Tseng’s extragradient algorithm and the Mann-type method. Note that this method

only involves the calculation of one projection in each iteration. Our Algorithm 2 is

stated as follows:

The following lemma is crucial to the proof of the convergence of the algorithm.

Lemma 3.6 Suppose that Conditions (C1) and (C3) hold. Let the sequence fzkg be
generated by Algorithm 2. Then

kzk � uk2 �ksk � uk2 �


1� /2 c2k

c2kþ1

�
ksk � ykk2; 8u 2 VIðC;AÞ;

and

kzk � ykk�/
ck
ckþ1

ksk � ykk:

Proof First, using the definition of ck, it is easy to see that

kAsk � Aykk� /
ckþ1

ksk � ykk; 8k� 0: ð3:21Þ

By the definition of zk, one sees that
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kzk � uk2 ¼ kyk � ckðAyk � AskÞ � uk2

¼ ksk � uk2 þ kyk � skk2 þ 2hyk � sk; sk � ui

þ c2kkAyk � Askk2 � 2ckhyk � u;Ayk � Aski

¼ ksk � uk2 þ kyk � skk2 � 2hyk � sk; yk � ski þ 2hyk � sk; yk � ui

þ c2kkAyk � Askk2 � 2ckhyk � u;Ayk � Aski

¼ ksk � uk2 � kyk � skk2 þ 2hyk � sk; yk � ui

þ c2kkAyk � Askk2 � 2ckhyk � u;Ayk � Aski:

ð3:22Þ

Combining yk ¼ PC sk � ckAs
k

� 	
and the property of projection, we obtain

hyk � sk þ ckAs
k; yk � ui� 0;

or equivalently

hyk � sk; yk � ui� � ckhAsk; yk � ui: ð3:23Þ

From (3.21), (3.22) and (3.23), we have

kzk � uk2 �ksk � uk2 � kyk � skk2 � 2ckhAsk; yk � ui

þ /2 c2k
c2kþ1

ksk � ykk2 � 2ckhyk � u;Ayk � Aski

¼ ksk � uk2 �


1� /2 c2k

c2kþ1

�
ksk � ykk2

� 2ckhyk � u;Ayk � Aui � 2ckhyk � u;Aui:

ð3:24Þ

According to u 2 VIðC;AÞ and the monotonicity of A, we get

hAu; yk � ui� 0; and hAyk � Au; yk � ui� 0: ð3:25Þ

Combining (3.24) and (3.25), we deduce that

kzk � uk2 �ksk � uk2 �


1� /2 c2k

c2kþ1

�
ksk � ykk2:

From the definition of zk and (3.21), we obtain

kzk � ykk�/
ck
ckþ1

ksk � ykk:

This completes the proof of the lemma. h
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Theorem 3.7 Suppose that Conditions (C1)–(C4) hold. Then the sequence fxkg
created by Algorithm 2 converges to u 2 Fix ðTÞ \ VIðC;AÞ in norm, where
kuk ¼ minfkpk : p 2 Fix ðTÞ \ VIðC;AÞg.

Proof By limk!1
�
1� /2 c2k

c2
kþ1

	
¼ 1� /2 [ 0, one concludes that there exists k0 2

N such that

1� /2 c2k
c2kþ1

[ 0; 8k� k0: ð3:26Þ

Combining Lemma 3.6 and (3.26), it follows that

kzk � uk�ksk � uk; 8k� k0: ð3:27Þ

We also divided the proof into four statements.

Claim 1. The sequence fxkg is bounded. Using the same arguments as in the

Claim 1 of Theorem 3.5, we get that fxkg is bounded. So fskg and fzkg are

bounded.

Claim 2.

gk ð1� kÞ � gk½ �kzk � Tzkk2 þ


1� /2 c2k

c2kþ1

�
kyk � skk2

�kxk � uk2 � kxkþ1 � uk2 þ hkQ4:

Indeed, using (3.13) and (3.27) and Lemma 3.6, we obtain

kxkþ1 � uk2

�kzk � uk2 þ g2kkTzk � zkk2 þ 2gkhTzk � zk; zk � ui

þ 2hkhzk; u� xkþ1i

� kzk � uk2 þ g2kkTzk � zkk2 þ gkðk� 1Þkzk � Tzkk2 þ hkQ3

�kxk � uk2 þ hkQ4 � gk ð1� kÞ � gk½ �kzk � Tzkk2

�


1� /2 c2k

c2kþ1

�
kyk � skk2;

ð3:28Þ

where Q4 ¼ Q2 þ Q3. Thus, we can obtain the desired result through a direct cal-

culation.

Claim 3.

kxkþ1 � uk2 �ð1� hkÞkxk � uk2 þ hk
h
2gkkzk � Tzkkkxkþ1 � uk

þ 2hu; u� xkþ1i þ 3Qdk
hk

kxk � xk�1k
i
; 8k� k0:

The desired result can be obtained using the same arguments as in the Claim 3 of

   61 Page 18 of 29 B. Tan et al.



Theorem 3.5.

Claim 4. The sequence fkxk � ukg converges to zero. The proof is similar to

Claim 4 in Theorem 3.5. We leave it to the reader for confirmation. h

3.3 The modified inertial Mann-type subgradient extragradient algorithm

In this subsection, we present two new modified inertial Mann-type extragradient

algorithms to solve fixed point problems and variational inequality problems. First

of all, we assume that the next proposed Algorithms 3 and 4 satisfy Conditions

(C1)–(C3) and the following Condition (C5).

(C5) Let ffkg and fnkg be two nonnegative sequences such that limk!1
fk

1�hk
¼ 0

and
P1

k¼1 nk\þ1, where fhkg � ð0; 1Þ satisfies limk!1ð1� hkÞ ¼ 0 and
P1

k¼1ð1� hkÞ ¼ 1. Let gkf g be a real sequence such that gk 2

a; ð1�kÞhk
kþhk


 �
� a; 1�k

1þk


 �
� ða; 1� kÞ for some a[ 0.

Now, we are in a position to show our algorithm, which reads as follows:

Theorem 3.8 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the iterative

sequence fxkg formed by Algorithm 3 converges to u 2 Fix ðTÞ \ VIðC;AÞ in
norm, where kuk ¼ minfkpk : p 2 Fix ðTÞ \ VIðC;AÞg.

Proof We also divide the proof into four claims.

Claim 1. The sequence fxkg is bounded. From the definition of sk, one has
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ksk � uk ¼ kxk þ dkðxk � xk�1Þ � uk

�kxk � uk þ ð1� hkÞ �
dk

1� hk
kxk � xk�1k:

ð3:29Þ

According to Condition (C5), we have dk
1�hk

kxk � xk�1k ! 0 as k ! 1. Thus, there

is a constant Q1 [ 0 such that

dk
1� hk

kxk � xk�1k�Q1; 8k� 1: ð3:30Þ

Combining (3.7), (3.29) and (3.30), we find that

kzk � uk�ksk � uk�kxk � uk þ ð1� hkÞQ1; 8k� k0: ð3:31Þ

Furthermore, by the definition of xkþ1, one obtains

kxkþ1 � uk

¼ khkð1� gkÞðzk � uÞ þ gkðTzk � uÞ � ð1� gkÞð1� hkÞuk

�khkð1� gkÞðzk � uÞ þ gkðTzk � uÞk þ ð1� gkÞð1� hkÞkuk:

ð3:32Þ

Since gk\
ð1�kÞhk
kþhk

, one infers that

kgk\ð1� kÞhk � hkgk\hkð1� kÞð1� gkÞ:

From (2.1) and (2.3), we get

khkð1� gkÞðzk � uÞ þ gkðTzk � uÞk2

¼ ðhkð1� gkÞÞ
2kzk � uk2 þ g2kkTzk � uk2

þ 2hkð1� gkÞgkhTzk � u; zk � ui

� ðhkð1� gkÞÞ
2kzk � uk2 þ g2kkzk � uk2 þ g2kkkTzk � zkk2

þ 2hkð1� gkÞgkkzk � uk2 � hkð1� kÞð1� gkÞgkkTzk � zkk2

¼ ðhkð1� gkÞ þ gkÞ2kzk � uk2

þ gkðkgk � hkð1� kÞð1� gkÞÞkTzk � zkk2

�ðhkð1� gkÞ þ gkÞ2kzk � uk2;

ð3:33Þ

which combining with (3.31) further yields that
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khkð1� gkÞðzk � uÞ þ gkðTzk � uÞk

� ðhkð1� gkÞ þ gkÞkzk � uk

� ð1� ð1� gkÞð1� hkÞÞkxk � uk þ ð1� hkÞQ1:

ð3:34Þ

Combining (3.32) and (3.34), we have

kxkþ1 � uk� ð1� ð1� gkÞð1� hkÞÞkxk � uk

þ ð1� gkÞð1� hkÞ
�
kuk þ Q1

1� gk

�

� max kxk � uk; kuk þ Q1

1� gk

� �

� � � � � max kxk0 � uk; kuk þ Q1

1� gk

� �
:

Consequently, the sequence fxkg is bounded. So the sequences fskg and fzkg are

also bounded.

Claim 2.


1� /

ck
ckþ1

�
kyk � skk2 þ



1� /

ck
ckþ1

�
kzk � ykk2

þ gkð1� k� gkÞkTzk � zkk2

�kxk � uk2 � kxkþ1 � uk2 þ ð1� hkÞQ4:

Indeed, it follows from (3.31) that

ksk � uk2 �ðkxk � uk þ ð1� hkÞQ1Þ2

¼ kxk � uk2 þ ð1� hkÞð2Q1kxk � uk þ ð1� hkÞQ2
1Þ

� kxk � uk2 þ ð1� hkÞQ2

ð3:35Þ

for some Q2 [ 0. Using (2.2), (3.31), (3.35) and Lemma 3.4, we obtain

Inertial extragradient algorithms with non-monotonic... Page 21 of 29    61 



kxkþ1 � uk2 ¼ kðzk � uÞ þ gkðTzk � zkÞ � ð1� gkÞð1� hkÞzkk2

�kzk � uk2 þ g2kkTzk � zkk2 þ 2gkhTzk � zk; zk � ui

� 2ð1� gkÞð1� hkÞhzk; xkþ1 � ui

� kzk � uk2 þ g2kkTzk � zkk2 � gkð1� kÞkTzk � zkk2

þ 2ð1� gkÞð1� hkÞhzk; u� xkþ1i

� kzk � uk2 � gkð1� k� gkÞkTzk � zkk2 þ ð1� hkÞQ3

�kxk � uk2 � gkð1� k� gkÞkTzk � zkk2 þ ð1� hkÞQ4

�


1� /

ck
ckþ1

�
kyk � skk2 �



1� /

ck
ckþ1

�
kzk � ykk2;

where Q4 ¼ Q2 þ Q3. Thus, we can obtain the desired result through a direct cal-

culation.

Claim 3.

kxkþ1 � uk2

� 1� ð1� gkÞð1� hkÞ½ �kxk � uk2 þ ð1� gkÞð1� hkÞ
h
2hu; u� xkþ1i

þ 2gkkTzk � zkkkxkþ1 � uk þ 3Q

ð1� gkÞ
� dk
ð1� hkÞ

kxk � xk�1k
i
:

Taking tk ¼ ð1� gkÞzk þ gkTz
k, then as proved in Claim 3 of Theorem 3.5, we get

that ktk � uk�ksk � uk. This together with (3.16) yields that

kxkþ1 � uk2 ¼ ktk � u� ð1� gkÞð1� hkÞzkk2

¼ k 1� ð1� gkÞð1� hkÞ½ �ðtk � uÞ þ ð1� gkÞð1� hkÞ½ðtk � zkÞ � u�k2

¼ k 1� ð1� gkÞð1� hkÞ½ �ðtk � uÞ þ ð1� gkÞð1� hkÞ½gkðTzk � zkÞ � u�k2

� 1� ð1� gkÞð1� hkÞ½ �2ktk � uk2

þ 2ð1� gkÞð1� hkÞhgkðTzk � zkÞ � u; xkþ1 � ui

� 1� ð1� gkÞð1� hkÞ½ �kxk � uk2 þ ð1� gkÞð1� hkÞ
h
2hu; u� xkþ1i

þ 2gkkTzk � zkkkxkþ1 � uk þ 3Q

ð1� gkÞ
� dk
ð1� hkÞ

kxk � xk�1k
i
:

Claim 4. The sequence fkxk � ukg converges to zero. The proof of this result is

similar to that of Theorem 3.5. We leave it to the reader for confirmation. h
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3.4 The modified inertial Mann-type Tseng’s extragradient algorithm

Finally, we introduce a modified inertial Mann-type Tseng’s extragradient

algorithm. The details of the Algorithm 4 are described as follows.

Theorem 3.9 Suppose that Conditions (C1)–(C3) and (C5) hold. Then the iterative

sequence fxkg created by Algorithm 4 converges to u 2 Fix ðTÞ \ VIðC;AÞ in
norm, where kuk ¼ minfkpk : p 2 Fix ðTÞ \ VIðC;AÞg.

Proof The proof is divided into four steps.

Claim 1. The sequence fxkg is bounded. As proved in Theorem 3.7, we also get

that kzk � uk�ksk � uk; 8k� k0. Using the same arguments as in Claim 1 of

Theorem 3.8, one concludes that fxkg is bounded. So fskg and fzkg are bounded.

Claim 2.

gkð1� k� gkÞkTzk � zkk2 þ


1� /2 c2k

c2kþ1

�
kyk � skk2

�kxk � uk2 � kxkþ1 � uk2 þ ð1� hkÞQ4:

Indeed, using (3.35) and Lemma 3.6, we have

kxkþ1 � uk2 �kzk � uk2 þ g2kkTzk � zkk2 � gkð1� kÞkTzk � zkk2

þ 2ð1� gkÞð1� hkÞhzk; u� xkþ1i

� kzk � uk2 � gkð1� k� gkÞkTzk � zkk2 þ ð1� hkÞQ3

�kxk � uk2 � gkð1� k� gkÞkTzk � zkk2 þ ð1� hkÞQ4

�


1� /2 c2k

c2kþ1

�
kyk � skk2;

where Q4 ¼ Q2 þ Q3. Thus, we can obtain the desired result through a direct
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calculation.

Claim 3.

kxkþ1 � uk2

� 1� ð1� gkÞð1� hkÞ½ �kxk � uk2 þ ð1� gkÞð1� hkÞ
h
2hu; u� xkþ1i

þ 2gkkTzk � zkkkxkþ1 � uk þ 3Q

ð1� gkÞ
� dk
ð1� hkÞ

kxk � xk�1k
i
:

The desired result can be obtained by using the same arguments as in the Claim 3 of

Theorem 3.8.

Claim 4. The sequence fkxk � ukg converges to zero. The proof is similar to

Claim 4 in Theorem 3.5. We leave it to the reader for confirmation. h

4 Numerical examples

In this section, we provide several computational tests to illustrate the numerical

behavior of our proposed algorithms (For convenience, we abbreviate Algorithm 1

as iMSEGM, Algorithm 2 as iMTEGM, Algorithm 3 as iMMSEGM and Algo-

rithm 4 as iMMTEGM), and compare them with some existing strongly convergent

methods, which including the Halpern subgradient extragradient method (HSEGM)

[12], the self adaptive Tseng’s extragradient method (STEGM) [24], the Mann-type

subgradient extragradient method (MSEGM) [25], the modified Mann-type

subgradient extragradient method (MMSEGM) [25], the Viscosity-type subgradient

extragradient method (VSEGM) [26] and the Viscosity-type Tseng’s extragradient

method (VTEGM) [26].

Table 1 Parameter setting for all algorithms

Algorithms Parameters

HSEGM hk ¼ 1=ðk þ 1Þ, gk ¼ k=ð2k þ 1Þ, c ¼ 0:99=L.

MSEGM hk ¼ 1=ðk þ 1Þ, gk ¼ 0:5ð1� hkÞ, c ¼ 0:99=L.

MMSEGM hk ¼ n=ðnþ 1Þ, gk ¼ hk=3, c ¼ 0:99=L.

iMSEGM hk ¼ 1=ðk þ 1Þ, gk ¼ 0:5ð1� hkÞ, d ¼ 0:6, fk ¼ 1=ðk þ 1Þ2, / ¼ 0:5, c1 ¼ 0:5,

nk ¼ 1=ðk þ 1Þ1:1.
iMTEGM The parameters set are the same as Algorithm (iMSEGM).

iMMSEGM hk ¼ k=ðk þ 1Þ, gk ¼ hk=3, d ¼ 0:6, fk ¼ 1=ðk þ 1Þ2, / ¼ 0:5, c1 ¼ 0:5,

nk ¼ 1=ðk þ 1Þ1:1.
iMTSEGM The parameters set are the same as Algorithm (iMMSEGM).

VSEGM hk ¼ 1=ðk þ 1Þ, gk ¼ k=ð2k þ 1Þ, / ¼ 0:5, c1 ¼ 0:5, f ðxÞ ¼ 0:5x.

VTEGM The parameters set are the same as Algorithm (VSEGM).

STEGM hk ¼ 1=ðk þ 1Þ, gk ¼ k=ð2k þ 1Þ, q ¼ 1, l ¼ 0:5, / ¼ 0:4, k ¼ 0:5.
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The parameters of all the algorithms are set in Table 1. In our experiment

examples, the solution x� of the problems are known. Therefore, we take Dk ¼
kxk � x�k to evaluate the kth iteration error. Note that the sequence Dkf g ! 0

implies that fxkg converges to the solution of the problem. All the programs were

implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250U CPU @

1.60GHz computer with RAM 8.00 GB.

Example 4.1 Consider the form of linear operator A : Rn ! Rn

(n ¼ 50; 100; 150; 200) as follows: AðxÞ ¼ Gxþ f , where f 2 Rn and

G ¼ BBT þ Sþ E, matrix B 2 Rn	n, matrix S 2 Rn	n is skew-symmetric, and

matrix E 2 Rn	n is diagonal matrix whose diagonal terms are non-negative (hence

G is positive symmetric definite). We choose the feasible set as

C ¼ x 2 Rn : �2� xi � 5; i ¼ 1; . . .; nf g. It is easy to see that A is Lipschitz

continuous and monotone, and its Lipschitz constant L ¼ kGk. In this numerical

example, both B, E entries are randomly created in [0, 2], S is generated randomly

in ½�2; 2� and f ¼ 0. Let T : H ! H and F : H ! H be provided by Tx ¼ 0:5x and
Fx ¼ 0:5x, respectively. We obtain the solution of the problem is x� ¼ f0g. The
maximum number of iterations 400 as a common stopping criterion for all

algorithms and the initial values x0 ¼ x1 are randomly generated by rand(2,1) in

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
# Elapsed Time [sec]

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

iMSEGM
iMTEGM
iMMSEGM
iMMTEGM
MSEGM
MMSEGM
VSEGM
VTEGM
HSEGM
STEGM

(a) n = 50

0 0.02 0.04 0.06 0.08 0.1 0.12
# Elapsed Time [sec]

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

iMSEGM
iMTEGM
iMMSEGM
iMMTEGM
MSEGM
MMSEGM
VSEGM
VTEGM
HSEGM
STEGM

(b) n = 100

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
# Elapsed Time [sec]

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

iMSEGM
iMTEGM
iMMSEGM
iMMTEGM
MSEGM
MMSEGM
VSEGM
VTEGM
HSEGM
STEGM

(c) n = 150

0 0.05 0.1 0.15 0.2 0.25
# Elapsed Time [sec]

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

1010

iMSEGM
iMTEGM
iMMSEGM
iMMTEGM
MSEGM
MMSEGM
VSEGM
VTEGM
HSEGM
STEGM

(d) n = 200

Fig. 1 Numerical results of all algorithms for Example 4.1
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MATLAB. The numerical behaviors of all algorithms with execution time in four

dimensions are shown in Fig. 1.

Example 4.2 In this numerical example, we focus on a case in Hilbert space

H ¼ L2ð½0; 1�Þ. Its inner product and induced norm are defined as hm; ni :¼
R 1

0
mðtÞnðtÞ dt and kmk :¼ ð

R 1

0
jmðtÞj2 dtÞ1=2, respectively. Let the feasible set C be

given by C ¼ fx 2 H j kxk� 1g. Assume that the operator A : C ! H is defined as

follows:

ðAxÞðtÞ ¼ maxfxðtÞ; 0g ¼ xðtÞ þ jxðtÞj
2

:

It is easy to verify that A is monotone and 1-Lipschitz continuous, and the projection

on C is inherently explicit, that is,

PCðxÞ ¼
x; if kxk� 1;
x

kxk ; if kxk[ 1:

8
<

:

The mapping T : L2ð½0; 1�Þ ! L2ð½0; 1�Þ is of the form,

ðTxÞðtÞ ¼
Z 1

0

txðrÞ dr; t 2 ½0; 1�:

A simple computation indicates that T is 0-demicontractive and demiclosed at 0. Let

operator F : H ! H be defined as ðFxÞðtÞ ¼ 0:5xðtÞ. It is easy to check that

operator F is Lipschitz continuous and strongly monotone. Through a straightfor-

ward calculation, we know that the solution of the problem is x�ðtÞ ¼ 0. The

maximum number of iterations 50 as a common stopping criterion for all algo-

rithms. With four types of initial points x0ðtÞ ¼ x1ðtÞ, the numerical behaviors of

function Dk ¼ kxkðtÞ � x�ðtÞk with elapsed time are described in Fig. 2.

Remark 4.3 From the above numerical examples appearing in finite- and infinite-

dimensional spaces, it can be seen that the proposed algorithms have a higher

convergence accuracy under the same stopping conditions. The convergence speed

of our algorithms is faster than that of some known algorithms in the literature

[12, 24–26], and these results are independent of the size of dimensions and the

selection of initial values. More importantly, the algorithms obtained in this paper

automatically updates the step size through a simple calculation, which makes the

suggested algorithms work well without the prior information of the Lipschitz

constant of the mapping.
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5 Final remarks

In this research, we presented four new inertial extragradient algorithms with a new

non-monotonic step size for seeking common solutions of a monotone variational

inequality problem and a fixed point problem in a real Hilbert space. The advantage

of the proposed algorithms is that we do not need to know the prior information of

the Lipschitz constant of the mapping in advance. In addition, our algorithms add an

inertial term, which significantly improves the convergence speed of our algorithms.

Strong convergence of the suggested algorithms were proved under certain

suitable conditions imposed on parameters. Some numerical examples were

presented to demonstrate the performance of the suggested algorithms over some

previously known ones. The iterative schemes obtained in this paper improved and

extended some results in the literature.
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Fig. 2 Numerical results of all algorithms for Example 4.2
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