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Abstract
We introduce two inertial extragradient algorithms for solving a bilevel pseu-
domonotone variational inequality problem in real Hilbert spaces. The advantages 
of the proposed algorithms are that they can work without the prior knowledge of 
the Lipschitz constant of the involving operator and only one projection onto the fea-
sible set is required. Strong convergence theorems of the suggested algorithms are 
obtained under suitable conditions. Finally, some numerical examples are provided 
to show the efficiency of the proposed algorithms.
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1  Introduction

Throughout this paper, C is assumed to be a convex and closed nonempty set in 
a Hilbert space H with the inner product ⟨⋅, ⋅⟩ and the norm ‖ ⋅ ‖ . One gives two 
single-valued mappings A ∶ H → H and F ∶ H → H on H. The classical variational 
inequality problem (VIP) is described as follows.

One denotes by VI(C,A) the set of all solutions of (VIP). In this paper, one inves-
tigates two numerical methods to find solutions of the following bilevel variational 
inequality problem (BVIP), which reads as follows.

Bilevel variational inequality problems, which have been extensively investigated by 
numerical methods, cover a number of nonlinear optimization problems, such as, 
fixed point problems, quasi-variational inequality problems, complementary prob-
lems, saddle problems and minimum norm problems, see, e.g., [1–5]. It is known 
that (VIP) is equivalent to the fixed point problem of finding a point x∗ in C such 
that x∗ = PC(x

∗ − �Ax∗) , where � is any positive real number and PC represents the 
metric projection from H onto C (see the definition in Sect. 2). Recently, a number 
of authors proposed and analyzed various methods to solve the (VIP). Two notable 
methods to solve (VIP) are the regularization method and the projection method. In 
this paper, we focus on the second approach involving projection methods. The sim-
plest and oldest projection method is the gradient projection method:

It is known that the iterative sequence defined by (1.1) converges to an ele-
ment of VI(C,A) when A is L-Lipschitz continuous and �-strongly monotone and 
� ∈

(
0, 2�∕L2

)
 . For avoiding the use of such assumptions, the extragradient method 

(EGM) [6] has been proposed for a monotone and L-Lipschitz continuous mapping 
A. The algorithm can be presented as follows:

where � ∈ (0, 1∕L) . The algorithm defined by (1.2) converges to an element of 
VI(C,A) provided that VI(C,A) is nonempty.

We see that the EGM needs to compute two projections onto the feasible set C 
and two evaluations of operator A in each iteration. Generally, this is expensive, and 
when operator A and feasible set C have a complicated structure, it will affect the 
efficiency of the method used. To overcome one of these shortcomings, there are 
two notable methods in the literature. The first one is the subgradient extragradient 
method (SEGM) [7], which can be considered as an improvement of the EGM. The 
algorithm reads as follows:

(VIP)Find y∗ ∈ C such that ⟨Ay∗, z − y∗⟩ ≥ 0, ∀z ∈ C .

(BVIP)Find x∗ ∈ VI(C,A) such that ⟨Fx∗, y − x∗⟩ ≥ 0, ∀y ∈ VI(C,A) .

(1.1)xn+1 = PC

(
xn − �Axn

)
.

(1.2)

{
yn = PC

(
xn − �Axn

)
,

xn+1 = PC

(
xn − �Ayn

)
,
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where � ∈ (0, 1∕L) . The main advantage of SEGM is that it replaces the second pro-
jection from the closed and convex subset C to the half-space Tn , and this projection 
can be calculated by an explicit formula.

The second one is called the Tseng’s extragradient method [8], which is 
described as follows:

It is worth noting that the algorithm defined in (1.4) only needs to calculate one 
projection onto the feasible set C and two evaluations of A in each step. Since sub-
gradient extragradient method and Tseng’s extragradient method only need to calcu-
late once projection onto the feasible set C in each step, they have received a lot of 
attention and research from scientific researchers, who have improved and extended 
in various ways to obtain the weak and strong convergence of these methods, see 
[9–11] and the references therein. However, the subgradient extragradient method 
and Tseng’s extragradient method need to know the Lipschitz constant of the opera-
tor A, which limits the applicability of the algorithms. To handle the case where the 
Lipschitz constant of the operator A is unknown, Yang et al. [12, 13] introduced the 
following self-adaptive step size strategy for (1.3) and (1.4), respectively.

where � ∈ (0, 1) and 𝜆0 > 0.
Note that computation of the metric projection PC onto C is not necessar-

ily easy. In order to reduce the complexity probably caused by the projec-
tion PC , Yamada [14] introduced the following hybrid steepest descent method 
for solving the variational inequality VI(C,F) . Recall that T is nonexpansive 
if ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H . Let Fix(T) = {x ∈ H ∶ Tx = x} denote the 
fixed point set of T. Assume that C is the fixed point set of a nonexpansive 
mapping T ∶ H → H , that is, C = {x ∈ H ∶ Tx = x} . Let F be a mapping of �
-strongly monotone and �-Lipschitzian on C. Fix a constant � ∈ (0, 2�∕�2) and 
a sequence {�n} of real numbers in (0, 1) satisfying the following conditions: (i) 

(1.3)

⎧
⎪⎨⎪⎩

yn = PC

�
xn − �Axn

�
,

Tn =
�
x ∈ H ∣ ⟨xn − �Axn − yn, x − yn⟩ ≤ 0

�
,

xn+1 = PTn

�
xn − �Ayn

�
,

(1.4)

{
yn = PC

(
xn − �Axn

)
,

xn+1 = yn − �
(
Ayn − Axn

)
.

𝜆n+1 =

⎧
⎪⎨⎪⎩
min

�𝜇
���xn − yn

��2 + ��xn+1 − yn
��2
�

2
�
Axn − Ayn, xn+1 − yn

� , 𝜆n

�
, if

�
Axn − Ayn, xn+1 − yn

�
> 0;

𝜆n, otherwise ,

𝜆n+1 =

⎧
⎪⎨⎪⎩

min

�
𝜇��xn − yn

��
��Axn − Ayn

��
, 𝜆n

�
, if Axn − Ayn ≠ 0;

𝜆n, otherwise ,
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limn→∞ �n = 0 , (ii) 
∑∞

n=1
�n = ∞ , (iii) limn→∞(�n − �n+1)∕�

2
n+1

= 0 . For any initial 
data x0 ∈ H , one can generate a sequence {xn} via the following algorithm:

Yamada proved that {xn} converges to the unique solution of the VI(C,F) in norm. In 
recent years, there are many papers dealing with the variational inequality problems 
by using the steepest descent method, see [15–17]. Note that the methods suggested 
in (1.2), (1.3) and (1.4) all achieve weak convergence in infinite-dimensional spaces. 
Examples in CT reconstruction and machine learning tell us that strong convergence 
is preferable to weak convergence in an infinite-dimensional space. Therefore, a 
natural question is how to modify the methods (1.3) and (1.4) such that they can 
achieve strong convergence in infinite-dimensional spaces. Recently, based on the 
subgradient extragradient algorithm  (1.3), the Tseng’s extragradient method  (1.4) 
and the hybrid steepest descent method [14], Thong et al. [18] proposed two new 
modified extragradient algorithms with strong convergence to solve the (BVIP) in a 
real Hilbert space.

To accelerate the convergence rate of the algorithms,  Polyak [19] considered the 
second-order dynamical system ẍ(t) + 𝛾 ẋ(t) + ∇f (x(t)) = 0 , where 𝛾 > 0 , ∇f  repre-
sents the gradient of f, ẋ(t) and ẍ(t) denote the first and second derivatives of x at 
t, respectively. This dynamic system is called the Heavy Ball with Friction (HBF). 
Next, we consider the discretization of this dynamic system (HBF), that is,

Through a direct calculation, we can get the following form:

where � = 1 − �h and � = h2 . This can be considered as the following two-step iter-
ation scheme:

This iteration is now called the inertial extrapolation algorithm, the term 
�
(
xn − xn−1

)
 is referred to as the extrapolation point. It is known that the Nesterov 

accelerated gradient method [20] improves the convergence rate of the gradient 
method from standard O

(
k−1

)
 down to O

(
k−2

)
 . However, it should be highlighted 

that inertial algorithms do not guarantee that the objective function is monotone. 
Recently, many authors constructed a large number of inertial algorithms for solving 
variational inequalities and optimization problems; see, e.g., [21–24] and the refer-
ences therein.

Motivated and inspired by the above works, we here introduce two new iner-
tial extragradient methods for solving (BVIP) in real Hilbert spaces. The algo-
rithms are inspired by the inertial method, the subgradient extragradient method, 

xn+1 = Txn − �n+1�F(Txn), n ≥ 0 .

xn+1 − 2xn + xn−1

h2
+ �

xn − xn−1

h
+ ∇f

(
xn
)
= 0, ∀n ≥ 0 .

xn+1 = xn + �
(
xn − xn−1

)
− �∇f

(
xn
)
, ∀n ≥ 0 ,

{
yn = xn + �

(
xn − xn−1

)
,

xn+1 = yn − �∇f
(
xn
)
, ∀n ≥ 0 .
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the Tseng’s extragradient method and the steepest descent method. We provide 
a choice of inertial parameter and two new stepsize rules which allow the algo-
rithms to work without previously knowing the Lipschitz constant of the map-
ping. Under some suitable conditions, we prove that the iterative sequence 
generated by the algorithms converges strongly to a solution of (BVIP). Some 
numerical experiments are carried out to support the theoretical results. Our 
numerical results show that the new algorithms have a better convergence speed 
than the existing ones presented in [18].

An outline of this paper is as follows. In Sect.  2, we recall some preliminary 
results and lemmas for further use. Section 3 analyzes the convergence of the pro-
posed algorithms. In Sect. 4, some numerical examples are presented to illustrate the 
numerical behavior of the proposed algorithms and compare them with other ones. 
Finally, a brief summary is given in Sect. 5.

2 � Preliminaries

The weak convergence and strong convergence of 
{
xn
}∞

n=1
 to x are represented by 

xn ⇀ x and xn → x , respectively. For any x, y ∈ H , the operator T ∶ H → H is said 
to be (i) L-Lipschitz continuous with L > 0 if ‖Tx − Ty‖ ≤ L‖x − y‖ (if L = 1 , then 
T is called nonexpansive); (ii) �-strongly monotone if there exists 𝛽 > 0 such that 
⟨Tx − Ty, x − y⟩ ≥ �‖x − y‖2 ; (iii) monotone if ⟨Tx − Ty, x − y⟩ ≥ 0 ; (iv) pseu-
domonotone if ⟨Tx, y − x⟩ ≥ 0 ⟹ ⟨Ty, y − x⟩ ≥ 0 ; (v) sequentially weakly continu-
ous if for each sequence 

{
xn
}
 converges weakly to x implies 

{
Txn

}
 converges weakly 

to Tx. For each x, y ∈ H , we have

For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx , such 
that PCx ∶= argmin{‖x − y‖, y ∈ C} . PC is called the metric projection of H onto C. 
It is known that PC is nonexpansive and PCx has the following basic properties:

•	 ⟨x − PCx, y − PCx⟩ ≤ 0, ∀y ∈ C;
•	 ‖PCx − PCy‖2 ≤ ⟨PCx − PCy, x − y⟩, ∀y ∈ H.

We give some special cases with simple analytical solutions. These give us some 
explicit formulas to find the projection of any point onto the half-space and the ball.

•	 The Euclidean projection of x0 onto a halfspace H−
a,b

= {x ∶ ⟨a, x⟩ ≤ b} is given 
by 

•	 The Euclidean projection of x0 onto an Euclidean ball B[c, r] = {x ∶ ‖x − c‖ ≤ r} 
is given by 

(2.1)‖x + y‖2 ≤ ‖x‖2 + 2⟨y, x + y⟩ .

PH−
a,b
(x) = x −max

�
[⟨a, x⟩ − b]

‖a‖2 , 0

�
a .
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It is well known that if F ∶ H → H is L-Lipschitz continuous and �-strongly 
monotone on H and if VI(C,A) is a nonempty, convex and closed subset of H, 
then the (BVIP) has a unique solution (see, e.g., [25]).

The following lemmas play an important role in our proofs.

Lemma 2.1  ([26]) Let A ∶ C → H be a continuous and pseudomonotone operator. 
Then, x∗ is a solution of VI(C,A) if and only if ⟨Ax, x − x∗⟩ ≥ 0, ∀x ∈ C.

Lemma 2.2  ([14]) Let 𝛾 > 0 and � ∈ (0, 1] . Let F ∶ H → H be a �-strongly 
monotone and L-Lipschitz continuous mapping with 0 < 𝛽 ≤ L . Associating 
with a nonexpansive mapping T ∶ H → H , define a mapping T� ∶ H → H by 
T�x = (I − ��F)(Tx),∀x ∈ H . Then, T� is a contraction provided 𝛾 <

2𝛽

L2
 , that is,

where � = 1 −
√

1 − �
(
2� − �L2

)
∈ (0, 1).

Lemma 2.3  ([27]) Let 
{
an
}
 be a sequence of nonnegative real numbers, 

{
�n
}
 be a 

sequence of real numbers in (0, 1) with 
∑∞

n=1
�n = ∞ , and 

{
bn
}
 be a sequence of 

real numbers. Assume that an+1 ≤
(
1 − �n

)
an + �nbn, ∀n ≥ 1. If lim supk→∞ bnk ≤ 0 

for every subsequence 
{
ank

}
 of 

{
an
}
 satisfying lim infk→∞ 

(
ank+1 − ank

)
≥ 0 , then 

limn→∞ an = 0.

3 � Main results

In this section, we introduce two new inertial extragradient methods for solving 
(BVIP) and analyze their convergence. First, we assume that our proposed meth-
ods satisfy the following conditions. 

C1	 The feasible set C is a nonempty, convex and closed set.
C2	 The solution set of the (VIP) is nonempty, that is VI(C,A) ≠ �.
C3	 The mapping A ∶ H → H is L1-Lipschitz continuous and pseudomonotone on H, 

and sequentially weakly continuous on C.
C4	 The mapping F ∶ H → H is L2-Lipschitz continuous and �-strongly monotone on 

H such that L2 ≥ � . In addition, we denote by p the unique solution of the (BVIP).
C5	 Let {�n} be a positive sequence such that limn→∞

�n

�n
= 0 , where {𝛼n} ⊂ (0, 1) 

satisfies the following conditions: 
∑∞

n=1
�n = ∞ and limn→∞ �n = 0.

PB[c,r](x) = c +
r

max{‖x − c‖, r}(x − c) .

‖T�x − T�y‖ ≤ (1 − ��)‖x − y‖, ∀x, y ∈ H ,
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Remark 3.1  Our methods are embedded with the inertial terms to ensure the strong 
convergence of the algorithms. Condition (C5), which is routine restriction, is easily 
satisfied. For example, one can take �n = 1∕n and �n = 1∕n2.

3.1 � The modified inertial subgradient extragradient algorithm

Now, we introduce the new modified inertial subgradient extragradient algorithm for 
solving (BVIP). Algorithm 3.1 reads as follows: 

Remark 3.2  It follows from (3.1) that

Indeed, we have �n‖xn − xn−1‖ ≤ �n for all n, which together with limn→∞
�n

�n
= 0 

implies that

Lemma 3.1  Assume that Conditions (C1)–(C3) hold. Then, the sequence {�n} gener-
ated by (3.2) is a nonincreasing sequence and

lim
n→∞

�n

�n
‖xn − xn−1‖ = 0 .

lim
n→∞

�n

�n
‖xn − xn−1‖ ≤ lim

n→∞

�n

�n
= 0 .
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Proof  We can easily get that �n+1 ≤ �n for all n ∈ ℕ from (3.2). Hence, 
{
�n
}
 is non-

increasing. On the other hand, we have L1‖wn − yn‖ ≥ ‖Awn − Ayn‖ , since A is L1
-Lipschitz continuous. Therefore, if ⟨Awn − Ayn, zn − yn⟩ > 0 , then

which together with (3.2) implies that

Thus, we conclude that limn→∞ �n exists since the sequence 
{
�n
}
 is nonincreasing 

and lower bounded. 	�  ◻

The following lemmas play an important role in the convergence proof of 
Algorithm 3.1

Lemma 3.2  Assume that Conditions (C1)–(C3) hold. Let 
{
zn
}
 be a sequence gener-

ated by Algorithm 3.1. Then, for all p ∈ VI(C,A) , 

Proof  First, from the definition of 
{
�n
}
 , one obtains

Indeed, if ⟨Awn − Ayn, zn − yn⟩ ≤ 0 , then (3.3) holds. Otherwise, by (3.2) we have

which implies that

Thus, the inequality (3.3) holds. Using  (3.3) and p ∈ VI(C,A) ⊂ C ⊂ Tn , one has

lim
n→∞

�n = � ≥ min
{
�1,

�

L1

}
.

�
‖wn − yn‖2 + ‖zn − yn‖2
2⟨Awn − Ayn, zn − yn⟩ ≥ �

‖wn − yn‖‖zn − yn‖
‖Awn − Ayn‖‖zn − yn‖ = �

‖wn − yn‖
‖Awn − Ayn‖ ≥

�

L1
,

�n ≥ min
{
�1,

�

L1

}
.

‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �

�n

�n+1

�
‖yn − wn‖2 −

�
1 − �

�n

�n+1

�
‖zn − yn‖2 .

(3.3)2⟨Awn − Ayn, zn − yn⟩ ≤ �

�n+1
‖wn − yn‖2 + �

�n+1
‖zn − yn‖2 , ∀n ∈ ℕ .

�n+1 = min

�
�
‖wn − yn‖2 + ‖zn − yn‖2
2⟨Awn − Ayn, zn − yn⟩ , �n

�
≤ �

‖wn − yn‖2 + ‖zn − yn‖2
2⟨Awn − Ayn, zn − yn⟩ ,

2⟨Awn − Ayn, zn − yn⟩ ≤ �

�n+1
‖wn − yn‖2 + �

�n+1
‖zn − yn‖2 .
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This implies that

Since p is the solution of (VIP), we have ⟨Ap, x − p⟩ ≥ 0 for all x ∈ C. By the pseu-
domontonicity of A on H, we get ⟨Ax, x − p⟩ ≥ 0 for all x ∈ C . Taking x = yn ∈ C , 
one infers that

Consequently,

Combining (3.4) and (3.5), one obtains

Since zn = PTn

(
wn − �nAyn

)
 and zn ∈ Tn , one has

which together with (3.3), we deduce that

From (3.6) and (3.7), we obtain

This completes the proof of the lemma. 	�  ◻

2��zn − p��2 =2���PTn

�
wn − �nAyn

�
− PTn

p
���
2

≤ 2⟨zn − p,wn − �nAyn − p⟩
=��zn − p��2 + ��wn − �nAyn − p��2 − ��zn − wn + �nAyn

��2
=��zn − p��2 + ��wn − p��2 + �2

n
��Ayn��2 − 2⟨wn − p, �nAyn⟩

− ��zn − wn
��2 − �2

n
��Ayn��2 − 2⟨zn − wn, �nAyn⟩

=��zn − p��2 + ��wn − p��2 − ��zn − wn
��2 − 2⟨zn − p, �nAyn⟩ .

(3.4)‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2⟨zn − p, �nAyn⟩ .

⟨Ayn, p − yn⟩ ≤ 0 .

(3.5)⟨Ayn, p − zn⟩ = ⟨Ayn, p − yn⟩ + ⟨Ayn, yn − zn⟩ ≤ ⟨Ayn, yn − zn⟩ .

(3.6)

‖zn − p‖2 ≤‖wn − p‖2 − ‖zn − wn‖2 + 2�n⟨Ayn, yn − zn⟩
=‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2 − 2⟨zn − yn, yn − wn⟩
+ 2�n⟨Ayn, yn − zn⟩

=‖wn − p‖2 − ‖zn − yn‖2 − ‖yn − wn‖2 + 2⟨zn − yn,wn − �nAyn − yn⟩ .

(3.7)
⟨wn − �nAyn − yn, zn − yn⟩
= ⟨wn − �nAwn − yn, zn − yn⟩ + �n⟨Awn − Ayn, zn − yn⟩
≤ �n⟨Awn − Ayn, zn − yn⟩ ,

2⟨wn − �nAyn − yn, zn − yn⟩ ≤ �
�n

�n+1
‖wn − yn‖2 + �

�n

�n+1
‖zn − yn‖2 .

‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �

�n

�n+1

�
‖yn − wn‖2 −

�
1 − �

�n

�n+1

�
‖zn − yn‖2 .
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Lemma 3.3  [28, Lemma 3.3] Assume that Conditions (C1)–(C3) hold. Let 
{
wn

}
 be a 

sequence generated by Algorithm 3.1. If there exists a subsequence 
{
wnk

}
 converges  

weakly to z ∈ H and limk→∞ ‖wnk
− ynk‖ = 0 , then z ∈ VI(C,A).

Theorem 3.1  Assume that Conditions (C1)–(C5) hold. Then, the sequence 
{
xn
}
 gen-

erated by Algorithm 3.1 converges to the unique solution of the (BVIP) in norm.

Proof  We divide the proof into four steps.

Setp 1. The sequence 
{
xn
}
 is bounded. Indeed, from 

limn→∞

(
1 − 𝜇

𝜆n

𝜆n+1

)
= 1 − 𝜇 > 0 , we know that there exists n0 ∈ ℕ such that

Combining Lemma 3.2 and (3.8), one sees that

On the other hand, by the definition of wn , we can write

According to Remark 3.2 we have �n
�n
‖xn − xn−1‖ → 0 . Therefore, there exists a con-

stant M1 > 0 such that

Combining (3.9), (3.10) and (3.11), we obtain

Using Lemma 2.2 and (3.9), it follows that

(3.8)1 − 𝜇
𝜆n

𝜆n+1
> 0, ∀n ≥ n0 .

(3.9)‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ n0 .

(3.10)‖wn − p‖ ≤ �n ⋅
�n

�n
‖xn − xn−1‖ + ‖xn − p‖.

(3.11)
�n

�n
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1 .

(3.12)‖zn − p‖ ≤ ‖wn − p‖ ≤ ‖xn − p‖ + �nM1, ∀n ≥ n0 .

(3.13)

‖xn+1 − p‖ = ‖�I − �n�F
�
zn −

�
I − �n�F

�
p − �n�Fp‖

≤
�
1 − �n�

�‖zn − p‖ + �n�‖Fp‖
≤
�
1 − �n�

�‖xn − p‖ + �n� ⋅
M1

�
+ �n� ⋅

�

�
‖Fp‖

≤ max
�M1 + �‖Fp‖

�
, ‖xn − p‖

�

≤ ⋯ ≤ max
�M1 + �‖Fp‖

�
, ‖xn0 − p‖

�
, ∀n ≥ n0 ,
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where � = 1 −
√

1 − �
(
2� − �L2

2

)
∈ (0, 1) . That is, this implies that 

{
xn
}
 is 

bounded. We get that the sequences 
{
zn
}
 and 

{
wn

}
 are also bounded.

Step 2.

for some M4 > 0 . Indeed, using (2.1), one has

for some M2 > 0 . In the light of Lemma 3.2, we obtain

It follows from (3.12) that

for some M3 > 0 . Combining (3.15) and (3.16), we get

which yields

where M4 ∶= M2 +M3.

Step 3.

�
1 − �

�n

�n+1

�
‖yn − wn‖2 +

�
1 − �

�n

�n+1

�
‖zn − yn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + �nM4, ∀n ≥ n0

(3.14)

‖xn+1 − p‖2 = ‖�I − �n�F
�
zn −

�
I − �n�F

�
p − �n�Fp‖2

≤
�
1 − �n�

�2‖zn − p‖2 + 2�n�
�
Fp, p − xn+1

�

≤ ‖zn − p‖2 + �nM2

(3.15)

‖xn+1 − p‖2 ≤ ‖wn − p‖2 −
�
1 − �

�n

�n+1

�
‖yn − wn‖2 −

�
1 − �

�n

�n+1

�
‖zn − yn‖2 + �nM2 .

(3.16)
‖wn − p‖2 ≤ �‖xn − p‖ + �nM1

�2
= ‖xn − p‖2 + �n

�
2M1‖xn − p‖ + �nM

2
1

�

≤ ‖xn − p‖2 + �nM3

‖xn+1 − p‖2 ≤‖xn − p‖2 + �nM3 −
�
1 − �

�n

�n+1

�
‖wn − yn‖2

−
�
1 − �

�n

�n+1

�
‖zn − yn‖2 + �nM2 ,

�
1 − �

�n

�n+1

�
‖yn − wn‖2 +

�
1 − �

�n

�n+1

�
‖zn − yn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + �nM4 ,
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for some M > 0 . Indeed, we have

Combining (3.9) and (3.14), we get

Substituting (3.17) into (3.18), we obtain

where M ∶= supn∈ℕ
�‖xn − p‖, 𝜃‖xn − xn−1‖

�
> 0.

Step 4. 
�‖xn − p‖2� converges to zero. Indeed, by Lemma 2.3, it suffices to show that 

lim supk→∞

⟨
Fp, p − xnk+1

⟩
≤ 0 for every subsequence 

�‖xnk − p‖� of 
�‖xn − p‖� 

satisfying

For this purpose, one assumes that 
�‖xnk − p‖� is a subsequence of 

�‖xn − p‖� such 
that lim infk→∞

�‖xnk+1 − p‖ − ‖xnk − p‖� ≥ 0 . By Step 2, one has

which implies that

‖xn+1 − p‖2 ≤ �
1 − �n�

�‖xn − p‖2

+ �n�

�2�
�

�
Fp, p − xn+1

�
+

3M�n

�n�
‖xn − xn−1‖

�
, ∀n ≥ n0

(3.17)‖wn − p‖2 ≤ ‖xn − p‖2 + 2�n‖xn − p‖‖xn − xn−1‖ + �2
n
‖xn − xn−1‖2 .

(3.18)
‖xn+1 − p‖2 ≤ �

1 − �n�
�‖wn − p‖2 + 2�n�

�
Fp, p − xn+1

�
, ∀n ≥ n0 .

‖xn+1 − p‖2 ≤ �
1 − �n�

�‖xn − p‖2 + 2�n�
�
Fp, p − xn+1

�

+ �n‖xn − xn−1‖
�
2‖xn − p‖ + �‖xn − xn−1‖

�

≤
�
1 − �n�

�‖xn − p‖2

+ �n�

�2�
�

�
Fp, p − xn+1

�
+

3M�n

�n�
‖xn − xn−1‖

�
, ∀n ≥ n0 ,

lim inf
k→∞

�‖xnk+1 − p‖ − ‖xnk − p‖� ≥ 0 .

lim sup
k→∞

��
1 − �

�nk

�nk+1

�
‖ynk − wnk

‖2 +
�
1 − �

�nk

�nk+1

�
‖znk − ynk‖2

�

≤ lim sup
k→∞

�
�nkM4 + ‖xnk − p‖2 − ‖xnk+1 − p‖2�

≤ lim sup
k→∞

�nkM4 + lim sup
k→∞

�‖xnk − p‖2 − ‖xnk+1 − p‖2�

= − lim inf
k→∞

�‖xnk+1 − p‖2 − ‖xnk − p‖2�

≤ 0 ,

lim
k→∞

‖ynk − wnk
‖ = 0 and lim

k→∞
‖znk − ynk‖ = 0 .
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Therefore

Moreover, we can show that

and

Combining (3.19), (3.20) and (3.21), we obtain

Since the sequence 
{
xnk

}
 is bounded, there exists a subsequence 

{
xnkj

}
 of 

{
xnk

}
, 

which converges weakly to some z ∈ H, such that

By (3.21), we get wnk
⇀ z as k → ∞ . This together with limk→∞ ‖wnk

− ynk‖ = 0 and 
Lemma 3.3 yields z ∈ VI(C,A) . From (3.23) and the assumption that p is the unique 
solution of the (BVIP), we get

Combining (3.22) and (3.24), we obtain

From limn→∞
�n

�n
‖xn − xn−1‖ = 0 and (3.25), we get

Hence, combining Step 3, Condition (C5) and (3.26), in the light of Lemma 2.3, one 
concludes that limn→∞ ‖xn − p‖ = 0 . This completes the proof. 	�  ◻

Now applying Theorem  3.1 with F(x) = x − x0 , where x0 ∈ H . It is easy to 
check that the mapping F ∶ H → H is 1-Lipschitz continuous and 1-strongly 
monotone on H. In this case, by choosing � = 1 , the calculation of xn+1 in Algo-
rithm 3.1 becomes as follows:

(3.19)lim
k→∞

‖znk − wnk
‖ = 0 .

(3.20)‖xnk+1 − znk‖ = �nk�‖Fznk‖ → 0 as n → ∞ ,

(3.21)

‖xnk − wnk
‖ = �nk‖xnk − xnk−1‖ = �nk ⋅

�nk

�nk

‖xnk − xnk−1‖ → 0 as n → ∞ .

(3.22)
‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖ + ‖znk − wnk

‖ + ‖wnk
− xnk‖ → 0 as n → ∞ .

(3.23)lim sup
k→∞

�
Fp, p − xnk

�
= lim

j→∞

�
Fp, p − xnkj

�
= ⟨Fp, p − z⟩ .

(3.24)lim sup
k→∞

�
Fp, p − xnk

�
= ⟨Fp, p − z⟩ ≤ 0 .

(3.25)
lim sup
k→∞

�
Fp, p − xnk+1

�
= lim sup

k→∞

�
Fp, p − xnk

�
= ⟨Fp, p − z⟩

≤ 0 .

(3.26)lim sup
k→∞

�2�
�

�
Fp, p − xnk+1

�
+

3M�nk

�nk�
‖xnk − xnk−1‖

�
≤ 0 .
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Therefore, in this special case, the calculation of xn+1 does not include the mapping 
F. The algorithm in Corollary 3.1 only contains the variational inequality mapping 
A, so this algorithm can solve the variational inequality problem. A similar state-
ment applies to Corollary 3.2.

Corollary 3.1  Let A ∶ H → H be L1-Lipschitz continuous and pseudomonotone on 
H. Take 𝜃 > 0 , 𝜆1 > 0 , � ∈ (0, 1) . Assume that 

{
�n
}
 is a real sequence in (0, 1) such 

that limn→∞ �n = 0 and 
∑∞

n=0
�n = ∞ . Let x0, x1 ∈ H and 

{
xn
}
 be defined by

Then the iterative sequence 
{
xn
}
 created by (3.27) converges to p ∈ VI(C,A) in 

norm, where p = PVI(C,A)x0.

3.2 � The modified inertial Tseng’s extragradient algorithm

In this subsection, we introduce a new modified inertial Tseng’s extragradient algo-
rithm for solving (BVIP). Our algorithm is described in Algorithm 3.2. 

xn+1 = zn − �n�Fzn = zn − �n(zn − x0) = �nx0 +
(
1 − �n

)
zn .

(3.27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + 𝜃n
�
xn − xn−1

�
,

where 𝜃n =

�
min

� 𝜖n

‖xn−xn−1‖ , 𝜃
�
, if xn ≠ xn−1,

𝜃, otherwise .

yn = PC

�
wn − 𝜆nAwn

�
,

zn = PTn

�
wn − 𝜆nAyn

�
,

where Tn ∶=
�
x ∈ H ∣ ⟨wn − 𝜆nAwn − yn, x − yn⟩ ≤ 0

�
,

xn+1 = 𝛼nx0 +
�
1 − 𝛼n

�
zn ,

𝜆n+1 =

�
min

�
𝜇

‖wn−yn‖2+‖zn−yn‖2
2⟨Awn−Ayn,zn−yn⟩ , 𝜆n

�
, if ⟨Awn − Ayn, zn − yn⟩ > 0,

𝜆n, otherwise.
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Lemma 3.4  The sequence 
{
�n
}
 generated by (3.28) is a nonincreasing sequence and

Proof  It follows from (3.28) that �n+1 ≤ �n for all n ∈ ℕ . Hence, 
{
�n
}
 is nonincreas-

ing. On the other hand, we get L1‖wn − yn‖ ≥ ‖Awn − Ayn‖ since A is L1-Lipschitz 
continuous, consequently

which together with (3.28) implies that

Therefore, limn→∞ �n = � ≥ min
{
�1,

�

L1

}
 since the sequence {�n} is nonincreasing 

and lower bounded. 	�  ◻

The following lemma is very helpful for analyzing the convergence of Algorithm 3.2.

lim
n→∞

�n = � ≥ min
{
�1,

�

L1

}
.

�
‖wn − yn‖

‖Awn − Ayn‖ ≥
�

L1
if Awn ≠ Ayn ,

�n ≥ min
{
�1,

�

L1

}
.
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Lemma 3.5  Assume that Conditions (C1)–(C3) hold. Let 
{
zn
}
 be a sequence gener-

ated by Algorithm 3.2. Then, 

Proof  First, using the definition of 
{
�n
}
 , one obtains

Indeed, if Awn = Ayn then (3.29) holds. Otherwise, it implies from (3.28) that

Consequently,

Therefore, the inequality (3.29) holds when Awn = Ayn and Awn ≠ Ayn . By the defi-
nition of zn , one sees that

Since yn = PC

(
wn − �nAwn

)
 , using the property of projection, we obtain

or equivalently

From (3.29), (3.30) and (3.31), we have

‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2, ∀p ∈ VI(C,A) .

(3.29)‖Awn − Ayn‖ ≤
�

�n+1
‖wn − yn‖, ∀n .

�n+1 = min

�
�‖wn − yn‖
‖Awn − Ayn‖ , �n

�
≤

�‖wn − yn‖
‖Awn − Ayn‖ .

‖Awn − Ayn‖ ≤
�

�n+1
‖wn − yn‖ .

(3.30)

‖zn − p‖2 =‖yn − p‖2 + �2
n
‖Ayn − Awn‖2 − 2�n⟨yn − p,Ayn − Awn⟩

=‖wn − p‖2 + ‖yn − wn‖2 − 2⟨yn − wn, yn − wn⟩ + 2⟨yn − wn, yn − p⟩
+ �2

n
‖Ayn − Awn‖2 − 2�n⟨yn − p,Ayn − Awn⟩

=‖wn − p‖2 − ‖yn − wn‖2 + 2⟨yn − wn, yn − p⟩
+ �2

n
‖Ayn − Awn‖2 − 2�n⟨yn − p,Ayn − Awn⟩ .

⟨yn − wn + �nAwn, yn − p⟩ ≤ 0 ,

(3.31)⟨yn − wn, yn − p⟩ ≤ −�n⟨Awn, yn − p⟩ .

(3.32)

‖zn − p‖2 ≤‖wn − p‖2 − ‖yn − wn‖2 − 2�n⟨Awn, yn − p⟩ + �2
�2
n

�2
n+1

‖wn − yn‖2

− 2�n⟨yn − p,Ayn − Awn⟩

≤‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 − 2�n⟨yn − p,Ayn⟩ .
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Since p ∈ VI(C,A), we have ⟨Ap, yn − p⟩ ≥ 0 . From the pseudomonotonicity of A, 
we get

Combining (3.32) and (3.33), we obtain

The proof of the lemma is now complete. 	�  ◻

Theorem 3.2  Assume that Conditions(C1)–(C5) hold. Then, the sequence 
{
xn
}
 gen-

erated by Algorithm 3.2 converges to the unique solution of the (BVIP) in norm.

Proof  Step 1. The sequence 
{
xn
}
 is bounded. Indeed, according to Lemma 3.4, we 

have limn→∞

(
1 − 𝜇2 𝜆2

n

𝜆2
n+1

)
= 1 − 𝜇2 > 0 . Thus, there exists n0 ∈ ℕ such that

Combining Lemma 3.5 and (3.34), we obtain

As the same as (3.10)–(3.13), we have 
{
xn
}
 is bounded. We also get 

{
zn
}
 and 

{
wn

}
 

are bounded.

Step 2.

for some M4 > 0 . Indeed, from (3.14) and Lemma 3.5, we have

for some M2 > 0 . By (3.16), we obtain

where M4 ∶= M2 +M3 , both M2 and M3 are defined in Step 2 of Theorem 3.1.

(3.33)⟨Ayn, yn − p⟩ ≥ 0 .

‖zn − p‖2 ≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 .

(3.34)1 − 𝜇2
𝜆2
n

𝜆2
n+1

> 0, ∀n ≥ n0 .

‖zn − p‖ ≤ ‖wn − p‖, ∀n ≥ n0 .

(3.35)
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + �nM4

(3.36)

‖xn+1 − p‖2 = ‖zn − �n�Fzn − p‖2

≤ ‖wn − p‖2 −
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 + �nM2

(3.37)
�
1 − �2

�2
n

�2
n+1

�
‖wn − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + �nM4 ,
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Step 3.

for some M > 0 . Using (3.17) and (3.18), we can get the desired result immediately.

Step 4. 
�‖xn − p‖2� converges to zero. According to Step  4 in Theorem  3.1, 

we suppose that 
�‖xnk − p‖� is a subsequence of 

�‖xn − p‖� satisfying 
lim infk→∞

�‖xnk+1 − p‖ − ‖xnk − p‖� ≥ 0 . From Step  2 and Condition  (C5), one 
obtains

By (3.34), it follows that limk→∞ ‖ynk − wnk
‖ = 0 . According to the definition of zn 

in Algorithm 3.2 and (3.29), we have

which implies that limk→∞ ‖ynk − znk‖ = 0 . Using the same facts as (3.19)–(3.25), 
we obtain

Therefore, using Step 3, Condition (C5) and (3.38), by means of Lemma 2.3, one 
concludes that limn→∞ ‖xn − p‖ = 0 . The proof is completed. 	� ◻

Now applying Theorem 3.2 with F(x) = x − f (x) , where f ∶ H → H is a contrac-
tion mapping with constant � ∈ [0, 1) . It is easy to verify that the mapping F ∶ H → H 
is (1 + �)-Lipschitz continuous and (1 − �)-strongly monotone on H. In this case, by 
choosing � = 1 , we obtain the following result.

Corollary 3.2  Let A ∶ H → H be L1-Lipschitz continuous and pseudomono-
tone on H and f ∶ H → H be a �-contraction mapping with � ∈ [0,

√
5 − 2) . Set 

𝜃 > 0 , 𝜆1 > 0 , � ∈ (0, 1).  Assume that 
{
�n
}
 is a real sequence in (0,  1) such that 

limn→∞ �n = 0 and 
∑∞

n=0
�n = ∞ . Let x0, x1 ∈ H and 

{
xn
}
 be defined by

‖xn+1 − p‖2 ≤ �
1 − �n�

�‖xn − p‖2 + �n�

�2�
�

�
Fp, p − xn+1

�
+

3M�n

�n�
‖xn − xn−1‖

�

lim sup
k→∞

�
1 − �2

�2
nk

�2
nk+1

�
‖wnk

− ynk‖2 ≤ lim sup
k→∞

{‖xnk − p‖2 − ‖xnk+1 − p‖2 + �nkM4}

≤ 0 .

lim
k→∞

‖znk − ynk‖ ≤ lim
k→∞

�nk‖Aynk − Awnk
‖ ≤ lim

k→∞
�

�nk

�nk+1
‖wnk

− ynk‖ = 0 ,

(3.38)lim sup
k→∞

�2�
�

�
Fp, p − xnk+1

�
+

3M�nk

�nk�
‖xnk − xnk−1‖

�
≤ 0 .
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Then the iterative sequence 
{
xn
}
 generated by (3.39) converges to p ∈ VI(C,A) in 

norm, where p = PVI(C,A)◦f (p).

4 � Numerical examples

In this section, we provide some numerical examples to show the numerical 
behavior of our proposed algorithms and compare them with Algorithm  1 and 
Algorithm 2 in [18]. We use the FOM Solver [29] to effectively calculate the pro-
jections onto C and Tn . All the programs were implemented in MATLAB 2018a 
on a Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz computer with RAM 8.00 
GB.

Example 4.1  Consider a mapping F ∶ ℝ
m
→ ℝ

m (m = 5) of the form F(x) = Mx + q , 
where

and B is an m × m matrix with their entries being generated in (0, 1) , D is an m × m 
skew-symmetric matrix with their entries being generated in (−1, 1) , K is an m × m 
diagonal matrix, whose diagonal entries are positive in (0, 1) (so M is positive sem-
idefinite), q ∈ ℝ

m is a vector with entries being generated in (0, 1) . It is clear that 
F is L2-Lipschitz continuous and �-strongly monotone with L2 = max{eig(M)} , 
� = min{eig(M)} , where eig(M) represents all eigenvalues of M.

Next, we consider the following fractional programming problem:

where

(3.39)

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wn = xn + �n
�
xn − xn−1

�
,

where �n =

�
min

� �n

‖xn−xn−1‖ , �
�
, if xn ≠ xn−1,

�, otherwise .

yn = PC

�
wn − �nAwn

�
,

zn = yn − �n
�
Ayn − Awn

�
,

xn+1 =
�
1 − �n

�
zn + �nf

�
zn
�
,

�n+1 =

�
min

�
�‖wn−yn‖
‖Awn−Ayn‖ , �n

�
, if Awn − Ayn ≠ 0,

�n, otherwise.

M = BB� + D + K ,

min f (x) =
x�Qx + a�x + a0

b�x + b0
,

subject to x ∈ C ∶=
{
x ∈ ℝ

5 ∶ b�x + b0 > 0
}
,
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It is easy to check that Q is symmetric and positive definite in ℝ5 and hence f is 
pseudo-convex on C =

{
x ∈ ℝ

5 ∶ b�x + b0 > 0
}
 . Let

It is known that A is pseudomonotone and Lipschitz continuous.
We compare our proposed Algorithm 3.1 and Algorithm 3.2 with Algorithm 1 

and Algorithm 2 proposed by Thong et al. [18]. Our parameters are set as follows. In 
all algorithms, set � = 0.1 , �n = 1∕(n + 1) , � = 1.7�∕(L2

2
) , �1 = 0.6 . Take � = 0.4 , 

�n = 100∕(n + 1)2 in Algorithm  3.1 and Algorithm  3.2. We use Dn = ‖xn − xn−1‖ 
to measure the error of the n-th iteration since we do not know the exact solution to 
the problem, and the maximum iteration of 200 as the stopping criterion. Numerical 
results are reported in Figs. 1, 2.

Example 4.2  We consider an example that appears in the infinite dimensional 
Hilbert space H = L2[0, 1] with the inner product ⟨x, y⟩ = ∫ 1

0
x(t)y(t)dt and 

the induced norm ‖x‖ = (∫ 1

0
x(t)2dt)1∕2 . Let r, R be two positive real num-

bers such that R∕(k + 1) < r∕k < r < R for some k > 1 . Take the feasible set 
C = {x ∈ H ∶ ‖x‖ ≤ r} and the operator A ∶ H → H given by

Note that A is not monotone. Taking a particular pair (x̃, ỹ) = (x̃, kx̃) and choosing 
x̃ ∈ C such that R∕(k + 1) < ‖x̃‖ < r∕k , one can see that k‖x̃‖ ∈ C . By a straight-
forward computation, we have

Hence, the operator A is not monotone on C. Next we show that A is pseu-
domonotone. Indeed, assume ⟨A(x), y − x⟩ ≥ 0 for all x, y ∈ C , that is, 
⟨(R − ‖x‖)x, y − x⟩ ≥ 0 . Since ‖x‖ < R , we have ⟨x, y − x⟩ ≥ 0 . Therefore,

Let F ∶ H → H be an operator defined by (Fx)(t) = 0.5x(t), t ∈ [0, 1] . It is easy to see 
that F is 0.5-strongly monotone and 0.5-Lipschitz continuous. For the experiment, 

Q =

⎡
⎢⎢⎢⎢⎣

5 − 1 2 0 2

−1 6 − 1 3 0

2 − 1 3 0 1

0 3 0 5 0

2 0 1 0 4

⎤
⎥⎥⎥⎥⎦
, a =

⎡
⎢⎢⎢⎢⎣

1

2

−1

−2

1

⎤
⎥⎥⎥⎥⎦
, b =

⎡
⎢⎢⎢⎢⎣

1

0

−1

0

1

⎤
⎥⎥⎥⎥⎦
, a0 = −2, b0 = 20 .

A(x) ∶= ∇f (x) =

(
b�x + b0

)
(2Qx + a) − b

(
x�Qx + a�x + a0

)
(
b�x + b0

)2 .

A(x) = (R − ‖x‖)x, ∀x ∈ H .

⟨A(x̃) − A(ỹ), x̃ − ỹ⟩ = (1 − k)2‖x̃‖2(R − (1 + k)‖x̃‖) < 0 .

⟨A(y), y − x⟩ = ⟨(R − ‖y‖)y, y − x⟩
≥ (R − ‖y‖)(⟨y, y − x⟩ − ⟨x, y − x⟩)
= (R − ‖y‖)‖y − x‖2 ≥ 0 .
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we choose R = 1.5 , r = 1 , k = 1.1 . The solution of this problem is x∗(t) = 0 . Our 
parameters are the same as in Example  4.1. The maximum iteration of 50 as the 
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Our Alg. 3.1
Thong et al. Alg. 1
Our Alg. 3.2
Thong et al. Alg. 2

Fig. 1   Comparison of the number of iterations of all algorithms for Example 4.1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
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Thong et al. Alg. 2

Fig. 2   Comparison of the elapsed time of all algorithms for Example 4.1
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stopping criterion. Figs. 3, 4 show the behaviors of Dn =
‖‖xn(t) − x∗(t)‖‖ generated 

by all the algorithms with the starting points x0(t) = x1(t) = t2 . Moreover, we adjust  
the inertial parameters of the proposed algorithms to � = 0.2 and keep   the other 
parameters the same as in Example 4.1. Figs. 5, 6 show the numerical behavior of all 
algorithms in this case.

Remark 4.1  We have the following comments on Examples 4.1 and 4.2.

•	 As shown in Figs. 1,2, 3, 4, 5, 6, in terms of the number of iterations and exe-
cution time, we can intuitively see that our proposed Algorithm 3.1 and Algo-
rithm  3.2 are superior to the Algorithm  1 and the Algorithm  2 proposed by 
Thong et al. [18], respectively. It is worth noting that, due to the large inertial 
parameters we choose, our algorithms have higher accuracy and there are also 
oscillations. How to reduce oscillation is the next issue we need to consider in 
the future.

•	 The two algorithms proposed in this paper are semi-adaptive. That is, they can 
work without knowing the prior information of the Lipschitz constant of map-
ping A. However, in order to guarantee the strong convergence of the algorithms, 
we need to calculate xn+1 = zn − �n�Fzn , where 0 < 𝛾 <

2𝛽

L2
2

 , which requires the 
restriction that parameters � and L2 must be known.
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Thong et al. Alg. 1
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Thong et al. Alg. 2

Fig. 3   Comparison of the number of iterations of all algorithms for Example 4.2 (inertial � = 0.4)
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Fig. 4   Comparison of the elapsed time of all algorithms for Example 4.2 (inertial � = 0.4)
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Fig. 5   Comparison of the number of iterations of all algorithms for Example 4.2 (inertial � = 0.2)
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5 � Conclusions

In this paper, we introduced two new extragradient algorithms to solve bilevel 
variational inequality problems in a Hilbert space. The algorithms were con-
structed with the aid of the inertial technique, the subgradient extragradient 
method, the Tseng’s extragradient method and the steepest descent method. Only 
one projection onto the feasible set is needed at each iteration. Two new stepsize 
rules are used in our algorithms, which makes them easier to work without know-
ing the knowledge of the Lipschitz constant of the involved mapping. Two strong 
convergence theorems of the iterative sequences generated by the algorithms were 
proved. The theoretical results are also confirmed by some numerical examples.
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