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Abstract. In this paper, four modified inertial subgradient extragradient
methods with a new non-monotonic step size criterion are investigated for
pseudomonotone variational inequality problems in real Hilbert spaces. Our

algorithms employ two different step sizes in each iteration to update the
values of iterative sequences, and they work well without the prior information
about the Lipschitz constant of the operator. Strong convergence theorems

of the proposed iterative schemes are established under some suitable and
mild conditions. Some numerical examples are provided to demonstrate the
computational efficiency and advantages of the proposed methods over other

known ones.

1. Introduction and preliminaries. Let C be a nonempty, closed, and convex
subset of a real Hilbert space H with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Throughout the paper, we use ProjC : H → C to denote the metric projection from
H onto C, i.e., ProjC(x) := arg min{‖x− y‖, y ∈ C}. It is known that the projection
has the following property:

〈x− ProjC(x), y − ProjC(x)〉 ≤ 0, ∀x ∈ H, y ∈ C.
Recall that a mapping Q : H → H is said to be:

(1) L-Lipschitz continuous with L > 0 if ‖Qx−Qy‖ ≤ L‖x− y‖, ∀x, y ∈ H;
(2) monotone if 〈Qx−Qy, x− y〉 ≥ 0, ∀x, y ∈ H;
(3) pseudomonotone if 〈Qx, y − x〉 ≥ 0⇒ 〈Qy, y − x〉 ≥ 0, ∀x, y ∈ H;
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(4) sequentially weakly continuous if for each sequence {xn} converging weakly to
x, one has that {Qxn} converges weakly to Qx.

The purpose of this work is to present several efficient and adaptive numerical
schemes for solving the variational inequality problem with a pseudomonotone
operator in a real Hilbert space. Recall that the classical variational inequality
problem is described as follows:

find x† ∈ C such that 〈Qx†, x− x†〉 ≥ 0, ∀x ∈ C, (VIP)

where Q : H → H is a nonlinear operator. The solution set of the (VIP) is denoted
by VI(C, Q), and is assumed to be nonempty. Variational inequality theory is
an important tool in transportation modeling, engineering mechanics, operations
research and management, economics, optimal control, and others; see, e.g., [37,
1, 10, 9, 40]. In the last few decades, a large number of numerical methods were
proposed to address variational inequality problems and related problems (see,
e.g., [16, 11, 36, 5, 20, 3, 4]). Recall that the extragradient method introduced by
Korpelevich [16] is one of the most popular methods for solving the (VIP). The
method requires the computation of the projection on the feasible set twice in each
iteration. It is well known that computing the projection is equivalent to solving
a constrained minimum distance problem. The basic fact is that the projection
is not easy to compute if the feasible set is complex. In the past decades, many
efficient algorithms that only need to compute the projection on the feasible set
once have been proposed to solve the (VIP); see, for example, [11, 36, 5, 20]. The
computational efficiency of these methods is significantly improved by the fact that
they evaluate the projection on the feasible set only once in each iteration.

Notice that the methods proposed in [16, 11, 36, 5, 20] are weakly convergent
in infinite-dimensional Hilbert spaces under the condition that the mapping Q
satisfies monotonicity and Lipschitz continuity. It is known that strong convergence
is preferable to weak convergence in infinite-dimensional spaces (see [29] for more
details). In the last decades, a large number of strongly convergent numerical
algorithms were introduced for solving variational inequality problems in infinite-
dimensional spaces; see, e.g., [6, 17, 12, 26, 23, 38] and the references therein. In
addition, it is known that the class of pseudomonotone mappings contains the
class of monotone mappings. Recently, numerical algorithms for pseudomonotone
variational inequality problems in Hilbert spaces have received a lot of attention
from scholars in the optimization community (see, e.g., [37, 10, 23, 35]). Notice that
one of the drawbacks of the methods introduced in [16, 11, 36, 5, 20] is that the
determination of step size requires prior information about the Lipschitz constant
of mapping Q. This means that these methods will fail if the Lipschitz constant is
unknown. However, the Lipschitz constant of the mapping is not always available in
practical applications. Therefore, it is valuable to develop adaptive algorithms that
do not require the Lipschitz constant of the mapping. Recently, Thong and Vuong
[35] proposed a Mann-based Tseng extragradient method to solve pseudomonotone
variational inequalities in Hilbert spaces. Their scheme is shown in Algorithm 1.1
below.

Under certain assumptions, the strong convergence of Algorithm 1.1 was estab-
lished in real Hilbert spaces. Notice that Algorithm 1.1 employs line search step size
rule (1.1) (also known as the Armijo type step criterion) making it possible to work
without prior knowledge of the Lipschitz constant of the mapping. However, the use
of criterion (1.1) may affect the computational efficiency of Algorithm 1.1 due to
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Algorithm 1.1 The Algorithm 2 of Thong and Vuong [35]

Initialization: Give ζ > 0, ` ∈ (0, 1), and µ ∈ (0, 1). Let x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute dn = ProjC (xn − χnQxn), where χn := ζ`mn and mn is the
smallest non-negative integer m satisfying

ζ`m‖Qxn −Qdn‖ ≤ µ‖xn − dn‖. (1.1)

Step 2. Compute zn = dn − χn (Qdn −Qxn).
Step 3. Compute xn+1 = (1− θn − αn)xn + αnzn.
Set n := n+ 1 and go to Step 1.

the fact that the determination of step size χn may require multiple computations
of the projection on the feasible set. To overcome this difficulty, Yang and Liu [38]
proposed a new step size criterion that does not include any line search process
(see Equation (1.2) below). By combining the Tseng extragradient method [36], the
Moudafi viscosity method, and the adaptive step size criterion (1.2), Yang and Liu
[38, Algorithm 1] introduced a new strongly convergent scheme to handle monotone
variational inequalities in Hilbert spaces. Recently, this novel step size rule has
attracted a great deal of interest and study from researchers, who inserted it into
new algorithms to address variational inequalities (see, e.g., [32]). On the other
hand, as one of the acceleration approaches, the inertial extrapolation method based
on discrete versions of a second-order dissipative dynamic system has gained a lot
of attention from researchers. The inertial-type methods are characterized by the
fact that the next iteration is determined by the combination of the previous two
(or more) iterations. It is worth noting that this minor modification can signif-
icantly improve the convergence speed of the original algorithm without inertial
terms. Recently, many inertial-type algorithms were presented to handle variational
inequalities, split feasibility problems, equilibrium problems, and others; see, e.g.,
[8, 13, 27, 25, 15] and the references therein.

Based on the inertial method, the subgradient extragradient method, the viscosity
method, and the adaptive step size criterion in [38], Thong et al. [32] proposed a
new iterative algorithm for solving pseudomonotone variational inequality problems
in Hilbert spaces. Indeed, their method is illustrated in Algorithm 1.2 below.

The strong convergence of the iterative sequence generated by Algorithm 1.2 was
proved under some mild conditions. It should be noted that the step size sequence
generated by Algorithm 1.2 is non-increasing according to the definition of update
method (1.2). To overcome this drawback, Liu and Yang [19] made a simple modifi-
cation to (1.2) so that the algorithm used can produce a non-monotonic sequence
of step sizes. Recently, this novel non-monotonic step size criterion suggested by
Liu and Yang [19] has been used by many authors to address variational inequality
problems (see, e.g., [21, 18]). Notice that the convergence of Algorithms 1.1 and 1.2
requires that the operator Q satisfies Lipschitz continuity, which may be difficult
to satisfy (or hard to verify) in practical problems. Recently, scholars proposed a
variety of algorithms that can handle monotone (or pseudomonotone) variational
inequalities involving non-Lipschitz continuity to overcome this challenge; see, e.g.,
[7, 28, 33, 34, 2, 30]. We next state two approaches that are already existing in
[34, 2], which help us to present the ideas in this paper. Recently, Thong et al. [34]
offered a new iterative scheme for solving pseudomonotone variational inequalities
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Algorithm 1.2 The Algorithm 3.2 of Thong et al. [32]

Initialization: Given ρ > 0, χ1 > 0, µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as
follows:
Step 1. Compute vn = xn + ρn (xn − xn−1), where

ρn =

min

{
εn

‖xn − xn−1‖
, ρ

}
, if xn 6= xn−1;

ρ, otherwise.

Step 2. Compute dn = ProjC (vn − χnQvn).
Step 3. Compute zn = ProjTn

(vn − χnQdn), where the half space Tn is defined
by

Tn = {x ∈ H : 〈vn − χnQvn − dn, x− dn〉 ≤ 0} .
Step 4. Compute xn+1 = θnf (zn) + (1− θn) zn and update

χn+1 =

min

{
µ‖vn − dn‖
‖Qvn −Qdn‖

, χn

}
, if Qvn −Qdn 6= 0;

χn, otherwise.
(1.2)

Set n := n+ 1 and go to Step 1.

involving uniform continuity based on the subgradient extragradient method, the
viscosity method, and the Armijo-type line search process. Now, their scheme is
displayed in Algorithm 1.3 below.

Algorithm 1.3 The Algorithm 3 of Thong et al. [34]

Initialization: Given ζ > 0, ` ∈ (0, 1), and µ ∈ (0, 1). Let x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute dn = ProjC (xn − χnQxn), where χn := ζ`mn and mn is the
smallest non-negative integer m satisfying

ζ`m〈Qxn −Qdn, xn − dn〉 ≤ µ‖xn − dn‖2. (1.3)

Step 2. Compute zn = ProjCn (xn), where the half space Cn is defined by

Cn := {x ∈ H : 〈xn − dn − χn (Qxn −Qdn) , x− dn〉 ≤ 0} .
Step 3. Compute xn+1 = θnf (xn) + (1− θn) zn.
Set n := n+ 1 and go to Step 1.

The convergence of Algorithm 1.3 is established under some mild conditions
in Hilbert spaces. Very recently, Cai et al. [2] introduced a strongly convergent
iterative algorithm with a new Armijo-type step size criterion for finding solutions
to pseudomonotone and non-Lipschitz continuous variational inequality problems.
More precisely, the form of their iterative scheme is described in Algorithm 1.4 below.

It is worth noting that the criterion (1.4) used for the update step size of Algo-
rithm 1.4 is different from the criterion (1.1) used in Algorithm 1.1 and the criterion
(1.3) used in Algorithm 1.3. Specifically, the rule (1.4) uses the information of
sequence zn while the guidelines (1.1) and (1.3) do not use this information. Some
numerical tests in [2] demonstrate the computational efficiency of Algorithm 1.4 in
comparison to other known ones.
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Algorithm 1.4 The Algorithm 3.1 of Cai et al. [2]

Initialization: Given ζ > 0, ` ∈ (0, 1), and µ ∈ (0, 1). Let x1 ∈ C be arbitrary.
Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute dn = ProjC (xn − χnQxn).
Step 2. Compute zn = ProjTn (xn − χnQdn), where the half space Tn is defined
by

Tn = {x ∈ H : 〈xn − χnQxn − dn, x− dn〉 ≤ 0} ,
and χn := ζ`mn and mn is the smallest non-negative integer m satisfying

ζ`m〈Qdn −Qxn, dn − zn〉 ≤
µ

2

[
‖xn − dn‖2 + ‖dn − zn‖2

]
. (1.4)

Step 3. Compute xn+1 = θnf (xn) + (1− θn) zn.
Set n := n+ 1 and go to Step 1.

Inspired and motivated by the above works, we introduce four strongly conver-
gent modified subgradient extragradient methods to address pseudomonotone and
Lipschitz continuous (or non-Lipschitz continuous) variational inequality problems
in real Hilbert spaces. We conclude the section by giving the following lemma that
is crucial in the convergence analysis of our algorithms.

Lemma 1.1 ([22]). Let {pn} be a positive sequence, {sn} be a sequence of real
numbers, and {θn} be a sequence in (0, 1) such that

∑∞
n=1 θn =∞. Assume that

pn+1 ≤ (1− θn)pn + θnsn, ∀n ≥ 1.

If lim supk→∞ snk
≤ 0 for every subsequence {pnk

} of {pn} satisfying

lim inf
k→∞

(pnk+1 − pnk
) ≥ 0,

then limn→∞ pn = 0.

2. Main results. In this section, we introduce four new modified subgradient
extragradient algorithms to address pseudomonotone and Lipschitz continuous
(or non-Lipschitz continuous) variational inequalities in real Hilbert spaces. Our
algorithms employ two novel non-monotonic step size criterion allowing them to
work well without the Lipschitz constant of the operator. In the sequel, we use the
symbol xn ⇀ x (xn → x) to denote the weak convergence (strong convergence) of a
sequence {xn} to x.

2.1. Two methods for variational inequalities involving Lipschitz continu-
ity. Two new iterative methods with non-monotonic step size criterion are proposed
in this subsection to address the Lipschitz continuous and pseudomonotone varia-
tional inequality problems. We first assume that our algorithms satisfy the following
conditions.

(C1) The feasible set C is a nonempty, closed, and convex subset of a real Hilbert
space H, and the solution set of the problem (VIP) is nonempty.

(C2) The operator Q : H → H is pseudomonotone, L-Lipschitz continuous on H
and sequentially weakly continuous on C.

(C3) Let {εn} be a positive sequence such that limn→∞
εn
θn

= 0, where {θn} ⊂ (0, 1)

satisfies limn→∞ θn = 0 and
∑∞
n=1 θn =∞.

Now, we are in a position to introduce our Algorithm 2.1.
The following lemmas are critical for analyzing the convergence of our algorithms.
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Algorithm 2.1

Initialization: Take ρ > 0, χ1 > 0, φ ∈ (0, 2/(1 + µ)), and µ ∈ (0, 1). Select the
sequences {εn} and {θn} to satisfy Condition (C3). Choose a nonnegative real
sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrary.

Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as
follows:
Step 1. Compute vn = (1− θn)(xn + ρn(xn − xn−1)), where

ρn =

 min

{
εn

‖xn − xn−1‖
, ρ

}
, if xn 6= xn−1;

ρ, otherwise.
(2.1)

Step 2. Compute dn = ProjC(vn − χnQvn). If vn = dn or Qdn = 0, then stop
and dn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = ProjTn

(vn − φχnQdn), where the half-space Tn is
defined by

Tn = {x ∈ H : 〈vn − χnQvn − dn, x− dn〉 ≤ 0} , (2.2)

and update (set bn = 〈Qvn −Qdn, xn+1 − dn〉)

χn+1 =

 min

{
µ
‖vn − dn‖2 + ‖xn+1 − dn‖2

2bn
, χn + ξn

}
, if bn > 0;

χn + ξn, otherwise.
(2.3)

Set n := n+ 1 and go to Step 1.

Lemma 2.1. Assume that Condition (C2) holds. Then the sequence {χn} generated
by (2.3) is well defined and limn→∞ χn exists.

Proof. The proof is similar to Lemma 3.1 in [19] and thus we omit the details.

Lemma 2.2. Assume that Condition (C2) holds. Let {vn}, {dn}, and {xn+1} be
three sequences formed by Algorithm 2.1. Then

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − φ∗
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀x† ∈ VI(C, Q),

where φ∗ = 2− φ− φµχn

χn+1
if φ ∈ [1, 2/(1 + µ)) and φ∗ = φ− φµχn

χn+1
if φ ∈ (0, 1).

Proof. From the fact that

‖ProjC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− ProjC(x)‖2, ∀x ∈ H, y ∈ C

and the definition of xn+1, we obtain

‖xn+1 − x†‖2

= ‖ProjTn
(vn − φχnQdn)− x†‖2

≤ ‖vn − φχnQdn − x†‖2 − ‖vn − φχnQdn − xn+1‖2

= ‖vn − x†‖2 + (φχn)
2 ‖Qdn‖2 − 2〈vn − x†, φχnQdn〉 − ‖vn − xn+1‖2

− (φχn)
2 ‖Qdn‖2 + 2〈vn − xn+1, φχnQdn〉

= ‖vn − x†‖2 − ‖vn − xn+1‖2 − 2〈φχnQdn, xn+1 − x†〉

= ‖vn − x†‖2 − ‖vn − xn+1‖2 − 2〈φχnQdn, xn+1 − dn〉

− 2〈φχnQdn, dn − x†〉.

(2.4)
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It follows from x† ∈ VI(C, Q) and dn ∈ C that 〈Qx†, dn − x†〉 ≥ 0, which together
with the pseudomonotonicity of Q deduces that 〈Qdn, dn − x†〉 ≥ 0. Thus the
inequality (2.4) reduces to

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − ‖vn − xn+1‖2 − 2〈φχnQdn, xn+1 − dn〉. (2.5)

Next, we estimate 2〈φχnQdn, xn+1 − dn〉. Notice that

− ‖vn − xn+1‖2 = −‖vn − dn‖2 − ‖dn − xn+1‖2 + 2〈vn − dn, xn+1 − dn〉 (2.6)

and
〈vn − dn, xn+1 − dn〉

= 〈vn − dn − χnQvn + χnQvn − χnQdn + χnQdn, xn+1 − dn〉
= 〈vn − χnQvn − dn, xn+1 − dn〉+ χn〈Qvn −Qdn, xn+1 − dn〉

+ 〈χnQdn, xn+1 − dn〉.

(2.7)

In view of xn+1 ∈ Tn and the definition of Tn, one obtains

〈vn − χnQvn − dn, xn+1 − dn〉 ≤ 0. (2.8)

From the definition of χn+1, we can show that

〈Qvn −Qdn, xn+1 − dn〉 ≤
µ

2χn+1
‖vn − dn‖2 +

µ

2χn+1
‖xn+1 − dn‖2. (2.9)

Substituting (2.7), (2.8), and (2.9) into (2.6), we deduce

−‖vn − xn+1‖2 ≤ −
(

1− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
+ 2〈χnQdn, xn+1 − dn〉.

This means that

− 2〈φχnQdn, xn+1 − dn〉

≤ −φ
(

1− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
+ φ‖vn − xn+1‖2.

(2.10)

From (2.5) and (2.10), we obtain

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − φ
(

1− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
− (1− φ)‖vn − xn+1‖2.

(2.11)

Note that

−(1− φ)‖vn − xn+1‖2 ≤ −2(1− φ)
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ ≥ 1.

This combining with (2.11) yields

‖xn+1 − x†‖2

≤ ‖vn − x†‖2 −
(

2− φ− φµχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ ≥ 1.

On the other hand, if φ ∈ (0, 1), then

‖xn+1 − x†‖2

≤ ‖vn − x†‖2 − φ
(

1− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ ∈ (0, 1).

This completes the proof.
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Remark 2.3. We have φ∗ > 0 for all n ≥ n0 by using Lemma 2.1 and the
assumptions on µ and φ.

Lemma 2.4. ([32, Lemma 3.3]) Assume that Conditions (C1)–(C3) hold. Let {vn}
and {dn} be two sequences formed by Algorithm 2.1. If there exists a subsequence
{vnk
} of {vn} such that {vnk

} converges weakly to z ∈ H and limk→∞ ‖vnk
−dnk

‖ =
0, then z ∈ VI(C, Q).

We are now ready to analyze the convergence of Algorithm 2.1.

Theorem 2.5. Assume that Conditions (C1)–(C3) hold. Then {xn} formed by
Algorithm 2.1 converges to x† ∈ VI(C, Q) in norm, where ‖x†‖ = min{‖z‖ : z ∈
VI(C, Q)}.

Proof. In view of Lemma 2.2 and Remark 2.3, one obtains

‖xn+1 − x†‖ ≤ ‖vn − x†‖, ∀n ≥ n0. (2.12)

It follows the definition of vn that

‖vn − x†‖ = ‖ (1− θn) (xn + ρn (xn − xn−1))− x†‖

= ‖ (1− θn)
(
xn − x†

)
+ (1− θn) ρn (xn − xn−1)− θnx†‖

≤ (1− θn) ‖xn − x†‖+ (1− θn) ρn‖xn − xn−1‖+ θn‖x†‖

= (1− θn) ‖xn − x†‖+ θn

[
(1− θn)

ρn
θn
‖xn − xn−1‖+ ‖x†‖

]
.

(2.13)

From Condition (C3), we obtain ρn
θn
‖xn − xn−1‖ → 0 as n→∞. Therefore

lim
n→∞

[
(1− θn)

ρn
θn
‖xn − xn−1‖+ ‖x†‖

]
= ‖x†‖.

Thus, there exists a constant M1 > 0 such that

(1− θn)
ρn
θn
‖xn − xn−1‖+ ‖x†‖ ≤M1, ∀n ≥ 1. (2.14)

Combining (2.13) and (2.14), we deduce

‖vn − x†‖ ≤ (1− θn) ‖xn − x†‖+ θnM1, ∀n ≥ 1. (2.15)

By using (2.12) and (2.15), we have

‖xn+1 − x†‖ ≤ (1− θn)‖xn − x†‖+ θnM1

≤ max{‖xn − x†‖,M1}, ∀n ≥ n0
≤ · · · ≤ max{‖xn0

− x†‖,M1}.
This means that {xn} is bounded. Hence {vn} and {dn} are also bounded. In view
of (2.15), one has

‖vn − x†‖2 ≤
[
(1− θn) ‖xn − x†‖+ θnM1

]2
= (1− θn)

2 ‖xn − x†‖2 + θn(2 (1− θn)M1‖xn − x†‖+ θnM
2
1 )

≤ ‖xn − x†‖2 + θnM2, ∀n ≥ 1,

(2.16)

where M2 := supn∈N
{

2 (1− θn)M1‖xn − x†‖+ θnM
2
1

}
> 0. Combining Lemma 2.2

and (2.16), we obtain

φ∗
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
≤ ‖xn − x†‖2 − ‖xn+1 − x†‖2 + θnM2, ∀n ≥ n0.

(2.17)
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By using (2.12) and the definition of vn, we have

‖xn+1 − x†‖2 ≤ ‖(1− θn)(xn − x†) + (1− θn)ρn(xn − xn−1)− θnx†‖2

≤ ‖(1− θn)(xn − x†) + (1− θn)ρn(xn − xn−1)‖2 + 2θn〈−x†, vn − x†〉

≤ (1− θn)2‖xn − x†‖2 + 2(1− θn)ρn‖xn − x†‖‖xn − xn−1‖

+ ρ2n‖xn − xn−1‖2 + 2θn〈−x†, vn − xn+1〉+ 2θn〈−x†, xn+1 − x†〉

for all n ≥ n0. Thus

‖xn+1 − x†‖2

≤ (1− θn)‖xn − x†‖2 + θn

[
2(1− θn)‖xn − x†‖

ρn
θn
‖xn − xn−1‖

+ ρn‖xn − xn−1‖
ρn
θn
‖xn − xn−1‖+ 2‖x†‖‖vn − xn+1‖

+ 2〈x†, x† − xn+1〉
]
, ∀n ≥ n0.

(2.18)

Finally, we need to show that the sequence {‖xn − x†‖} converges to zero. We set

pn = ‖xn − x†‖2

and

sn = 2(1− θn)‖xn − x†‖
ρn
θn
‖xn − xn−1‖+ ρn‖xn − xn−1‖

ρn
θn
‖xn − xn−1‖

+ 2‖x†‖‖vn − xn+1‖+ 2〈x†, x† − xn+1〉.

Then the inequality in (2.18) can be written as pn+1 ≤ (1− θn)pn + θnsn, ∀n ≥ n0.
It is worth noting that {θn} ⊂ (0, 1) and

∑∞
n=1 θn =∞. According to Lemma 1.1,

we assume that {pnk
} is a subsequence of {pn} such that

lim inf
k→∞

(
pnk+1

− pnk

)
≥ 0.

Combining (2.17), limn→∞ θn = 0, and Remark 2.3, we have

φ∗
(
‖vnk

− dnk
‖2 + ‖xnk+1 − dnk

‖2
)
≤ lim sup

k→∞
θnk

M2 + lim sup
k→∞

(pnk
− pnk+1)

≤ − lim inf
k→∞

(pnk+1 − pnk
)

≤ 0.

This together with Remark 2.3 implies

lim
k→∞

‖dnk
− vnk

‖ = 0 and lim
k→∞

‖xnk+1 − dnk
‖ = 0.

Thus we have limk→∞ ‖xnk+1 − vnk
‖ = 0, which combining with the boundedness

of {xn} yields

lim
k→∞

‖vnk
− xnk+1‖‖x†‖ = 0. (2.19)

It follows from the definition of vn that

‖xnk
− vnk

‖ = ‖(1− θnk
)ρnk

(xnk
− xnk−1)− θnk

xnk
‖

≤ ‖(1− θnk
)ρnk

(xnk
− xnk−1)‖+ ‖θnk

xnk
‖

= θnk

[
(1− θnk

)
ρnk

θnk

‖xnk
− xnk−1‖+ ‖xnk

‖
]
.
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Thus we obtain limk→∞ ‖xnk
− vnk

‖ = 0 by means of (2.14). Consequently, we
conclude that

‖xnk+1 − xnk
‖ ≤ ‖xnk+1 − vnk

‖+ ‖vnk
− xnk

‖ → 0 as k →∞. (2.20)

Since {xnk
} is bounded, there exists a subsequence {xnkj

} of {xnk
} such that {xnkj

}
converges weakly to z as j →∞. Moreover

lim sup
k→∞

〈x†, x† − xnk
〉 = lim

j→∞
〈x†, x† − xnkj

〉 = 〈x†, x† − z〉. (2.21)

We have that vnk
⇀ z due to the fact that limk→∞ ‖xnk

−vnk
‖ = 0. This combining

with limk→∞ ‖vnk
− dnk

‖ = 0, in the light of Lemma 2.4, yields that z ∈ VI(C, Q).
By using (2.21) and the definition of x†, we obtain

lim sup
k→∞

〈x†, x† − xnk
〉 = 〈x†, x† − z〉 ≤ 0. (2.22)

From (2.20) and (2.22), we can show that

lim sup
k→∞

〈x†, x† − xnk+1〉 ≤ 0. (2.23)

This combining with limn→∞
ρn
θn
‖xn − xn−1‖ = 0 and (2.19) infers that

lim sup
k→∞

snk
≤ 0.

Therefore we conclude that limn→∞ ‖xn − x†‖ = 0. This completes the proof.

Next, we present a modified version of Algorithm 2.1, which differs from Algorithm
2.1 in calculating the values of dn and xn+1. More precisely, the scheme is shown in
Algorithm 2.2 below.

Algorithm 2.2

Initialization: Take ρ > 0, χ1 > 0, φ ∈ (1/(2− µ), 1/µ), and µ ∈ (0, 1). Select
the sequences {εn} and {θn} to satisfy Condition (C3). Choose a nonnegative
real sequence {ξn} such that

∑∞
n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrary.

Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as
follows:
Step 1. Compute vn = (1 − θn)(xn + ρn(xn − xn−1)), where ρn is defined in
(2.1).
Step 2. Compute dn = ProjC(vn − φχnQvn). If vn = dn or Qdn = 0, then stop
and dn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = ProjHn(vn − χnQdn), where the half-space Hn is
defined by

Hn = {x ∈ H : 〈vn − φχnQvn − dn, x− dn〉 ≤ 0} , (2.24)

and update χn+1 by (2.3).
Set n := n+ 1 and go to Step 1.

Lemma 2.6. Assume that Condition (C2) holds. Let {vn}, {dn}, and {xn+1} be
three sequences created by Algorithm 2.2. Then

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − φ†
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀x† ∈ VI(C, Q),

where φ† = 2− 1
φ −

µχn

χn+1
if φ ∈ (1/(2− µ), 1] and φ† = 1

φ −
µχn

χn+1
if φ ∈ (1, 1/µ).
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Proof. It follows from (2.4) and (2.5) that

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − ‖vn − xn+1‖2 − 2〈χnQdn, xn+1 − dn〉. (2.25)

Next, we estimate 2〈χnQdn, xn+1 − dn〉. We observe that

− ‖vn − xn+1‖2 = −‖vn − dn‖2 − ‖dn − xn+1‖2 + 2〈vn − dn, xn+1 − dn〉 (2.26)

and

〈vn − dn, xn+1 − dn〉
= 〈vn − dn − φχnQvn + φχnQvn − φχnQdn + φχnQdn, xn+1 − dn〉
= 〈vn − φχnQvn − dn, xn+1 − dn〉+ φχn〈Qvn −Qdn, xn+1 − dn〉

+ 〈φχnQdn, xn+1 − dn〉.

(2.27)

From the definition of Hn and xn+1 ∈ Hn, one sees that

〈vn − φχnQvn − dn, xn+1 − dn〉 ≤ 0. (2.28)

By using the definition of χn+1, we have

〈Qvn −Qdn, xn+1 − dn〉 ≤
µ

2χn+1
‖vn − dn‖2 +

µ

2χn+1
‖xn+1 − dn‖2. (2.29)

Substituting (2.27), (2.28), and (2.29) into (2.26), we deduce

−‖vn − xn+1‖2 ≤ −
(

1− φµχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
+ 2φ〈χnQdn, xn+1 − dn〉.

This gives

− 2〈χnQdn, xn+1 − dn〉

≤ −
(

1

φ
− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
+

1

φ
‖vn − xn+1‖2.

(2.30)

From (2.25) and (2.30), we obtain

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 −
(

1

φ
− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
−
(

1− 1

φ

)
‖vn − xn+1‖2.

(2.31)

Note that

−
(

1− 1

φ

)
‖vn−xn+1‖2 ≤ −2

(
1− 1

φ

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ ∈ (0, 1].

This together with (2.31) infers that

‖xn+1 − x†‖2

≤ ‖vn − x†‖2 −
(

2− 1

φ
− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ ∈ (0, 1].

On the other hand, if φ > 1, then we obtain

‖xn+1 − x†‖2

≤ ‖vn − x†‖2 −
(

1

φ
− µχn
χn+1

)(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀φ > 1.

The proof is completed.
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Remark 2.7. Since φ ∈ (1/(2− µ), 1/µ) and µ ∈ (0, 1), we can obtain that φ† > 0
for all n ≥ n0.

Lemma 2.8. Assume that Conditions (C1)–(C3) hold. Let {vn} and {dn} be two
sequences formulated by Algorithm 2.2. If there exists a subsequence {vnk

} of {vn}
such that {vnk

} converges weakly to z ∈ H and limk→∞ ‖vnk
− dnk

‖ = 0, then
z ∈ VI(C, Q).

Proof. Following [32, Lemma 3.3], we can obtain the desired conclusion immediately.

Theorem 2.9. Assume that Conditions (C1)–(C3) hold. Then {xn} created by
Algorithm 2.2 converges to x† ∈ VI(C, Q) in norm, where ‖x†‖ = min{‖z‖ : z ∈
VI(C, Q)}.

Proof. We can easily prove this theorem by replacing Lemma 2.2 and Lemma 2.4 in
the proof of Theorem 2.5 with Lemma 2.6 and Lemma 2.8, respectively. Therefore
the proof is omitted.

2.2. Two methods for variational inequalities involving non-Lipschitz con-
tinuity. In this subsection, we provide two iterative algorithms with Armijo-type
step size criterion for discovering the minimum-norm solutions to pseudomonotone
and non-Lipschitz continuous variational inequality problems in real Hilbert spaces.
We replace the condition (C2) in Section 2 with the following condition (C4).

(C4) The mapping Q : H → H is pseudomonotone, uniformly continuous on H, and
sequentially weakly continuous on C.

Now, our iterative schemes are stated in Algorithms 2.3 and 2.4 below.

Algorithm 2.3

Initialization: Take ρ > 0, ζ > 0, ` ∈ (0, 1), µ ∈ (0, 1), and φ ∈ (0, 2/(1 + µ)).
Select the sequences {εn} and {θn} to satisfy Condition (C3). Let x0, x1 ∈ H be
arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as
follows:
Step 1. Compute vn = (1 − θn)(xn + ρn(xn − xn−1)), where ρn is defined in
(2.1).
Step 2. Compute dn = ProjC(vn − χnQvn). If vn = dn or Qdn = 0, then stop
and dn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = ProjTn(vn − φχnQdn), where Tn is defined in (2.2),
χn := ζ`mn and mn is the smallest nonnegative integer m satisfying

ζ`m〈Qdn −Qvn, dn − xn+1〉 ≤
µ

2

[
‖vn − dn‖2 + ‖dn − xn+1‖2

]
. (2.32)

Set n := n+ 1 and go to Step 1.

The following lemmas are useful for the convergence analysis of our Algorithms
2.3 and 2.4.

Lemma 2.10. Assume that Condition (C4) holds. Then the Armijo-like rule (2.32)
is well defined.

Proof. The proof is similar to Lemma 3.1 in [30]. Therefore we omit the details.
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Algorithm 2.4

Initialization: Take ρ > 0, ζ > 0, ` ∈ (0, 1), µ ∈ (0, 1), and φ ∈ (1/(2− µ), 1/µ).
Select the sequences {εn} and {θn} to satisfy Condition (C3). Let x0, x1 ∈ H be
arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as
follows:
Step 1. Compute vn = (1 − θn)(xn + ρn(xn − xn−1)), where ρn is defined in
(2.1).
Step 2. Compute dn = ProjC(vn − φχnQvn). If vn = dn or Qdn = 0, then stop
and dn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = ProjHn(vn − χnQdn), where Hn is defined in (2.24),
χn := ζ`mn and mn is the smallest nonnegative integer m satisfying (2.32).
Set n := n+ 1 and go to Step 1.

Lemma 2.11. Assume that Condition (C4) holds. Let {xn+1} be created by Algo-
rithm 2.3. Then

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − φ∗∗
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀x† ∈ VI(C, Q),

where φ∗∗ = 2− φ− φµ if φ ∈ [1, 2/(1 + µ)) and φ∗∗ = φ− φµ if φ ∈ (0, 1).

Proof. The proof is omitted since it follows the argument of Lemma 2.2.

Lemma 2.12. Assume that Condition (C4) holds. Let {xn+1} be formed by Algo-
rithm 2.4. Then

‖xn+1 − x†‖2 ≤ ‖vn − x†‖2 − φ‡
(
‖vn − dn‖2 + ‖xn+1 − dn‖2

)
, ∀x† ∈ VI(C, Q),

where φ‡ = 2− 1
φ − µ if φ ∈ (1/(2− µ), 1] and φ‡ = 1

φ − µ if φ ∈ (1, 1/µ).

Proof. The proof follows that of Lemma 2.6 and therefore it is omitted.

Remark 2.13. We can easily see that φ∗∗ > 0 for all n ≥ 1 in Lemma 2.11 and
φ‡ > 0 for all n ≥ 1 in Lemma 2.12 always hold.

Lemma 2.14. Assume that Conditions (C1), (C3), and (C4) hold. Let {vn} and
{dn} be created by Algorithm 2.3 (or Algorithm 2.4). If there exists a subsequence
{vnk
} of {vn} such that {vnk

} converges weakly to z ∈ H and limk→∞ ‖vnk
−dnk

‖ =
0, then z ∈ VI(C, Q).

Proof. A simple modification of [2, Lemma 3.2] yields the conclusion and thus it is
omitted.

Theorem 2.15. Assume that Conditions (C1), (C3), and (C4) hold. Then {xn}
created by Algorithm 2.3 converges to x† ∈ VI(C, Q) in norm, where ‖x†‖ = min{‖z‖ :
z ∈ VI(C, Q)}.

Proof. The proof is similar to that of Theorem 2.5, but we need to apply Lemma 2.11
and Lemma 2.14 in place of Lemma 2.2 and Lemma 2.4. We therefore omit the
proof to avoid the redundancy.

Theorem 2.16. Assume that Conditions (C1), (C3), and (C4) hold. Then {xn}
formed by Algorithm 2.4 converges to x† ∈ VI(C, Q) in norm, where ‖x†‖ = min{‖z‖ :
z ∈ VI(C, Q)}.
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Proof. By following the proof of Theorem 2.5 and replacing Lemma 2.2 and Lemma 2.4
with Lemma 2.12 and Lemma 2.14, respectively, we can easily obtain the desired
conclusion.

Remark 2.17. Note that the algorithms proposed in this paper can obtain strong
convergence in real Hilbert spaces while the algorithms in [14, 24, 39] can only obtain
weak convergence. On the other hand, our algorithms can be used to solve a wider
range of pseudomonotone variational inequality problems, while the algorithms in
the literature [24, 39] can only be applied to solve monotone variational inequalities.
Therefore, the algorithms proposed in this paper have a broader range of applications.

The novelty of this paper is the introduction of a new parameter φ in our
algorithms, which leads our methods to use different step size parameters in each
iteration to compute the values of the sequences. The advantages of this change
are illustrated in detail in the numerical experiments in Section 3. Moreover, when
S = I in Algorithm 3.1 of the literature [31], the degenerated algorithm is not the
Algorithm 2.1 proposed in this paper. The Algorithm 2.1 suggested in this paper
is different from the one in [31]. Specifically, we introduce a variable parameter
φ in the calculation of xn+1, which leads our algorithms to use two different step
sizes in the calculation of dn and xn+1 (when φ 6= 1). Our numerical experiments
in Section 3 show that the proposed algorithms achieve faster convergence speed
and higher computational efficiency when a suitable value of φ is chosen. Thus,
the algorithms proposed in this paper greatly improve the original subgradient
extragradient algorithm introduced in [5] and enrich many results in the literature.

3. Numerical experiments. In this section, we implement two numerical exam-
ples occurring in finite and infinite-dimensional spaces to demonstrate the com-
putational efficiency of the proposed algorithms compared to some related results.
All the programs are implemented in MATLAB 2018a. In the following numerical
experiments we use “CPU” to represent the execution time of all algorithms in
seconds.

Example 3.1. Let H = L2([0, 1]) be an infinite-dimensional Hilbert space with
inner product

〈x, y〉 =

∫ 1

0

x(t)y(t) dt, ∀x, y ∈ H

and induced norm

‖x‖ =

(∫ 1

0

|x(t)|2 dt

)1/2

, ∀x ∈ H.

Assume that r and R are two positive real numbers such that

R

k + 1
<
r

k
< r < R

for some k > 1. Take the feasible set as C = {x ∈ H : ‖x‖ ≤ r}. Let operator
Q : H → H be given by

Q(x) = (R− ‖x‖)x, ∀x ∈ H.

It is not hard to check that operator Q is pseudomonotone rather than monotone.
For the experiment, we select R = 1.5, r = 1, and k = 1.1. The solution of the (VIP)
with Q and C given above is x∗(t) = 0. We compare the proposed Algorithms 2.1–2.4
with the Algorithm 2 introduced by Thong and Vuong [35] (shortly, TV Alg. 2) and
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the Algorithm 3.2 introduced by Thong et al. [32] (shortly, THR Alg. 3.2). The
parameters of all algorithms are set as follows.

• Adopt θn = 1
n+1 , ρ = 0.3, εn = 100

(n+1)2 for the proposed Algorithms 2.1–2.4.

Choose µ = 0.4, χ1 = 1 and ξn = 1
(n+1)1.1 for Algorithms 2.1 and 2.2. Select

ζ = 1, ` = 0.5 and µ = 0.4 for Algorithms 2.3 and 2.4.
• Pick θn = 1

n+1 , αn = 0.9(1− θn), ζ = 1, ` = 0.5 and µ = 0.4 for TV Alg. 2.

• Take θn = 1
n+1 , ρ = 0.3, εn = 100

(n+1)2 , µ = 0.4, χ1 = 1 and f(x) = 0.1x for

THR Alg. 3.2.

The maximum number of iterations 50 is used as a common stopping criterion. The
numerical results of Dn = ‖xn(t)− x∗(t)‖ of all algorithms with four initial points
x0(t) = x1(t) are reported in Figure 1 and Table 1.
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(a) x1(t) = 2t4
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(c) x1(t) = 2 log(t)
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(d) x1(t) = 2 cos(t)

Figure 1. Numerical behavior of all algorithms for Example 3.1

Example 3.2. Consider the Hilbert space H = {x = (x1, x2, . . . , xi, . . .) :
∑∞

i=1 |xi|2 <

+∞} equipped with inner product

〈x, y〉 =

∞∑
i=1

xidi, ∀x, y ∈ H

and induced norm

‖x‖ =
√
〈x, x〉, ∀x ∈ H.
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Table 1. Numerical results of all algorithms for Example 3.1

Algorithms
x1(t) = 2t4 x1(t) = 2et x1(t) = 2 log(t) x1(t) = 2 cos(t)

Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 2.1 (2.2), φ = 1.0 1.03E-15 21.07 2.59E-14 21.20 1.95E-15 21.17 3.19E-15 20.95
Our Alg. 2.1, φ = 1.5 3.01E-19 20.35 2.18E-19 20.49 3.44E-19 20.47 5.51E-19 20.40
Our Alg. 2.2, φ = 0.8 6.31E-19 20.62 1.88E-17 20.79 1.96E-18 20.77 3.41E-18 20.57
Our Alg. 2.3 (2.4), φ = 1.0 2.24E-14 43.54 4.88E-14 43.04 3.86E-14 43.36 2.75E-14 43.18
Our Alg. 2.3, φ = 1.5 2.56E-19 43.26 6.24E-19 42.70 8.66E-19 43.27 4.85E-19 43.09
Our Alg. 2.4, φ = 0.8 1.42E-16 43.31 4.74E-16 42.83 5.84E-16 43.45 3.37E-16 43.42
TV Alg. 2 8.50E-08 33.97 5.53E-08 34.51 7.13E-08 35.49 4.64E-08 34.02
THR Alg. 3.2 2.15E-14 18.92 1.88E-10 19.09 3.73E-14 19.05 6.25E-15 19.20

Let the feasible set be given by C =
{
x ∈ H : |xi| ≤ 1

i

}
. Define an operator Q : C →

H by

Qx =

(
‖x‖+

1

‖x‖+ a

)
x

for some a > 0. It can be verified that mapping Q is pseudomonotone on H,
uniformly continuous and sequentially weakly continuous on C, but not Lipschitz
continuous on H (see [33, Example 1]). In the following cases, we set a = 0.5, and
H = Rm for different values of m. We compare the proposed Algorithms 2.3 and 2.4
with the Algorithm 3 suggested by Thong et al. [34] (shortly, TSI Alg. 3) and the
Algorithm 3.1 introduced by Cai et al. [2] (shortly, CDP Alg. 3.1). The parameters
of all algorithms are choose as follows.

• Take θn = 1
n+1 , ρ = 0.4, εn = 100

(n+1)2 , ζ = 2, ` = 0.5 and µ = 0.1 for

Algorithms 2.3 and 2.4.
• Pick θn = 1

n+1 , ζ = 2, ` = 0.5, µ = 0.1 and f(x) = 0.1x for TSI Alg. 3 and
CDP Alg. 3.1.

The maximum number of iterations 200 is used as a common stopping criterion and
the initial values x0 = x1 = 5rand(m,1) are randomly generated by MATLAB. The
numerical results of En = ‖xn − xn−1‖ of all algorithms with four dimensions are
given in Figure 2 and Table 2.

Table 2. Numerical results of all algorithms for Example 3.2

Algorithms
m = 10000 m = 50000 m = 100000 m = 200000

En CPU En CPU En CPU En CPU

Our Alg. 2.3 (2.4), φ = 1.0 1.69E-24 0.32 1.83E-24 0.77 2.31E-24 1.85 2.08E-24 10.83
Our Alg. 2.3, φ = 1.5 3.93E-55 0.27 3.12E-55 0.71 6.46E-55 1.62 3.37E-55 9.22
Our Alg. 2.4, φ = 0.8 1.69E-50 0.27 1.94E-50 0.68 4.15E-50 1.62 2.11E-50 9.39
CDP Alg. 3.1 1.68E-13 0.34 1.79E-13 0.83 2.47E-13 1.95 1.86E-13 10.50
TSI Alg. 3 2.42E-09 0.30 2.46E-09 0.72 2.76E-09 1.45 2.75E-09 9.95

Remark 3.3. We have the following observations for Examples 3.1 and 3.2.

(1) As shown in Figures 1 and 2, Tables 1 and 2, our algorithms can obtain a
smaller iteration error than the schemes in [35, 32, 34, 2] when they reach
the same stopping criterion, and this result is independent of the choice of
initial values and the size of dimensions. Moreover, notice that our Algorithms
2.1 and 2.2 with a new non-monotonic adaptive step criterion have a faster
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(b) m = 50000
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(d) m = 200000

Figure 2. Numerical behavior of all algorithms for Example 3.2

convergence speed than the Armijo-type methods (i.e., our Algorithms 2.3
and 2.4, and the Algorithm 2 introduced by Thong and Vuong [35]). It is also
noticed that THR Alg 3.2 [32] in Table 1 requires less running time than the
proposed algorithms, which is due to the fact that our proposed algorithms
increase the computation time of the inertial step, while THR Alg 3.2 does
not need to compute it.

(2) Our four algorithms with a new parameter φ have a higher accuracy when
choosing the appropriate value of φ. Specifically, our Algorithm 2.1 with
φ = 1.5 and Algorithm 2.2 with φ = 0.8 have a higher accuracy than when
they are with φ = 1.0 (see Figures 1 and 2). The same conclusion is reached
for our Algorithms 2.3 and 2.4. Notice that this observation is also not related
to the choice of initial values and the size of dimensions (see Tables 1 and 2).

(3) It should be noted that the operator Q in Example 3.1 is pseudomonotone
rather than monotone, and many algorithms used in the literature (see, e.g.,
[20, 17, 26, 38, 8]) for solving monotone variational inequalities will not be
available in Example 3.1. Furthermore, the operator Q in Example 3.2 is
uniformly continuous rather than Lipschitz continuous, and many schemes in
the literature (see, e.g., [10, 35, 32]) that require the operator to satisfy the
Lipschitz continuity condition are not applicable in Example 3.2.
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(4) Notice that Example 3.1 is an example that occurs in an infinite-dimensional
Hilbert space. The four algorithms proposed in this paper obtain strong
convergence theorems in real Hilbert spaces, which improves many weak
convergence results in the literature (see, e.g., [10, 16, 11, 36, 5, 20, 8, 27, 19]).

Therefore, the iterative algorithms presented in this paper are useful, efficient, and
robust.

4. Conclusions. To handle variational inequality problems (VIPs) in infinite-
dimensional Hilbert spaces, we present four adaptive modified subgradient ex-
tragradient methods with inertial effects in this work. The first two approaches
are intended to solve Lipschitz continuous and pseudomonotone VIPs. The last
two schemes are designed to address non-Lipschitz continuous and pseudomonotone
VIPs. Our contributions to this work are outlined below: (1) inertial terms are
incorporated into our algorithms to enhance their convergence speed and accuracy;
(2) the subgradient extragradient method proposed by Censor et al. [5] is modified
by using two different step sizes in each iteration; (3) two novel non-monotonic
step size criteria are employed so that the proposed algorithms can work adaptively
without the Lipschitz constant of the operator; and (4) the strong convergence of the
suggested algorithms is established under some appropriate conditions. Finally, the
computational efficiency of the proposed algorithms compared to some known ones is
verified by several numerical experiments occurring in finite and infinite-dimensional
spaces.
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