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In this paper, four accelerated subgradient extragradient methods are proposed to solve the 
variational inequality problem with a pseudo-monotone operator in real Hilbert spaces. 
These iterative schemes employ two new adaptive stepsize strategies that are significant 
when the Lipschitz constant of the mapping involved is unknown. Strong convergence 
theorems for the proposed algorithms are established under the condition that the 
operators are Lipschitz continuous and non-Lipschitz continuous. Numerical experiments 
on finite- and infinite-dimensional spaces and applications in optimal control problems are 
reported to demonstrate the advantages and efficiency of the proposed algorithms over 
some existing results.
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1. Introduction

The purpose of this paper is to construct several fast iterative algorithms to solve the following variational inequality 
problem (shortly, VIP) in real Hilbert spaces:

find x∗ ∈ C such that
〈
Mx∗, z − x∗〉 ≥ 0, ∀z ∈ C , (VIP)

where C is a nonempty closed convex subset of a real Hilbert space H with inner product 〈·, ·〉 and induced norm ‖ · ‖ and 
M : H → H is an operator. Throughout the paper, the solution set of the variational inequality problem (VIP) is denoted 
as VI(C, M) and is assumed to be non-empty. The theory of variational inequalities plays an important role in many fields 
and it can be used as a unifying framework for many problems; see, e.g., [19,26,7,9,38] and the references therein.

In recent years, many researchers have proposed various numerical algorithms to solve the (VIP) due to its non-existent 
explicit solution. In this paper, we are interested in the projection-based approaches. The earliest and simplest projection-
based method for solving (VIP) is the projected gradient method, which generates an iterative sequence xn starting from the 
initial point x0 by means of the following way xn+1 = P C (xn − χ Mxn), where χ is a stepsize parameter that satisfies some 
restrictions and P C denotes the metric projection from H onto C (see the definition in Sect. 2). However, the convergence 
of the method requires that the mapping M be Lipschitz continuous and strongly monotone, and these strong conditions 
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greatly limit the applicability of the method. To overcome this difficulty, Korpelevich [21] proposed a new two-step iterative 
scheme to solve the monotone and Lipschitz continuous (VIP) in finite-dimensional spaces. This iterative scheme is now 
referred to as the extragradient method (abbreviated as EGM). Notice that the EGM needs to compute the projection onto 
the feasible set twice in each iteration, which will affect the execution efficiency of the algorithm when the feasible set 
is a general nonempty closed convex set. Recently, the EGM has attracted numerous interest and extensive research by 
researchers who have extended the method to infinite-dimensional spaces and accelerated the convergence speed of the 
scheme by various techniques; see, e.g., [48,6,5,15,13,37] and the references therein. It is worth noting that the EGM may 
fail in cases where the Lipschitz constant of the mapping M is unknown or the mapping M is not Lipschitz continuous. 
In practical applications, the Lipschitz continuity condition may be difficult to satisfy and estimating a suitable Lipschitz 
constant may require more computations. To overcome these drawbacks, one research direction is to weaken the conditions 
of the operator M , and another is to automatically update the step size by adopting some adaptive step size criterion 
independent of the Lipschitz constant. In the last decades, scholars have made a lot of efforts and achieved some useful 
results, see, for example, [11,32,43,14,50,51,41,39] and the references therein. It should be pointed out that the methods 
introduced in [32,43,50,51,39] can work without the prior knowledge of the Lipschitz constant of the mapping. We note here 
that the methods proposed in [32,43] use an Armijo-type criterion (also known as the linesearch method) to automatically 
update the step size in each iteration. The disadvantage of the Armijo-type step size is that it may require a large amount of 
additional calculations because the value of the operator M and the evaluation of the projection may need to be computed 
many times in each iteration to find a suitable step size. To overcome this drawback, two new step size strategies without 
any linesearch process have been recently presented by Yang et al. in [50,51]. These adaptive schemes automatically update 
the step size in each iteration by performing a simple calculation using some previously known information. However, the 
computational performance of the iterative algorithms proposed in [50,51] may be affected due to the stepsize sequences 
generated by their two adaptive update schemes are non-increasing.

It is known that the condition that the operator M satisfies the Lipschitz continuity is relatively strong. Recently, com-
bining the Armijo-type stepsize criterion and the extragradient method, scholars have proposed some new adaptive iterative 
methods to solve monotone and non-Lipschitz continuous variational inequality problems; see, e.g., [33,29,35,36]. The weak 
convergence and strong convergence of these methods are established under some suitable conditions. On the other hand, 
the pseudo-monotone mappings, as a generalization of the monotone mappings, have been used in variational inequalities 
and other optimization problems. In recent years, many researchers proposed a large number of numerical methods to solve 
pseudomonotone variational inequalities; see, for instance, [14,30,46]. Moreover, several iterative schemes have been studied 
and developed to find solutions for variational inequalities with pseudomonotone and non-Lipschitz continuous operators, 
see, e.g., [47,42,44,45,25,4]. Recently, the concept of inertial has received a lot of attention and research from researchers, 
who have combined the technique into numerical algorithms and proposed a large number of inertial methods. The basic 
idea of inertial methods, as an acceleration technique, is that the value of each iteration is determined by the combina-
tion of some previously known iterations. This small change can significantly improve the computational efficiency of the 
algorithms without inertial terms. In recent years, many inertial algorithms have been proposed to solve variational in-
equality problems, split feasibility problems, image processing problems and other optimization problems, see, for instance, 
[12,16,31,34,28,40] and the references therein.

Inspired and motivated by the above work, four new adaptive iterative schemes are proposed in this paper to solve 
pseudomonotone variational inequalities in real Hilbert spaces. The advantages of these algorithms lie in four aspects: (1) 
two new step size criteria are used to make them work well without knowing the prior information of the Lipschitz constant 
of the mapping involved; (2) the operators M of the first two iterative methods only need to satisfy uniform continuity 
instead of Lipschitz continuity; (3) the strong convergence of the iterative sequences generated by the proposed iterative 
algorithms is established under some mild conditions; (4) our algorithms embed inertial terms making them converge 
faster than algorithms without inertial terms. Numerical experiments show that the iterative schemes proposed in this 
paper directly improve and generalize some of the results in [46,44,25,4].

The paper is organized as follows. We first review some basic definitions and lemmas that need to be used in this paper 
in Sect. 2. The convergence analysis of the suggested adaptive iterative schemes is discussed and studied in detail in Sect. 3. 
Some numerical experiments are reported in Sect. 4 to verify the efficiency of the proposed algorithms over the existing 
ones. Applications of our methods to optimal control problem can be found in Sect. 5. Finally, we conclude the paper with 
a brief summary in Sect. 6, the last section.

2. Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H . The weak convergence and strong convergence 
of {xn} to x are represented by xn ⇀ x and xn → x, respectively. For each x, y, z ∈ H , we have the following inequalities.

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 . (2.1)

‖ϕx + (1 − ϕ)y‖2 = ϕ‖x‖2 + (1 − ϕ)‖y‖2 − ϕ(1 − ϕ)‖x − y‖2,ϕ ∈R . (2.2)

‖ϕx + σ y + δz‖2 = ϕ‖x‖2 + σ‖y‖2 + δ‖z‖2 − ϕσ‖x − y‖2 − ϕδ‖x − z‖2

− σδ‖y − z‖2,where ϕ,σ , δ ∈ [0,1] with ϕ + σ + δ = 1 .
(2.3)
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For every point x ∈ H , there exists a unique nearest point in C , denoted by P C (x) such that P C (x) = argmin{‖x − y‖, y ∈
C}. P C is called the metric projection of H onto C . It is known that P C is nonexpansive and has the following basic 
properties:

〈x − P C (x), y − P C (x)〉 ≤ 0, ∀y ∈ C . (2.4)

‖P C (x) − y‖2 ≤ ‖x − y‖2 − ‖x − P C (x)‖2, ∀y ∈ C . (2.5)

‖P C (x) − P C (y)‖2 ≤ 〈P C (x) − P C (y), x − y〉, ∀y ∈ H . (2.6)

A mapping M : H → H is said to be:

(1) L-Lipschitz continuous with L > 0 if

‖Mx − M y‖ ≤ L‖x − y‖, ∀x, y ∈ H .

If L ∈ (0, 1) then mapping M is called contraction. In particular, when L = 1, mapping M is called nonexpansive.
(2) α-strongly monotone if there exists a constant α > 0 such that

〈Mx − M y, x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ H .

(3) monotone if

〈Mx − M y, x − y〉 ≥ 0, ∀x, y ∈ H .

(4) pseudomonotone if

〈Mx, y − x〉 ≥ 0 =⇒ 〈M y, y − x〉 ≥ 0, ∀x, y ∈ H .

(5) sequentially weakly continuous if for each sequence {xn} converges weakly to x implies {Mxn} converges weakly to Mx.

Remark 2.1. From the above definitions, it is easy to get that (2) ⇒ (3) ⇒ (4). Notice that its opposite is generally not 
true. That is, there exist mappings that are pseudomonotone but not monotone; see, for example, [30, Example 6.10], [47, 
Example 5.4] and [45, Example 1].

We give some projection calculation formulas that need to be used in numerical experiments.

(1) The projection of x onto a half-space Hu,v = {x : 〈u, x〉 ≤ v} is computed by

P Hu,v (x) = x − max{[〈u, x〉 − v]/‖u‖2,0}u .

(2) The projection of x onto a box Box[a, b] = {x : a ≤ x ≤ b} is computed by

PBox[a,b](x)i = min {bi,max {xi,ai}} .

(3) The projection of x onto a ball B[p, q] = {x : ‖x − p‖ ≤ q} is computed by

P B[p,q](x) = p + q

max{‖x − p‖,q} (x − p) .

The following lemmas are important for the convergence analysis of our main results.

Lemma 2.1 ([10]). Let x ∈ H and ϕ ≥ σ > 0. The following inequality holds.

‖x − P C (x − ϕMx)‖
ϕ

≤ ‖x − P C (x − σ Mx)‖
σ

.

The following Lemma 2.2 was proved in [22, Prop. 2.1] (see also [18, Prop. 2.11]).

Lemma 2.2. Let H1 and H2 be two real Hilbert spaces. Suppose M : H1 → H2 is uniformly continuous on bounded subsets of H1
and B is a bounded subset of H1. Then, M(B) is bounded.

Lemma 2.3 ([8]). Assume that C is a closed and convex subset of a real Hilbert space H . Let operator M : C → H be continuous and 
pseudomonotone. Then, x∗ is a solution of (VIP) if and only if 〈Mx, x − x∗〉 ≥ 0, ∀x ∈ C.
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Lemma 2.4 ([27]). Let {pn} be a positive sequence, {qn} be a sequence of real numbers, and {ϕn} be a sequence in (0, 1) such that ∑∞
n=1 ϕn = ∞. Assume that

pn+1 ≤ (1 − ϕn)pn + ϕnqn, ∀n ≥ 1 .

If lim supk→∞ qnk ≤ 0 for every subsequence 
{

pnk

}
of {pn} satisfying lim infk→∞ (pnk+1 − pnk ) ≥ 0, then limn→∞ pn = 0.

3. Main results

In this section, we introduce and investigate four new subgradient extragradient methods with inertial effects to solve 
pseudomonotone variational inequality problems. These iterative schemes use two new adaptive step size criteria making 
them work well without the priori information about the Lipschitz constant. The following conditions need to be satisfied 
in order to obtain the convergence theorems of the suggested algorithms.

(C1) The feasible set C is a nonempty, closed and convex subset of the real Hilbert space H .
(C2) The operator M : H → H is pseudo-monotone, uniformly continuous on H and the operator M : H → H satisfies 

the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ‖Mz‖ ≤ lim inf
n→∞ ‖Mxn‖ . (C2-1)

(C3) The solution set of the problem (VIP) is nonempty, that is, VI(C, M) �= ∅.
(C4) The mapping f : C → C is ρ-contractive with constant ρ ∈ [0, 1).
(C5) Let {εn} be a positive sequence such that limn→∞ εn

ϕn
= 0, where {ϕn} ⊂ (0, 1) satisfies limn→∞ ϕn = 0 and 

∑∞
n=1 ϕn =

∞.

3.1. Inertial viscosity-type subgradient extragradient algorithm

Now we are ready to state the first adaptive iterative scheme with a new Armijo-type stepsize criterion, which is based 
on the inertial method, the subgradient extragradient method and the viscosity-type method. More precisely, this iterative 
scheme is formulated in detail in Algorithm 3.1.

Algorithm 3.1 Inertial viscosity-type subgradient extragradient algorithm.
Initialization: Take θ > 0, δ > 0, � ∈ (0, 1), η ∈ (0, 1) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute qn = xn + θn(xn − xn−1), where

θn =
⎧⎨
⎩ min

{
εn

‖xn − xn−1‖ , θ

}
, if xn �= xn−1,

θ, otherwise.

(3.1)

Step 2. Compute yn = PC (qn − χn Mqn). If qn = yn or M yn = 0, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = P Tn (qn − χn M yn), where

Tn := {
x ∈ H | 〈qn − χn Mqn − yn, x − yn〉 ≤ 0

}
, (3.2)

χn := δ�mn and mn is the smallest nonnegative integer m satisfying

δ�m 〈M yn − Mqn, yn − zn〉 ≤ η

2

[‖qn − yn‖2 + ‖yn − zn‖2]
. (3.3)

Step 4. Compute xn+1 = ϕn f (zn) + (1 − ϕn)zn .
Set n := n + 1 and go to Step 1.

Remark 3.1. We have the following observations from Algorithm 3.1.

(i) We note here that inertial calculation criterion (3.1) is easy to implement since the term ‖xn − xn−1‖ is known before 
calculating θn . Moreover, it follows from (3.1) and the assumptions on {ϕn} that

lim
n→∞

θn

ϕn
‖xn − xn−1‖ = 0 .

Indeed, we obtain θn‖xn − xn−1‖ ≤ εn, ∀n ≥ 1, which together with limn→∞ εn
ϕn

= 0 implies that limn→∞ θn
ϕn

‖xn − xn−1‖ ≤
limn→∞ εn = 0.
ϕn
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(ii) We prove that if qn = yn or M yn = 0 then yn ∈ VI(C, M). Indeed, from 0 < χn ≤ δ and Lemma 2.1, we have

0 = ‖qn − yn‖
χn

= ‖qn − P C (qn − χn Mqn)‖
χn

≥ ‖qn − P C (qn − δMqn)‖
δ

,

which indicates that qn is a solution of (VIP). Thus, yn ∈ VI(C, M). On the other hand, since yn ∈ C , one can sees that if 
M yn = 0 then yn = P C (yn − δM yn), that is yn ∈ VI(C, M).

(iii) Note that the condition (C2-1) is used by many recent work on pseudomonotone variational inequalities, see, e.g., 
[46,25,1]. It is easy to check that Condition (C2-1) is weaker than the sequential weak continuity of the mapping M
(see [46, Remark 3.2]).

Lemma 3.1. Suppose that Conditions (C1)–(C3) hold. The Armijo-like criteria (3.3) is well defined. Moreover, we get that χn ≤ δ.

Proof. If qn ∈ VI(C, M) then qn = P C (qn − δMqn), which implies that qn = yn . Thus, mn = 0. If qn /∈ VI(C, M), we assume that 
the opposite of (3.3) holds, that is,

δ�m 〈
M P C (qn − δ�m Mqn) − Mqn, P C (qn − δ�m Mqn) − P Tn (qn − δ�m M yn)

〉
>

η

2

[‖qn − P C (qn − δ�m Mqn)‖2 + ‖P C (qn − δ�m Mqn) − P Tn (qn − δ�m M yn)‖2] ,

which implies that

δ�m‖M P C (qn − δ�m Mqn) − Mqn‖ · ‖P C (qn − δ�m Mqn) − P Tn (qn − δ�m M yn)‖
> η‖qn − P C (qn − δ�m Mqn)‖ · ‖P C (qn − δ�m Mqn) − P Tn (qn − δ�m M yn)‖ .

Therefore, we get

‖Mqn − M P C (qn − δ�m Mqn)‖ > η
‖qn − P C (qn − δ�m Mqn)‖

δ�m
. (3.4)

We study two cases of qn . First, suppose that qn ∈ C , since M and P C are continuous, we obtain

lim
m→∞‖qn − P C (qn − δ�m Mqn)‖ = 0 .

From the fact that M is uniformly continuous, one has

lim
m→∞‖Mqn − M P C (qn − δ�m Mqn)‖ = 0 ,

which combining (3.4) yields

lim
m→∞

‖qn − P C (qn − δ�m Mqn)‖
δ�m

= 0 . (3.5)

Let zm = P C (qn − δ�m Mqn). According to the characteristics of projection (2.4), one obtains〈
zm − qn + δ�m Mqn, x − zm

〉 ≥ 0, ∀x ∈ C ,

which means that〈
(zm − qn)/δ�

m, x − zm
〉 + 〈Mqn, x − zm〉 ≥ 0, ∀x ∈ C .

This together with (3.5) implies that 〈Mqn, x − qn〉 ≥ 0, ∀x ∈ C when m → ∞. This shows that qn ∈ VI(C, M), which contra-
dicts the hypothesis.

On the other hand, if qn /∈ C , then we obtain

lim
m→∞‖qn − P C (qn − δ�m Mqn)‖ = ‖qn − P C (qn)‖ > 0 ,

and

lim
m→∞ δ�m‖Mqn − M P C (qn − δ�m Mqn)‖ = 0 .

Combining these with (3.4), we get an opposite. The proof is completed. �
Remark 3.2. It is worth noting that we did not use the pseudo-monotonicity of mapping M in the proof of Lemma 3.1.

The following two lemmas are very useful for proving the main results of this section.
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Lemma 3.2. Suppose that Conditions (C1)–(C3) hold. Let {qn} and {yn} be two sequences formulated by Algorithm 3.1. If there exists a 
subsequence 

{
qnk

}
of {qn} such that 

{
qnk

}
converges weakly to z ∈ H and limk→∞ ‖qnk − ynk ‖ = 0, then z ∈ VI(C, M).

Proof. Since {yn} ⊂ C , qnk ⇀ z and limk→∞ ‖qnk − ynk ‖ = 0, one gets z ∈ C . Using ynk = P C (qnk −χnk Mqnk ) and the property 
of projection (2.4), we have〈

qnk − χnk Mqnk − ynk , x − ynk

〉 ≤ 0, ∀x ∈ C ,

which can be written as follows

χ−1
nk

〈
qnk − ynk , x − ynk

〉 + 〈
Mqnk , ynk − qnk

〉 ≤ 〈
Mqnk , x − qnk

〉
, ∀x ∈ C . (3.6)

Next, we prove that lim infk→∞
〈
Mqnk , x − qnk

〉 ≥ 0 by considering two possible situations of χnk . First, we assume that 
lim infk→∞ χnk > 0. Since the sequence 

{
qnk

}
is bounded and mapping M is uniformly continuous, in the light of Lemma 2.2, 

one gets that 
{

Mqnk

}
is bounded. Combining ‖qnk − ynk ‖ → 0 and (3.6), we have lim infk→∞

〈
Mqnk , x − qnk

〉 ≥ 0. Next, one 
supposes that lim infk→∞ χnk = 0. Set snk = P C (qnk −χnk �

−1Mqnk ). Since χnk �
−1 > χnk , by means of Lemma 2.1, one obtains 

�‖qnk − snk ‖ ≤ ‖qnk − ynk ‖ → 0 as k → ∞. Thus, snk ⇀ z ∈ C , which means that the sequence 
{

snk

}
is bounded. This together 

with the uniform continuity of mapping M yields that

lim
k→∞

‖Mqnk − Msnk ‖ → 0 . (3.7)

Using (3.3), ones see that

χnk�
−1〈M P C (qnk − χnk�

−1Mqnk ) − Mqnk , P C (qnk − χnk�
−1Mqnk ) − znk 〉

>
η

2

[‖qnk − P C (qnk − χnk�
−1Mqnk )‖2 + ‖P C (qnk − χnk�

−1Mqn) − znk ‖2] .

This combining with the Cauchy-Schwartz inequality (〈a, b〉 ≤ ‖a‖‖b‖) infers that

χnk�
−1‖M P C (qnk − χnk�

−1Mqnk ) − Mqnk‖ · ‖P C (qnk − χnk�
−1Mqnk ) − znk ‖

> η‖qnk − P C (qnk − χnk�
−1Mqnk )‖ · ‖P C (qnk − χnk�

−1Mqnk ) − znk ‖ ,

which implies

χnk �
−1

∥∥Mqnk − M P C
(
qnk − χnk�

−1Mqnk

)∥∥ > η
∥∥qnk − P C

(
qnk − χnk�

−1Mqnk

)∥∥ .

Therefore, we get 1
η ‖Mqnk − Msnk ‖ > ‖qnk −snk ‖

χnk �−1 . This combining with (3.7) yields that

lim
k→∞

∥∥qnk − snk

∥∥
χnk�

−1 = 0 .

Moreover, according to the definition of snk and the property of projection (2.4), we obtain〈
qnk − χnk�

−1Mqnk − snk , x − snk

〉 ≤ 0, ∀x ∈ C ,

which yields

1

χnk�
−1

〈
qnk − snk , x − snk

〉 + 〈
Mqnk , snk − qnk

〉 ≤ 〈
Mqnk , x − qnk

〉
, ∀x ∈ C .

Taking k → ∞ on the left and right sides of the above inequality, one has

lim inf
k→∞

〈
Mqnk , x − qnk

〉 ≥ 0 . (3.8)

Hence, we achieved the desired result.
Now, we show that z ∈ VI(C, M). Indeed, one sees that〈

M ynk , x − ynk

〉 = 〈
M ynk − Mqnk , x − qnk

〉 + 〈
Mqnk , x − qnk

〉 + 〈
M ynk ,qnk − ynk

〉
. (3.9)

Since 
∥∥qnk − ynk

∥∥ → 0 and mapping M is uniformly continuous, we have limk→∞
∥∥Mqnk − M ynk

∥∥ = 0. This together with 
(3.8) and (3.9) yields that lim infk→∞

〈
M ynk , x − ynk

〉 ≥ 0.
Next, we select a positive number decreasing sequence {ζk} such that ζk → 0 as k → ∞. For any k, we represent the 

smallest positive integer with Nk such that
224



B. Tan, S. Li and X. Qin Applied Numerical Mathematics 170 (2021) 219–241
〈
M yn j , x − yn j

〉 + ζk ≥ 0, ∀ j ≥ Nk . (3.10)

It can be easily seen that the sequence {Nk} is increasing because {ζk} is decreasing. Moreover, for any k, from {yNk } ⊂ C , 
we can assume M yNk �= 0 (otherwise, yNk is a solution) and set uNk = M yNk /‖M yNk ‖2. Then, we get 〈M yNk , uNk 〉 = 1, ∀k. 
Now, we can deduce from (3.10) that 〈M yNk , x + ζkuNk − yNk 〉 ≥ 0, ∀k. According to the fact that M is pseudomonotone on 
H , we can show that

〈M
(
x + ζkuNk

)
, x + ζkuNk − yNk 〉 ≥ 0 ,

which further yields that

〈Mx, x − yNk 〉 ≥ 〈Mx − M
(
x + ζkuNk

)
, x + ζkuNk − yNk 〉 − ζk〈Mx, uNk 〉 . (3.11)

Now, we prove that limk→∞ ζkuNk = 0. We get that yNk ⇀ z since qnk ⇀ z and limk→∞ ‖qnk − ynk ‖ = 0. One assumes 
that Mz �= 0 (otherwise, z is a solution). Since the mapping M satisfies the condition (C2-1), we obtain 0 < ‖Mz‖ ≤
lim infk→∞ ‖M ynk ‖. Using {yNk } ⊂ {ynk } and ζk → 0 as k → ∞, we get

0 ≤ lim sup
k→∞

‖ζkuNk‖ = lim sup
k→∞

( ζk

‖M ynk ‖
)

≤ lim supk→∞ ζk

lim infk→∞ ‖M ynk ‖
= 0 .

That is, limk→∞ ζkuNk = 0. Thus, from the facts that M is uniformly continuous, sequences {yNk } and {uNk } are bounded 
and limk→∞ ζkuNk = 0, we can conclude from (3.11) that lim infk→∞〈Mx, x − yNk 〉 ≥ 0. Therefore,

〈Mx, x − z〉 = lim
k→∞

〈Mx, x − yNk 〉 = lim inf
k→∞

〈Mx, x − yNk 〉 ≥ 0, ∀x ∈ C .

Consequently, we observe that z ∈ VI(C, M) by Lemma 2.3. This completes the proof. �
Remark 3.3. When M is monotone, it is not necessary to impose the sequential weak continuity (or Condition (C2-1)) of 
mapping M , see [10]. Notice that Lemma 3.2 clearly holds if the mapping M in Condition (C2) is Lipschitz continuous 
instead of uniformly continuous. Furthermore, if the step size in Algorithm 3.1 is a sequence of positive numbers, then 
Lemma 3.2 holds similarly.

Lemma 3.3. Let {zn} be a sequence generated by Algorithm 3.1 and p ∈ VI(C, M). Then

‖zn − p‖2 ≤ ‖qn − p‖2 − (1 − η)‖qn − yn‖2 − (1 − η)‖zn − yn‖2.

Proof. It follows from the definition of zn and (2.5) that

‖zn − p‖2 = ‖P Tn (qn − χn M yn) − p‖2

≤ ‖qn − χn M yn − p‖2 − ‖qn − χn M yn − zn‖2

= ‖qn − p‖2 + χ2
n ‖M yn‖2 − 2χn 〈qn − p, M yn〉 − ‖qn − zn‖2

− χ2
n ‖M yn‖2 + 2χn 〈qn − zn, M yn〉

= ‖qn − p‖2 − ‖qn − zn‖2 + 2χn 〈p − zn, M yn〉
= ‖qn − p‖2 − ‖qn − zn‖2 − 2χn 〈M yn, yn − p〉 + 2χn 〈yn − zn, M yn〉 .

Since p is the solution of (VIP), we have 〈Mp, x − p〉 ≥ 0 for all x ∈ C . By the pseudomonotonicity of mapping M , we get 
〈Mx, x − p〉 ≥ 0 for all x ∈ C . Taking x = yn ∈ C , one infers that

〈M yn, p − yn〉 ≤ 0 .

Hence,

‖zn − p‖2 ≤ ‖qn − p‖2 − ‖qn − zn‖2 + 2χn 〈yn − zn, M yn〉
= ‖qn − p‖2 − ‖qn − yn + yn − zn‖2 + 2χn 〈yn − zn, M yn〉
= ‖qn − p‖2 − ‖qn − yn‖2 − ‖yn − zn‖2 − 2 〈qn − yn, yn − zn〉

+ 2χn 〈yn − zn, M yn〉
= ‖qn − p‖2 − ‖qn − yn‖2 − ‖yn − zn‖2 + 2 〈yn − qn + χn M yn, yn − zn〉
= ‖qn − p‖2 − ‖qn − yn‖2 − ‖yn − zn‖2 + 2 〈qn − χn Mqn − yn, zn − yn〉

+ 2χ 〈M y − Mq , y − z 〉 .
n n n n n
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According to zn ∈ Tn and the definition of Tn , one obtains

〈qn − χn Mqn − yn, zn − yn〉 ≤ 0 ,

which infers that

‖zn − p‖2 ≤ ‖qn − p‖2 − ‖qn − yn‖2 − ‖yn − zn‖2 + 2χn 〈M yn − Mqn, yn − zn〉
≤ ‖qn − p‖2 − ‖qn − yn‖2 − ‖yn − zn‖2 + η

[
‖qn − yn‖2 + ‖yn − zn‖2

]
= ‖qn − p‖2 − (1 − η)‖qn − yn‖2 − (1 − η)‖yn − zn‖2 .

This completes the proof. �
Theorem 3.1. Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} generated by Algorithm 3.1 converges strongly to an 
element p ∈ VI(C, M), where p = PVI(C,M) f (p).

Proof. We divide the proof into four steps.
Claim 1. The sequence {xn} is bounded. It follows form Lemma 3.3 that

‖zn − p‖ ≤ ‖qn − p‖ . (3.12)

By the definition of qn , one sees that

‖qn − p‖ ≤ ‖xn − p‖ + ϕn · θn

ϕn
‖xn − xn−1‖ . (3.13)

From Remark 3.1 (i), one gets θn
ϕn

‖xn − xn−1‖ → 0 as n → ∞. Thus, there is a constant Q 1 > 0 that satisfies

θn

ϕn
‖xn − xn−1‖ ≤ Q 1, ∀n ≥ 1 . (3.14)

Using (3.12), (3.13) and (3.14), we obtain

‖zn − p‖ ≤ ‖qn − p‖ ≤ ‖xn − p‖ + ϕn Q 1, ∀n ≥ 1 . (3.15)

Using the definition of xn+1 and (3.15), we have

‖xn+1 − p‖ ≤ ϕn‖ f (zn) − f (p)‖ + ϕn‖ f (p) − p‖ + (1 − ϕn)‖zn − p‖
≤ (1 − (1 − ρ)ϕn)‖zn − p‖ + ϕn‖ f (p) − p‖
≤ (1 − (1 − ρ)ϕn)‖xn − p‖ + (1 − ρ)ϕn

Q 1 + ‖ f (p) − p‖
1 − ρ

≤ max
{
‖xn − p‖, Q 1 + ‖ f (p) − p‖

1 − ρ

}

≤ · · · ≤ max
{
‖x1 − p‖, Q 1 + ‖ f (p) − p‖

1 − ρ

}
, ∀n ≥ 1 .

That is, the sequence {xn} is bounded. We get that the sequences {qn}, {zn} and { f (zn)} are also bounded.
Claim 2.

(1 − η)
[‖qn − yn‖2 + ‖yn − zn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ϕn Q 4

for some Q 4 > 0. Indeed, it follows from (3.15) that

‖qn − p‖2 ≤ (‖xn − p‖ + ϕn Q 1)
2

= ‖xn − p‖2 + ϕn(2Q 1‖xn − p‖ + ϕn Q 2
1 )

≤ ‖xn − p‖2 + ϕn Q 2

(3.16)

for some Q 2 > 0. Combining (2.2), (3.16) and Lemma 3.3, we see that
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‖xn+1 − p‖2 ≤ ϕn(‖ f (zn) − f (p)‖ + ‖ f (p) − p‖)2 + (1 − ϕn)‖zn − p‖2

≤ ϕn(‖zn − p‖ + ‖ f (p) − p‖)2 + (1 − ϕn)‖zn − p‖2

= ϕn‖zn − p‖2 + (1 − ϕn)‖zn − p‖2

+ ϕn(‖ f (p) − p‖2 + 2‖zn − p‖ · ‖ f (p) − p‖)
≤ ‖zn − p‖2 + ϕn Q 3

≤ ‖xn − p‖2 − (1 − η)
[‖qn − yn‖2 + ‖yn − zn‖2] + ϕn Q 4 ,

where Q 3 := supn∈N{‖zn − p‖ · ‖ f (p) − p‖} and Q 4 := Q 2 + Q 3. Therefore, the desired result can be obtained through a 
simple deformation.
Claim 3.

‖xn+1 − p‖2 ≤ (1 − (1 − ρ)ϕn)‖xn − p‖2 + (1 − ρ)ϕn ·
[ 3Q

1 − ρ
· θn

ϕn
‖xn − xn−1‖

+ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

]
, ∀n ≥ 1

for some Q > 0. Using the definition of qn , we can show that

‖qn − p‖2 = ‖xn + θn (xn − xn−1) − p‖2

≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖ + θ2
n ‖xn − xn−1‖2

≤ ‖xn − p‖2 + 3Q θn‖xn − xn−1‖ ,

(3.17)

where Q := supn∈N{‖xn − p‖, θ‖xn − xn−1‖} > 0. Using (2.1), (2.2), (3.12) and (3.17), we get

‖xn+1 − p‖2 = ‖ϕn( f (zn) − f (p)) + (1 − ϕn) (zn − p) + ϕn( f (p) − p)‖2

≤ ‖ϕn( f (zn) − f (p)) + (1 − ϕn) (zn − p)‖2 + 2ϕn〈 f (p) − p, xn+1 − p〉
≤ ϕn‖ f (zn) − f (p)‖2 + (1 − ϕn)‖zn − p‖2 + 2ϕn〈 f (p) − p, xn+1 − p〉
≤ (1 − (1 − ρ)ϕn)‖zn − p‖2 + 2ϕn〈 f (p) − p, xn+1 − p〉
≤ (1 − (1 − ρ)ϕn)‖xn − p‖2 + (1 − ρ)ϕn ·

[ 3Q

1 − ρ
· θn

ϕn
‖xn − xn−1‖

+ 2

1 − ρ
〈 f (p) − p, xn+1 − p〉

]
, ∀n ≥ 1 .

Claim 4. The sequence {‖xn − p‖} converges to zero. From Lemma 2.4 and Remark 3.1 (i), it remains to show that 
lim supk→∞〈 f (p) − p, xnk+1 − p〉 ≤ 0 for any subsequence {‖xnk − p‖} of {‖xn − p‖} satisfying lim infk→∞

(‖xnk+1 − p‖ −
‖xnk − p‖) ≥ 0.

For this purpose, we assume that {‖xnk − p‖} is a subsequence of {‖xn − p‖} such that

lim inf
k→∞

(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0 .

Then,

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2)
= lim inf

k→∞
[
(‖xnk+1 − p‖ − ‖xnk − p‖)(‖xnk+1 − p‖ + ‖xnk − p‖)] ≥ 0 .

It follows from Claim 2 and the assumptions on {ϕn} that

lim sup
k→∞

(1 − η)
[‖qnk − ynk‖2 + ‖ynk − znk ‖2]

≤ lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2] + lim sup
k→∞

ϕnk Q 4

= − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk − p‖2]
≤ 0 ,

which yields that limk→∞ ‖qnk − ynk ‖ = 0 and limk→∞ ‖znk − ynk ‖ = 0. Hence, we get limk→∞ ‖znk − qnk ‖ = 0. Moreover, 
using Remark 3.1 (i) and the assumptions on {ϕn}, we have
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‖xnk − qnk ‖ = ϕnk · θnk

ϕnk

‖xnk − xnk−1‖ → 0, as k → ∞ ,

and

‖xnk+1 − znk ‖ = ϕnk‖znk − f
(
znk

)‖ → 0, as k → ∞ .

Therefore, we conclude that

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk ‖ + ‖znk − qnk ‖ + ‖qnk − xnk ‖ → 0, as k → ∞ . (3.18)

Since the sequence {xnk } is bounded, there is a subsequence {xnk j
} of {xnk } that satisfies xnk j

⇀ q. Furthermore,

lim sup
k→∞

〈 f (p) − p, xnk − p〉 = lim
j→∞

〈 f (p) − p, xnk j
− p〉 = 〈 f (p) − p,q − p〉 . (3.19)

We get that qnk ⇀ q since ‖xnk − qnk ‖ → 0. This together with limk→∞ ‖qnk − ynk ‖ = 0 and Lemma 3.2 yields that q ∈
VI(C, M). By the definition of p = PVI(C,M) f (p), (2.4) and (3.19), we infer that

lim sup
k→∞

〈 f (p) − p, xnk − p〉 = 〈 f (p) − p,q − p〉 ≤ 0 . (3.20)

Combining (3.18) and (3.20), we see that

lim sup
k→∞

〈 f (p) − p, xnk+1 − p〉 ≤ lim sup
k→∞

〈 f (p) − p, xnk − p〉 ≤ 0 . (3.21)

Thus, from Remark 3.1 (i), (3.21), Claim 3 and Lemma 2.4, we conclude that xn → p as n → ∞. The proof of the Theorem 3.1
is now complete. �
3.2. Inertial Mann-type subgradient extragradient algorithm

In this subsection, we present a modified version of Algorithm 3.1 that uses the Mann-type approach to obtain strong 
convergence of the iterative sequence. Suppose that the following condition (D1) holds in order to study the convergence of 
the proposed algorithm.

(D1) Let {εn} be a positive sequence such that limn→∞ εn
ϕn

= 0, where εn is defined in (3.1) and {ϕn} ⊂ (0, 1) satisfies 
limn→∞ ϕn = 0 and 

∑∞
n=1 ϕn = ∞. Let {σn} ⊂ (a, b) ⊂ (0,1 − ϕn) for some a > 0, b > 0.

The inertial Mann-type subgradient extragradient algorithm for solving (VIP) is stated in Algorithm 3.2.

Algorithm 3.2 Inertial Mann-type subgradient extragradient algorithm.
Initialization: Take θ > 0, δ > 0, � ∈ (0, 1), η ∈ (0, 1) and let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qn = xn + θn(xn − xn−1) ,

yn = P C (qn − χn Mqn) ,

zn = P Tn (qn − χn M yn) ,

xn+1 = (1 − ϕn − σn)qn + σn zn ,

where θn , Tn and χn are defined in (3.1), (3.2) and (3.3), respectively.

Theorem 3.2. Assume that Conditions (C1)–(C3) and (D1) hold. Then the sequence {xn} generated by Algorithm 3.2 converges strongly 
to p ∈ VI(C, M), where ‖p‖ = min{‖z‖ : z ∈ VI(C, M)}.

Proof. We divide the proof into four steps.
Claim 1. The sequence {xn} is bounded. As stated in Claim 1 in Theorem 3.1, inequalities (3.12)–(3.15) also hold. By the 
definition of xn+1 and (3.15), we obtain
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‖xn+1 − p‖ = ‖(1 − ϕn − σn)(qn − p) + σn(zn − p) − ϕn p‖
≤ (1 − ϕn − σn)‖qn − p‖ + σn‖zn − p‖ + ϕn‖p‖
≤ (1 − ϕn)‖qn − p‖ + ϕn‖p‖
≤ (1 − ϕn)‖xn − p‖ + ϕn(‖p‖ + Q 1)

≤ max {‖xn − p‖,‖p‖ + Q 1}
≤ · · · ≤ max {‖x1 − p‖,‖p‖ + Q 1} .

That is, the sequence {xn} is bounded. So the sequences {zn} and {qn} are also bounded.
Claim 2.

σn(1 − η)
[‖qn − yn‖2 + ‖yn − zn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ϕn(‖p‖2 + Q 2) .

From the definition of xn+1, (2.3), (3.16) and Lemma 3.5, one obtains

‖xn+1 − p‖2 = ‖(1 − ϕn − σn)(qn − p) + σn(zn − p) + ϕn(−p)‖2

≤ (1 − ϕn − σn)‖qn − p‖2 + σn‖zn − p‖2 + ϕn‖p‖2

≤ (1 − ϕn − σn)‖qn − p‖2 + σn‖qn − p‖2 + ϕn‖p‖2

− σn(1 − η)
[‖qn − yn‖2 + ‖yn − zn‖2]

≤ ‖xn − p‖2 − σn(1 − η)
[‖qn − yn‖2 + ‖yn − zn‖2] + ϕn(‖p‖2 + Q 2) .

The desired result can be obtained through a simple deformation.
Claim 3.

‖xn+1 − p‖2 ≤ (1 − ϕn)‖xn − p‖2 + ϕn

[
2σn‖qn − zn‖‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Q θn

ϕn
‖xn − xn−1‖

]
, ∀n ≥ 1 .

Setting tn = (1 − σn)qn + σnzn , one has

‖tn − qn‖ = σn‖qn − zn‖ . (3.22)

It follows from (3.12) that

‖tn − p‖ = ‖(1 − σn)(qn − p) + σn(zn − p)‖
≤ (1 − σn)‖qn − p‖ + σn‖qn − p‖
= ‖qn − p‖, ∀n ≥ 1 .

(3.23)

From (2.1), (3.17), (3.22) and (3.23), we have

‖xn+1 − p‖2 = ‖(1 − σn)qn + σnzn − ϕnqn − p‖2

= ‖(1 − ϕn)(tn − p) − ϕn(qn − tn) − ϕn p‖2

≤ (1 − ϕn)
2‖tn − p‖2 − 2ϕn 〈qn − tn + p, xn+1 − p〉

= (1 − ϕn)
2‖tn − p‖2 + 2ϕn 〈qn − tn, p − xn+1〉 + 2ϕn 〈p, p − xn+1〉

≤ (1 − ϕn)‖tn − p‖2 + 2ϕn‖qn − tn‖‖xn+1 − p‖ + 2ϕn 〈p, p − xn+1〉
≤ (1 − ϕn)‖xn − p‖2 + ϕn

[
2σn‖qn − zn‖‖xn+1 − p‖

+ 2 〈p, p − xn+1〉 + 3Q θn

ϕn
‖xn − xn−1‖

]
, ∀n ≥ 1 .

Claim 4. The sequence {‖xn − p‖} converges to zero. We assume that {‖xnk − p‖} is a subsequence of {‖xn − p‖} such that 
lim infk→∞

(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. By Claim 2 and Condition (D1), we have

lim sup
k→∞

σnk (1 − η)
[‖qnk − ynk ‖2 + ‖ynk − znk ‖2]

≤ lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2] + lim sup
k→∞

ϕnk (‖p‖2 + Q 2)
≤ 0 .
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This means that limk→∞ ‖qnk − ynk ‖ = 0 and limk→∞ ‖znk − ynk ‖ = 0. Hence, we get limk→∞ ‖znk − qnk ‖ = 0. This together 
with the boundedness of {xn} yields that

lim
k→∞

σnk‖qnk − znk ‖‖xnk+1 − p‖ = 0 . (3.24)

From Remark 3.1 (i) and Condition (D1), one gets limk→∞ ‖xnk − qnk ‖ = 0. Moreover, we have∥∥xnk+1 − qnk

∥∥ ≤ ϕnk

∥∥qnk

∥∥ + σnk

∥∥qnk − znk

∥∥ → 0, as k → ∞ .

This combining with limk→∞ ‖xnk − qnk ‖ = 0 implies that limk→∞ ‖xnk+1 − xnk ‖ = 0. Since the sequence {xnk } is bounded, 
there is a subsequence {xnk j

} of {xnk } that satisfies xnk j
⇀ q. Furthermore,

lim sup
k→∞

〈
p, p − xnk

〉 = lim
j→∞

〈p, p − xnk j
〉 = 〈p, p − q〉 .

We get qnk ⇀ q since ‖xnk − qnk ‖ → 0. This together with limk→∞ ‖qnk − ynk ‖ = 0 and Lemma 3.2 yields that q ∈ VI(C, M). 
By the definition of p = PVI(C,M)0 and (2.4), we deduce that

lim sup
k→∞

〈
p, p − xnk

〉 = lim
j→∞

〈p, p − xnk j
〉 = 〈p, p − q〉 ≤ 0 .

From ‖xnk+1 − xnk ‖ → 0, we get

lim sup
k→∞

〈
p, p − xnk+1

〉 ≤ 0 . (3.25)

Therefore, combining (3.24), (3.25), Remark 3.1 (i) and Claim 3, in the light of Lemma 2.4, we conclude that xn → p as 
n → ∞. This completes the proof of Theorem 3.2. �
3.3. Self-adaptive inertial viscosity-type subgradient extragradient algorithm

In this subsection, a new adaptive iterative scheme without any linesearch process is introduced to solve the variational 
inequality problem with a pseudomonotone and Lipschitz continuous mapping. The strong convergence theorem of the 
suggested method is established without the prior knowledge of the Lipschitz constant of the mapping associated. Now, 
we replace the condition (C2) in Algorithms 3.1 and 3.2 with the following condition (E1) and then give the new adaptive 
Algorithm 3.3.

(E1) The mapping M : H → H is L-Lipschitz continuous, pseudomonotone on H and the mapping M : H → H satisfies 
the condition (C2-1).

The form of Algorithm 3.3 is shown below.

Algorithm 3.3 Self-adaptive inertial viscosity-type subgradient extragradient algorithm.
Initialization: Take θ > 0, χ1 > 0, η ∈ (0, 1). Choose a nonnegative real sequence {ξn} such that ∑∞

n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:
Step 1. Compute qn = xn + θn(xn − xn−1), where θn is defined in (3.1).
Step 2. Compute yn = PC (qn − χn Mqn). If qn = yn or M yn = 0, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute zn = P Tn (qn − χn M yn), where Tn is defined in (3.2).
Step 4. Compute xn+1 = ϕn f (zn) + (1 − ϕn)zn , and update

χn+1 =
⎧⎨
⎩ min

{
η

‖qn − yn‖2 + ‖zn − yn‖2

2 〈Mqn − M yn, zn − yn〉 ,χn + ξn

}
, if 〈Mqn − M yn, zn − yn〉 > 0,

χn + ξn, otherwise.

(3.26)

Notice that the stepsize sequence generated in Algorithm 3.3 is non-monotonic due to the use of the new update method 
(3.26). Indeed, we have the following Lemma 3.4 which is crucial for the convergence analysis of the algorithm.

Lemma 3.4. Suppose that Condition (E1) holds. Then the sequence {χn} generated by (3.26) is well defined and limn→∞ χn = χ and 
χ ∈ [

min{η/L, χ1}, χ1 + �
]
, where � = ∑∞

n=1 ξn.

Proof. Since mapping M is L-Lipschitz continuous, one gets ‖Mqn − M yn‖ ≤ L‖qn − yn‖. If 〈Mqn − M yn, zn − yn〉 > 0, then

η
‖qn − yn‖2 + ‖zn − yn‖2

≥ η
‖qn − yn‖‖zn − yn‖ = η

‖qn − yn‖ ≥ η
.

2 〈Mqn − M yn, zn − yn〉 ‖Mqn − M yn‖‖zn − yn‖ ‖Mqn − M yn‖ L
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Thus, χn ≥ min{η/L, χ1}. It follows from the definition of χn+1 that χn+1 ≤ χ1 + �, where � = ∑∞
n=1 ξn . Thus, the se-

quence {χn} defined in (3.26) is bounded and χn ∈ [min{η/L, χ1}, χ1 + �]. Let (χn+1 − χn)+ = max{0, χn+1 − χn} and 
(χn+1 − χn)− = max{0, − (χn+1 − χn)}. By the definition of χn , one obtains 

∑∞
n=1 (χn+1 − χn)+ ≤ ∑∞

n=1 ξn < +∞, which 
implies that the series 

∑∞
n=1 (χn+1 − χn)+ is convergent. Next we show the convergence of the series 

∑∞
n=1 (χn+1 − χn)− . 

Assume that 
∑∞

n=1 (χn+1 − χn)− = +∞. Note that χn+1 − χn = (χn+1 − χn)+ − (χn+1 − χn)− . Therefore,

χm+1 − χ1 =
m∑

n=1

(χn+1 − χn) =
m∑

n=1

(χn+1 − χn)
+ −

m∑
n=1

(χn+1 − χn)
− .

Taking m → +∞ in the above equation, we get limm→+∞ χm → −∞. That is a contradiction. Hence, we deduce that 
limn→∞ χn = χ and χ ∈ [min{η/L, χ1}, χ1 + �]. �
Remark 3.4. We remark here the following observations for Algorithm 3.3.

• The idea of the step size χn defined in (3.26) is derived from [49]. It is worth noting that the step size χn generated in 
Algorithm 3.3 is allowed to increase when the iteration increases. Therefore, the use of this type of step size reduces the 
dependence on the initial step size χ1. On the other hand, because of 

∑∞
n=1 ξn < +∞, which implies that limn→∞ ξn =

0. Thus, χn may not increase when n is large enough. In fact, the stepsize sequence {χn} must eventually decrease to 
achieve convergence, due to the fact that the convergence is caused by χn

χn+1
→ 1 (n → +∞). If ξn = 0, then the step 

size χn in Algorithm 3.3 is similar to the approaches in [50,51,46,34,40].
• Note that Lemma 3.2 in Algorithm 3.1 still holds when the Armijo-like criterion (3.3) is replaced by the adaptive stepsize 

(3.26).
• It should be noted that the stepsize update method and convergence conditions in Algorithm 3.1 and Algorithm 3.3 are 

different. Specifically, Algorithm 3.3 replaces the Arimijo-type criterion (3.3) and convergence condition (C2) in Algo-
rithm 3.1 with update way (3.26) and convergence condition (E1), respectively. Each of these two iterative schemes has 
advantages and disadvantages, which will be discussed in detail in the following numerical experiments (cf. Section 4
and Section 5).

The following Lemma 3.5 plays an important role in the convergence analysis of Algorithm 3.3 and it can be easily 
obtained by using the same statement as Lemma 3.2 in [40].

Lemma 3.5 ([40]). Assume that Conditions (C1), (C3) and (E1) hold. Let {zn} be a sequence generated by Algorithm 3.3. Then, for all 
p ∈ VI(C, M),

‖zn − p‖2 ≤ ‖qn − p‖2 −
(

1 − η
χn

χn+1

)
‖yn − qn‖2 −

(
1 − η

χn

χn+1

)
‖zn − yn‖2 .

Theorem 3.3. Assume that Conditions (C1), (C3), (C4), (C5) and (E1) hold. Then the sequence {xn} generated by Algorithm 3.3 converges 
strongly to an element p ∈ VI(C, M), where p = PVI(C,M) f (p).

Proof. According to Lemma 3.4, it follows that limn→∞
(
1 − η χn

χn+1

) = 1 − η > 0. Hence, there exists n0 ∈N such that

1 − η
χn

χn+1
> 0, ∀n ≥ n0 .

This combining with Lemma 3.5 yields that ‖zn − p‖ ≤ ‖qn − p‖, ∀n ≥ n0. Thus, we get

‖zn − p‖ ≤ ‖qn − p‖ ≤ ‖xn − p‖ + ϕn Q 1, ∀n ≥ n0 .

The conclusion of the theorem can be easily obtained by using some statements similar to Theorem 3.1. We leave it to the 
reader to verify. �
3.4. Self-adaptive inertial Mann-type subgradient extragradient algorithm

In this subsection, we replace the Armijo-type criterion (3.3) in Algorithm 3.2 with the new stepsize method (3.26) and 
then introduce a new numerical algorithm, the last iterative scheme stated in this paper. We now focus our attention to the 
description of Algorithm 3.4.

Theorem 3.4. Assume that Conditions (C1), (C3), (D1) and (E1) hold. Then the sequence {xn} created by Algorithm 3.4 converges 
strongly to p ∈ VI(C, M), where ‖p‖ = min{‖z‖ : z ∈ VI(C, M)}.
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Algorithm 3.4 Self-adaptive inertial Mann-type subgradient extragradient algorithm.
Initialization: Take θ > 0, χ1 > 0, η ∈ (0, 1). Choose a nonnegative real sequence {ξn} such that ∑∞

n=1 ξn < +∞. Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the iterates xn−1 and xn (n ≥ 1), calculate xn+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qn = xn + θn(xn − xn−1) ,

yn = P C (qn − χn Mqn) ,

zn = P Tn (qn − χn M yn) ,

xn+1 = (1 − ϕn − σn)qn + σn zn ,

where θn , Tn and χn are defined in (3.1), (3.2) and (3.26), respectively.

Proof. The proof of the theorem is very similar to the proof of Theorem 3.2. We omit it here. �
Remark 3.5. We have the following observations for the offered Algorithms 3.1–3.4.

(i) Notice that the mapping M in Algorithm 3.1 and Algorithm 3.2 is pseudomonotone and uniformly continuous, while 
it is pseudomonotone and Lipschitz continuous in Algorithm 3.3 and Algorithm 3.4 (the Lipschitz constant does not 
need to be known). Moreover, the operator M in the presented algorithms only need to satisfy condition (C2-1) and 
not the sequential weak continuity. Therefore, the convergence conditions of the algorithms obtained in this paper are 
weaker than those in [33,29,35,36,30,46,47,42,44,45,4], which makes them more widespread and useful in practical 
applications.

(ii) It should be highlighted that we use a new Armijo-type stepsize criterion in Algorithms 3.1 and 3.2 that exploits the in-
formation of zn , which is actually influenced by the recent work of Cai, Dong and Peng [4]. In addition, Algorithms 3.3
and 3.4 embed a new non-monotonic stepsize criterion that overcomes the drawback of non-increasing stepsize se-
quences generated by the algorithms suggested in [50,51,46,34,40]. The use of these two new adaptive stepsize criteria 
allows the methods introduced in this paper to converge faster than some existing algorithms in the literature (see 
Sect. 4 and Sect. 5).

(iii) The proposed Algorithms 3.3 and 3.4 require only one evaluation of the projection on the feasible set in each iteration. 
However, the stated iterative Schemes 3.1 and 3.2 need to compute the projection on the feasible set multiple times at 
each iteration because they use an Armijo-type criterion.

(iv) Our four iterative schemes are embedded with inertial effects, which allows them to accelerate the convergence speed 
of the algorithms. Furthermore, it is important to note that the inertial update approach (3.1) is easy to implement due 
to the fact that the term ‖xn − xn−1‖ is known before updating θn .

(v) The algorithms offered in this paper obtain strong convergence theorems in real Hilbert spaces by applying the Mann-
type method and the viscosity-type method. However, the strongly convergent methods presented in [41] are obtained 
by projection-type methods. It is known that projection-type methods are not easy to implement and converge slowly 
in infinite-dimensional spaces. Therefore, the iterative schemes provided in this paper are more useful.

4. Numerical examples

In this section, we perform some computational tests that occur in finite- and infinite-dimensional spaces, and compare 
the offered iterative schemes with several previously known strongly convergent algorithms, which including the Algo-
rithm 3.1 introduced by Cai, Dong and Peng [4] (shortly, CDP Alg. 3.1), the Algorithm 3.1 presented by Thong et al. [46]
(shortly, TYCR Alg. 3.1), the Algorithm 3 suggested by Thong, Shehu and Iyiola [44] (shortly, TSI Alg. 3) and the Algorithm 4 
proposed by Reich et al. [25] (shortly, RTDLD Alg. 4). All the programs were implemented in Matlab 2018a on a Intel(R) 
Core(TM) i5-8250U CPU @ 1.60 GHz computer with RAM 8.00 GB.

Example 4.1. Consider the form of linear operator M : Rm → Rm (m = 5, 20, 50, 100) as follows: M(x) = Gx + g , where 
g ∈ Rm and G = B BT + S + E , matrix B ∈ Rm×m , matrix S ∈ Rm×m is skew-symmetric, and matrix E ∈ Rm×m is diagonal 
matrix whose diagonal terms are non-negative (hence G is positive symmetric definite). We choose the feasible set C is 
a box constraint with the form C = [−2, 5]m . It is easy to see that M is Lipschitz continuous monotone and its Lipschitz 
constant L = ‖G‖. In this numerical example, all entries of B, E are generated randomly in [0, 2], S is generated randomly in 
[−2, 2] and g = 0. It is easy to check that the solution set to this problem is x∗ = {0}. The parameters of all the algorithms 
are set as follows.

• Set ϕn = 1/(n + 1), σn = 0.9(1 − ϕn) and f (x) = 0.1x for all the algorithms.
• For the suggested Algorithm 3.1, Algorithm 3.2, CDP Alg. 3.1, TSI Alg. 3, RTDLD Alg. 4, we take Armijo parameters δ = 2, 

� = 0.5 and η = 0.5. Adopt inertial parameters θ = 0.4 and εn = 10/(n + 1)2 for the proposed Algorithms 3.1–3.4.
• Pick η = 0.5 and χ1 = 0.0006 for the suggested Algorithm 3.3, Algorithm 3.4 and TYCR Alg. 3.1. Take ξn = 1/(n + 1)1.1

(or ξn = 0) for the offered Algorithms 3.3 and 3.4. Choose χ = 0.5/η for RTDLD Alg. 4.
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Fig. 1. Compare the number of iterations of all algorithms in Example 4.1.

Table 1
Numerical results of all algorithms for Example 4.1.

Algorithms m = 5 m = 20 m = 50 m = 100

Dn Time Dn Time Dn Time Dn Time

Our Algorithm 3.1 2.74E-75 0.2383 6.31E-15 0.3122 3.53E-08 0.3963 1.25E-07 1.2452
Our Algorithm 3.2 6.32E-68 0.2647 4.21E-14 0.2895 5.39E-08 0.3881 3.56E-07 1.1386
Our Algorithm 3.3 (ξn �= 0) 6.60E-73 0.1338 4.87E-15 0.1532 2.08E-08 0.1367 1.42E-05 0.2626
Our Algorithm 3.4 (ξn �= 0) 9.77E-66 0.1450 2.49E-14 0.1535 4.31E-08 0.1351 4.55E-06 0.2790
Our Algorithm 3.3 (ξn = 0) 4.60E-08 0.1406 9.57E-09 0.1651 1.53E-07 0.1466 2.64E-05 0.2977
Our Algorithm 3.4 (ξn = 0) 5.80E-08 0.1568 1.41E-08 0.1677 2.64E-07 0.1589 8.22E-06 0.2890
CDP Alg. 3.1 1.41E-42 0.2232 1.02E-08 0.2974 0.000138 0.3672 0.000668 1.2041
TYCR Alg. 3.1 4.85E-05 0.1363 3.17E-05 0.1599 0.000174 0.1402 0.000481 0.2666
TSI Alg. 3 4.59E-10 0.2138 1.31E-08 0.2525 0.000139 0.3411 0.000669 0.9969
RTDLD Alg. 4 2.82E-11 0.1635 1.05E-06 0.2135 0.00039 0.2397 0.001289 0.7331

The maximum number of iterations of 2000 as a common stopping criterion for all algorithms and the initial values x0 = x1
are randomly generated by rand(m,1) in Matlab. We use Dn = ‖xn − x∗‖ to measure the n-th iteration error of all algorithms. 
“Time” indicates the time in seconds required for all algorithms to reach the stopping criterion. The numerical results of all 
algorithms with four different dimensions are shown in Fig. 1, Fig. 2 and Table 1.

Example 4.2. Consider the Hilbert space H = l2 := {x = (x1, x2, . . . , xi, . . .) | ∑∞
i=1 |xi |2 < +∞} equipped with inner product 

〈x, y〉 = ∑∞
i=1 xi yi and induced norm ‖x‖ = √〈x, x〉 for any x, y ∈ H . Let

C := {x = (x1, x2, . . . , xi, . . .) ∈ H : |xi | ≤ 1/i, i = 1,2, . . . ,n, . . .} .
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Fig. 2. Compare the execution time of all algorithms in Example 4.1.

Define an operator M : C → H by

Mx =
(

‖x‖ + 1

‖x‖ + ϕ

)
x ,

for some ϕ > 0. It is easy to see that the solution x∗ = {0}, and moreover, M is pseudo-monotone on H , uniformly 
continuous and sequentially weakly continuous on C but not Lipschitz continuous on H (see more details in [45]). In the 
following cases, we take ϕ = 0.5, H =Rm for different values of m. In this case, the feasible set C is a box

C = {
x ∈Rm : −1

i
≤ xi ≤ 1

i
, i = 1,2, . . . ,m

}
.

We set χ1 = 0.6 for the suggested Algorithm 3.3, Algorithm 3.4 and TYCR Alg. 3.1, and keep the parameters of other 
algorithms the same as in Example 4.1. We use the maximum number of iterations of 200 as a common stopping criterion 
for all algorithms. The numerical performance of all algorithms with four different dimensions is reported in Table 2.

Example 4.3. Suppose that H = L2([0, 1]) with inner product 〈x, y〉 := ∫ 1
0 x(t)y(t)dt, ∀x, y ∈ H and norm ‖x‖ :=

(
∫ 1

0 |x(t)|2 dt)
1
2 . Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define an operator M : C → H by

Mx(t) =
1∫

0

[
x(t) − 4

e2 − 1
tset+sx(s)

]
ds, x ∈ C, t ∈ [0,1] .

It is known that the operator M is monotone and 2-Lipschitz continuous (see [4]). The parameters of all algorithms are the 
same as in Example 4.2. We choose the maximum number of iterations of 50 as the common stopping criterion and use 
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Table 2
Numerical results for Example 4.2.

Algorithms m = 100 m = 1000 m = 10000 m = 100000

Dn Time Dn Time Dn Time Dn Time

Our Algorithm 3.1 1.51E-53 0.0278 1.46E-53 0.0359 2.77E-53 0.2193 2.03E-53 1.3701
Our Algorithm 3.2 4.20E-52 0.0298 3.67E-52 0.0373 3.76E-52 0.2476 1.79E-52 1.3908
CDP Alg. 3.1 2.09E-27 0.0446 2.13E-27 0.0472 4.08E-27 0.2256 3.34E-27 1.3900
TSI Alg. 3 5.51E-11 0.0433 5.53E-11 0.0558 5.00E-11 0.2130 4.07E-11 1.1559
RTDLD Alg. 4 4.33E-11 0.0267 4.89E-11 0.0316 3.20E-10 0.1428 0.030078 0.9524

Table 3
Numerical results of all algorithms for Example 4.3.

Algorithms x0 = 3t4 + 2 x0 = et x0 = 3 cos(3t) x0 = 2 log(2t)

En Time En Time En Time En Time

Our Algorithm 3.1 2.75E-04 42.70 1.36E-04 43.23 1.11E-04 42.64 4.77E-05 43.14
Our Algorithm 3.2 1.69E-04 42.70 9.24E-05 43.25 7.03E-05 42.75 2.99E-05 43.09
Our Algorithm 3.3 (ξn �= 0) 2.90E-04 19.15 1.36E-04 19.38 1.10E-04 19.07 5.81E-06 19.27
Our Algorithm 3.4 (ξn �= 0) 1.36E-04 19.15 7.41E-05 19.34 4.50E-05 19.08 1.20E-05 19.36
Our Algorithm 3.3 (ξn = 0) 2.90E-04 19.24 1.36E-04 19.69 1.10E-04 19.13 5.81E-06 19.24
Our Algorithm 3.4 (ξn = 0) 1.36E-04 19.15 7.41E-05 19.28 4.50E-05 19.13 1.20E-05 19.34
CDP Alg. 3.1 6.24E-04 41.80 5.49E-04 41.23 0.000313 40.91 0.000123 41.13
TYCR Alg. 3.1 6.22E-04 17.23 4.90E-04 17.42 0.000357 17.18 0.000182 17.39
TSI Alg. 3 6.24E-04 38.81 5.35E-04 38.74 0.000327 37.43 0.000205 39.67
RTDLD Alg. 4 1.38E-03 31.63 9.10E-04 30.28 0.000615 31.41 0.000269 33.42

En = ‖xn+1 − xn‖ to measure the error of the n-th step since we do not know the solution of the problem. The numerical 
results of all algorithms with four different initial values x0(t) = x1(t) are shown in Table 3.

Example 4.4. We consider an example where the mapping M is not monotonic in an infinite-dimensional Hilbert space. Let 
H = L2([0, 1]). Assume that the feasible set is a ball and its form is C = {x ∈ H : ‖x‖ ≤ 2}. Define a mapping h : C →R by 
h(m) = 1/(1 + ‖m‖2). It is easy to verify that the mappin h is bounded (h(m) ∈ [0.2, 1]) and Lh-Lipschitz continuous with 
Lh = 16/25. Recall that the Volterra integration operator V : H → H is given by

V (m)(t) =
t∫

0

m(s)ds, ∀t ∈ [0,1],m ∈ H .

Then V is bounded linear monotone (see [2, Exercise 20.12]) and its operator norm is ‖V ‖ = 2
π . Now, we define the mapping 

M : C → H as follows:

M(m)(t) = h(m)V (m)(t), ∀t ∈ [0,1],m ∈ C .

Note that M is not monotone. For example, take n = 1 and m = 2, then 〈Mn − Mm, n − m〉 = − 1
10 < 0. In fact, M is 

pseudomonotone. Indeed, for all m, n ∈ C , assume that 〈Mm, n − m〉 ≥ 0, then we show that 〈Mn, n − m〉 ≥ 0. Note that 
〈V m, n − m〉 ≥ 0 (since h(m) > 0.2). Therefore, we obtain

〈Mn,n − m〉 = h(n)〈V (n),n − m〉
≥ h(n)[〈V (n),n − m〉 − 〈V (m),n − m〉]
= h(n)〈V (n) − V (m),n − m〉 ≥ 0 .

Hence, M is pseudomonotone. Moreover, we have

‖Mm − Mn‖ = ‖h(m)V (m) − h(n)V (n)‖
≤ ‖h(m)V (m) − h(m)V (n)‖ + ‖h(m)V (n) − h(n)V (n)‖
≤ |h(m)|‖V (m) − V (n)‖ + ‖V (n)‖‖h(m) − h(n)‖
≤ (|h(m)|‖V ‖ + ‖V ‖‖n‖Lh)‖m − n‖
≤ 114

25π
‖m − n‖, ∀m,n ∈ C .

Thus, mapping M is L-Lipschitz continuous with L = 114/(25π).
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Table 4
Numerical results of all algorithms for Example 4.4.

Algorithms x0 = t2 + 1 x0 = e2t x0 = cos(3t) x0 = log(t)

En Time En Time En Time En Time

Our Algorithm 3.1 7.42E-05 46.90 1.15E-04 62.32 7.43E-05 208.40 2.56E-04 267.81
Our Algorithm 3.2 4.25E-05 48.77 5.69E-05 67.29 4.12E-05 224.38 1.42E-04 273.01
Our Algorithm 3.3 (ξn �= 0) 6.74E-05 45.99 1.45E-04 64.95 8.10E-05 228.36 2.37E-04 274.91
Our Algorithm 3.4 (ξn �= 0) 2.27E-05 47.18 3.19E-05 65.73 2.51E-05 255.71 8.21E-05 289.94
Our Algorithm 3.3 (ξn = 0) 2.87E-05 41.79 6.03E-05 54.63 3.46E-05 162.80 7.91E-05 246.71
Our Algorithm 3.4 (ξn = 0) 1.79E-05 43.65 2.57E-05 56.59 2.12E-05 179.93 5.51E-05 257.48
CDP Alg. 3.1 4.41E-04 41.54 2.95E-04 54.97 0.000433 141.55 0.001597 224.78
TYCR Alg. 3.1 2.22E-04 38.09 1.79E-04 50.39 0.000266 144.28 0.00073 234.08
TSI Alg. 3 4.08E-04 45.32 2.69E-04 56.87 0.00044 130.69 0.001575 259.97
RTDLD Alg. 4 3.74E-04 46.70 4.52E-04 60.02 0.000441 133.22 0.001158 242.93

The parameters of all algorithms are the same as in Example 4.3. The maximum number of iterations 50 is used as a 
common stopping criterion for all algorithms. Table 4 shows the numerical results of all algorithms with four starting points 
x0(t) = x1(t).

Remark 4.1. We have the following observations from Examples 4.1–4.4.

(i) From Fig. 1, Fig. 2, Table 1–4, it can be seen that the algorithms proposed in this paper are easy to implement and 
efficient. Moreover, they have a faster convergence speed than some known algorithms in the literature [46,44,25,4], 
and these results are not significantly related to the size of the dimension and the choice of initial values.

(ii) It is important to note that the variational inequality mapping M associated in Example 4.2 is uniformly continu-
ous rather than Lipschitz continuous. The proposed Algorithm 3.3 and Algorithm 3.4 and the algorithms presented 
in [14,30,46] will not be available in this case because their convergence conditions require that the operator M be 
Lipschitz continuous. However, the stated Algorithm 3.1 and Algorithm 3.2 can work well due to the fact that they 
replace Lipschitz continuity with uniform continuity. Moreover, the operator M in Example 4.4 is pseudomonotone 
but not monotone. The algorithms proposed in [33,29,35,36] for solving monotone variational inequalities will fail in 
the case that the operator M involved is pseudomonotone. Therefore, the four iterative schemes for solving variational 
inequalities with a pseudomonotone mapping presented in this paper have a broader scope of application.

(iii) Notice that Algorithm 3.1 and Algorithm 3.2 with an Armijo-type criterion take more execution time to reach the same 
stopping condition than Algorithm 3.3 and Algorithm 3.4 with a simple adaptive step size. This is due to the fact that 
the Armijo-type criterion may require multiple calculations of the values in operator M and multiple evaluations of the 
projections on the feasible set in each iteration. Furthermore, it should be highlighted that the proposed Algorithm 3.3
and Algorithm 3.4 apply a new non-monotonic step size rule. They have some advantages over the adaptive algorithms 
with a non-increasing step size sequence (i.e., the proposed Algorithm 3.3 (ξn = 0), Algorithm 3.4 (ξn = 0) and the 
Algorithm 3.1 offered in [46]).

5. Applications to optimal control problems

In this section, we use the proposed algorithms to solve the variational inequality that occurs in the optimal control prob-
lem. Assume that L2

([0, T ],Rm
)

represents the square-integrable Hilbert space with inner product 〈p, q〉 = ∫ T
0 〈p(t), q(t)〉 dt

and norm ‖p‖2 = √〈p, p〉. The optimal control problem is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈ V }, t ∈ [0, T ] , (5.1)

where V represents a set of feasible controls composed of m piecewise continuous functions. Its form is expressed as 
follows:

V = {
p(t) ∈ L2

([0, T ],Rm) : pi(t) ∈ [
p−

i , p+
i

]
, i = 1,2, . . . ,m

}
. (5.2)

In particular, the control p(t) may be a piecewise constant function (bang-bang type). The terminal objective function has 
the form

g(p) = �(x(T )) , (5.3)

where � is a convex and differentiable defined on the attainability set.
Assume that the trajectory x(t) ∈ L2([0, T ] satisfies the constraints of the linear differential equation system:

d
x(t) = Q (t)x(t) + W (t)p(t), 0 ≤ t ≤ T , x(0) = x0 , (5.4)
dt
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where Q (t) ∈Rn×n , W (t) ∈Rn×m are given continuous matrices for every t ∈ [0, T ]. By the solution of problem (5.1)–(5.4), 
we mean a control p∗(t) and a corresponding (optimal) trajectory x∗(t) such that its terminal value x∗(T ) minimizes ob-
jective function (5.3). From the Pontryagin maximum principle, there exists a function s∗ ∈ L2([0, T ] such that the triple 
(x∗, s∗, p∗) solves for a.e. t ∈ [0, T ] the system

d

dt
x∗(t) = Q (t)x∗(t) + W (t)p∗(t), x∗(0) = x0 , (5.5)

d

dt
s∗(t) = −Q (t)Ts∗(t), s∗(T ) = ∇�

(
x∗(T )

)
, (5.6)

0 ∈ W (t)Ts∗(t) + NV
(

p∗(t)
)

, (5.7)

where NV (p) is the normal cone to V at p defined by

NV (p) :=
{ ∅, if p /∈ V ;

{ι ∈ H : 〈ι,q − p〉 ≤ 0,∀q ∈ V }, if p ∈ V .

Denoting Gp(t) := W (t)Ts(t), Khoroshilova [20] showed that Gp is the gradient of the objective function g . Therefore, system 
(5.5)–(5.7) is reduced to the variational inequality problem

〈
Gp∗,q − p∗〉 ≥ 0, ∀q ∈ V . (5.8)

Recently, there are many approaches to solve the optimal control problem, see, for example, [47,20,24,17]. Note that our 
Algorithms 3.1–3.4 guarantee strong convergence and do not require the Lipschitz constant. Furthermore, the addition of 
inertial terms makes them converge faster.

For the convenience of numerical computation, we discretize the continuous functions. Given the mesh size h := T /N
where N is a natural number. We identify any discretized control pN := (p0, p1, . . . , pN−1) with its piece-wise constant 
extension:

pN(t) = pi, ∀t ∈ [ti, ti+1) , ti = ih, i = 0,1, . . . , N .

Furthermore, we identify the discretized state xN := (x0, x1, . . . , xN ) and co-state sN := (s0, s1, . . . , sN ). They have the form 
of piecewise linear interpolation:

xN(t) = xi + t − ti

h
(xi+1 − xi) , ∀t ∈ [ti, ti+1) , i = 0,1, . . . , N − 1 ,

and

sN(t) = si + ti − t

h
(si−1 − si) , ∀t ∈ (ti−1, ti] , i = N, N − 1, . . . ,1 .

We use the classical Euler discretization method to solve the systems of ODEs (5.5) and (5.6). The Euler discretization of 
the original system (5.1)–(5.4) is given by

minimize �N

(
xN , pN

)
subject to xN

i+1 = xN
i + h

[
Q (ti) xN

i + W (ti) pN
i

]
, xN(0) = x0 ,

sN
i = sN

i+1 + hQ (ti)
T sN

i+1, s(N) = ∇�(xN) ,

pN
i ∈ V .

It is well known that the Euler discretization has the error estimate O (h) [3]. This indicates that the difference between the 
discretized solution pN (t) and the original solution p∗(t) is proportional to the mesh size h. That is, there exists a constant 
K > 0 such that 

∥∥pN − p∗∥∥ ≤ Kh.
Next, we present several mathematical examples to illustrate the computational performance of all the algorithms. Our 

parameters are set as follows. Set ϕn = 10−4/(n + 1), σn = 0.9(1 − ϕn) and f (x) = 0.1x for all algorithms. Take inertial 
parameters θ = 10−2 and εn = 10−4/(n + 1)2 for the stated iterative Schemes 3.1–3.4. Choose η = 0.5 and χ1 = 0.4 for the 
suggested Algorithms 3.3, 3.4 and TYCR Alg. 3.1. The remaining parameters are the same as those set in Example 4.1. The 
initial controls p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping criterion is either Dn = ‖pn+1 − pn‖ ≤ 10−4, 
or maximum number of iterations which is set to 1000.
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Fig. 3. Numerical results for Example 5.1.

Example 5.1 (Control of a harmonic oscillator, see [23]).

minimize x2(3π)

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0,3π ] ,
x(0) = 0 ,

p(t) ∈ [−1,1] .
The exact optimal control of Example 5.1 is known:

p∗(t) =
{

1, if t ∈ [0,π/2) ∪ (3π/2,5π/2) ;
−1, if t ∈ (π/2,3π/2) ∪ (5π/2,3π ] .

Fig. 3 shows the approximate optimal control and the corresponding trajectories of Algorithm 3.3.

We now consider an example in which the terminal function is not linear.

Example 5.2 (Rocket car [24]).

minimize 0.5
(
(x1(5))2 + (x2(5))2

)
,

subject to ẋ1(t) = x2(t) ,

ẋ2(t) = p(t), ∀t ∈ [0,5] ,
x1(0) = 6, x2(0) = 1 ,

p(t) ∈ [−1,1] .
The exact optimal control of Example 5.2 is

p∗ =
{

1 if t ∈ (3.517,5] ;
−1 if t ∈ (0,3.517] .

The approximate optimal control and the corresponding trajectories of Algorithm 3.1 are plotted in Fig. 4.

Finally, the numerical performance of all the algorithms in Examples 5.1 and 5.2 are shown in Fig. 5 and Table 5.

Remark 5.1. We draw the following observations from Examples 5.1 and 5.2.

(i) The offered Algorithms 3.1, 3.2, 3.3 and 3.4 can be applied to solve optimal control problems, and they perform well 
when the terminal function is linear or nonlinear (cf. Figs. 3 and 4).
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Fig. 4. Numerical results for Example 5.2.

Fig. 5. Numerical results for Examples 5.1 and 5.2.

Table 5
Comparison of the number of iterations and execution time of all algorithms in Examples 5.1 and 5.2.

Algorithms Example 5.1 Example 5.2

Iter. Time (s) Dn Iter. Time (s) Dn

Our Algorithm 3.1 90 0.052416 1.00E-04 95 0.091772 9.96E-05
Our Algorithm 3.2 112 0.062005 9.93E-05 117 0.10633 9.96E-05
Our Algorithm 3.3 (ξn �= 0) 90 0.035136 1.00E-04 143 0.056123 9.96E-05
Our Algorithm 3.4 (ξn �= 0) 112 0.043454 9.93E-05 172 0.065834 9.84E-05
Our Algorithm 3.3 (ξn = 0) 150 0.074606 6.00E-05 1000 0.37886 0.002684
Our Algorithm 3.4 (ξn = 0) 168 0.081423 8.77E-05 1000 0.39503 0.002683
CDP Alg. 3.1 91 0.055566 9.89E-05 95 0.086908 9.96E-05
TYCR Alg. 3.1 168 0.07931 8.77E-05 1000 0.36277 0.002683
TSI Alg. 3 91 0.12166 9.89E-05 91 0.1255 9.98E-05
RTDLD Alg. 4 1000 0.47682 0.1625 1000 1.589 91.6813

(ii) As shown in Fig. 5 and Table 5, the algorithms proposed in this paper perform better when the terminal function is 
linear than when it is nonlinear, that is, they require less execution time and the number of termination iterations in the 
case where the terminal function is linear. Moreover, the stated iterative schemes outperform the existing methods in 
the literature, in other words, the presented algorithms converge faster than the others for the same stopping criterion.

6. Conclusions

In this paper, we introduced and investigated four new iterative methods with adaptive stepsizes for solving variational 
inequalities in real Hilbert spaces which are based on the subgradient extragradient method, the Mann-type method, the 
viscosity-type method and an inertial extrapolation strategy. The first two methods with an Armijo-type stepsize are de-
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signed to solve the variational inequality problem with a pseudomonotone and non-Lipschitz continuous operator. The latter 
two adaptive iterative schemes are used to discover the solution of the variational inequality problem with a pseudomono-
tone and Lipschitz continuous operator (the Lipschitz constant does not need to be known). Strong convergence theorems 
of the proposed algorithms are established under some suitable conditions. The advantages of the suggested iterative algo-
rithms over some related ones were confirmed by several numerical experiments.
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