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ABSTRACT
In this paper, somenewaccelerated iterative schemes areproposed to solve
the variational inequality problem with a pseudomonotone and uniformly
continuousoperator in realHilbert spaces. Strongconvergence theoremsof
the suggested algorithms are obtained without the prior knowledge of the
Lipschitz constant of the operator. Some numerical experiments and appli-
cations areperformed to illustrate theadvantagesof theproposedmethods
with respect to several related ones.
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1. Introduction

Let C be a nonempty, closed and convex subset of a Hilbert space H with inner product 〈·, ·〉 and
norm ‖ · ‖, andM : H → H be a nonlinear mapping. Recall that the variational inequality problem
is expressed as follows:

find x∗ ∈ C such that 〈Mx∗, x − x∗〉 ≥ 0 ∀ x ∈ C. ( VIP)

The solution set of (VIP) is denoted by VI(C,M). Many issues in science and society can be unified
under the framework of the variational inequality model. The VIP plays an essential role in opti-
mization theory and practical applications, see, e.g.[1–5]. Therefore, the VIP attracted considerable
attention frommany researchers and became an attractive field.Many scholars are interested not only
in obtaining theoretical results but also in numericalmethods to solve such problems. A large number
of iterative algorithms have been proposed in the last decades to solve (VIP), see, e.g.[6–9] and the
references therein.

Recently, the extragradient method (for short, EGM) proposed by Korpelevich [6] has been
extensively studied by many scholars, and there are a large number of iterative schemes for finding
numerical solutions to variational inequality problems by the EGM; see, e.g.[10–13]. It is important
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to emphasize that the EGM needs to compute the projection on the feasible set twice in each itera-
tion, which may affect its computational efficiency when the feasible set has a complex structure. The
projection and contraction method (PCM) introduced by He [7], Tseng’s EGM offered by Tseng [8],
and the subgradient extragradient method (SEGM) suggested by Censor et al. [9] can overcome this
drawback. A common feature of the three methods mentioned above is that the projection on the
feasible set needs to be evaluated only once in each iteration. Recently, variant forms based on these
methods have been further investigated by researchers, see, e.g.[14–17] and the references therein.

Based on the SEGM and the PCM, Dong et al. [18] provided amodified subgradient extragradient
method (MSEGM), which forms an iterative sequence that weakly converges to the solution of (VIP).
Their basic examples demonstrate the numerical efficiency and advantages of theMSEGM compared
to the SEGM and the PCM. Some applications appearing in medical imaging and machine learning
tell us that the strong convergence is preferable to the weak convergence in an infinite-dimensional
space. Recently, Thong andGibali [19] andGibali et al. [20] obtained some strongly convergentmeth-
ods to solve the (VIP) with a monotone operator by combining the MSEGM, the Mann method and
the viscosity method. On the other hand, the inertial idea has been studied by many researchers as
a technique to accelerate the convergence speed of algorithms. They have constructed a large num-
ber of numerical methods to solve optimal control problems, signal processing, image recovery and
other optimization problems; see, for instance, [21–25] and the references therein. In 2018, an iner-
tial projection and contraction method (IPCM) by combining the PCM and the inertial method was
introduced by Dong et al. [26] to solve the monotone (VIP). They showed the advantages of the
IPCM compared with other algorithms through some computational tests and established the weak
convergence theorem of the IPCM in real Hilbert spaces under appropriate assumptions. By associ-
ating the IPCM with the Mann method and the viscosity method, respectively, Thong et al. [27] and
Cholamjiak et al. [28] established the strong convergence theorems of the proposed iterative schemes.
The algorithms presented in [27, 28] use a fixed step size in each iteration,which indicates that the Lip-
schitz constant of themappingmust need to be received in advance. In practical large-scale nonlinear
optimization problems, the Lipschitz constant is not easy to obtain or requires more calculation to
estimate. It is known that there are some mappings that are not monotone, such as pseudomonotone
mappings, andmoreover the class of pseudomonotonemappings includes the class ofmonotonemap-
pings. There are some numerical methods based on the SEGM and the PCM in the literature [28–31]
that can solve pseudomonotone (VIP). Note that the approach stated in [29] achieves weak conver-
gence, the algorithms offered in [28, 30] require the prior information of the Lipschitz constant of
the mapping, and the methods presented in [31] uses the projection-type method to ensure strong
convergence.

Motivated and stimulated by the results mentioned above, in this study, we introduce six iner-
tial PCMs to solve variational inequalities in real Hilbert spaces. Our iterative schemes improve and
extend some previously known results in the literature [14, 18–20, 26–28, 30]. More precisely, our
contributions in this paper are as follows.

(i) The methods presented in this paper are designed to solve pseudomonotone (VIP). Note that
the approaches stated in [19, 20, 27] will fail when the mapping is pseudomonotone rather than
monotone because these methods are devised to solve monotone (VIP). Moreover, the vari-
ational inequality mapping associated with the suggested methods are uniformly continuous
rather than Lipschitz continuous. Therefore, our iterative schemes are more useful and have a
wider application.

(ii) Our algorithms use an Armijo-like criterion to automatically update the iteration step size,
which makes them more intelligent in applications. It should be pointed out that the meth-
ods presented in [27, 28, 30] need to know the Lipschitz constant of the mapping, which limits
the realization of such algorithms when the Lipschitz constant of the mapping associated with
the problem is unknown.
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(iii) We investigate and confirm the strong convergence of the suggested algorithms by applying
the Mann-type method and the viscosity-type method, while the methods introduced in [18,
26, 29] only obtained weak convergence in Hilbert spaces. In addition, it should be noted that
the methods proposed by Thong et al. [31] use a projection-type approach to ensure strong
convergence, which affects their computational efficiency in infinite-dimensional spaces.

(iv) The iterative schemes devised in this paper combine inertial terms, which also accelerate the
convergence speed of the algorithms without inertial terms proposed in [19, 20].

The rest of this paper is organized as follows. We recall some preliminaries that need to be used
in Section 2. Section 3 presents the algorithms and analyzes their convergence. Some computational
tests are presented to show the efficiency of the suggested approaches over several existing ones in
Section 4. The proposed methods are investigated to solve optimal control problems in Section 5.
Finally, the paper ends with a brief remark in Section 6, the last section.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The weak convergence
and strong convergence of {xn} to x are represented by xn ⇀ x and xn → x, respectively. For each
x, y, z ∈ H, we have the following inequalities:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(2) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, α ∈ R;
(3) ‖αx + βy + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2 − αβ‖x − y‖2 − αγ ‖x − z‖2 − βγ ‖y − z‖2,

where α,β , γ ∈ [0, 1] with α + β + γ = 1.

For every point x ∈ H, there exists a unique nearest point in C, denoted by PC(x) such that
PC(x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of H onto C. It is known that
PC has the following basic properties:

• 〈x − PC(x), y − PC(x)〉 ≤ 0 ∀y ∈ C.
• ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉 ∀y ∈ H.

For any x, y ∈ H, a mappingM : H → H is said to be:

(1) η-strongly monotone with η > 0 if 〈Mx − My, x − y〉 ≥ η‖x − y‖2.
(2) L -Lipschitz continuous with L > 0 if ‖Mx − My‖ ≤ L‖x − y‖. If L ∈ (0, 1), then mappingM is

called contraction.
(3) Monotone if 〈Mx − My, x − y〉 ≥ 0.
(4) Pseudomonotone if 〈Mx, y − x〉 ≥ 0 =⇒ 〈My, y − x〉 ≥ 0.
(5) Sequentially weakly continuous if for each sequence {xn} converges weakly to x implies that {Mxn}

converges weakly toMx.

According to the above definitions, it is easy to see that (1) =⇒ (3) =⇒ (4). But the inverse
operation is usually not valid.

Lemma 2.1 ([32]): Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and {μn} be a
sequence in (0, 1) such that

∑∞
n=1 μn = ∞. Suppose that

pn+1 ≤ μnqn + (1 − μn)pn ∀ n ≥ 1.

If lim supk→∞ qnk ≤ 0 for every subsequence {pnk} of {pn} satisfying lim infk→∞ (pnk+1 − pnk) ≥ 0,
then limn→∞ pn = 0.
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3. Main results

In this section, we introduce six new iterative schemes based on the SEGM and the IPCM to
solve pseudomonotone (VIP) in real Hilbert spaces. These algorithms guarantee the strong con-
vergence with the aid of the Mann-type method and the viscosity-type method. The advantage
of our approaches is that we do not need to know the Lipschitz constant of the mapping in
advance. In fact, the variational inequality mapping associated only needs to satisfy the uni-
form continuity condition and not the Lipschitz continuity. To analyze the convergence of the
algorithms, the mapping and parameters involved in our methods need to meet the following
assumptions.

(C1) The feasible set C is a nonempty, closed and convex subset ofH.
(C2) The solution set of the (VIP) is nonempty, that is VI(C,M) = ∅.
(C3) The mappingM : H → H is pseudomonotone, uniformly continuous onH, and sequentially

weakly continuous on C.
(C4) Let {εn} be a positive sequence such that limn→∞ εn

μn
= 0, where {μn} ⊂ (0, 1) satisfies

limn→∞ μn = 0 and
∑∞

n=1 μn = ∞. Let {ηn} ⊂ (a, b) ⊂ (0, 1 − μn) for some a> 0, b> 0.

3.1. TheMann-type inertial modified subgradient extragradient algorithm

The first iterative scheme is based on the IPCM, the SEGMand theMann-typemethod, and its details
are described in Algorithm 3.1.

Algorithm 3.1 The Mann-type inertial modified subgradient extragradient algorithm
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 1). Set un = xn + σn(xn − xn−1), where

σn =
⎧⎨
⎩ min

{
εn

‖xn − xn−1‖ , σ
}
, & if xn = xn−1;

σ , & otherwise.
(1)

Step 2. Compute yn = PC(un − γnMun), where the step size γn is chosen to be the largest γ ∈{
δ, δζ , δζ 2, . . .

}
satisfying

γ ‖Mun − Myn‖ ≤ φ‖un − yn‖ . (2)

If un = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = PTn(un − αγnχnMyn), where

Tn := {
x ∈ H | 〈un − γnMun − yn, x − yn〉 ≤ 0

}
,

and

χn = (1 − φ)
‖un − yn‖2

‖cn‖2 , cn = un − yn − γn(Mun − Myn) . (3)

Step 4. Compute xn+1 = (1 − μn − ηn)un + ηnzn. Set n := n + 1 and go to Step 1.
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Remark 3.1: It follows from (1) and the assumptions on {μn} that

lim
n→∞

σn

μn
‖xn − xn−1‖ = 0.

Indeed, we obtain σn‖xn − xn−1‖ ≤ εn,∀n ≥ 1, which together with limn→∞ εn
μn

= 0 implies that

lim
n→∞

σn

μn
‖xn − xn−1‖ ≤ lim

n→∞
εn

μn
= 0.

The following lemmas are very helpful in analyzing the convergence of the algorithms.

Lemma 3.1 ([31, Lemma 3.1]): Suppose that Assumptions (C1)–(C3) hold. The Armijo-like criteria
(2) is well defined. Moreover, we obtain γn ≤ δ.

Lemma 3.2 ([31, Lemma 3.2]): Suppose that Assumptions (C1)–(C3) hold. Let {un} and {yn} be two
sequences formulated by Algorithm 3.1. If there exists a subsequence {unk} of {un} such that {unk}
converges weakly to z ∈ H and limk→∞ ‖unk − ynk‖ = 0, then z ∈ VI(C,M).

Lemma 3.3: Suppose that Assumptions (C1)–(C3) hold. Let {zn}, {yn} and {un} be three sequences
created by Algorithm 3.1. Then, for all x∗ ∈ VI(C,M),

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − zn − αχncn‖2 − α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2.

Proof: From x∗ ∈ VI(C,M) ⊂ C ⊂ Tn and the property of projection, we obtain

2‖zn − x∗‖2 = 2‖PTn(un − αγnχnMyn) − PTn(x
∗)‖2

≤ 2〈zn − x∗, un − αγnχnMyn − x∗〉
= ‖zn − x∗‖2 + ‖un − αγnχnMyn − x∗‖2 − ‖zn − un + αγnχnMyn‖2

= ‖zn − x∗‖2 + ‖un − x∗‖2 + α2γ 2
nχ2

n‖Myn‖2 − 2〈un − x∗,αγnχnMyn〉
− ‖zn − un‖2 − α2γ 2

nχ2
n‖Myn‖2 − 2〈zn − un,αγnχnMyn〉

= ‖zn − x∗‖2 + ‖un − x∗‖2 − ‖zn − un‖2 − 2〈zn − x∗,αγnχnMyn〉,
which implies that

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − ‖zn − un‖2 − 2αγnχn〈zn − x∗,Myn〉. (4)

Combining the facts thatM is pseudomonotone, yn ∈ C, x∗ ∈ VI(C,M) and (VIP), we can show that
〈Myn, yn − x∗〉 ≥ 0, which means that 〈Myn, zn − x∗〉 ≥ 〈Myn, zn − yn〉. Thus,

− 2αγnχn〈Myn, zn − x∗〉 ≤ −2αγnχn〈Myn, zn − yn〉. (5)

Since zn ∈ Tn, we have 〈un − γnMun − yn, zn − yn〉 ≤ 0. This shows that

〈un − yn − γn(Mun − Myn), zn − yn〉 ≤ γn〈Myn, zn − yn〉. (6)

Using (5), (6) and the definition of cn, we obtain

−2αγnχn〈Myn, zn − x∗〉 ≤ −2αχn〈cn, zn − yn〉
= −2αχn〈cn, un − yn〉 + 2αχn〈cn, un − zn〉.

(7)
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Now, we estimate −2αχn〈cn, un − yn〉 and 2αχn〈cn, un − zn〉. From the definitions of χn and cn, we
have

〈cn, un − yn〉 ≥ ‖un − yn‖2 − γn‖Mun − Myn‖‖un − yn‖
≥ ‖un − yn‖2 − φ‖un − yn‖2

= (1 − φ)‖un − yn‖2 = χn‖cn‖2,

which indicates that

− 2αχn〈cn, un − yn〉 ≤ −2αχ2
n‖cn‖2. (8)

According to the basic inequality 2ab = a2 + b2 − (a − b)2, we also have

2αχn〈cn, un − zn〉 = ‖un − zn‖2 + α2χ2
n‖cn‖2 − ‖un − zn − αχncn‖2. (9)

It follows from the definition of cn and (2) that

‖cn‖ ≤ ‖un − yn‖ + γn‖Mun − Myn‖
≤ ‖un − yn‖ + φ‖un − yn‖
= (1 + φ)‖un − yn‖,

which combining the definition of χn yields that

χ2
n‖cn‖2 = (1 − φ)2

‖un − yn‖4
‖cn‖2 ≥ (1 − φ)2

(1 + φ)2
‖un − yn‖2. (10)

Combining (4), (7)–(10), we conclude that

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − zn − αχncn‖2 − α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2.

This completes the proof. �

Theorem 3.1: Suppose that Assumptions (C1)–(C4) hold. Then the sequence {xn} formed by
Algorithm 3.1 converges to x∗ ∈ VI(C,M) in norm, where ‖x∗‖ = min{‖z‖ : z ∈ VI(C,M)}.

Proof: First, we show that the sequence {xn} is bounded. Indeed, thanks to Lemma 3.3, one has

‖zn − x∗‖ ≤ ‖un − x∗‖ ∀ n ≥ 1. (11)

From the definition of un, one sees that

‖un − x∗‖ ≤ ‖xn − x∗‖ + μn · σn

μn
‖xn − xn−1‖. (12)

According to Remark 3.1, we have that σn
μn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there exists a
constant Q1 > 0 such that

σn

μn
‖xn − xn−1‖ ≤ Q1 ∀ n ≥ 1,

which together with (11) and (12) implies

‖zn − x∗‖ ≤ ‖un − x∗‖ ≤ ‖xn − x∗‖ + μnQ1. (13)
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By the definition of xn+1, one obtains

‖xn+1 − x∗‖ ≤ ‖(1 − μn − ηn)(un − x∗) + ηn(zn − x∗)‖ + μn‖x∗‖. (14)

It follows from (11) that

‖(1 − μn − ηn)(un − x∗) + ηn(zn − x∗)‖2

≤ (1 − μn − ηn)
2‖un − x∗‖2 + 2(1 − μn − ηn)ηn‖zn − x∗‖‖un − x∗‖ + η2n‖zn − x∗‖2

≤ (1 − μn − ηn)
2‖un − x∗‖2 + 2(1 − μn − ηn)ηn‖un − x∗‖2 + η2n‖un − x∗‖2

= (1 − μn)
2‖un − x∗‖2,

which yields that

‖(1 − μn − ηn)(un − x∗) + ηn(zn − x∗)‖ ≤ (1 − μn)‖un − x∗‖. (15)

Using (13), (14) and (15), we deduce that

‖xn+1 − x∗‖ ≤ (1 − μn)‖un − x∗‖ + μn‖x∗‖
≤ (1 − μn)‖xn − x∗‖ + μn(‖x∗‖ + Q1)

≤ max{‖xn − x∗‖, ‖x∗‖ + Q1}
≤ · · · ≤ max{‖x1 − x∗‖, ‖x∗‖ + Q1}.

That is, the sequence {xn} is bounded. So the sequences {un}, {yn} and {zn} are also bounded.
From (13), one sees that

‖un − x∗‖2 ≤ (‖xn − x∗‖ + μnQ1)
2

= ‖xn − x∗‖2 + μn(2Q1‖xn − x∗‖ + μnQ2
1)

≤ ‖xn − x∗‖2 + μnQ2 (16)

for some Q2 > 0. By the definition of xn+1 and Assumption (C4), we find that

‖xn+1 − x∗‖2 = ‖(1 − μn − ηn)(un − x∗) + ηn(zn − x∗) + μn(−x∗)‖2

= (1 − μn − ηn)‖un − x∗‖2 + ηn‖zn − x∗‖2 + μn‖x∗‖2

− ηn(1 − μn − ηn)‖un − zn‖2 − μn(1 − μn − ηn)‖un‖2 − μnηn‖zn‖2

≤ (1 − μn − ηn)‖un − x∗‖2 + ηn‖zn − x∗‖2 + μn‖x∗‖2. (17)

Combining Lemma 3.3, (16) and (17), we obtain

‖xn+1 − x∗‖2 ≤ (1 − μn − ηn)‖un − x∗‖2 + ηn‖un − x∗‖2 − ηn‖un − zn − αχncn‖2

− ηnα(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + μn‖x∗‖2

≤ ‖xn − x∗‖2 − ηn‖un − zn − αχncn‖2

− ηnα(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + μn(‖x∗‖2 + Q2).
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Thus, we obtain

ηn‖un − zn − αχncn‖2 + ηnα(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + μn(‖x∗‖2 + Q2). (Eq1)

From the definition of un, we can write

‖un − x∗‖2 ≤ ‖xn − x∗‖2 + 2σn‖xn − x∗‖‖xn − xn−1‖ + σ 2
n‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + 3Qσn‖xn − xn−1‖, (18)

where Q := supn∈N{‖xn − x∗‖, σ‖xn − xn−1‖} > 0. Take tn = (1 − ηn)un + ηnzn. It follows
from (11) that

‖tn − x∗‖ ≤ (1 − ηn)‖un − x∗‖ + ηn‖zn − x∗‖ ≤ ‖un − x∗‖. (19)

From (18) and (19), we obtain

‖xn+1 − x∗‖2 = ‖(1 − μn)(tn − x∗) − μn(un − tn) − μnx∗‖2

≤ (1 − μn)
2‖tn − x∗‖2 − 2μn〈un − tn + x∗, xn+1 − x∗〉

= (1 − μn)
2‖tn − x∗‖2 + 2μn〈un − tn, x∗ − xn+1〉 + 2μn〈x∗, x∗ − xn+1〉

≤ (1 − μn)‖tn − x∗‖2 + 2μn‖un − tn‖‖xn+1 − x∗‖ + 2μn〈x∗, x∗ − xn+1〉

≤ (1 − μn)‖xn − x∗‖2 + μn

[
2ηn‖un − zn‖‖xn+1 − x∗‖

+2〈x∗, x∗ − xn+1〉 + 3Qσn

μn
‖xn − xn−1‖

]
. (Eq2)

Finally, we show that the sequence {‖xn − x∗‖} converges to zero. Throughout this paper, we always
assume that {‖xnk − x∗‖} is a subsequence of {‖xn − x∗‖} such that lim infk→∞(‖xnk+1 − x∗‖ −
‖xnk − x∗‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2)

= lim inf
k→∞

[(‖xnk+1 − x∗‖ − ‖xnk − x∗‖)(‖xnk+1 − x∗‖ + ‖xnk − x∗‖)] ≥ 0.

By (Eq1) and Assumption (C4), we observe that

ηnkα(2 − α)
(1 − φ)2

(1 + φ)2
‖unk − ynk‖2 + ηnk‖unk − znk − αχnkcnk‖2

≤ lim sup
k→∞

[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2] + lim sup
k→∞

μnk(‖x∗‖2 + Q2)

= − lim inf
k→∞

[‖xnk+1 − x∗‖2 − ‖xnk − x∗‖2] ≤ 0,

which implies that

lim
k→∞

‖ynk − unk‖ = 0 and lim
k→∞

‖unk − znk − αχnkcnk‖ = 0.



APPLICABLE ANALYSIS 1207

From ‖cnk‖ ≥ (1 − φ)‖unk − ynk‖ and the definition of χnk , we obtain

‖unk − znk‖ ≤ ‖unk − znk − αχnkcnk‖ + αχnk‖cnk‖

= ‖unk − znk − αχnkcnk‖ + α(1 − φ)
‖unk − ynk‖2

‖cnk‖
≤ ‖unk − znk − αχnkcnk‖ + α‖unk − ynk‖.

Hence, we get that limk→∞ ‖znk − unk‖ = 0. This together with the boundedness of {xn} further
implies that

lim
k→∞

ηnk‖unk − znk‖‖xnk+1 − x∗‖ = 0. (20)

Moreover, using Remark 3.1 and Assumption (C4), we have

‖xnk+1 − unk‖ = μnk‖unk‖ + ηnk‖znk − unk‖ → 0, as n → ∞

and

‖xnk − unk‖ = μnk · σnk
μnk

‖xnk − xnk−1‖ → 0, as n → ∞.

From the above facts, we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − unk‖ + ‖unk − xnk‖ → 0, as n → ∞. (21)

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ z
when j → ∞. Furthermore,

lim sup
k→∞

〈x∗, x∗ − xnk〉 = lim
j→∞〈x∗, x∗ − xnkj 〉 = 〈x∗, x∗ − z〉. (22)

We get that unk ⇀ z since ‖xnk − unk‖ → 0. This together with limk→∞ ‖unk − ynk‖ = 0 and
Lemma 3.2 yields that z ∈ VI(C,M). From the definition of x∗ and (22), we obtain

lim sup
k→∞

〈x∗, x∗ − xnk〉 = 〈x∗, x∗ − z〉 ≤ 0. (23)

Combining (21) and (23), we find that

lim sup
k→∞

〈x∗, x∗ − xnk+1〉 ≤ lim sup
k→∞

〈x∗, x∗ − xnk〉 ≤ 0. (24)

Thus, from Remark 3.1, (20), (24), (Eq2) and Lemma 2.1, we conclude that xn → x∗ as n → ∞. That
is the desired result. �

3.2. First viscosity-type inertial modified subgradient extragradient algorithm

In this subsection, we introduce a viscosity-type inertial MSEGM for solving the (VIP). First, we use
the following Assumption (C5) to replace the Assumption (C4) described in Section 3.

(C5) Let f : H → H be a κ-contraction mapping with κ ∈ [0, 1). Let {εn} be a positive sequence
such that limn→∞ εn

μn
= 0, where {μn} ⊂ (0, 1) satisfies limn→∞ μn = 0 and

∑∞
n=1 μn = ∞.

The Algorithm 3.2 is of the following form.
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Algorithm 3.2 The first viscosity-type inertial modified subgradient extragradient algorithm.
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

un = xn + σn(xn − xn−1),

yn = PC(un − γnMun),

zn = PTn(un − αγnχnMyn),

Tn := {x ∈ H | 〈un − γnMun − yn, x − yn〉 ≤ 0},
xn+1 = μnf (un) + (1 − μn)zn,

where {σn}, {γn} and {χn} are defined in (1), (2) and (3), respectively.

Theorem3.2: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} constructed
by Algorithm 3.2 converges to x∗ ∈ VI(C,M) in norm, where x∗ = PVI(C,M) ◦ f (x∗).

Proof: First, we show that the sequence {xn} is bounded. Using the definition of xn+1 and (13), we
obtain

‖xn+1 − x∗‖ ≤ μn‖f (un) − f (x∗)‖ + μn‖f (x∗) − x∗‖ + (1 − μn)‖zn − x∗‖
≤ μnκ‖un − x∗‖ + μn‖f (x∗) − x∗‖ + (1 − μn)‖un − x∗‖

≤ (1 − (1 − κ)μn)‖xn − x∗‖ + (1 − κ)μn
Q1 + ‖f (x∗) − x∗‖

1 − κ

≤ max
{
‖xn − x∗‖, Q1 + ‖f (x∗) − x∗‖

1 − κ

}

≤ · · · ≤ max
{
‖x1 − x∗‖, Q1 + ‖f (x∗) − x∗‖

1 − κ

}
.

This implies that the sequence {xn} is bounded. We get that the sequences {un}, {zn} and {f (un)} are
also bounded. Combining Lemma 3.3, (13) and (16), we see that

‖xn+1 − x∗‖2 ≤ μn(‖f (un) − f (x∗)‖ + ‖f (x∗) − x∗‖)2 + (1 − μn)‖zn − x∗‖2

≤ μn(‖un − x∗‖ + ‖f (x∗) − x∗‖)2 + (1 − μn)‖zn − x∗‖2

= μn‖un − x∗‖2 + (1 − μn)‖zn − x∗‖2

+ μn(2‖un − x∗‖‖f (x∗) − x∗‖ + ‖f (x∗) − x∗‖2)
≤ μn‖un − x∗‖2 + (1 − μn)‖zn − x∗‖2 + μnQ3

≤ ‖xn − x∗‖2 − (1 − μn)‖un − zn − αχncn‖2

− (1 − μn)α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + μnQ4,

where Q4 := Q2 + Q3. Therefore, we obtain

(1 − μn)α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + (1 − μn)‖un − zn − αχncn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + μnQ4. (Eq3)
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Using (11) and (18), we obtain

‖xn+1 − x∗‖2 ≤ ‖μn(f (un) − f (x∗)) + (1 − μn)(zn − x∗)‖2 + 2μn〈f (x∗) − x∗, xn+1 − x∗〉
≤ μn‖f (un) − f (x∗)‖2 + (1 − μn)‖zn − x∗‖2 + 2μn〈f (x∗) − x∗, xn+1 − x∗〉
≤ μnκ‖un − x∗‖2 + (1 − μn)‖un − x∗‖2 + 2μn〈f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − (1 − κ)μn)‖xn − x∗‖2 + (1 − κ)μn ·
[

3Q
1 − κ

· σn

μn
‖xn − xn−1‖

+ 2
1 − κ

〈f (x∗) − x∗, xn+1 − x∗〉
]
. (Eq4)

Finally, we prove that the sequence {‖xn − x∗‖} converges to zero. By (Eq3) and Assumption (C5),
we observe that

(1 − μnk)α(2 − α)
(1 − φ)2

(1 + φ)2
‖unk − ynk‖2 + (1 − μnk)‖unk − znk − αχnkcnk‖2

≤ lim sup
k→∞

[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + μnkQ4] ≤ 0,

which implies that

lim
k→∞

‖ynk − unk‖ = 0 and lim
k→∞

‖unk − znk − αχnkcnk‖ = 0.

As stated in Theorem 3.1, it is easy to see that limk→∞ ‖znk − unk‖ = 0. Moreover, using Remark 3.1
and Assumption (C5), we have

‖xnk+1 − znk‖ = μnk‖znk − f (xnk)‖ → 0, as n → ∞
and

‖xnk − unk‖ = μnk · σnk
μnk

‖xnk − xnk−1‖ → 0, as n → ∞.

It follows that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖ + ‖znk − unk‖ + ‖unk − xnk‖ → 0, as n → ∞. (25)

Since the sequence {xnk} is bounded, there exists a subsequence {xnkj } of {xnk} such that xnkj ⇀ z
when j → ∞. Furthermore,

lim sup
k→∞

〈f (x∗) − x∗, xnk − x∗〉 = lim
j→∞〈f (x∗) − x∗, xnkj − x∗〉 = 〈f (x∗) − x∗, z − x∗〉. (26)

We get that unk ⇀ z since ‖xnk − unk‖ → 0, which together with limk→∞ ‖unk − ynk‖ = 0 and
Lemma 3.2 implies that z ∈ VI(C,M). From the definition of x∗ and (26), we obtain

lim sup
k→∞

〈f (x∗) − x∗, xnk − x∗〉 = 〈f (x∗) − x∗, z − x∗〉 ≤ 0. (27)

Combining (25) and (27), we obtain

lim sup
k→∞

〈f (x∗) − x∗, xnk+1 − x∗〉 ≤ lim sup
k→∞

〈f (x∗) − x∗, xnk − x∗〉 ≤ 0. (28)

Thus, from Remark 3.1, (28), (Eq4) and Lemma 2.1, we conclude that xn → x∗ as n → ∞. The proof
of the Theorem 3.2 is now complete. �
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3.3. The second viscosity-type inertial modified subgradient extragradient algorithm

In this subsection, we introduce another viscosity-type iterative scheme that is different from
Algorithm 3.2. The details of this scheme are described in Algorithm 3.3.

Algorithm 3.3 The second viscosity-type inertial modified subgradient extragradient algorithm.
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

un = xn + σn(xn − xn−1),

yn = PC(un − γnMun),

zn = PTn(un − αγnχnMyn),

Tn := {x ∈ H | 〈un − γnMun − yn, x − yn〉 ≤ 0},
xn+1 = μnf (zn) + (1 − μn)zn,

where {σn}, {γn} and {χn} are defined in (1), (2) and (3), respectively.

Theorem 3.3: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} created by
Algorithm 3.3 converges to x∗ ∈ VI(C,M) in norm, where x∗ = PVI(C,M) ◦ f (x∗).

Proof: The proof of this theorem is very similar to Theorem 3.2. First, we show that the sequence
{xn} is bounded. Using the definition of xn+1 and (13), we obtain

‖xn+1 − x∗‖ ≤ μn‖f (zn) − f (x∗)‖ + μn‖f (x∗) − x∗‖ + (1 − μn)‖zn − x∗‖

≤ (1 − (1 − κ)μn)‖xn − x∗‖ + (1 − κ)μn
Q1 + ‖f (x∗) − x∗‖

1 − κ

≤ max
{
‖x1 − x∗‖, Q1 + ‖f (x∗) − x∗‖

1 − κ

}
.

This indicates that the sequence {xn} is bounded.We also get that the sequences {un}, {zn} and {f (zn)}
are bounded. Combining Lemma 3.3 and (16), we find that

‖xn+1 − x∗‖2 ≤ μn(‖zn − x∗‖ + ‖f (x∗) − x∗‖)2 + (1 − μn)‖zn − x∗‖2

= μn‖zn − x∗‖2 + (1 − μn)‖zn − x∗‖2

+ μn(2‖zn − x∗‖‖f (x∗) − x∗‖ + ‖f (x∗) − x∗‖2)
≤ ‖zn − x∗‖2 + μnQ5

≤ ‖xn − x∗‖2 − ‖un − zn − αχncn‖2

− α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + μnQ6,

where Q6 := Q2 + Q5. Hence, we have

α(2 − α)
(1 − φ)2

(1 + φ)2
‖un − yn‖2 + ‖un − zn − αχncn‖2

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + μnQ6.
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Using (11) and (18), we obtain

‖xn+1 − x∗‖2 = ‖μn(f (zn) − f (x∗)) + (1 − μn)(zn − x∗) + μn(f (x∗) − x∗)‖2

≤ μnκ‖zn − x∗‖2 + (1 − μn)‖zn − x∗‖2 + 2μn〈f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − (1 − κ)μn)‖xn − x∗‖2 + (1 − κ)μn ·
[

3Q
1 − κ

· σn

μn
‖xn − xn−1‖

+ 2
1 − κ

〈f (x∗) − x∗, xn+1 − x∗〉
]
.

Finally, we show that the sequence {‖xn − x∗‖} converges to zero. It can be easily obtained by similar
conclusions of Theorem 3.2. This completes the proof. �

In the next part, we will introduce three new simple numerical methods for solving the (VIP) that
only need to calculate the projection once in each iteration.

3.4. ThemodifiedMann-type inertial projection and contraction algorithm

Our first modified iterative process is stated in Algorithm 3.4. Compared with Algorithm 3.1, the
calculation of the iterative sequence {zn} replaces the projection on the half-space with a display
formula.

Algorithm 3.4 The modified Mann-type inertial projection and contraction algorithm.
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un = xn + σn(xn − xn−1),

yn = PC(un − γnMun),

zn = un − αχncn,

xn+1 = (1 − μn − ηn)un + ηnzn,

where {σn}, {γn} and {χn} are defined in (1), (2) and (3), respectively.

The following lemma plays an important role in studying the convergence of the algorithms.

Lemma 3.4: Suppose that Assumptions (C1)–(C3) hold. Let {zn} and {un} be two sequences produced
by Algorithm 3.4. Then, for all x∗ ∈ VI(C,M),

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − 2 − α

α
‖un − zn‖2

and

‖un − yn‖2 ≤
[

1 + φ

(1 − φ)α

]2
‖un − zn‖2.
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Proof: By the definition of zn, one obtains

‖zn − x∗‖2 = ‖un − αχncn − x∗‖2

= ‖un − x∗‖2 − 2αχn〈un − x∗, cn〉 + α2χ2
n‖cn‖2. (29)

Combining (2) and (3), we observe that

〈un − x∗, cn〉 = 〈un − yn, un − yn − γn(Mun − Myn)〉 + 〈yn − x∗, cn〉
≥ ‖un − yn‖2 − γn‖un − yn‖‖Mun − Myn‖ + 〈yn − x∗, cn〉
≥ (1 − φ)‖un − yn‖2 + 〈yn − x∗, un − yn − γn(Mun − Myn)〉. (30)

From yn = PC(un − γnMun) and the property of projection, we have

〈un − yn − γnMun, yn − x∗〉 ≥ 0. (31)

Using x∗ ∈ VI(C,M) and yn ∈ C, we get that 〈Mx∗, yn − x∗〉 ≥ 0. This together with the pseu-
domonotonicity ofM yields that

〈Myn, yn − x∗〉 ≥ 0. (32)

It follows from (3) that (1 − φ)‖un − yn‖2 = χn‖cn‖2. This together with (30), (31) and (32) implies
that

〈un − x∗, cn〉 ≥ (1 − φ)‖un − yn‖2 = χn‖cn‖2. (33)

Combining (29) and (33), we conclude that

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − 2αχ2
n‖cn‖2 + α2χ2

n‖cn‖2

= ‖un − x∗‖2 − 2 − α

α
‖un − zn‖2.

On the other hand, by the definition of zn and (3), we have

‖un − yn‖2 = 1
χn(1 − φ)

‖χncn‖2 = 1
χn(1 − φ)α2 ‖un − zn‖2. (34)

Since ‖cn‖ ≤ (1 + φ)‖un − yn‖, one has

χn = (1 − φ)
‖un − yn‖2

‖cn‖2 ≥ 1 − φ

(1 + φ)2
. (35)

It implies from (34) and (35) that

‖un − yn‖2 ≤
[

1 + φ

(1 − φ)α

]2
‖un − zn‖2.

The proof of the lemma is now complete. �

Theorem 3.4: Suppose that Assumptions (C1)–(C4) hold. Then the sequence {xn} generated by
Algorithm 3.4 converges to x∗ ∈ VI(C,M) in norm, where ‖x∗‖ = min{‖z‖ : z ∈ VI(C,M)}.
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Proof: First, we show that the sequence {xn} is bounded. Indeed, thanks to Lemma 3.4, we have

‖zn − x∗‖ ≤ ‖un − x∗‖ ∀ n ≥ 1. (36)

Using the same facts as stated in Theorem 3.1, we get that the sequences {xn}, {un}, {yn} and {zn} are
bounded. Using Lemma 3.4, (16) and (17), we obtain

‖xn+1 − x∗‖2 ≤ (1 − μn − ηn)‖un − x∗‖2 + ηn‖un − x∗‖2 − ηn
2 − α

α
‖un − zn‖2 + μn‖x∗‖2

≤ ‖xn − x∗‖2 − ηn
2 − α

α
‖un − zn‖2 + μn(‖x∗‖2 + Q2).

Thus, we have

ηn
2 − α

α
‖un − zn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + μn(‖x∗‖2 + Q2). (Eq5)

Moreover, we can get (Eq2) by using the same facts as declared in Theorem 3.1. Finally, we show that
the sequence {‖xn − x∗‖} converges to zero. By (Eq5) and Assumption (C4), we have

ηnk
2 − α

α
‖unk − znk‖2 ≤ lim sup

k→∞
[‖xnk − x∗‖2 − ‖xnk+1 − x∗‖2 + μnk(‖x∗‖2 + Q2)]

≤ 0,

which implies that limk→∞ ‖znk − unk‖ = 0. In view of Lemma 3.4, we observe that limk→∞ ‖ynk −
unk‖ = 0. As asserted in Theorem 3.1, we can obtain the same result as (20)–(24). Therefore, we get
that xn → x∗ as n → ∞. This completes the proof. �

3.5. First modified viscosity-type inertial projection and contraction algorithm

By replacing the calculation process of the iterative sequence {zn} in Algorithm 3.2, we get the
following Algorithm 3.5.

Algorithm 3.5 The first modified viscosity-type inertial projection and contraction algorithm.
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un = xn + σn(xn − xn−1),

yn = PC(un − γnMun),

zn = un − αχncn,

xn+1 = μnf (un) + (1 − μn)zn,

where {σn}, {γn} and {χn} are defined in (1), (2) and (3), respectively.

Theorem 3.5: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} designed
by Algorithm 3.5 converges to x∗ ∈ VI(C,M) in norm, where x∗ = PVI(C,M) ◦ f (x∗).



1214 B. TAN ET AL.

Proof: The proof of this theorem is very similar to Theorem 3.2. First, we show that the sequence
{xn} is bounded. Using the same arguments as declared in Theorem 3.2, we get that the sequences
{xn}, {un}, {yn}, {zn} and {f (un)} are bounded. In view of Lemma 3.4 and (16), we have

‖xn+1 − x∗‖2 ≤ μn‖f (un) − x∗‖2 + (1 − μn)‖zn − x∗‖2

≤ μn‖un − x∗‖2 + (1 − μn)‖zn − x∗‖2

+ μn(2‖un − x∗‖ · ‖f (x∗) − x∗‖ + ‖f (x∗) − x∗‖2)
≤ μn‖un − x∗‖2 + (1 − μn)‖zn − x∗‖2 + μnQ3

≤ ‖xn − x∗‖2 − (1 − μn)
2 − α

α
‖un − zn‖2 + μnQ4,

where Q4 := Q2 + Q3. Thus, we obtain

(1 − μn)
2 − α

α
‖un − zn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + μnQ4. (Eq6)

Furthermore, we can get (Eq4) by using the same facts as stated in Theorem 3.2. Finally, we show that
the sequence {‖xn − x∗‖} converges to zero. From (Eq6), one has

(1 − μnk)
2 − α

α
‖unk − znk‖2 ≤ 0,

which indicates that limk→∞ ‖znk − unk‖ = 0. This together with Lemma 3.4 finds that
limk→∞ ‖ynk − unk‖ = 0. As stated in Theorem3.2, we can get the same facts as (25)–(28). Therefore,
we obtain xn → x∗ as n → ∞. The proof is completed. �

3.6. The secondmodified viscosity-type inertial projection and contraction algorithm

Our last iterative scheme is stated in Algorithm 3.6.

Algorithm 3.6 The second modified viscosity-type inertial projection and contraction algorithm.
Initialization: Take σ > 0, δ > 0, ζ ∈ (0, 1), φ ∈ (0, 1), α ∈ (0, 2). Let x0, x1 ∈ H.
Iterative Steps: Calculate the next iteration point xn+1 as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un = xn + σn(xn − xn−1),

yn = PC(un − γnMun),

zn = un − αχncn,

xn+1 = μnf (zn) + (1 − μn)zn,

where {σn}, {γn} and {χn} are defined in (1), (2) and (3), respectively.

Theorem 3.6: Suppose that Assumptions (C1)–(C3) and (C5) hold. Then the sequence {xn} determined
by Algorithm 3.6 converges to x∗ ∈ VI(C,M) in norm, where x∗ = PVI(C,M) ◦ f (x∗).

Proof: Combining the proofs of Theorems 3.3 and 3.5, we can easily get the desired conclusion. The
proof is left to the readers to verify. �
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4. Numerical experiments

In this section, we provide some numerical experiments to demonstrate the advantages of the
suggested methods and compare them with some known strongly convergent algorithms, which
including the Algorithm 3.1 introduced by Shehu and Iyiola [14] (shortly, SI Alg. 3.1), Algorithms 3.1
and 3.2 presented by Thong and Gibali [19] (shortly, TG Alg. 3.1 and TG Alg. 3.2), Algorithms 3.1
and 3.2 proposed by Gibali et al. [20] (shortly, GTT Alg. 3.1 and GTTAlg. 3.2) and the Algorithm 4.3
suggested by Shehu et al. [30] (shortly, SDJ Alg. 4.3). All the programs are implemented in MATLAB
2018a on a personal computer.

Our parameters are set as follows. We set μn = 1/(n + 1), ηn = 0.5(1 − μn) and f (x) = 0.1x for
all the algorithms. Take δ = ζ = 0.5, φ = 0.4, α = 1.5 for the proposed algorithms, TG Alg. 3.1,
TG Alg. 3.2, GTT Alg. 3.1 and GTT Alg. 3.2. Adopt inertial parameters σ = 0.4 and εn = 100/(n +
1)2 in our algorithms. Choose ζ = 0.5, φ = 0.4 for SI Alg. 3.1. Pick fixed step size γn = 0.5/L and
α = 1.5 in SDJ Alg. 4.3. We use Dn = ‖xn − x∗‖ to measure the nth iteration error of all algorithms,
where x∗ represents the solution to our problems.

Example 4.1: Consider the form of linear operatorM : R
m → R

m (m = 10, 30, 60, 100) as follows:
M(x) = Gx + g, where g ∈ R

m andG = BBT + S + E, matrix B ∈ R
m×m, matrix S ∈ R

m×m is skew-
symmetric, and matrix E ∈ R

m×m is diagonal matrix whose diagonal terms are non-negative (hence
G is positive symmetric definite). We choose the feasible set C is a box constraint with the form
C = [−2, 5]m. It is easy to see that M is Lipschitz continuous monotone and its Lipschitz constant
L = ‖G‖. In this numerical example, all entries of B,E are generated randomly in [0, 2] and S is gen-
erated randomly in [−2, 2]. Let g = 0. Then the solution set is x∗ = {0}. The maximum number of
iterations 200 as a common stopping criterion and the initial values x0 = x1 are randomly generated
by 5rand(m,1) inMATLAB. The numerical results of all algorithms in different dimensions are shown
in Figure 1.

Example 4.2: We consider an example in the Hilbert spaceH = L2([0, 1]) associated with the inner
product 〈x, y〉 := ∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ := (
∫ 1
0 |x(t)|2 dt)1/2,∀x, y ∈ H. Let the

feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define an operatorM : C → H by

(Mx)(t) =
∫ 1

0
(x(t) − G(t, s)g(x(s))) ds + h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) = 2tset+s

e
√
e2 − 1

, g(x) = cos x, h(t) = 2tet

e
√
e2 − 1

.

It is known that operator M is monotone and L-Lipschitz continuous with L = 2, and x∗(t) = {0}
is the solution of the corresponding variational inequality problem. Note that the projection on C is
inherently explicit, that is,

PC(x) =
{ x

‖x‖ , if ‖x‖ > 1;

x, if ‖x‖ ≤ 1.

We choose themaximumnumber of iterations 50 as the common stopping criterion for all algorithms.
Figure 2 shows the numerical behaviors of all algorithms with four starting points x0(t) = x1(t).

Remark 4.1: From Examples 4.1 and 4.2, it is known that the proposed algorithms are efficient and
robust. Furthermore, our algorithms are outperformance some existing known ones [14, 19, 20, 30],
and these results are independent of the size of the dimension and the selection of the initial values. It
should be pointed out that the SDJ Alg. 4.3 [30, Algorithms 4.3] needs to know the Lipschitz constant
of the mappingM, while our suggested algorithms do not need it.



1216 B. TAN ET AL.

Figure 1. Numerical results for Example 4.1. (a)m = 10, (b)m = 30, (c)m = 60 and (d)m = 100.

5. Applications to optimal control problems

In this section, we use the proposed algorithms to solve the (VIP) that appears in optimal con-
trol problems. We recommend readers to refer to [33, 34] for detailed description of the problem.
Our parameters are set as follows. For all algorithms, we set μn = 10−4/(n + 1), ηn = 0.5(1 − μn),
f (x) = 0.1x, δ = 1, ζ = 0.5, φ = 0.4 and α = 1.5. Take inertial parameters σ = 0.01 and εn =
10−4/(n + 1)2 in the proposed algorithms. The initial controls p0(t) = p1(t) are randomly gener-
ated in [−1, 1], and the stopping criterion is either ‖pn+1 − pn‖ ≤ 10−4 or reaching the maximum
number of iterations 1000.

Example 5.1 (Control of a harmonic oscillator, see [35]):

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t) ∀ t ∈ [0, 3π],

x(0) = 0,

p(t) ∈ [−1, 1].
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Figure 2. Numerical results for Example 4.2. (a) x1(t) = t2, (b) x1(t) = et , (c) x1(t) = sin(2t) and (d) x1(t) = log(t).

The exact optimal control of Example 5.1 is known:

p∗(t) =
{
1, if t ∈ [0,π/2) ∪ (3π/2, 5π/2);
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

Figure 3 shows the approximate optimal control and the corresponding trajectories of the proposed
Algorithm 3.6.

We now consider two examples in which the terminal function is not linear.

Example 5.2 (Rocket car [34]):

minimize
1
2
((x1(5))2 + (x2(5))2),

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t) ∀ t ∈ [0, 5],

x1(0) = 6, x2(0) = 1,

p(t) ∈ [−1, 1].
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Figure 3. Numerical results for Example 5.1. (a) Initial and optimal controls. (b) Optimal trajectories.

Figure 4. Numerical results for Example 5.2. (a) Initial and optimal controls. (b) Optimal trajectories.

The exact optimal control of Example 5.2 is

p∗ =
{
1 if t ∈ (3.517, 5];
−1 if t ∈ (0, 3.517].

The approximate optimal control and the corresponding trajectories of the proposed Algorithm 3.4
are plotted in Figure 4.

Example 5.3 (See [36]):

minimize − x1(2) + (x2(2))2,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t) ∀ t ∈ [0, 2],

x1(0) = 0, x2(0) = 0,

p(t) ∈ [−1, 1].
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Figure 5. Numerical results for Example 5.3. (a) Initial and optimal controls. (b) Optimal trajectories.

Table 1. Comparison of the number of iterations and execution time of all algorithms in Examples 5.1–5.3.

Example 5.1 Example 5.2 Example 5.3

Algorithms Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

Our Alg. 3.1 201 0.1354 595 0.4340 417 0.1910
Our Alg. 3.2 90 0.0473 293 0.2501 207 0.1333
Our Alg. 3.3 90 0.0470 293 0.2278 207 0.1143
Our Alg. 3.4 224 0.1008 1000 1.0547 1000 0.6913
Our Alg. 3.5 101 0.0446 305 0.2857 350 0.2412
Our Alg. 3.6 101 0.0550 290 0.2712 339 0.2169
TG Alg. 3.1 202 0.0970 595 0.4884 417 0.1673
TG Alg. 3.2 91 0.0772 293 0.2204 207 0.1061
GTT Alg. 3.1 224 0.1147 1000 1.0601 1000 0.6316
GTT Alg. 3.2 101 0.0409 330 0.3138 346 0.2282
SI Alg. 3.1 91 0.0559 263 0.2043 181 0.1355

The exact optimal control of Example 5.3 is

p∗(t) =
{
1 if t ∈ [0, 1.2);
−1 if t ∈ (1.2, 2].

Figure 5 gives the approximate optimal control and the corresponding trajectories of the proposed
Algorithm 3.1.

Finally, the numerical performance of all algorithms in Examples 5.1–5.3 is shown in Table 1.

Remark 5.1: From Figures 3–5 and Table 1, we know that the suggested algorithms can work well
when the terminal function is linear or nonlinear. Moreover, the step size of the Algorithm 4.3 sug-
gested by Shehu et al. [30] requires the prior information of the Lipschitz constant of the mapping,
and our algorithms can automatically update the iteration step size.

6. Conclusions

In this paper, we introduced several new iterative schemes to solve variational inequality problems
in infinite-dimensional Hilbert spaces. Note that the variational inequality operator involved is pseu-
domonotone and uniformly continuous. These schemes are based on the MSEGM, the PCM, the
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inertial method, the viscosity-typemethod and theMann-typemethod. Ourmethods use anArmijo-
like step size criterion so that they do not need to know the Lipschitz constant of the mapping.
Furthermore, they embedded inertial terms to accelerate the convergence speed of the algorithms.
Strong convergence theorems of the suggested algorithms are obtained under reasonable assump-
tions on the parameters. The approaches established in this paper have competitive advantages over
some known results in the literature and are more desirable in practical applications. In future work,
we consider extending the results of this paper to Banach spaces with the help of the ideas in [37].
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