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Abstract
In this paper, an inertial extragradient algorithm with a new non-monotonic stepsize is pro-
posed to solve the bilevel pseudomonotone variational inequality problem in real Hilbert
spaces. The advantages of the suggested iterative algorithm are that only one projection onto
the feasible set needs to be performed in each iteration and the prior knowledge of the Lips-
chitz constant of the mapping involved does not require to be known. The strong convergence
theorem of the suggested algorithm is established under some suitable conditions. Numerical
experiments are reported to illustrate the advantages and efficiency of the presented algorithm
over the existing related ones.

Keywords Bilevel variational inequality problem · Inertial extragradient algorithm ·
Projection and contraction method · Hybrid steepest descent method · Pseudomonotone
mapping

Mathematics Subject Classification 47J20 · 47J25 · 47J30 · 68W10 · 65K15

1 Introduction

Variational inequality problems are important mathematical tools in many fields and have
been rapidly developed in theories, algorithms and applications; see, e.g., [1–6]. Let us review
the classical variational inequality problem (in short, VIP), which reads as follows:

find y∗ ∈ C such that
〈
Ay∗, z − y∗〉 ≥ 0, ∀z ∈ C, (VIP)
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where C is a nonempty closed convex subset of a real Hilbert space H with inner product
〈·, ·〉 and induced norm ‖ · ‖, and A : H → H is a mapping. We use VI(C, A) to represent
the solution set of the (VIP). Many researchers have proposed various types of numerical
methods to solve the (VIP); see, e.g., [7–15] and the references therein. In this paper, we
focus on finding a solution to the following variational inequality problem with a variational
inequality constraint defined on a nonempty closed convex subset C . The problem is now
referred to as the bilevel variational inequality problem (in short, BVIP) and is described as
follows:

find x∗ ∈ VI(C, A) such that
〈
Fx∗, y − x∗〉 ≥ 0, ∀y ∈ VI(C, A), (BVIP)

where F : H → H is a mapping. It is known that the (BVIP) involves various types
of mathematical applications with some constraints, including, such as equilibrium prob-
lems, variational inequalities, bilevel linear programs, minimum-norm solution problems and
bilevel optimization problems. The purpose of this paper is to develop an efficient numerical
method to solve the (BVIP) in an infinite-dimensional Hilbert space.

Another problem related to (BVIP) is the following one introduced by Yamada [16]:

find x∗ ∈ Fix(T ) such that
〈
Fx∗, y − x∗〉 ≥ 0, ∀y ∈ Fix(T ), (1.1)

where F : H → H is a LF -Lipschitz continuous and ψ-strongly monotone mapping (see
the definition in Sect. 2), T : C → C is a nonexpansive mapping and its fixed point
set denoted by Fix(T ). Note that problem (1.1) can be converted to the (BVIP) by setting
T (x) = PC (x − χ Ax) in (1.1). It is easy to verify VI(C, A) = Fix(T ) according to the
property of the projection. In order to solve problem (1.1), Yamada [16] presented a new
iterative scheme, which is now called the hybrid steepest descent method (shortly, HSDM)
and its form is as follows: xn+1 = T (I − χn+1μF) (xn), where {χn} and μ are suitable
parameters that satisfy some restrictions. The iterative sequence generated by the method
(HSDM) converges strongly to the unique solution of problem (1.1). Therefore, we can use
the method (HSDM) to solve the (BVIP). However, the convergence of the method needs to
satisfy the assumption that T is nonexpansive, which will further impose strict restrictions
on the mapping A (e.g., the mapping A requires to meet inverse strongly monotonicity) and
affect the method used.

Recall that among the various numerical methods for solving the monotone (VIP), the
extragradient method (EGM) based on projection-type introduced by Korpelevich [17] is
very popular among researchers. The EGM is a two-step iterative scheme that requires two
projections to be performed on the feasible set C in each iteration. Note that calculating
the projection onto a closed convex set C is equivalent to solving a minimum distance
optimization problem. This may affect the computational efficiency of the method used when
C has a complex structure. To overcome this shortcoming, many scholars have made great
efforts and achieved some important results; see, for example, the projection and contraction
method (PCM) proposed by He [18], the Tseng’s extragradient method (TEGM) introduced
by Tseng [19], the subgradient extragradient method (SEGM) suggested by Censor et al.
[20] and the modified subgradient extragradient method (MSEGM) presented by Malitsky
and Semenov [21]. A common feature of these methods is that they only need to execute
one projection on the feasible set in each iteration and this change significantly improves
the computational efficiency of the EGM. It is known that the extragradient method for
variational inequality problem given in [22] was extended in [21] to equilibrium problems
for pseudomonotone and Lipschitz-type continuous bifunctions, replacing the naturally two
projections considered in [21] by two optimization programs. With hybrid extragradient
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methods, the authors introduced in [23] a new iterative process for approximating a common
element of the set of solutions of an equilibrium problem and a common zero of a finite
family of monotone operators in Hadamard spaces. Two new extragradient variants for the
classical equilibrium problem in real Hilbert spaces are introduced in [24], getting strong
convergence with weak convergence assumptions. Recently, some iterative schemes based
on the methods PCM, TEGM, SEGM, MSEGM and HSDM have been offered to solve the
(BVIP) in real Hilert spaces; see, e.g., [25–30] and the references therein.

It is worth noting that the algorithm stated by Thong andHieu [25, Algorithm 3.1] requires
to know the prior information of the Lipschitz constant of the mapping A. In other words,
the update of the step size of the algorithm needs the Lipschitz constant as an input param-
eter, which will affect the implementation of such algorithm without knowing the Lipschitz
constant. To overcome this difficulty, the self-adaptive methods that do not necessitate to
know the Lipschitz constant of the mapping in advance are very valuable. The algorithm
proposed by Ceng [26, Algorithm 3.1] uses an Armijo-type linesearch criteria to update the
iteration stepsize. It is known that an approach with a linesearch will require many additional
computations and further reduces the computational efficiency of the method used. Recently,
many methods with a simple stepsize have been proposed for solving the (BVIP); see, e.g.,
[27, Algorithm 1], [28, Algorithms 1 and 2], [29, Algorithm 1], and [30, Algorithms 3.1 and
3.2]. A common characteristic of these methods is that they can automatically update the
stepsize in each iteration by using some previously known information to perform a simple
calculation. However, it should be emphasized that the stepsize of these methods does not
increase, which may affect the execution efficiency of these algorithms since they rely on the
selection of the initial stepsize.

On the other hand, the idea of inertial has been studied by many scholars as one of the
important tools to accelerate the convergence speed of the algorithms. They have constructed
a large number of fast numerical algorithms to solve variational inequalities, split feasibility
problems, fixed point problems, and inclusion problems; see, e.g., [6,9,14,15,26,30–35] and
the references therein. The computational efficiency of these inertial-type methods has been
demonstrated in many numerical experiments and applications.

Inspired and motivated by the above research results, in this paper, we introduce a new
inertial self-adaptive extragradient method to solve the bilevel variational inequality problem
in a real Hilbert space. The advantages of the suggested iterative scheme are that (1) the
operator A involved is pseudomonotone rather than monotone; (2) the projection onto the
feasible set needs to be evaluated only once in each iteration; (3) the method uses a new
non-monotonic step size so that it can work without knowing the Lipschitz constant of
the mapping; and (4) the algorithm embeds inertial terms making it can to accelerate the
convergence speed of the algorithm without inertial terms. The strong convergence theorem
of the stated iterative scheme is established under some suitable assumptions imposed on the
operators and parameters. Finally, some numerical experiments and applications are provided
to demonstrate the advantages and efficiency of the offered algorithm over the previously
known ones in [29,30].

This paper is organized as follows. Some basic definitions and lemmas that need to be
used in the proof are given in Sect. 2. Section 3 deals with the stated iterative algorithm
and analyzes its convergence. In Sect. 4, several computational tests appearing in finite- and
infinite-dimensional spaces are provided to illustrate the efficiency and performance of the
suggested algorithm. Finally, the paper concludes with a brief summary in Sect. 5, the last
section.
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2 Preliminaries

The weak convergence and strong convergence of {xn}∞n=1 to x are represented by xn⇀x and
xn → x , respectively. For any x, y ∈ H, the operator T : H → H is said to be (i) L-Lipschitz
continuouswith L > 0 if ‖T x −T y‖ ≤ L‖x − y‖ (if L = 1, then T is called nonexpansive);
(ii) ψ-strongly monotone if there exists ψ > 0 such that 〈T x − T y, x − y〉 ≥ ψ‖x − y‖2;
(iii) monotone if 〈T x − T y, x − y〉 ≥ 0; (iv) pseudomonotone if 〈T x, y − x〉 ≥ 0 �⇒
〈T y, y − x〉 ≥ 0; (v) sequentially weakly continuous if for each sequence {xn} converges
weakly to x implies {T xn} converges weakly to T x . For each x, y ∈ H, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (2.1)

For every point x ∈ H, there exists a unique nearest point in C , denoted by PC (x), such
that PC (x) := argmin{‖x − y‖, y ∈ C}. PC is called the metric projection of H onto C . It
is known that PC has the following basic property:

〈x − PC (x), y − PC (x)〉 ≤ 0, ∀x ∈ H, y ∈ C . (2.2)

The following lemmas are important for the convergence analysis of the proposed algo-
rithm.

Lemma 2.1 [16] Let γ > 0 and σ ∈ (0, 1]. Let F : H → H be a ψ-strongly monotone
and L-Lipschitz continuous mapping with 0 < ψ ≤ L. Associating with a nonexpansive
mapping T : H → H, define a mapping T γ : H → H by T γ x = (I − σγ F)(T x),∀x ∈ H.
Then, T γ is a contraction provided γ <

2ψ
L2 , that is,

‖T γ x − T γ y‖ ≤ (1 − ση)‖x − y‖, ∀x, y ∈ H,

where η = 1 −
√
1 − γ

(
2ψ − γ L2

) ∈ (0, 1).

Lemma 2.2 [36] Let {an} be a sequence of nonnegative real numbers, {σn} be a sequence of
real numbers in (0, 1) with

∑∞
n=1 σn = ∞, and {bn} be a sequence of real numbers. Assume

that

an+1 ≤ (1 − σn) an + σnbn, ∀n ≥ 1.

If lim supk→∞ bnk ≤ 0 for every subsequence
{
ank
}

of {an} satisfying lim infk→∞(
ank+1 − ank

) ≥ 0, then limn→∞ an = 0.

3 Main results

In this section, we present a new inertial extragradient method for solving the (BVIP) and
analyze its convergence. First, we suppose that the proposed method satisfy the following
conditions.

(C1) The feasible set C is a nonempty, convex and closed set.
(C2) The solution set of the (VIP) is nonempty, that is, VI(C, A) �= ∅.
(C3) The mapping A : H → H is L A-Lipschitz continuous and pseudomonotone on H,

and sequentially weakly continuous on C .
(C4) The mapping F : H → H is LF -Lipschitz continuous and ψ-strongly monotone on

H such that LF ≥ ψ . In addition, we denote by p the unique solution of the (BVIP).
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(C5) Assume {ξn} and {εn} are twonon-negative positive sequences such that∑∞
n=1 ξn < ∞

and limn→∞ εn
σn

= 0, where {σn} ⊂ (0, 1) satisfies
∑∞

n=1 σn = ∞ and limn→∞ σn =
0.

The single projection algorithm proposed in this paper for solving the (BVIP) is stated in
Algorithm 3.1 below.

Algorithm 3.1 Inertial projection and contraction extragradient algorithm for (BVIP)

Initialization: Take θ > 0, χ1 > 0, μ ∈ (0, 1), φ ∈ (0, 2) and γ ∈
(
0, 2ψ

L2F

)
. Let x0, x1 ∈ H.

Iterative Steps: Take the iterates xn−1 and xn (n ≥ 1). Calculate xn+1 as follows:
Step 1. Compute un = xn + θn

(
xn − xn−1

)
, where

θn =
⎧
⎨

⎩
min

{
εn∥∥xn − xn−1

∥∥ , θ

}
, if xn �= xn−1;

θ, otherwise.
(3.1)

Step 2. Compute yn = PC (un − χn Aun).
Step 3. Compute zn = un − φδndn , where

dn := un − yn − χn (Aun − Ayn) , δn :=
⎧
⎨

⎩

〈un − yn , dn〉
‖dn‖2 , if dn �= 0;

0, otherwise.
(3.2)

Step 4. Compute xn+1 = zn − σnγ Fzn , and update the step size χn+1 by

χn+1 =
⎧
⎨

⎩
min

{
μ ‖un − yn‖
‖Aun − Ayn‖ , χn + ξn

}
, if Aun − Ayn �= 0;

χn + ξn , otherwise.
(3.3)

Remark 3.1 It follows from (3.1) that limn→∞ θn
σn

‖xn − xn−1‖ = 0. Indeed, we have θn‖xn −
xn−1‖ ≤ εn for all n ≥ 1, which together with limn→∞ εn

σn
= 0 implies that

lim
n→∞

θn

σn
‖xn − xn−1‖ ≤ lim

n→∞
εn

σn
= 0.

The following lemmas are quite helpful to analyze the convergence of our algorithm.

Lemma 3.1 [37] Suppose that Condition (C3) holds. Then the sequence {χn} generated by
(3.3) is well defined and limn→∞ χn = χ and χ ∈ [min{ μ

LA
, χ1}, χ1 +∑∞

n=1 ξn
]
.

Proof We can easily prove the lemma by means of [37, Lemma 3.1]. We omit the proof here
to avoid repetitive expressions. ��
Remark 3.2 The idea of the step size χn defined in (3.3) is derived from [37]. It is worth
noting that the step size χn generated in Algorithm 3.1 is allowed to increase when the
iteration increases. Therefore, the use of this type of step size reduces the dependence on
the initial step size χ1. On the other hand, because of

∑∞
n=1 ξn < +∞, which implies that

limn→∞ ξn = 0. Thus, the step size χn may not increase when n is large enough. If ξn = 0,
then the step size χn in Algorithm 3.1 is similar to the approaches in [12,14,15,29,30].
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Lemma 3.2 Assume that Conditions (C1)–(C3) hold. Let {yn} and {zn} be two sequences
formed by Algorithm 3.1. Then,

‖zn − p‖2 ≤ ‖un − p‖2 − 2 − φ

φ
‖un − zn‖2, ∀p ∈ VI(C, A),

and

‖un − yn‖2 ≤
(
1 + μχn

χn+1

)2

[(
1 − μχn

χn+1

)
φ
]2 ‖un − zn‖2.

Proof If there exists n1 ≥ 1 such that dn1 = 0, then zn1 = un1 and the first inequality holds.
Now, we consider dn �= 0 for each n ≥ 1. By the definition of zn , one obtains

‖zn − p‖2 = ‖un − φδndn − p‖2
= ‖un − p‖2 − 2φδn〈un − p, dn〉 + φ2δ2n‖dn‖2.

(3.4)

According to the definition of dn , one sees that

〈un − p, dn〉 = 〈un − yn, dn〉 + 〈yn − p, dn〉
= 〈un − yn, dn〉 + 〈yn − p, un − yn − χn(Aun − Ayn)〉. (3.5)

From yn = PC (un − χn Aun) and the property of projection (2.2), we have

〈un − yn − χn Aun, yn − p〉 ≥ 0. (3.6)

Using p ∈ VI(C, A) and yn ∈ C , we obtain that 〈Ap, yn − p〉 ≥ 0, which combining with
the pseudomonotonicity of A yields that

χn〈Ayn, yn − p〉 ≥ 0. (3.7)

Using (3.5), (3.6) and (3.7), we obtain

〈un − p, dn〉 ≥ 〈un − yn, dn〉. (3.8)

It follows from the definition of zn that zn − un = φδndn . Combining (3.4), (3.8) and the
definition of δn , we conclude that

‖zn − p‖2 ≤ ‖un − p‖2 − 2φδn〈un − yn, dn〉 + φ2δ2n‖dn‖2
= ‖un − p‖2 − 2φδ2n‖dn‖2 + φ2δ2n‖dn‖2

= ‖un − p‖2 − 2 − φ

φ
‖φδndn‖2

= ‖un − p‖2 − 2 − φ

φ
‖un − zn‖2.

Therefore, the first inequality is proved. According to the definition of (3.3), one has
‖Aun − Ayn‖ ≤ (μ/χn+1)‖un − yn‖, ∀n ≥ 1, which together with the definition of δn
implies that

δn‖dn‖2 = 〈dn, un − yn〉 ≥ ‖un − yn‖2 − χn ‖Aun − Ayn‖ ‖un − yn‖
≥
(
1 − μχn

χn+1

)
‖un − yn‖2 . (3.9)
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Using the definition of dn and (3.3), we have

‖dn‖ ≤ ‖un − yn‖ + χn‖Aun − Ayn‖
≤ ‖un − yn‖ + μχn

χn+1
‖un − yn‖

=
(
1 + μχn

χn+1

)
‖un − yn‖. (3.10)

Combining (3.9) and (3.10), one obtains

δ2n‖dn‖2 ≥
(
1 − μχn

χn+1

)2 ‖un − yn‖4
‖dn‖2 ≥

(
1 − μχn

χn+1

)2

(
1 + μχn

χn+1

)2 ‖un − yn‖2. (3.11)

By the definition of zn and (3.11), we obtain

‖zn − un‖2 = φ2δ2n‖dn‖2 ≥ φ2

(
1 − μχn

χn+1

)2

(
1 + μχn

χn+1

)2 ‖un − yn‖2.

Thus we get

‖un − yn‖2 ≤
(
1 + μχn

χn+1

)2

[(
1 − μχn

χn+1

)
φ
]2 ‖un − zn‖2.

The proof of the lemma is now complete. ��
Lemma 3.3 [38, Lemma3.3] Assume that Conditions (C1)–(C3) hold. Let {un} be a sequence
generated by Algorithm 3.1. If there exists a subsequence

{
unk
}
converges weakly to z ∈ H

and limk→∞ ‖unk − ynk‖ = 0, then z ∈ VI(C, A).

Theorem 3.1 Assume that Conditions (C1)–(C5) hold. Then the sequence {xn} created by
Algorithm 3.1 converges to the unique solution of (BVIP) in norm.

Proof It is known that if Conditions (C2) and (C4) hold, then the (BVIP) has a unique solution
(see, e.g., [39]). We divide the proof into four steps.

Claim 1. The sequence {xn} is bounded. From Lemma 3.2 and φ ∈ (0, 2), one sees that

‖zn − p‖ ≤ ‖un − p‖, ∀n ≥ 1. (3.12)

By the definition of un , we can write

‖un − p‖ ≤ σn · θn

σn
‖xn − xn−1‖ + ‖xn − p‖. (3.13)

According to Remark 3.1, we have θn
σn

‖xn − xn−1‖ → 0 as n → ∞. Therefore, there exists
a constant M1 > 0 such that

θn

σn
‖xn − xn−1‖ ≤ M1, ∀n ≥ 1. (3.14)

Combining (3.12), (3.13) and (3.14), we obtain

‖zn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ + σnM1, ∀n ≥ 1. (3.15)
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Using Lemma 2.1 and (3.15), it follows that

‖xn+1 − p‖ = ‖ (I − σnγ F) zn − (I − σnγ F) p − σnγ Fp‖
≤ (1 − σnη) ‖zn − p‖ + σnγ ‖Fp‖
≤ (1 − σnη) ‖xn − p‖ + σnη · M1

η
+ σnη · γ

η
‖Fp‖

≤ max

{
M1 + γ ‖Fp‖

η
, ‖xn − p‖

}

≤ · · · ≤ max

{
M1 + γ ‖Fp‖

η
, ‖x1 − p‖

}
. (3.16)

where η = 1 −
√
1 − γ

(
2ψ − γ L2

F

) ∈ (0, 1). That is, the sequence {xn} is bounded. We
get that the sequences {un}, {yn} and {zn} are also bounded.

Claim 2.

2 − φ

φ
‖un − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σnM4, ∀n ≥ 1

for some M4 > 0. By (2.1) and Lemma 2.1, one has

‖xn+1 − p‖2 = ‖ (I − σnγ F) zn − (I − σnγ F) p − σnγ Fp‖2
≤ ‖ (I − σnγ F) zn − (I − σnγ F) p‖2 − 2σnγ 〈Fp, xn+1 − p〉
≤ (1 − σnη)2 ‖zn − p‖2 + 2σnγ 〈Fp, p − xn+1〉
≤ ‖zn − p‖2 + σnM2 (3.17)

for some M2 > 0. It follows from (3.15) that

‖un − p‖2 ≤ (‖xn − p‖ + σnM1)
2

= ‖xn − p‖2 + σn
(
2M1‖xn − p‖ + σnM

2
1

)

≤ ‖xn − p‖2 + σnM3 (3.18)

for some M3 > 0. Combining Lemma 3.2, (3.17) and (3.18), we have

‖xn+1 − p‖2 ≤ ‖un − p‖2 − 2 − φ

φ
‖un − zn‖2 + σnM2

≤ ‖xn − p‖2 + σnM3 − 2 − φ

φ
‖un − zn‖2 + σnM2,

which yields

2 − φ

φ
‖un − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + σnM4,

where M4 := M2 + M3. That is the desired conclusion.

Claim 3.

‖xn+1 − p‖2 ≤ (1 − σnη) ‖xn − p‖2

+ σnη

[
2γ

η
〈Fp, p − xn+1〉 + 3Mθn

σnη
‖xn − xn−1‖

]
, ∀n ≥ 1
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for some M > 0. From the definition of un , one sees that

‖un − p‖2 = ‖xn + θn (xn − xn−1) − p‖2
≤ ‖xn − p‖2 + 2θn‖xn − p‖‖xn − xn−1‖ + θ2n ‖xn − xn−1‖2
≤ ‖xn − p‖2 + 3Mθn ‖xn − xn−1‖ , (3.19)

where M := supn∈N {‖xn − p‖ , θ ‖xn − xn−1‖} > 0. Combining (3.12), (3.17) and (3.19),
we obtain

‖xn+1 − p‖2 ≤ (1 − σnη)2 ‖zn − p‖2 + 2σnγ 〈Fp, p − xn+1〉
≤ (1 − σnη) ‖un − p‖2 + 2σnγ 〈Fp, p − xn+1〉
≤ (1 − σnη) ‖xn − p‖2 + 3Mθn ‖xn − xn−1‖ + 2σnγ 〈Fp, p − xn+1〉
= (1 − σnη) ‖xn − p‖2 + σnη

[
2γ

η
〈Fp, p − xn+1〉 + 3Mθn

σnη
‖xn − xn−1‖

]
,

∀n ≥ 1.

Claim 4. The sequence
{‖xn − p‖} converges to zero. Indeed, by Lemma 2.2, it suf-

fices to show that lim supk→∞
〈
Fp, p − xnk+1

〉 ≤ 0 for every subsequence
{‖xnk − p‖}

of {‖xn − p‖} satisfying
lim inf
k→∞

(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0.

For this purpose, one assumes that
{‖xnk − p‖} is a subsequence of {‖xn − p‖} such that

lim infk→∞
(‖xnk+1 − p‖ − ‖xnk − p‖) ≥ 0. Then,

lim inf
k→∞

(‖xnk+1 − p‖2 − ‖xnk − p‖2)

= lim inf
k→∞

[(‖xnk+1 − p‖ − ‖xnk − p‖) (‖xnk+1 − p‖ + ‖xnk − p‖)] ≥ 0.

By Claim 2 and limk→∞ σnk = 0, one has

lim sup
k→∞

[
2 − φ

φ
‖unk − znk‖2

]
≤ lim sup

k→∞
[
σnk M4 + ‖xnk − p‖2 − ‖xnk+1 − p‖2]

≤ lim sup
k→∞

σnk M4 + lim sup
k→∞

[‖xnk − p‖2 − ‖xnk+1 − p‖2]

= − lim inf
k→∞

[‖xnk+1 − p‖2 − ‖xnk − p‖2] ≤ 0,

which together with φ ∈ (0, 2) implies that

lim
k→∞ ‖znk − unk‖ = 0. (3.20)

Moreover, we can show that

‖xnk+1 − znk‖ = σnkγ ‖Fznk‖ → 0 as n → ∞, (3.21)

and

‖xnk − unk‖ = σnk · θnk

σnk
‖xnk − xnk−1‖ → 0 as n → ∞. (3.22)

Combining (3.20), (3.21) and (3.22), we obtain

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − znk‖ + ‖znk − unk‖ + ‖unk − xnk‖ → 0 as n → ∞. (3.23)
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From Lemma 3.2, one sees that

‖unk − ynk‖2 ≤
(
1 + μχnk

χnk+1

)2

[(
1 − μχnk

χnk+1

)
φ
]2 ‖unk − znk‖2.

which together with (3.20) implies that limk→∞ ‖unk − ynk‖ = 0. Since the sequence {xnk } is
bounded, there exists a subsequence {xnk j } of {xnk }, which converges weakly to some z ∈ H,
and moreover

lim sup
k→∞

〈
Fp, p − xnk

〉 = lim
j→∞

〈
Fp, p − xnk j

〉 = 〈Fp.p − z〉. (3.24)

By (3.22), we get unk⇀z as k → ∞. This together with limk→∞ ‖unk − ynk‖ = 0 and
Lemma 3.3 yields that z ∈ VI(C, A). From (3.24) and the assumption that p is the unique
solution of the (BVIP), we have

lim sup
k→∞

〈
Fp, p − xnk

〉 = 〈Fp, p − z〉 ≤ 0. (3.25)

Combining (3.23) and (3.25), we obtain

lim sup
k→∞

〈
Fp, p − xnk+1

〉 = lim sup
k→∞

〈
Fp, p − xnk

〉 = 〈Fp, p − z〉
≤ 0. (3.26)

From Remark 3.1 and (3.26), one has

lim sup
k→∞

[
2γ

η

〈
Fp, p − xnk+1

〉+ 3Mθnk

σnkη
‖xnk − xnk−1‖

]
≤ 0. (3.27)

Hence, combining Claim 3, Condition (C5) and (3.27), in the light of Lemma 2.2, one
concludes that limn→∞ ‖xn − p‖ = 0, i.e., xn → p as n → ∞. We have thus proved the
theorem. ��

Now,we give a special case of Algorithm 3.1. Set F(x) = x− f (x) in Theorem 3.1, where
mapping f : H → H is ρ-contraction. It can be easily verified that mapping F : H → H is
(1 + ρ)-Lipschitz continuous and (1 − ρ)-strongly monotone. In this situation, by picking
γ = 1, we get an inertial extragradient algorithm with a new non-monotonic step size for
solving the (VIP). More specifically, we have the following result.

Corollary 3.1 Suppose that Conditions (C1)–(C3) and (C5) holds. Let mapping f : H → H
be ρ-contraction with ρ ∈ [0, √5 − 2). Take θ > 0, χ1 > 0, μ ∈ (0, 1), φ ∈ (0, 2). Let
x0, x1 ∈ H be two arbitrary initial points and the iterative sequence {xn} be generated by
the following

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn + θn(xn − xn−1),

yn = PC (un − χn Aun),

zn = un − φδndn,

xn+1 = (1 − σn)zn + σn f (zn),

(3.28)

where {θn}, {δn} and {χn} are defined in (3.1), (3.2) and (3.3), respectively. Then the
iterative sequence {xn} formed by Algorithm (3.28) converges to p in norm, where p =
PVI(C,A)( f (p)).
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Remark 3.3 Our Algorithm (3.28) improves many of the results in the literature for solving
variational inequalities based on the following observation.

• The proposed Algorithm (3.28) obtains a strong convergence theorem in an infinite-
dimensional Hilbert space, while the methods presented in [8,9,14,17–21,31] can only
obtain weak convergence theorems.

• Notice that our Algorithm (3.28) only needs to compute the projection on the feasible set
once in each iteration, which improves some results in the literature (see, e.g., [17,24])
that require computing the projection twice.

• It is known that the choice of step size has an important impact on the convergence speed
of the algorithm used. The suggested iterative scheme (3.28) uses a non-monotonic
step size criterion, which makes it better than the algorithms in [12,14,29,30] that use
non-increasing step sizes, the algorithm in [8] that use Armijo-type step sizes, and the
algorithms in [9,11] that use fixed step sizes.

• Our Algorithm (3.28) is designed to solve pseudo-monotone variational inequality prob-
lems, which improves themethods proposed in the literature (see, e.g., [8,9,11,12,15]) for
solving monotone variational inequalities. In addition, our Algorithm (3.28) also adds
inertial effects, which can accelerate the convergence speed of the algorithm without
inertial terms.

In summary, the Algorithm (3.28) proposed in this paper is useful and efficient.

4 Numerical examples

In this section, we provide some computational tests to demonstrate the numerical behavior
of the proposed Algorithm 3.1, and also to compare it with the Algorithm 1 introduced by
Thong et al. [29] and the Algorithm 3.2 suggested by Tan, Liu and Qin [30]. The parameters
of all algorithms are set as follows.

• In the proposed Algorithm 3.1, we set θ = 0.2, εn = 100
(n+1)2

, μ = 0.4, χ1 = 0.6,

ξn = 1
(n+1)1.1

, φ = 1, σn = 1
n+1 and γ = 1.7ψ

L2
F
.

• In the Algorithm 1 introduced by Thong et al. [29], we chooseμ = 0.4, χ1 = 0.6, φ = 1,
σn = 1

n+1 and γ = 1.7ψ
L2
F
.

• In the Algorithm 3.2 suggested by Tan et al. [30], we take θ = 0.2, εn = 100
(n+1)2

,μ = 0.4,

χ1 = 0.6, σn = 1
n+1 and γ = 1.7ψ

L2
F
.

Notice that these algorithms mentioned above do not require the prior information about the
Lipschitz constant of themapping. In addition, we apply the offeredAlgorithm (3.28) to solve
optimal control problems and compare it with some strongly convergent algorithms in the
literature. All the programs were implemented in MATLAB 2018a on a Intel(R) Core(TM)
i5-8250U CPU @ 1.60 GHz computer with RAM 8.00 GB.

Example 4.1 Consider a mapping F : Rm → R
m (m = 5) of the form F(x) = Mx + q ,

where

M = BBT + D + K ,

and B is a m × m matrix with their entries being generated in (0, 1), D is a m × m skew-
symmetric matrix with their entries being generated in (−1, 1), K is am×m diagonal matrix,
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(a) (b)

Fig. 1 The behavior of all algorithms with different initial values in Example 4.1

whose diagonal entries are positive in (0, 1) (so M is positive semidefinite), q ∈ R
m is a

vector with entries being generated in (0, 1). It is clear that F is LF -Lipschitz continuous
and ψ-strongly monotone with LF = max{eig(M)} and ψ = min{eig(M)}, where eig(M)

represents all eigenvalues of M . Next, we consider the following fractional programming
problem:

min f (x) = xTQx + aTx + a0
bTx + b0

,

subject to x ∈ C := {
x ∈ R

5 : bTx + b0 > 0
}
,

where

Q =

⎡

⎢⎢⎢⎢
⎣

5 −1 2 0 2
−1 6 −1 3 0
2 −1 3 0 1
0 3 0 5 0
2 0 1 0 4

⎤

⎥⎥⎥⎥
⎦

, a =

⎡

⎢⎢⎢⎢
⎣

1
2

−1
−2
1

⎤

⎥⎥⎥⎥
⎦

, b =

⎡

⎢⎢⎢⎢
⎣

1
0

−1
0
1

⎤

⎥⎥⎥⎥
⎦

, a0 = −2, b0 = 20,

It is easy to check that Q is symmetric and positive definite in R
5 and hence f is pseudo-

convex on C = {
x ∈ R

5 : bTx + b0 > 0
}
. Let

A(x) := ∇ f (x) =
(
bTx + b0

)
(2Qx + a) − b

(
xTQx + aTx + a0

)

(
bTx + b0

)2 .

It is known that A is pseudomonotone and Lipschitz continuous (see [40] for more details).
Notice that estimating the Lipschitz constant for A is not easy.

Since we do not know the exact solution to the problem, we use Dn = ∥∥un − PC (un −
χn Aun)

∥∥ to measure the error of the n-th iteration for the proposed Algorithm 3.1 and the
Algorithm 3.2 suggested by Tan et al. [30], and use Dn = ‖xn − PC (xn − χn Axn)‖ to
measure the error of the n-th iteration for the Algorithm 1 introduced by Thong et al. [29].
By the property of the solution of the variational inequality problem (VIP), we know that
if Dn → 0 then un (or xn) tends to the solution of the problem. The maximum number of
iterations 200 as the stopping criterion for all algorithms. Numerical results of all algorithms
with two different initial values are reported in Fig. 1.
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(a) (b)

Fig. 2 The behavior of all algorithms at x0 = x1 = cos(t) in Example 4.2

Table 1 Numerical results of all algorithms with different initial values in Example 4.2

Algorithms x0 = cos(t) x0 = t4 x0 = et + t2 x0 = 2t

En CPU (s) En CPU (s) En CPU (s) En CPU (s)

Our Alg. 3.1 2.59E−23 23.39 9.09E−24 23.23 1.23E−22 26.47 9.39E−24 23.58

Tan et al. Alg. 3.2 4.95E−13 18.26 1.87E−13 18.19 8.77E−13 19.91 7.69E−13 18.58

Thong et al. Alg. 1 6.96E−16 22.94 4.16E−16 23.07 1.26E−15 25.07 1.00E−15 23.37

Example 4.2 We consider an example that appears in the infinite-dimensional Hilbert space
H = L2[0, 1] with inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt, ∀x, y ∈ H,

and induced norm

‖x‖ =
(∫ 1

0
|x(t)|2dt

)1/2

, ∀x ∈ H.

Let r , R be two positive real numbers such that R/(k + 1) < r/k < r < R for some k > 1.
Take the feasible set C as follows C := {x ∈ H : ‖x‖ ≤ r}. Let the operator A : H → H be
given by

A(x) = (R − ‖x‖)x, ∀x ∈ H.

Note that operator A is pseudomonotone rather than monotone and Lipschitz continuous (see
[41, Section 4]). Let F : H → Hbe anoperator definedby (Fx)(t) = 0.5x(t), t ∈ [0, 1]. It is
easy to see that F is 0.5-stronglymonotone and 0.5-Lipschitz continuous. For the experiment,
we choose R = 1.5, r = 1, k = 1.1. The solution of this problem is x∗(t) = 0. Themaximum
number of iterations 50 as the stopping criterion for all algorithms. Figure 2 and Table 1 show
the numerical behaviors of En = ‖xn(t) − x∗(t)‖ generated by all algorithms under four
different initial values x0(t) = x1(t).

Example 4.3 LetH = L2([0, 1]) be an infinite-dimensional Hilbert space and have the same
inner product and induced norm as in Example 4.2. Assume that the feasible set is given by
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(a) (b)

Fig. 3 The behavior of all algorithms at x0 = x1 = t4 in Example 4.3

Table 2 Numerical results of all algorithms with different initial values in Example 4.3

Algorithms x0 = cos(t) x0 = t4 x0 = et + t2 x0 = 2t

Dn CPU (s) Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Alg. 3.1 8.56E−08 106.38 8.69E−10 46.02 4.03E−07 61.09 5.16E−07 61.03

Tan et al. Alg. 3.2 1.10E−06 82.91 1.13E−08 33.79 1.08E−06 48.94 1.07E−06 48.02

Thong et al. Alg. 1 5.40E−06 93.74 8.33E−08 39.44 4.98E−06 58.94 5.36E−06 54.29

C = {x ∈ H : ‖x‖ ≤ 2}. Define a mapping h : C → R by

h(x) = 1

1 + ‖x‖2 .

Recall that the Volterra integration operator V : H → H is given by

V (x)(t) =
∫ t

0
x(s) ds, ∀t ∈ [0, 1], x ∈ H.

Now, we define the mapping A : C → H as follows:

A(x)(t) = h(x)V (x)(t), ∀t ∈ [0, 1], x ∈ C .

Let F : H → H be an operator defined by (Fx)(t) = 0.5x(t), t ∈ [0, 1]. Notice that
the operator A is pseudo-monotone but not monotone and Lipschitz continuous (see [42,
Example 4.2]). In addition, it is worth noting that the Lipschitz constant of A is not easy to
estimate, and the solution of the variational inequality problem with A and C given above is
unknown. We use Dn = ‖un(t) − PC (un(t) − χn Aun(t))‖ to measure the error of the n-th
iteration for the proposed Algorithm 3.1 and the Algorithm 3.2 suggested by Tan et al. [30],
and use Dn = ‖xn(t) − PC (xn(t) − χn Axn(t))‖ to measure the error of the nth iteration for
the Algorithm 1 introduced by Thong et al. [29]. The numerical results of all algorithms with
four starting points x0(t) = x1(t) are shown in Fig. 3 and Table 2.

Remark 4.1 From Examples 4.1–4.3, we have the following observations:

(i) As shown in Figs. 1, 2, 3 and Tables 1 and 2, it can be seen that the proposed Algo-
rithm 3.1 converges quickly, and it has a faster convergence speed and higher accuracy
than the previously known ones in [29,30] under the same stopping conditions. These
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results are independent of the size of the dimension and the choice of initial values.
Therefore, our Algorithm 3.1 is efficient and robust.

(ii) It is noticed from Tables 1 and 2 that the proposed algorithm requires more time while
achieving higher accuracy. The reason for this phenomenon is that the suggested Algo-
rithm 3.1 needs to spend extra time to calculate the values of un , dn and δn in an
infinite-dimensional Hilbert space (see Examples 4.2 and 4.3).

(iii) In [40], Boţ, Csetnek and Vuong showed that the operator A in Example 4.1 is L A-
Lipschitz continuous with L A ≈ 148.68. In most cases, the prior knowledge of the
Lipschitz constant for the problem under consideration is usually unknown, in which
case the fixed stepsize algorithm proposed by Thong and Hieu [25, Algorithm 3.1] will
not be available because it needs the Lipschitz constant as an input parameter. However,
the offered method can work well since it does not require the prior information of the
Lipschitz constant of the mapping.

(iv) It should be noted that the operators A in Examples 4.2 and 4.3 are pseudomonotone
rather than monotone. The Algorithm 1 proposed by Hieu andMoudafi [27] for solving
the bilevel monotone variational inequality problem will not be applicable in those
cases.

Next, we use the proposed Algorithm (3.28) to solve the (VIP) that appears in optimal
control problems. We recommend readers to refer to [3,30,43,44] for detailed description of
the problem. We compare the suggested iterative scheme (3.28) with some strongly conver-
gent algorithms in the literature. Two methods used to compare here are the Algorithm (31)
(in short, TLDCR Alg. (31)) introduced by Thong et al. [29] and the Algorithm (3.39) (in
short, TLQ Alg. (3.39)) proposed by Tan et al. [30]. The parameters of all algorithms are set
as follows.

• In the proposed Algorithm (3.28), we set N = 100, θ = 0.01, εn = 10−4

(n+1)2
, μ = 0.1,

χ1 = 0.4, ξn = 0.1
(n+1)1.1

, φ = 1.5, σn = 10−4

n+1 and f (x) = 0.1x .
• In the TLDCR Alg. (31), we choose N = 100, μ = 0.1, χ1 = 0.4, φ = 1.5 and

σn = 10−4

n+1 .

• In the TLQ Alg. (3.39), we take N = 100, θ = 0.01, εn = 10−4

(n+1)2
, μ = 0.1, χ1 = 0.4,

σn = 10−4

n+1 and f (x) = 0.1x .

The initial controls p0(t) = p1(t) are randomly generated in [−1, 1]. The stopping criterion
is either Dn = ‖pn+1 − pn‖ ≤ 10−4, or maximum number of iterations which is set to 1000.

Example 4.4 (Control of a harmonic oscillator, see [45])

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + p(t), ∀t ∈ [0, 3π],
x(0) = 0,

p(t) ∈ [−1, 1].
The exact optimal control of Example 4.4 is known:

p∗(t) =
{

1, if t ∈ [0, π/2) ∪ (3π/2, 5π/2) ;
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

Figure 4 shows the approximate optimal control and the corresponding trajectories of the
stated Algorithm (3.28).
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(a) (b)

Fig. 4 Numerical results of the proposed Algorithm (3.28) for Example 4.4

(a) (b)

Fig. 5 Numerical results of the proposed Algorithm (3.28) for Example 4.5

We now consider an example in which the terminal function is not linear.

Example 4.5 (see [46])

minimize − x1(2) + (x2(2))
2 ,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 2],
x1(0) = 0, x2(0) = 0,

p(t) ∈ [−1, 1].
The exact optimal control of Example 4.5 is

p∗(t) =
{

1, if t ∈ [0, 1.2) ;
−1, if t ∈ (1.2, 2].

The approximate optimal control and the corresponding trajectories of the suggested Algo-
rithm (3.28) are plotted in Fig. 5.

Finally, we compare the offered Algorithm (3.28) with TLQ Alg. (3.39) and TLDCR
Alg. (31) for Examples 4.4 and 4.5. Figure 6 presents the numerical behavior of the error
estimate ‖pn+1 − pn‖ with respect to the number of iterations for all algorithms. In addition,
the number of terminated iterations and the execution time of all algorithms are shown in
Table 3.
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(a) (b)

Fig. 6 Error estimates of all algorithms for Examples 4.4 and 4.5

Table 3 Numerical results of all algorithms in Examples 4.4 and 4.5

Algorithms Example 4.4 Example 4.5

Iter. CPU (s) Dn Iter. CPU (s) Dn

Our Alg. (3.28) 60 0.029916 9.901E-05 534 0.18632 9.944E-05

TLDCR Alg. (31) 80 0.036433 8.096E-05 1000 0.33392 1.584E-04

TLQ Alg. (3.39) 121 0.078416 7.437E-05 1000 0.32060 2.647E-03

Remark 4.2 We draw the following observations from Examples 4.4 and 4.5.

(i) The offered Algorithm (3.28) can be applied to solve optimal control problems, and it
performs well when the terminal function is linear or nonlinear (cf. Figs. 4, 5).

(ii) As shown in Fig. 6 and Table 3, the proposed Algorithm (3.28) performs better when
the terminal function is linear than when it is nonlinear, i.e., it requires less execution
time and the number of termination iterations in the case where the terminal function is
linear. Moreover, the proposed Algorithm (3.28) outperforms the existing methods in the
literature [29,30], in other words, the presented Algorithm (3.28) converges faster than
the others in [29,30] under the same stopping criterion.

5 Conclusions

In this paper, we presented a new inertial projection method to discover the solution of a
bilevel pseudomonotone variational inequality problem in an infinite-dimensional Hilbert
space. The suggested iterative scheme is constructed by the inertial method, the projection
and contraction method and the hybrid steepest descent method. A new non-monotonic step
size that does not contain any linesearch process is embedded into the proposed algorithm so
that it can work well without knowing the prior knowledge of the Lipschitz constant of the
mapping. Finally, the stated theoretical results are verified by several preliminary numerical
experiments. The results obtained in this paper improved and generalized some relevant
known algorithms in the field.
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