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ABSTRACT
We present two adaptive inertial projection and contraction
algorithms to discover the minimum-norm solutions of pseu-
domonotone variational inequality problems in real Hilbert
spaces. The suggested algorithms employ two different step
sizes in each iteration and use a non-monotone step size crite-
rionwithout any line search allowing them towork adaptively.
The strong convergence of the iterative sequences formed by
the proposed algorithms is established under some mild con-
ditions. Several numerical experiments occurring in finite- and
infinite-dimensional Hilbert spaces and applications to opti-
mal control problems as well as signal processing problems
are given. Performance profiles are used to verify the compu-
tational efficiency and advantages of the proposed algorithms
with respect to some known ones.
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1. Introduction

The goal of this paper is to introduce two new adaptive iterative algorithms
for !nding solutions of pseudomonotone variational inequality problems in real
Hilbert spaces. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H embedded with inner product 〈·, ·〉 and induced norm ‖ · ‖ =

√
〈·, ·〉,

and A : C → H be a nonlinear mapping. Recall that the classical variational
inequality problem is stated as follows

!nd x∗ ∈ C such that 〈Ax∗, x − x∗〉 ≥ 0, ∀x ∈ C. (VIP)

The solution set of (VIP) is denoted as VI(C,A) and is assumed to be nonempty.
Variational inequalities construct a uni!ed framework for many optimization
problems and have a wide range of application in many !elds; see, for example,
[1–5].
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In the last few decades, a large number of e"cient numerical algorithms were
proposed to discover the solutions of variational inequality problems. In this
paper we are concerned with projection-based methods. Korpelevich [6] pro-
posed an algorithm (now known as the extragradient method) that requires the
computation of the projection on the feasible set twice in each iteration to solve
the variational inequality problem (VIP). In order to reduce the projection com-
putation on the feasible set and thus improve the computational e"ciency of the
extragradient method. Recently, many extensions of the extragradient method,
which compute the projection onto the feasible set only once in each iteration,
were proposed to solve variational inequality problems; see, for example, the
Tseng’s extragradient method [7], the projection and contraction method [8],
the subgradient extragradient method [9–11], and the projected re#ected gra-
dient method [12]. Recently, by combining the advantages of the subgradient
extragradient method and the projection and contraction method, Dong et al.
[13] proposed a modi!ed subgradient extragradient method using two di$erent
step sizes in each iteration. The computational advantages of their method were
veri!ed in some basic numerical experiments. However, the method introduced
in [13] can only obtain weak convergence in an in!nite-dimensional Hilbert
space. It is known that strong convergence is preferable to weak convergence
in in!nite-dimensional spaces (see [14]). Recently, some strongly convergent
iterative algorithmswere proposed by combining themodi!ed subgradient extra-
gradient method [13] with the Mann method and the voscosity method; see,
for instance, [15–19]. On the other hand, the inertial technique have attracted
extensive research by scholars as one of the techniques to accelerate the conver-
gence speed of algorithms. The basic idea of inertial-type methods is that the
next iteration is determined by the combination of the previous two (or more)
iterations. It should be mentioned that Beck and Teboulle [20] proposed a well-
known Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) to solve linear
inverse problems in image processing, which combines the inertial method with
the classical iterative shrinkage thresholding algorithm. FISTAwas shown to have
a global second-order convergence rate through a clever choice of the inertial
coe"cient. Moreover, they provide numerical experiments on image deblurring
which show that the proposed algorithm converges faster than some known algo-
rithms in the literature. FISTA received a great deal of attention and research from
scholars as soon as it came up, and related work can be found at [21,22]. Recently,
many inertial-type methods are proposed to solve variational inequalities, equi-
librium problems, split feasibility problem, and various optimization problems;
see, e.g.[23–29] and the references therein.

Very recently, inspired by the works in [13,15–17], Tan et al. [29] introduced
several modi!ed inertial subgradient extragradient methods for solving the vari-
ational inequality problem (VIP). Some of their iterative schemes are shown in
Algorithms 1.1 and 1.2 below.
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Algorithm 1.1 The Algorithm 3.1 of Tan et al. [29]
Initialization: Take τ > 0, δ > 0, ζ ∈ (0, 1), µ ∈ (0, 1), and σ ∈ (0, 2). Let
x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = xn + τn(xn − xn−1), where

τn =





min

{
εn

‖xn − xn−1‖
, τ

}
, if xn += xn−1;

τ , otherwise.
(1)

Step 2. Compute yn = PC(wn − χnAwn), where the step size χn is chosen to
be the largest χ ∈ {δ, δζ , δζ 2, . . .} satisfying

χ‖Awn − Ayn‖ ≤ µ‖wn − yn‖. (2)

If wn = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PTn(wn − σχndnAyn), where

Tn =
{
x ∈ H : 〈wn − χnAwn − yn, x − yn〉 ≤ 0

}
,

and

dn = (1 − µ)
‖wn − yn‖2

‖ηn‖2
, ηn = wn − yn − χn(Awn − Ayn). (3)

Step 4. Compute xn+1 = (1 − θn − αn)wn + αnzn. Set n := n + 1 and go to
Step 1.

Algorithm 1.2 The Algorithm 3.4 of Tan et al. [29]
Initialization: Take τ > 0, δ > 0, ζ ∈ (0, 1), µ ∈ (0, 1), and σ ∈ (0, 2). Let
x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = xn + τn(xn − xn−1), where τn is de!ned in (1).
Step 2. Compute yn = PC(wn − χnAwn), where the step size χn is chosen to
be the largest χ ∈ {δ, δζ , δζ 2, . . .} satisfying (2). If wn = yn, then stop and yn
is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = wn − σdnηn, where dn and ηn are de!ned in (2).
Step 4. Compute xn+1 = (1 − θn − αn)wn + αnzn. Set n := n + 1 and go to
Step 1.
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Under some suitable conditions, the strong convergence of Algorithms 1.1
and 1.2 is established. Notice that theArmijo-type step criterion (2) used inAlgo-
rithms 1.1 and 1.2 leads to the evaluation of the projection on the feasible set and
the value of the operatorAmultiple times in each iteration. This can further a$ect
the computational e"ciency of thesemethods. To overcome this drawback, some
adaptive step size criteria that update the step size of each iteration with a sim-
ple computation using some previously known information are introduced; see,
e.g. the works in [25,30–34]. It is worth noting that the methods presented in
[25,30,32,33] generate a non-increasing sequence of step sizes, which may a$ect
the e"ciency of this type of algorithms. On the other hand, the pseudomonotone
mappings are widely studied by scholars as a broader class of mappings than the
monotonemappings. Recently, a large number of numerical methods were intro-
duced to solve pseudomonotone variational inequality problems in real Hilbert
spaces; see, e.g.[15,18,25,29] and the references therein.

Inspired by the above work and some recent ongoing e$orts in this area,
we introduce in this paer a more general step size criterion than the meth-
ods in [19,25,30–32] and propose two adaptively modi!ed inertial subgradient
extragradient algorithms without any line search procedure for solving pseu-
domonotone variational inequalities in real Hilbert spaces. Our contributions to
this paper are summarized below.

(1) Notice that the algorithms presented in [9,13,23,25] can only obtain weak
convergence in an in!nite-dimensional Hilbert space. The strong conver-
gence theorems of the proposed algorithms are established in real Hilbert
spaces (see Theorems 3.1 and 3.2). Therefore, the iterative schemes proposed
in this paper are preferable to the weak convergence results in the literature
in in!nite-dimensional Hilbert spaces.

(2) Note that the prerequisite for availability of !xed-step algorithms intro-
duced in [15,18,23] is that the prior information of the Lipschitz constant
of the mapping needs to be known. This paper introduces a new non-
monotonic step size criterion (8) without any line search procedure. Our
algorithms with the step size rule (8) can work without the prior knowledge
of the Lipschitz constant of the operator. The computational e"ciency of our
algorithms under di$erent step size choices is shown in Section 4.

(3) We introduce a new parameter β to modify the subgradient extragradient
method presented in [9–11] and the projection and contraction method
introduced in [8].Moreover, our algorithms also incorporate an inertial term
to speed up the convergence of the algorithms. Numerical experiments will
show that suitable parameters τn and β have a signi!cant improvement on
the convergence speed and accuracy of our algorithms (see Section 4).

(4) Our two algorithms can solve pseudomonotone variational inequalities,
which extends many results in the literature (e.g.[13,16,17,23]) for solving
monotone variational inequalities.
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(5) The computational e"ciency and stability of our algorithms compared to
the ones in the literature [19,29,34] are veri!ed by using the performance
pro!les introduced by Dolan and Moré [35]; see Sections 4 and 5 for more
details.

The rest of this paper is organized as follows. In the next section, we collect
some important de!nitions and lemmas for further use. In Section 3, we intro-
duce two iterative schemes with non-monotonic step sizes to solve variational
inequality problems and analyze their convergence. We provide three examples
of constrained and unconstrained variational inequality problems in Section 4
and two practical applications in Section 5 to verify the computational e"ciency
and stability of the algorithms proposed in this paper. Finally, we conclude the
paper in Section 6, the last section.

2. Preliminaries

In this section, we give some de!nitions and lemmas that need to be used in the
sequel. Recall that an operator A : H → H is said to be:

(1) L-Lipschitz continuous with L > 0 if ‖Ax − Ay‖ ≤ L‖x − y‖, ∀x, y ∈ H;
(2) monotone if 〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ H;
(3) pseudomonotone if 〈Ax, y − x〉 ≥ 0 ⇒ 〈Ay, y − x〉 ≥ 0, ∀x, y ∈ H;
(4) sequentially weakly continuous if for each sequence {xn} converges weakly to

x implies that {Axn} converges weakly to Ax.

The weak convergence and strong convergence of {xn} to x are represented
by xn ⇀ x and xn → x, respectively. For each x, y ∈ H, we have the following
inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (4)

For every point x ∈ H, there exists a unique nearest point inC, denoted by PC(x),
such that PC(x) = argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of
H ontoC. It is known that PC has the following basic properties (see, e.g. Chapter
20 of the monograph by Bauschke and Combettes [36]):

〈x − PC(x), y − PC(x)〉 ≤ 0, ∀x ∈ H, ∀y ∈ C, (5)

and

‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉, ∀x, y ∈ H. (6)

The projection can be computed explicitly in some special closed and convex sets
such as half spaces, balls, and box constraints; see, e.g.[36, Chapter 29] and [37].

The following two lemmas are useful for our main results.



798 B. TAN AND S. LI

Lemma 2.1 ([38, Lemma 1]): Let {χn}, {ξn} and {ρn} be sequences of nonnegative
numbers such that

χn+1 ≤ ξnχn + ρn, ∀n ≥ 1.

If {ξn} ⊂ [1,+∞),
∑∞

n=1(ξn − 1) < ∞, and
∑∞

n=1 ρn < ∞, then limn→∞ χn
exists.

Lemma 2.2 ([39, Lemma 2.6]): Let {xn} be a positive sequence, {rn} be a sequence
of real numbers, and {θn} be a sequence in (0, 1) such that

∑∞
n=1 θn = ∞. Suppose

that

xn+1 ≤ (1 − θn) xn + θnrn, ∀n ≥ 1.

If lim supk→∞ rnk ≤ 0 for any subsequence {xnk} of {xn} satisfying lim infk→∞
(xnk+1 − xnk) ≥ 0, then limn→∞ xn = 0.

3. Main results

In this section, we introduce twonewmodi!ed inertial extragradientmethods for
!nding the minimum-norm solutions of pseudomonotone variational inequali-
ties in real Hilbert spaces. The advantage of the suggested algorithms is that they
can work without the prior information of the Lipschitz constant of the opera-
tor. First, we assume that our iterative schemes satisfy the following conditions
in order to perform their convergence analysis.

(C1) The feasible setC is a nonempty, closed, and convex subset of a real Hilbert
spaceH, and the solution set of the (VIP) is nonempty, i.e. VI(C,A) += ∅.

(C2) The mapping A : H → H is pseudomonotone, L-Lipschitz continuous on
H, and sequentially weakly continuous on C.

(C3) Assume χ1 > 0, µ ∈ (0, 1), {δn} ⊂ [1,∞) such that limn→∞ δn = 1,
{ξn} ⊂ [1,∞) such that

∑∞
n=0(ξn − 1) < ∞, and {ρn} ⊂ [0,∞) such that∑∞

n=0 ρn < ∞.
(C4) Let {εn} be a positive sequence such that limn→∞

εn
θn

= 0, where {θn} ⊂
(0, 1) satis!es limn→∞ θn = 0 and

∑∞
n=1 θn = ∞.

Now, we are in a position to state our Algorithm 3.1.

Remark 3.1: Wehave the following comments on the proposedAlgorithm3.1.

(i) Note that the inertial criterion (7) is easy to implement because ‖xn − xn−1‖
is known before the calculation of τn. Furthermore, the parameter τ in (7)
can be either a positive constant or a positive sequence; special attention
is drawn to the case τ = n−1

n+α−1 , where α > 0 (see [19,21–23] for more
details).
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Algorithm 3.1 The modi!ed subgradient extragradient method with non-
monotonic step sizes

Initialization: Take τ > 0, χ1 > 0, µ ∈ (0, 1), σ ∈ (0, 2/µ), and β ∈
(σ/2, 1/µ). Choose {εn}, {δn}, {ξn}, {ρn}, and {θn} satis!es Conditions (C3)
and (C4). Let x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = (1 − θn)(xn + τn(xn − xn−1)), where

τn =





min

{
εn

‖xn − xn−1‖
, τ

}
, if xn += xn−1;

τ , otherwise.
(7)

Step 2. Compute yn = PC(wn − βχnAwn), where the next step size χn+1 is
updated by

χn+1 =





min

{
µδn

∥∥wn − yn
∥∥

∥∥Awn − Ayn
∥∥ , ξnχn + ρn

}

, if Awn += Ayn;

ξnχn + ρn, otherwise.
(8)

If wn = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = PHn(wn − σχndnAyn), where

Hn =
{
x ∈ H : 〈wn − βχnAwn − yn, x − yn〉 ≤ 0

}
,

and

dn =
〈
wn − yn, ηn

〉

‖ηn‖2
, ηn = wn − yn − βχn(Awn − Ayn). (9)

Set n := n + 1 and go to Step 1.

(ii) It is not necessary to impose the sequentiallyweak continuity of the operator
A in Condition (C2) when A is monotonic (see [40]).

(iii) It is easy to verify that Conditions (C3) and (C4) can be satis!ed; for
example, take

δn = 1 + 1
(n + 1)a

(a ≥ 1), ξn = 1 + 1
(n + 1)b

(b > 1),

ρn = 1
(n + 1)c

(c > 1), θn = 1
(n + 1)d

(0 < d ≤ 1),

εn = 1
(n + 1)e

(e > d).
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(iv) Note that C ⊂ Hn. Indeed, combining the de!nition of yn and (5), we have

〈wn − βχnAwn − yn, x − yn〉 ≤ 0, ∀x ∈ C.

This together with the de!nition of Hn gives the required conclusion.

The following lemma demonstrates that the step size criterion (8) is well
de!ned.

Lemma 3.1: Suppose that Condition (C3) holds. Then the step size sequence {χn}
formed by (8) is well de!ned and limn→∞ χn exists.

Proof: Since mapping A is L-Lipschitz continuous and δn ≥ 1, one has

µδn‖wn − yn‖
‖Awn − Ayn‖

≥ µδn‖wn − yn‖
L‖wn − yn‖

≥ µ

L
.

Note that ξn ≥ 1 and θn > 0. Thus

χn+1 = min

{
µδn

∥∥wn − yn
∥∥

∥∥Awn − Ayn
∥∥ , ξnχn + ρn

}

≥ min
{µ

L
,χn

}
.

By induction, we obtain that the sequence {χn} has a lower bound {µ/L,χ1}.
From the de!nition of (8), one sees that χn+1 ≤ ξnχn + ρn, which together with
Condition (C3), in the light of Lemma 2.1, implies that limn→∞ χn exists. This
completes the proof. !

Remark 3.2: We show that if wn = yn or ηn = 0 in Algorithm 3.1, then yn ∈
VI(C,A). From the de!nition of ηn and (8), one has

‖ηn‖ ≥ ‖wn − yn‖ − βχn‖Awn − Ayn‖

≥
(
1 − βµδnχn

χn+1

)
‖wn − yn‖.

We can also show that

‖ηn‖ ≤
(
1 + βµδnχn

χn+1

)
‖wn − yn‖. (10)

Therefore we conclude that
(
1 − βµδnχn

χn+1

)
‖wn − yn‖ ≤ ‖ηn‖ ≤

(
1 + βµδnχn

χn+1

)
‖wn − yn‖.

It follows from Lemma 3.1 that limn→∞ χn exists, which together with
limn→∞ δn = 1 gives

lim
n→∞

δnχn
χn+1

= 1.
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Consequently, there exists a constant n0 such that 1 − βµδnχn
χn+1

> 0 for all n ≥ n0
(noting that β < 1/µ). Hence we have thatwn = yn if and only if ηn = 0. Ifwn =
yn, then yn = PC(yn − βχnAyn). This means that yn ∈ VI(C,A) by means of (5).

The following lemmas are very helpful in analyzing the convergence of
Algorithm 3.1.

Lemma 3.2: Suppose that Conditions (C1) and (C2) hold. Let {wn} and {yn} be
two sequences generated by Algorithm 3.1. If there exists a subsequence {wnk} of
{wn} such that {wnk} converges weakly to z ∈ H and limk→∞ ‖wnk − ynk‖ = 0,
then z ∈ VI(C,A).

Proof: The proof follows the proof in [41, Lemma 3.3] and thus it is omitted. !

Lemma 3.3: Suppose that Conditions (C1) and (C2) hold. Let {xn+1}, {yn} and
{wn} be three sequences formed by Algorithm 3.1. Then, for every x∗ ∈ VI(C,A),
there exists n0 > 0 such that

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − xn+1 − σ

β
dnηn‖2

− σ

β2 (2β − σ )

(
1 − βµδnχn

χn+1

)2

(
1 + βµδnχn

χn+1

)2 ‖wn − yn‖2, ∀n ≥ n0.

Proof: From the de!nition of xn+1, the property of projection (6), and x∗ ∈
VI(C,A) ⊂ C ⊂ Hn, we have

2‖xn+1 − x∗‖2

= 2‖PHn(wn − σχndnAyn) − PHn(x
∗)‖2

≤ 2〈xn+1 − x∗,wn − σχndnAyn − x∗〉

= ‖xn+1 − x∗‖2 + ‖wn − σχndnAyn − x∗‖2 − ‖xn+1 − wn + σχndnAyn‖2

= ‖xn+1 − x∗‖2 + ‖wn − x∗‖2 + σ 2χ2
nd

2
n‖Ayn‖2 − 2〈wn − x∗, σχndnAyn〉

− ‖xn+1 − wn‖2 − σ 2χ2
nd

2
n‖Ayn‖2 − 2〈xn+1 − wn, σχndnAyn〉

= ‖xn+1 − x∗‖2 + ‖wn − x∗‖2 − ‖xn+1 − wn‖2 − 2〈xn+1 − x∗, σχndnAyn〉.

Thus

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖xn+1 − wn‖2 − 2σχndn〈xn+1 − x∗,Ayn〉.
(11)

In viewof x∗ ∈ VI(C,A) and yn ∈ C, one obtains 〈Ax∗, yn − x∗〉 ≥ 0,which com-
bining with the pseudomonotonicity of mappingA gives that 〈Ayn, yn − x∗〉 ≥ 0.
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This is equivalent to

〈Ayn, xn+1 − x∗〉 ≥ 〈Ayn, xn+1 − yn〉. (12)

Note that dn > 0 for all n ≥ n0. Indeed, by the de!nitions of dn, ηn, and (8), we
have

dn =
〈
wn − yn, ηn

〉

‖ηn‖2
=

‖wn − yn‖2 −
〈
wn − yn,βχn(Awn − Ayn)

〉

‖ηn‖2

≥

(
1 − βµδnχn

χn+1

)
‖wn − yn‖2

‖ηn‖2
. (13)

It follows from Remark 3.2 that 1 − βµδnχn
χn+1

> 0 for all n ≥ n0. Combining (10)
and (13), we deduce

dn ≥

(
1 − βµδnχn

χn+1

)

(
1 + βµδnχn

χn+1

)2 > 0, ∀n ≥ n0. (14)

From (12) and (14) (noting that σ ∈ (0, 2/µ)), one sees that

− 2σχndn〈Ayn, xn+1 − x∗〉 ≤ −2σχndn〈Ayn, xn+1 − yn〉. (15)

Using the de!nition of Hn and xn+1 ∈ Hn, one obtains

〈wn − βχnAwn − yn, xn+1 − yn〉 ≤ 0.

This shows that

〈wn − yn − βχn(Awn − Ayn), xn+1 − yn〉 ≤ βχn〈Ayn, xn+1 − yn〉. (16)

From the de!nitions of ηn, dn, (15), and (16), we have

−2σχndn〈Ayn, xn+1 − x∗〉 ≤ −2
σ

β
dn〈ηn, xn+1 − yn〉

= −2
σ

β
dn〈ηn,wn − yn〉 + 2

σ

β
dn〈ηn,wn − xn+1〉

= −2
σ

β
d2n‖ηn‖2 + 2

σ

β
dn〈ηn,wn − xn+1〉. (17)

Now, we estimate 2σ
β dn〈ηn,wn − xn+1〉. According to the formula 2ab = a2 +

b2 − (a − b)2, we arrive

2
σ

β
dn〈ηn,wn − xn+1〉

= ‖wn − xn+1‖2 + σ 2

β2 d
2
n‖ηn‖2 −

∥∥∥∥wn − xn+1 − σ

β
dnηn

∥∥∥∥
2
. (18)
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It follows from (13) that

dn‖ηn‖2 ≥
(
1 − βµδnχn

χn+1

) ∥∥wn − yn
∥∥2 .

This together with (10) yields

d2n‖ηn‖2 ≥
(
1 − βµδnχn

χn+1

)2 ‖wn − yn‖4

‖ηn‖2
≥

(
1 − βµδnχn

χn+1

)2

(
1 + βµδnχn

χn+1

)2 ‖wn − yn‖2. (19)

Combining (11), (17), (18), and (19), we conclude that

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 −
∥∥∥∥wn − xn+1 − σ

β
dnηn

∥∥∥∥
2

− σ

β2 (2β − σ )

(
1 − βµδnχn

χn+1

)2

(
1 + βµδnχn

χn+1

)2 ‖wn − yn‖2, ∀n ≥ n0.

This completes the proof. !

Now, we are ready to analyze the strong convergence of Algorithm 3.1.

Theorem 3.1: Suppose that Conditions (C1)–(C4) hold. Then the sequence {xn}
formed by Algorithm 3.1 converges strongly to x∗ ∈ VI(C,A), where ‖x∗‖ =
min{‖z‖ : z ∈ VI(C,A)}.

Proof: First, we show that the sequence {xn} is bounded. Note that 2β − σ > 0.
It follows from Lemma 3.3 that

‖xn+1 − x∗‖ ≤ ‖wn − x∗‖, ∀n ≥ n0. (20)

By the de!nition of wn, one has
∥∥wn − x∗∥∥ =

∥∥(1 − θn) (xn + τn (xn − xn−1)) − x∗∥∥

=
∥∥(1 − θn)

(
xn − x∗) + (1 − θn) τn (xn − xn−1) − θnx∗∥∥

≤ (1 − θn)
∥∥xn − x∗∥∥ + (1 − θn) τn ‖xn − xn−1‖ + θn‖x∗‖

= (1 − θn)
∥∥xn − x∗∥∥ + θn

[
(1 − θn)

τn
θn

‖xn − xn−1‖ + ‖x∗‖
]
.

(21)

From (7), one sees that τn‖xn − xn−1‖ ≤ εn, ∀n ≥ 1, which together with
limn→∞

εn
θn

= 0 implies that

lim
n→∞

τn
θn

‖xn − xn−1‖ ≤ lim
n→∞

εn
θn

= 0. (22)
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Thus we have

lim
n→∞

[
(1 − θn)

τn
θn

‖xn − xn−1‖ + ‖x∗‖
]

= ‖x∗‖. (23)

Therefore, there exists a constant Q1 > 0 such that

(1 − θn)
τn
θn

‖xn − xn−1‖ + ‖x∗‖ ≤ Q1, ∀n ≥ 1.

It follows from (21) and (23) that

‖wn − x∗‖ ≤ (1 − θn) ‖xn − x∗‖ + θnQ1, ∀n ≥ 1. (24)

Combining (20) and (24), we have

‖xn+1 − x∗‖ ≤ (1 − θn)‖xn − x∗‖ + θnQ1

≤ max{‖xn − x∗‖,Q1}, ∀n ≥ n0
≤ · · · ≤ max{‖xn0 − x∗‖,Q1}.

That is, the sequence {xn} is bounded. So are {wn} and {yn}.
By (24), one has

‖wn − x∗‖2 ≤
[
(1 − θn) ‖xn − x∗‖ + θnQ1

]2

= (1 − θn)
2 ‖xn − x∗‖2 + θn

[
2 (1 − θn)Q1‖xn − x∗‖ + θnQ2

1
]

≤ ‖xn − x∗‖2 + θnQ2, (25)

where Q2 := supn∈N{2(1 − θn)Q1‖xn − x∗‖ + θnQ2
1} > 0. Combining

Lemma 3.3 and (25), we deduce

‖wn − xn+1 − σ

β
dnηn‖2 + σ

β2 (2β − σ )

(
1 − βµδnχn

χn+1

)2

(
1 + βµδnχn

χn+1

)2 ‖wn − yn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + θnQ2, ∀n ≥ n0. (26)

From the de!nition of wn, (4), and (20), we have

‖xn+1 − x∗‖2

≤ ‖wn − x∗‖2

= ‖(1 − θn)(xn − x∗) + (1 − θn)τn(xn − xn−1) − θnx∗‖2
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≤ ‖(1 − θn)(xn − x∗) + (1 − θn)τn(xn − xn−1)‖2 + 2θn
〈
−x∗,wn − x∗〉

≤ (1 − θn)
2‖xn − x∗‖2 + 2(1 − θn)τn‖xn − x∗‖‖xn − xn−1‖

+ τ 2n‖xn − xn−1‖2 + 2θn
〈
−x∗,wn − xn+1

〉
+ 2θn

〈
−x∗, xn+1 − x∗〉

≤ (1 − θn)‖xn − x∗‖2 + θn

[
2(1 − θn)‖xn − x∗‖τn

θn
‖xn − xn−1‖

+ τn‖xn − xn−1‖
τn
θn

‖xn − xn−1‖ + 2‖x∗‖‖wn − xn+1‖

+ 2〈x∗, x∗ − xn+1〉
]
, ∀n ≥ n0. (27)

Finally, we show that {‖xn − x∗‖} converges to zero. By Lemma 2.2, we assume
that {‖xnk − x∗‖2} is a subsequence of {‖xn − x∗‖2} such that

lim inf
k→∞

(
‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2

)
≥ 0. (28)

Note that σ ∈ (0, 2/µ) and β ∈ (σ/2, 1/µ). Combining (26), (28), and Condi-
tion (C4), we obtain

lim sup
k→∞




σ

β2 (2β − σ )

(
1 − βµδnkχnk

χnk+1

)2

(
1 + βµδnkχnk

χnk+1

)2 ‖wnk − ynk‖2 + ‖wnk − xnk+1 − σ

β
dnkηnk‖2





≤ lim sup
k→∞

[
‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2

]
+ lim sup

k→∞
θnkQ2

= − lim inf
k→∞

[
‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2

]
≤ 0,

which implies that

lim
k→∞

‖ynk − wnk‖ = 0 and lim
k→∞

∥∥∥∥wnk − xnk+1 − σ

β
dnkηnk

∥∥∥∥ = 0.

From the de!nition of dn, we obtain

‖wnk − xnk+1‖ ≤
∥∥∥∥wnk − xnk+1 − σ

β
dnkηnk

∥∥∥∥ + σ

β
dnk‖ηnk‖

=
∥∥∥∥wnk − xnk+1 − σ

β
dnkηnk

∥∥∥∥ + σ

β

〈
wnk − ynk , ηnk

〉

‖ηnk‖

≤
∥∥∥∥wnk − xnk+1 − σ

β
dnkηnk

∥∥∥∥ + σ

β
‖wnk − ynk‖.

Hence we have that limk→∞ ‖xnk+1 − wnk‖ = 0. This together with the bound-
edness of {xn} gives

lim
k→∞

‖wnk − xnk+1‖‖x∗‖ = 0. (29)
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It follows from the de!nition of wn that

‖xnk − wnk‖ = ‖(1 − θnk)τnk(xnk − xnk−1) − θnkxnk‖
≤ ‖(1 − θnk)τnk(xnk − xnk−1)‖ + ‖θnkxnk‖

= θnk

[
(1 − θnk)

τnk
θnk

‖xnk − xnk−1‖ + ‖xnk‖
]
,

which combining with (22) and Condition (C4) means that limk→∞ ‖xnk −
wnk‖ = 0. Moreover, one !nds that

lim
k→∞

‖xnk+1 − xnk‖ ≤ lim
k→∞

‖xnk+1 − wnk‖ + lim
k→∞

‖wnk − xnk‖.

From the above facts, we deduce that

lim
k→∞

‖xnk+1 − xnk‖ = 0. (30)

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj } of {xnk}
such that xnkj ⇀ z when j → ∞. Furthermore,

lim sup
k→∞

〈
x∗, x∗ − xnk

〉
= lim

j→∞
〈x∗, x∗ − xnkj 〉 = 〈x∗, x∗ − z〉. (31)

Since limk→∞ ‖xnk − wnk‖ = 0, one obtains wnk ⇀ z. This together with
limk→∞ ‖wnk − ynk‖ = 0, in the light of Lemma 3.2, gives that z ∈ VI(C,A).
From the de!nition of x∗, (5), and (31), we have

lim sup
k→∞

〈
x∗, x∗ − xnk

〉
= 〈x∗, x∗ − z〉 ≤ 0. (32)

By (30) and (32), we obtain

lim sup
k→∞

〈
x∗, x∗ − xnk+1

〉
≤ lim sup

k→∞

〈
x∗, x∗ − xnk

〉
≤ 0. (33)

Combining (22), (27), (29), (33), and Lemma 2.2, we conclude that xn → x∗ as
n → ∞. The proof is completed. !

Next, we present a new modi!ed inertial projection and contraction method
(see Algorithm 3.2 below) for !nding the minimum-norm solutions of pseu-
domonotone variational inequalities in real Hilbert spaces.
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Algorithm 3.2 The modi!ed projection and contraction method with non-
monotonic step sizes

Initialization: Take τ > 0, χ1 > 0, µ ∈ (0, 1), σ ∈ (0, 2), and β ∈ (0, 1/µ).
Choose {εn}, {δn}, {ξn}, {ρn}, and {θn} satis!es Conditions (C3) and (C4). Let
x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = (1 − θn)(xn + τn(xn − xn−1)), where τn is de!ned in
(7).
Step 2. Compute yn = PC(wn − βχnAwn), where the next step size χn+1 is
updated by (8). If wn = yn, then stop and yn is a solution of (VIP). Otherwise,
go to Step 3.
Step 3. Compute xn+1 = wn − σdnηn, where dn and ηn are de!ned in (9). Set
n := n + 1 and go to Step 1.

The following lemma plays a crucial role in studying the convergence of
Algorithm 3.2.

Lemma 3.4: Suppose that Conditions (C1) and (C2) hold. Let {wn}, {yn}, and
{xn+1} be three sequences generated by Algorithm 3.2. Then

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2 − σ

σ
‖wn − xn+1‖2, ∀x∗ ∈ VI(C,A),

and

‖wn − yn‖2 ≤





(
1 + βµδnχn

χn+1

)

(
1 − βµδnχn

χn+1

)
σ





2

‖wn − xn+1‖2.

Proof: It follows from the de!nition of xn+1 that

‖xn+1 − x∗‖2 = ‖wn − σdnηn − x∗‖2

= ‖wn − x∗‖2 − 2σdn〈wn − x∗, ηn〉 + σ 2d2n‖ηn‖2. (34)

By the de!nition of ηn, one sees that

〈wn − x∗, ηn〉 = 〈wn − yn, ηn〉 + 〈yn − x∗, ηn〉
= 〈wn − yn, ηn〉 + 〈yn − x∗,wn − yn − βχn(Awn − Ayn)〉. (35)

In view of yn = PC(wn − βχnAwn) and (5), we have

〈wn − yn − βχnAwn, yn − x∗〉 ≥ 0. (36)
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By using x∗ ∈ VI(C,A), yn ∈ C, and the pseudomonotonicity of the mapping A,
we deduce

〈Ayn, yn − x∗〉 ≥ 0. (37)
From (35), (36), and (37), we have

〈wn − x∗, ηn〉 ≥ 〈wn − yn, ηn〉. (38)

Note that xn+1 − wn = σdnηn. From the de!nition of dn, one obtains 〈wn −
yn, ηn〉 = dn‖ηn‖2. Combining (34) and (38), we obtain

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 2σdn〈wn − yn, ηn〉 + σ 2d2n‖ηn‖2

= ‖wn − x∗‖2 − 2σd2n‖ηn‖2 + σ 2d2n‖ηn‖2

= ‖wn − x∗‖2 − 2 − σ

σ
‖σdnηn‖2

= ‖wn − x∗‖2 − 2 − σ

σ
‖wn − xn+1‖2.

On the other hand, by the de!nition of xn+1 and (19), we have

‖xn+1 − wn‖2 = σ 2d2n‖ηn‖2 ≥ σ 2

(
1 − βµδnχn

χn+1

)2

(
1 + βµδnχn

χn+1

)2 ‖wn − yn‖2.

Thus we obtain

‖wn − yn‖2 ≤





(
1 + βµδnχn

χn+1

)

(
1 − βµδnχn

χn+1

)
σ





2

‖wn − xn+1‖2.

The proof is completed. !

Now, we are in a position to analyze the convergence of Algorithm 3.2.

Theorem 3.2: Suppose that Conditions (C1)–(C4) hold. Then the sequence {xn}
generated by Algorithm 3.2 converges strongly to x∗ ∈ VI(C,A), where ‖x∗‖ =
min{‖z‖ : z ∈ VI(C,A)}.

Proof: The proof is similar to that in Theorem 3.1. Therefore we omit some
details of the proof. From Lemma 3.4 and σ ∈ (0, 2), we have

‖xn+1 − x∗‖ ≤ ‖wn − x∗‖, ∀n ≥ 1. (39)

Using the same arguments as declared inTheorem3.1, we have that the sequences
{xn}, {wn}, and {yn} are bounded. By Lemma 3.4 and (25), we deduce

2 − σ

σ
‖wn − xn+1‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + θnQ2. (40)

Moreover, we can obtain (27) by using the same arguments as stated in
Theorem 3.1. Finally, we show that {‖xn − x∗‖} converges to zero. By Lemma 2.2,
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we assume that {‖xnk − x∗‖2} is a subsequence of {‖xn − x∗‖2} such that (28)
holds. From (40) and Condition (C4), we have

lim sup
k→∞

2 − σ

σ
‖wnk − xnk+1‖2

≤ lim sup
k→∞

[
‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + θnkQ2

]

≤ 0,

which means that limk→∞ ‖xnk+1 − wnk‖ = 0 since σ ∈ (0, 2). In view of
Lemma 3.4, we observe that limk→∞ ‖ynk − wnk‖ = 0. As stated in Theorem 3.1,
we can obtain the same result as (29)–(33). Therefore we conclude that xn → x∗

as n → ∞. This completes the proof. !

4. Numerical experiments

In this section, we present three numerical examples occurring in !nite- and
in!nite-dimensional Hilbert spaces to illustrate the computational e"ciency
and robustness of the proposed algorithms over some existing methods in
[19,29,34]. All programs are executed on MATLAB 2018a on a personal com-
puter with Intel(R) Core(TM) i5-8250U CPU @1.60GHz 1.80 GHz and RAM
8.00 GB.

Before starting our numerical experiments we introduce the algorithms
and convergence theorems in [19,34]. Based on the inertial method, the
Armijo-type line search method, the projection contraction algorithm, and
the viscosity method, Jolaoso [19] presents an iterative scheme to solve
monotone variational inequality problems in real Hilbert spaces. The pro-
posed scheme and the convergence results are shown in Algorithm 4.1 and
Theorem 4.1.

Theorem 4.1 ([19]): Let C be a nonempty, closed, and convex subset of a real
Hilbert spaceH. Let A : C → H be a monotone and L-Lipschitz continuous oper-
ator, and f : H → H be a contraction mapping with coe"cient ρ ∈ (0, 1). Let
{θn} be a sequence in (0, 1) such that limn→∞ θn = 0 and

∑∞
n=1 θn = ∞, and

{εn} be a positive sequence satisfying limn→∞
εn
θn

= 0. Suppose that VI(C,A) += ∅.
Then the sequence {xn} generated by Algorithm 4.1 converges strongly to a point
x∗ ∈ VI(C,A), where x∗ = PVI(C,A)(f (x∗)).

Recently, Thong et al. [34] introduced an inertial subgradient extragradient
algorithm to discover solutions of variational inequality problems with pseu-
domonotone operators in in!nite-dimensional Hilbert spaces. Their scheme and
weak convergence results are shown in Algorithm 4.2 and Theorem 4.2.
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Algorithm 4.1 The Algorithm 3.11 of Jolaoso [19]
Initialization: Take α > 0, δ > 0, ζ ∈ (0, 1), µ ∈ (0, 1), and σ ∈ (0, 2). Let
x0, x1 ∈ H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = xn + τn(xn − xn−1), where

τn =






min
{

n − 1
n + α − 1

,
εn

‖xn − xn−1‖

}
, ifxn += xn−1;

n − 1
n + α − 1

, otherwise.

Step 2. Compute yn = PC(wn − χnAwn), where the step size χn is chosen to
be the largest χ ∈ {δ, δζ , δζ 2, . . .} satisfying

χ‖Awn − Ayn‖ ≤ µ‖wn − yn‖.

If wn = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = wn − σdnηn, where

dn =
〈
wn − yn, ηn

〉

‖ηn‖2
, ηn = wn − yn − χn(Awn − Ayn).

Step 4. Compute xn+1 = θnf (xn) + (1 − θn)zn. Set n := n + 1 and go to Step
1.

Algorithm 4.2 The Algorithm 3.1 of Thong et al. [19]

Initialization:Takeµ ∈ (0, 1), τ ∈ [0, 1 − 3−
√
5−4µ

1+µ ), andχ1 > 0. Let x0, x1 ∈
H.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1). Calculate the iterate
xn+1 as follows:
Step 1. Compute wn = xn + τ (xn − xn−1).
Step 2. Compute yn = PC(wn − χnAwn). If wn = yn, then stop and yn is a
solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = PTn(wn − χnAyn), where Tn := {x ∈ H : 〈wn −
χnAwn − yn, x − yn〉 ≤ 0}. Set .n = 〈Awn − Ayn, xn+1 − yn〉 and update

χn+1 =





min

{

µ

∥∥wn − yn
∥∥2 +

∥∥xn+1 − yn
∥∥2

2.n
,χn + ρn

}

, if.n > 0;

χn + ρn, otherwise.

Set n := n + 1 and go to Step 1.
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Theorem 4.2 ([34]): Let C be a nonempty, closed, and convex subset of a real
Hilbert space H. Let operator A : H → H be pseudomonotone and L-Lipschitz
continuous. Let A satis!es the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ‖Az‖ ≤ lim inf
n→∞

‖Axn‖.

Let {ρn} be a nonnegative real numbers sequence such that
∑∞

n=1 ρn < +∞.
Assume that VI(C,A) += ∅. Then {xn} formed by Algorithm 4.2 converges weakly
to x∗ ∈ VI(C,A).

4.1. Performance pro!les

Tomeasure the computational e"ciency and stability of the proposed algorithms,
we employ the performance pro!les introduced by Dolan and Moré [35], which
are widely used in the numerical optimization community. We would like to
thank the reviewer for pointing out this tool to attract our attention. Let G = {s |
s = 1, 2, 3, . . . , ns} denote the set of algorithms and B = {p | p = 1, 2, 3, . . . , np}
the set of problems. Suppose there is a set of benchmark tests for ns algorithms
solving np problems. The performance pro!le is used to evaluate and compare
the performance of the algorithm set G on the problem set B, where the perfor-
mance metrics can be some information of interest such as number of iterations,
computation time, function value evaluation, error evaluation, etc. It is assumed
that computation time is used as the metric to be measured. We de!ne

tp,s = computation time required by algorithm s to solve problem p.

If algorithm s fails to solve problem p, we de!ne tp,s = +∞. A similar de!nition
is used if the measure is number of iterations. The performance ratio de!ned by
Dolan and Moré [35] is expressed as follows

rp,s =
tp,s

min
{
tp,s : s ∈ G

} .

This represents the performance of algorithm s on problem p compared to the
best performance of any algorithm on this problem. Notice that rp,s ≥ 1 for any
algorithm s in sloving problem p and that rp,s = 1 indicates (one of) the best per-
formance ratio. To obtain an evaluation of the overall performance of algorithm
s on problem set B, de!ne the scaled performance pro!le as follows

P
(
log2

(
rp,s

)
≤ ω : 1 ≤ s ≤ ns

)
= ρs(ω) = 1

np
size

{
p ∈ B : log2(rp,s) ≤ ω

}
.

Then ρs(ω) is the ratio of the performance of algorithm s with respect to the
scaled performance ratio log2(rp,s) within the best possible ratio factor ω ∈
R. The function ρs is the (cumulative) distribution function for the perfor-
mance ratio of algorithm s on problem set B. Clearly, ρs(0) denotes the rate
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by which algorithm s outperforms other algorithms on problem set B. There-
fore, we can choose the maximum of ρs(0) among all algorithms if we are only
interested in the number of wins of the algorithm on problem set B. More-
over, ρs(ωmax) denotes the number of problems solved by algorithm s, where
ωmax = maxs∈G,p∈B log2(rp,s). That is, ρs(ωmax) can be used to measure the sta-
bility of algorithm s on problem set B. Hence, if ρs(ω) is large with respect to ω

being small, then the algorithm s ∈ G is ‘fast’; if ρs(ω) is large with respect to ω

being large, then s is ‘robust’.

4.2. Theoretical examples

In this subsection, we consider three numerical tests known in the literature,
where the feasible sets in Examples 4.1 and 4.2 are bounded and the feasible set
in Example 4.3 is unbounded.

Example 4.1: The !rst example is the HP-Hard problem which is considered by
much of the literature; see, e.g.[12,19,29,42]. Let the linear operator A : Rm →
Rm be given by

A(x) = Gx,

where G = BBT + S + E, matrix B ∈ Rm×m, matrix S ∈ Rm×m is skew-
symmetric, and matrix E ∈ Rm×m is diagonal matrix whose diagonal terms are
non-negative (hence G is positive symmetric de!nite). Let the feasible set C be a
box constraint with the form

C = {x ∈ Rm : −2 ≤ xi ≤ 5, i = 1, 2, 3, . . . ,m}.

It is easy to see that A is monotone, Lipschitz continuous and its Lipschitz con-
stant L = ‖G‖. In this example, all entries of B, S are generated randomly in
[−2, 2], and E is generated randomly in [0, 2]. The solution set of the (VIP)
is x∗ = {0}. We use Dn = ‖xn − x∗‖ to measure the nth iteration error of all
algorithms. Themaximumnumber of iterations of 200 as a common stopping cri-
terion. Next, we test the performance of the proposed algorithms under di$erent
parameters. Speci!cally, we consider the following three cases.

Case 1: Compare inertial parameters τn. Take σ = 1.5, θn = 1/(n + 1), τ =
{0.2, 0.4, 0.6, 0.8}, εn = 100/(n + 1)2, β = 0.8, χ1 = 0.6,µ = 0.6, δn = 1 + 1/n,
ξn = 1 + 1/(n + 1)1.1 and ρn = 1/(n + 1)1.1 for the proposed Algorithms 3.1
and 3.2. The numerical performance of the proposed algorithms with di$erent
parameters τ is given in Figure 1.

Case 2: Compare the new parameter β . Choose τ = 0.6, β = {0.8, 0.9, 1.0, 1.1}
and let the values of parameters σ , θn, εn, χ1, µ, δn, ξn, and ρn be the same as
in Case 1. The numerical behavior of the proposed algorithms with di$erent
parameters β is shown in Figure 2.
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Figure 1. The behavior of our algorithms with different τ in Example 4.1 (m = 20). (a) Our
Algorithm 3.1 and (b) Our Algorithm 3.2.

Figure 2. The behavior of our algorithms with different β in Example 4.1 (m = 20). (a) Our
Algorithm 3.1 and (b) Our Algorithm 3.2.

Case 3: Compare step size χn. Take τ = 0.6 and let the values of parameters
σ , θn, εn, β , χ1, and µ be the same as in Case 1. The numerical behavior of the
proposed algorithms with di$erent step size χn is expressed in Figure 3.

To end this example, we compare the proposed algorithms with the
Algorithms 3.1, 3.3, 3.4, and 3.6 presented by Tan, Li, and Cho [29]
(shortly, TLC Algorithm 3.1, TLC Algorithm 3.3, TLC Algorithm 3.4, and
TLC Algorithm 3.6), and the Algorithm 3.11 introduced by Jolaoso [19], and the
Algorithm 3.1 suggested by Thong et al. [34]. The parameters of all algorithms
are set as follows.

• Choose τ = 0.6, εn = 100/(n + 1)2, σ = 1.5, θn = 1/(n + 1), β = 0.8, χ1 =
0.6, µ = 0.6, δn = 1 + 1/n, ξn = 1 + 1/(n + 1)1.1, and ρn = 1/(n + 1)1.1 for
the proposed Algorithms 3.1 and 3.2.

• Take τ = 0.6, εn = 100/(n + 1)2, σ = 1.5, θn = 1/(n + 1), αn = 0.8(1 −
θn), f (x) = 0.1x, δ = 2, ζ = 0.5, and µ = 0.6 for TLC Algorithm 3.1, TLC
Algorithm 3.3, TLC Algorithm 3.4, and TLC Algorithm 3.6 [29].
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Figure 3. The behavior of our algorithms with different χn in Example 4.1 (m = 20). (a) Our
Algorithm 3.1 and (b) Our Algorithm 3.2.

Table 1. Numerical results of all algorithms with different dimensions for Example 4.1.

m = 20 m = 50 m = 100 m = 200

Algorithms Dn CPU (s) Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Algorithm 3.1 3.21E−52 0.0775 1.85E−25 0.0791 1.56E−16 0.1058 9.27E−13 0.1644
Our Algorithm 3.2 1.98E−45 0.0725 2.01E−21 0.0769 1.46E−14 0.1092 3.13E−11 0.1335
TLC Algorithm 3.1 2.14E−22 0.1058 6.46E−15 0.1236 1.13E−11 0.3062 5.31E−10 0.4587
TLC Algorithm 3.3 1.96E−26 0.0910 4.80E−16 0.1131 6.48E−12 0.2305 1.22E−09 0.4502
TLC Algorithm 3.4 2.14E−22 0.0897 6.46E−15 0.1253 1.13E−11 0.2421 5.31E−10 0.4154
TLC Algorithm 3.6 1.96E−26 0.1141 4.80E−16 0.1157 6.48E−12 0.2475 1.22E−09 0.4147
Jolaoso Algorithm 3.11 1.97E−23 0.0981 2.57E−12 0.1211 1.83E−12 0.2361 3.49E−11 0.4168
Thong et al. Algorithm 3.1 8.95E−10 0.0743 1.71E−03 0.0794 2.85E−02 0.1065 7.63E−01 0.1246

• Set α = 100, εn = 100/(n + 1)2, σ = 1.5, θn = 1/(n + 1), f (x) = 0.1x, δ =
2, ζ = 0.5, and µ = 0.6 for Jolaoso’s Algorithm 3.11 [19].

• Select χ1 = 0.6, τ = 0.1(
√
5 − 2), µ = 0.2(1−4τ−τ 2

(1−τ )2
), and ρn = 1/(n + 1)1.1

for the Algorithm 3.1 presented by Thong et al. [34].

The initial values x0 = x1 are chosen randomly in Rm and the maximum
number of iterations 1000 is used as a stopping criterion common to all algo-
rithms. The numerical results of all algorithms with four dimensions are shown
in Table 1. To demonstrate the overall computational e"ciency of the proposed
algorithms and the comparison algorithms in 30 di$erent dimensions (m =
{5, 15, 25, 35, . . . , 295}) of Example 4.1, we measured their performance pro!les
using computation time and termination error as metrics, and the results are
shown in Figures 4 and 5, respectively.

Next, we consider a variational inequality problem in in!nite-dimensional
real Hilbert spaces, where the operator involved is pseudomonotone rather than
monotone. In this case, Algorithm 3.11 introduced by Jolaoso [19] for solv-
ing monotone variational inequality problems will not be available. Therefore,
Jolaoso’s algorithm will not be implemented in this example.
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Figure 4. Performance profiles of all algorithms based on computation time for Example 4.1.

Figure 5. Performance profiles of all algorithms based on termination error for Example 4.1.

Example 4.2: This example is considered in [43]where the variational inequality
operator involved is pseudomonotone rather thanmonotone. LetH = L2([0, 1])
be an in!nite-dimensional Hilbert space with inner product

〈x, y〉 =
∫ 1

0
x(t)y(t) dt, ∀x, y ∈ H
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Table 2. Numerical results of all algorithms with different initial values for Example 4.2.

x1(t) = 10t2 x1(t) = 2et x1(t) = 3 cos(t) x1(t) = log(2t)

Algorithms Dn CPU (s) Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Algorithm 3.1 8.57E−32 22.8165 4.16E−30 22.4390 8.85E−30 22.2947 8.42E−31 22.3925
Our Algorithm 3.2 8.87E−30 22.1634 1.66E−30 20.9524 4.70E−30 20.9188 8.42E−31 21.1196
TLC Algorithm 3.1 2.18E−26 54.7587 2.49E−26 47.7078 2.67E−26 47.5906 9.81E−27 47.5743
TLC Algorithm 3.3 2.21E−27 53.1460 1.91E−27 47.3066 1.40E−27 47.3911 2.47E−27 47.1040
TLC Algorithm 3.4 1.35E−26 47.7945 8.63E−26 46.4754 2.97E−26 46.3224 9.81E−27 46.4572
TLC Algorithm 3.6 3.13E−26 46.7180 4.61E−27 46.3843 1.24E−26 46.4638 2.47E−27 45.8154
Thong et al.
Algorithm 3.1

3.02E−07 17.0902 6.11E−07 17.4131 1.04E−06 17.4149 2.23E−06 17.5943

and induced norm

‖x‖ =
(∫ 1

0
|x(t)|2 dt

)1/2
, ∀x ∈ H.

Assume that r and R are two positive real numbers such that R/(k + 1) < r/k <

r < R for some k>1. Let the feasible set be de!ned by

C = {x ∈ H : ‖x‖ ≤ r}

and the operator A : H → H be given by

Ax = (R − ‖x‖)x, ∀x ∈ H.

It is not hard to check that operator A is pseudomonotone rather than mono-
tone (see [43, Section 4]). For the experiment, we choose R = 1.5, r = 1, and
k = 1.1. The solution of the variational inequality problem (VIP) with A and C
given above is x∗(t) = 0. The parameters of all algorithms are set as follows.

• Adopt τ = 0.2, εn = 1/(n + 1)2, σ = 1.5, θn = 1/(n + 1), β = 1.0, χ1 = 0.1,
µ = 0.4, δn = 1 + 1/n, ξn = 1 + 1/(n + 1)1.1, and ρn = 1/(n + 1)1.1 for the
proposed Algorithms 3.1 and 3.2.

• Set τ = 0.2, εn = 1/(n + 1)2, σ = 1.5, θn = 1/(n + 1), αn = 0.9(1 − θn),
f (x) = 0.1x, δ = 2, ζ = 0.5, and µ = 0.4 for TLC Algorithm 3.1, TLC
Algorithm 3.3, TLC Algorithm 3.4, and TLC Algorithm 3.6 [29].

• Select χ1 = 0.1, τ = 0.1(
√
5 − 2), µ = 0.2(1−4τ−τ 2

(1−τ )2
), and ρn = 1/(n + 1)1.1

for the Algorithm 3.1 presented by Thong et al. [34].

The function Dn = ‖xn(t) − x∗(t)‖ is used to measure the error of the nth
iteration step and the maximum number of iterations 50 is used as a common
stopping criterion for all algorithms. The numerical results of all algorithms with
four di$erent initial values x0(t) = x1(t) are stated in Table 2.

Notice that the constraint sets in Examples 4.1 and 4.2 are bounded, we next
provide an unconstrained variational inequality problem with an unbounded
feasible set in a !nite-dimensional space.
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Figure 6. Performance profiles of all algorithms based on computation time for Example 4.3.

Example 4.3: This a classical numerical example in!nite-dimensional Euclidean
spaces where the usual gradient method does not converge, and it is used by
many authors to verify the convergence performance of their algorithms; see,
e.g.[12,18,19]. Let the feasible set be given byC = Rm for some positive even inte-
ger m. Let variational inequality operator A : Rm → Rm be the square m × m
matrix de!ned by A = (aij)1≤i,j≤m, where the elements are generated by the
following form

aij =






−1, if j = m + 1 − i and j > i;
1, if j = m + 1 − i and j < i;
0, otherwise.

The solution to the (VIP) with A and C given above is x∗ = (0, 0, . . . , 0)2 ∈ Rm.
In this example keep the parameters of our algorithms and the comparisonmeth-
ods as in Example 4.1, but adjust τ = 0.02 and β = 1.1 for our Algorithms 3.1
and 3.2, and adjust τ = 0.02 for the methods introduced by Tan, Li, and Cho
[29], and adjust α = 10000 for the Algorithm 3.1 proposed by Jolaoso [19]. The
initial values x0 = x1 are chosen randomly in Rm. We use Dn = ‖xn − x∗‖ to
capture the error of the algoritms at the n-th iteration. The maximum number of
iterations 500 is taken as a general stopping criterion for all algorithms. Table 3
shows their computational results in four di$erent dimensions. Then, we con-
siderm = {10, 30, 50, 70, . . . , 590} for a total of 30 di$erent dimensions, and the
performance pro!les of all algorithms regarding execution time and termination
error at di$erent initial values are shown in Figures 6 and 7, respectively.
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Figure 7. Performance profiles of all algorithms based on termination error for Example 4.3.

Table 3. Numerical results of all algorithms with different dimensions for Example 4.3.

m = 200 m = 500 m = 1000 m = 2000

Algorithms Dn CPU (s) Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Algorithm 3.1 1.98E−35 0.0816 2.92E−35 0.1982 4.22E−35 2.6434 5.99E−35 10.5476
Our Algorithm 3.2 9.82E−30 0.0587 1.45E−29 0.1603 2.10E−29 2.2536 2.98E−29 8.8933
TLC Algorithm 3.1 6.17E−20 0.0990 9.12E−20 0.2340 1.32E−19 3.6865 1.87E−19 19.7716
TLC Algorithm 3.3 1.80E−22 0.0905 2.65E−22 0.2183 3.83E−22 5.0999 5.44E−22 19.7334
TLC Algorithm 3.4 6.17E−20 0.0912 9.12E−20 0.2246 1.32E−19 4.6607 1.87E−19 18.3037
TLC Algorithm 3.6 1.80E−22 0.0891 2.65E−22 0.2568 3.83E−22 4.6407 5.44E−22 18.2501
Jolaoso Algorithm
3.11

7.76E−19 0.0805 1.15E−18 0.2448 1.66E−18 4.7288 2.35E−18 18.2412

Thong et al.
Algorithm 3.1

1.88E−10 0.0595 2.78E−10 0.1249 4.01E−10 1.8215 5.70E−10 7.1698

Remark 4.1: Wemake the following comments on Examples 4.1–4.3.

• The information in Figures 1–3 demonstrates that the appropriate parameters
τ , β , and χn play an active role in the convergence speed and accuracy of the
proposed algorithms, respectively.

• Our two algorithms work well in di$erent dimensions and with di$erent ini-
tial values; see Tables 1–3. Figures 4 and 6 show the performance pro!les of
the algorithms based on computation time in di$erent dimensions, and they
demonstrate that Thong et al.’s Algorithm 3.1 [34] and our two algorithms
proposed in this paper outperform the other compared algorithms in terms
of computation time, i.e. Thong et al.’s Algorithm 3.1 and our two algorithms
require less computation time than Tan et al.’s algorithms [29] and Jolaoso’s
Algorithm 3.11 [19] when performing the same number of iterations. This
phenomenon is easily explained by the fact that Armijo-type algorithms take
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more time to !nd the step size in each iteration. On the other hand, Figures 5
and 7 show that our two algorithms outperform the compared algorithms in
terms of termination error, whichmeans that our algorithms can obtain higher
accuracy than the compared algorithmswhen performing the same number of
iterations. Therefore, the proposed methods perform better in terms of accu-
racy and convergence speed than the algorithms embedded with Armijo-type
step size presented in [19,29], and the proposed algorithms can obtain higher
accuracy than Algorithm 3.1 in [34]. These observations are not signi!cantly
related to the choice of initial values and the size of dimensions. Thus, our
methods are e"cient and robust.

• Tables 1–3 and Figures 4–7 illustrate that our Algorithm 3.2 outperforms
our Algorithm 3.1 in terms of computation time, while our Algorithm 3.1
performs better than our Algorithm 3.2 in terms of termination error.

• Notice that the accuracy of TLC Algorithm 3.1 and TLC Algorithm 3.4
in Table 3 is the same, as is TLC Algorithm 3.3 and TLC Algorithm 3.6.
Indeed, when C = Rm, one has yn = PC(wn − χnAwn) = wn − χnAwn, in
which case zn = PTn(wn − σχndnAyn) = wn − σχndnAyn by the de!nition of
Tn, and ηn = χnAyn. Thus, one obtains zn = wn − σdnηn, at which point TLC
Algorithm 3.1 becomes TLC Algorithm 3.4 and TLC Algorithm 3.3 turns into
TLC Algorithm 3.6.

5. Two real-world applications

In this sectionwe apply the proposed algorithms to optimal control problems and
signal processing problems, and demonstrate their computational e"ciency and
stability with the help of the performance pro!les introduced in [35].

5.1. Applications to optimal control problems

In this subsection, we apply the proposed algorithms for solving the varia-
tional inequality problem (VIP) that appears in optimal control problems and
compare themwith the algorithms in [19,29,34]. LetL2([0,T],Rm) be the square-
integrable Hilbert space with inner product 〈p, q〉 =

∫ T
0 〈p(t), q(t)〉 dt and norm

‖p‖ =
√

〈p, p〉. Let g(p) be the terminal objective function and 0 be a convex
and di$erentiable function de!ned on the attainability set. Let p(t) represent the
control function, V stand for a set of feasible controls consisting of m piecewise
continuous functions, and x(t) refer to the trajectory. Recall that the optimal
control problem is stated as follows:






!nd p∗(t) ∈ Argmin{g(p) | p ∈ V},
g(p) = 0(x(T)),

V =
{
p(t) ∈ L2

(
[0,T],Rm)

: pi(t) ∈
[
p−
i , p

+
i
]
, i = 1, 2, . . . ,m

}
,

such that ẋ(t) = Q(t)x(t) + W(t)p(t), 0 ≤ t ≤ T, x(0) = x0,

where Q(t) ∈ Rn×n and W(t) ∈ Rn×m for t ∈ [0,T].

(42)
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By the solution of problem (42), we mean a optimal control p∗(t) and a corre-
sponding trajectory x∗(t) such that its terminal value x∗(T) minimizes objective
function g(p). It is known that the optimal control problem (42) can be trans-
formed into a variational inequality problem; e.g. see [1] formore details. As with
the method described in [1], we begin with the decomposition of the optimal
control problem (42) by using the classical Euler discretization method and then
solve the variational inequality problem corresponding to the discretized ver-
sion of the problem by applying the proposed algorithms as well as the compared
methods.

Select the parameter N associated with the mesh size to be 100. The initial
controls p0(t) = p1(t) are randomly generated in [−0.5, 0.5] and the common
stopping criterion between our algorithms and the comparison ones is Dn =
‖wn − yn‖ ≤ 10−4. In the next two numerical examples all the parameters of the
algorithms are chosen as follows.

• Choose τ = (n − 1)/(n − 1 + 3), εn = 10−4/(n + 1)2, σ = 1.5, θn = 10−4/
(n + 1), β = 0.8, χ1 = 1.5, µ = 0.4, δn = 1 + 1/(n + 1)1.1, ξn = 1 + 10−1/
(n + 1)1.1, and ρn = 10−1/(n + 1)1.1 for the proposedAlgorithms 3.1 and 3.2.

• Take τ = 0.01, εn = 10−4/(n + 1)2, σ = 1.5, θn = 10−4/(n + 1), αn =
0.8(1 − θn), f (x) = 0.1x, δ = 1, ζ = 0.5, and µ = 0.4 for TLC Algorithm 3.1,
TLC Algorithm 3.3, TLC Algorithm 3.4, and TLC Algorithm 3.6 [29].

• Set α = 3, εn = 10−4/(n + 1)2, σ = 1.5, θn = 10−4/(n + 1), f (x) = 0.1x,
δ = 1, ζ = 0.5, and µ = 0.4 for Jolaoso’s Algorithm 3.11 [19].

• Select χ1 = 1.5, τ = 0.1(
√
5 − 2), µ = 0.2(1−4τ−τ 2

(1−τ )2
), and ρn = 10−1/(n +

1)1.1 for the Algorithm 3.1 presented by Thong et al. [34].

Example 5.1 (Control of a harmonic oscillator, see [44]):

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π],

x(0) = 0,

p(t) ∈ [−1, 1].

The exact optimal control of Example 5.1 is known:

p∗(t) =
{
1, if t ∈ [0,π/2) ∪ (3π/2, 5π/2);
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π .

As shown in [41, Example 5.1], Example 5.1 can be converted to a monotone
and Lipschitz type variational inequality problem and therefore the algorithms
presented in this paper can be used. Figure 8 presents the numerical results of
the proposed Algorithm 3.1 in Example 5.1.
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Figure 8. The numerical behavior of our Algorithm 3.1 for Example 5.1. (a) Initial and optimal
controls and (b) Optimal trajectories.

Next we consider the case where the terminal function is nonlinear.

Example 5.2 (See [45]):

minimize − x1(2) + (x2(2))2

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 2],

x1(0) = 0, x2(0) = 0,

p(t) ∈ [−1, 1].

The exact optimal control of Example 5.2 is

p∗(t) =
{
1, if t ∈ [0, 1.2);
−1, if t ∈ (1.2, 2].

Example 5.2 can similarly be converted to a monotone variational inequality
problem. The numerical results of the proposed Algorithm 3.2 in Example 5.2
are shown in Figure 9.

In order to demonstrate the computational e"ciency and stability of the pro-
posed algorithms in solving optimal control problems, we randomly selected 100
di$erent initial values to test for Examples 5.1 and 5.2. The performance pro-
!les of all algorithms based on computation time and number of iterations for
Examples 5.1 and 5.2 are shown in Figures 10 and 11, and Figures 12 and 13,
respectively. Furthermore, we present in Table 4 the average computation time
and the average number of iterations for all algorithms in solving Examples 5.1
and 5.2 for these 100 tests.

Remark 5.1: We have the following observations for Examples 5.1 and 5.2 in
optimal control problems.
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Figure 9. The numerical behavior of our Algorithm 3.2 for Example 5.2. (a) Initial and optimal
controls and (b) Optimal trajectories.

Figure 10. Performance profiles of all algorithms based on computation time for Example 5.1.

• The proposed algorithms provide a good solution to optimal control problems
when the terminal function is linear or nonlinear, as shown in Figures 8 and
9.

• Figure 10 shows that our Algorithm 3.1 can win 95% compared to other algo-
rithms in terms of computation time when solving Example 5.1. In other
words, the proposed Algorithm 3.1 would be preferred in solving Example 5.1
if we were interested in computational time. Furthermore, the information in
Figure 11 indicates that our Algorithms 3.1 and 3.2 are also preferable to other
algorithms in terms of the number of iterations.

• In solving Example 5.2 where the terminal function is nonlinear, the informa-
tion in Figure 12 shows that our Algorithm 3.1 can solve 80% of the problems
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Figure 11. Performance profiles of all algorithms based on number of iterations for Example 5.1.

Figure 12. Performance profiles of all algorithms based on computation time for Example 5.2.

with maximum e"ciency in terms of computation time, while Figure 13
indicates that our Algorithm 3.1 can win 60% in terms of the number of
iterations.

• It is worth noting that the proposed Algorithm 3.2 does not perform as well
in Example 5.2 as it does in Example 5.1; see Figures. 10–13.

• In solving Example 5.1 where the terminal function is linear, algorithms using
the simple step size update criterion (our Algorithms 3.1 and 3.2 and Thong
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Figure 13. Performance profiles of all algorithms based on number of iterations for Example 5.2.

Table 4. Numerical results for all algorithms in Examples 5.1 and 5.2.

Example 5.1 Example 5.2

Algorithms Avg. CPU (s) Avg. num. of iter. Avg. CPU (s) Avg. num. of iter.

Our Algorithm 3.1 0.0092 22.67 0.0590 163.2
Our Algorithm 3.2 0.0122 33.12 0.1343 399.8
TLQ Algorithm 3.1 0.0333 86.62 0.1160 270.69
TLQ Algorithm 3.3 0.0268 68 0.0950 217.56
TLQ Algorithm 3.4 0.0305 87.35 0.2560 401.28
TLQ Algorithm 3.6 0.0244 69.33 0.1465 247.14
Jolaoso Algorithm 3.11 0.0175 47.31 0.1143 179.55
Thong et al. Algorithm 3.1 0.0148 36.92 0.0780 214.6

et al.’s Algorithm 3.1 [34]) require fewer iterations and less computation time
than algorithms employing the Armijo type step size criterion. However, this
conclusion does not necessarily hold when solving Example 5.2 where the ter-
minal function is nonlinear because algorithms that use a simple step size
criterion may require a higher number of iterations to reach the error crite-
rion, which leads to more computation time required. In terms of these 100
tests for Examples 5.1 and 5.2, our Algorithm 3.1 is generally preferred, see
Table 4.

5.2. Applications to signal processing problems

In this subsection, we apply the proposed algorithms to deal with signal process-
ing problems arising in real-world and measure the computational e"ciency of
the algorithms using performance pro!les [35].



OPTIMIZATION 825

Example 5.3: The signal recovery problem is a practical one as signals in the real-
world can be subject to interference during transmission and thus the original
clean signals need to be recovered from noisy signals. Recall that the model for
signal processing problems is as follows

y = Bx + g, (43)

where x ∈ Rn with k non-zero elements is the original signal, y ∈ Rm is the
observed noisy signal, B : Rm×n is a bounded linear operator, and g ∈ Rm is the
noisy observation. An important consideration in this problem is that the signal
x is sparse, i.e. the number of non-zero elements in the signal x is much smaller
than the dimension of x (that is k 4 n). A well-known model for solving prob-
lem (43) is the Least Absolute Shrinkage and Selection Operator (LASSO), which
has the following expression

min
x∈Rn

f (x) := 1
2
‖Bx − y‖22 subject to ‖x‖1 ≤ t, t > 0, (44)

where ‖ · ‖2 and ‖ · ‖1 represent the 2-norm and 1-norm de!ned in Euclidean
spaces, respectively. Notice that the problem (44) can be converted to a varia-
tional inequality problem (VIP). Indeed, according to the optimal condition for
convex optimization, it is known that the optimal solution x∗ of the problem (44)
is equivalent to the fact that all feasible directions at that point are not gradient
descent directions. That is, !nding solutions to the problem (44) is equivalent to
solving the following problem (45):

!nd x∗ ∈ C such that ∇f
(
x∗)2 (

x − x∗) ≥ 0, ∀x∗ ∈ C. (45)

Notice that the problem (45) described above is in fact a variational inequality
problem about∇f on the feasible setC. The gradient of f is known to be∇f (x) =
B2(Bx − y), so we set A(x) = B2(Bx − y) and C = {x ∈ Rn | ‖x‖1 ≤ t} in the
proposed algorithms. It can be checked that A is monotone and L-Lipschitz con-
tinuous with L = ‖B2B‖. We can now use the suggested algorithms to solve the
problem (43). The parameters of all algorithms are set as follows.

• Choose τ = (n − 1)/n, εn = 100/(n + 1)2, σ = 1.5, θn = 0.01/(n + 1), β =
0.8, χ1 = 0.006, µ = 0.6, δn = 1 + 1/n, ξn = 1 + 1/(n + 1)1.1, and ρn = 0
for the proposed Algorithms 3.1 and 3.2.

• Take τ = (n − 1)/n, εn = 100/(n + 1)2, σ = 1.5, θn = 0.01/(n + 1), αn =
0.8(1 − θn), f (x) = 0.1x, δ = 2, ζ = 0.5, and µ = 0.6 for TLC Algorithm 3.1,
TLC Algorithm 3.3, TLC Algorithm 3.4, and TLC Algorithm 3.6 [29].

• Set α = 1, εn = 100/(n + 1)2, σ = 1.5, θn = 0.01/(n + 1), f (x) = 0.1x, δ =
2, ζ = 0.5, and µ = 0.6 for Jolaoso’s Algorithm 3.11 [19].

• Select χ1 = 0.006, τ = 0.1(
√
5 − 2), µ = 0.2(1−4τ−τ 2

(1−τ )2
), and ρn = 1/(n +

1)1.1 for the Algorithm 3.1 presented by Thong et al. [34].
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Figure 14. Signals with different sparsity recovered by our algorithms in Example 5.3. (a) Recov-
ered by our Algorithm 3.1. (b) Recovered by our Algorithm 3.1. (c) Recovered by our Algorithm 3.2
and (d) Recovered by our Algorithm 3.2.

In our numerical experiments, the original signal x ∈ Rn contains k (k 4 n)
randomly generated ±1 spikes, the matrix B : Rm×n is randomly produced by
the MATLAB function randn(m,n) with a standard normal distribution, and
g = 10−3randn(m,1). Hence the observation y is created by y = Bx + g. We
use the mean squared error de!ned as MSE = (1/n)‖x∗ − x‖2 to measure the
error accuracy between the signal x∗ recovered by the algorithms and the original
signal x. The recovery procedure for all algorithms starts from the initial signals
x0 = x1 = 0 and stops the iteration when MSE < 10−6 is satis!ed. In our !rst
test, we set n = 2048,m = 512, and k = {10, 20, 40, 60}, and choose t = k in (44)
for all algorithms. The computation time in seconds and the number of iterations
required by the proposed algorithms and the comparison methods at di$erent
sparsity k are shown in Table 5. The results recovered by our algorithms for dif-
ferent sparsity signals are displayed in Figure 14. Furthermore, we also draw in
Figure 15 the MSE curves with the number of iterations for all algorithms under
di$erent cases.
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Figure 15. Numerical performance ofMSE for all algorithms under different caces in Example 5.3.
(a) n = 2048, m = 512, k = 10. (b) n = 2048, m = 512, k = 20. (c) n = 2048, m = 512, k =
40 and (d) n = 2048, m = 512, k = 60.

Table 5. Numerical results for all algorithms at different sparsity k in Example 5.3 (n = 2048,m =
512).

k = 10 k = 20 k = 40 k = 60

Algorithms CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter.

Our Algorithm 3.1 0.2705 21 0.1549 24 0.4714 39 0.6858 57
Our Algorithm 3.2 0.4875 48 0.2756 51 0.6288 66 0.4857 48
TLC Algorithm 3.1 0.8906 16 1.8140 44 4.1145 68 7.5798 124
TLC Algorithm 3.3 1.8974 29 1.6319 38 3.5870 61 5.8499 95
TLC Algorithm 3.4 2.1421 35 1.7778 43 3.9610 69 3.4818 57
TLC Algorithm 3.6 1.8118 30 1.5107 38 3.3098 58 5.8488 96
Jolaoso Algorithm 3.11 3.8757 65 2.5165 66 3.3553 54 3.9726 63
Thong et al. Algorithm 3.1 0.7137 84 0.5632 116 1.8454 211 5.3031 633

Finally, we use di$erent dimensions n to test the computational e"ciency
of these algorithms in the case of keeping m = 512 and k = 20. We chose n =
{1024, 1074, 1124, 1174, . . . , 4074} to generate 62 groups of execution times and
number of iterations required for all algorithms to reach the stopping error
MSE < 10−6. The performance pro!les based on execution time and number
of iterations are presented in Figures 16 and 17, respectively.



828 B. TAN AND S. LI

Figure 16. Performance profiles of all algorithms based on execution time for Example 5.3.

Figure 17. Performance profiles of all algorithms based on number of iterations for Example 5.3.

Remark 5.2: We have the following remarks about Example 5.3 in signal pro-
cessing problems.

• The algorithms introduced in this paper work well in signal processing prob-
lems; see Table 5, Figures 14, and 15.



OPTIMIZATION 829

• The numerical results of the algorithms for di$erent sparsity in the same
dimension are shown in Table 5, from which it can be seen that, in gen-
eral, the number of iterations and execution time required by the algorithms
increases with increasing sparsity. This means that solvers generally require
less computation time and fewer iterations when the original signal is sparser.

• As shown in Figures 16 and 17, our Algorithm 3.1 stands out if we are inter-
ested in the algorithm that can solve 95% problems with maximum e"ciency.
Figure 16 illustrates that if we choose ω = 2.5 as the range of interest for all
algorithms, then our Algorithms 3.1 and 3.2 and Thong et al.’s Algorithm 3.1
[34] perform better than the other methods, as shown by the height of their
performance pro!le for ω = 2.5 in Figure 16. It is worth noting that Thong
et al.’s Algorithm 3.1 takes more iterations than Armijo-type algorithms, but
it requires less computation time due to the use of a simple adaptive step size;
see Figures 16 and 17.

• As can be seen in Figure 15 the convergence of the algorithms with inertial
terms is oscillatory, i.e. the convergence is not monotonic. How to reduce this
oscillation is a future work that can be considered.

6. Conclusions

In this paper, two new iterative schemes with inertial e$ects are proposed for
solving pseudomonotone variational inequalities in in!nite-dimensional Hilbert
spaces. The proposed methods employ a new non-monotone step size criterion
permitting them to work without the prior information about the Lipschitz con-
stant of the mapping. Strong convergence theorems of the proposed algorithms
are established under some suitable conditions. Finally, some numerical exam-
ples occurring in !nite- and in!nite-dimensional spaces verify the computational
e"ciency and robustness of the o$ered algorithms compared to some known
schemes bymeans of performance pro!les. Furthermore, numerical results of the
proposed algorithms in optimal control problems and signal processing prob-
lems support this conclusion. The results obtained in this paper improved and
extended many known ones in the !eld. We consider extending the work of this
paper to Banach spaces and equilibrium problems in the future.
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