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Abstract. In this paper, we investigate three new relaxed single projection methods with alternating
inertial extrapolation steps and adaptive non-monotonic step sizes for solving pseudo-monotone

variational inequalities in real Hilbert spaces. The proposed algorithms need to compute the
projection on the feasible set only once in each iteration and they can work adaptively without
the prior information of the Lipschitz constant of the mapping. The weak convergence theorems of

the proposed iterative schemes are established under some appropriate conditions imposed on the
parameters. These methods recover the Fejér monotonicity of the even subsequence with respect to the
solution and obtain linear convergence rates. Finally, some numerical experiments and applications to

optimal control problems are provided to demonstrate the advantages and efficiency of the proposed
methods compared to some recent related ones.
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1. Introduction

Our goal in this paper is to construct several fast iterative algorithms to solve
variational inequality problems in the framework of real Hilbert spaces. Let C be
a nonempty closed convex subset of a real Hilbert space H with inner product 〈·, ·〉
and norm ‖ · ‖, and A : H → H be a nonlinear operator. The variational inequality
problem for A on C is described as follows:

find x∗ ∈ C such that 〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C. (VIP)
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The solution set of (VIP) is denoted as VI(C,A). The variational inequality model
plays an important role in many fields and it constructs a simple framework for many
optimization problems. Some recent applications of variational inequalities can be
found in [2, 4, 9, 10] and the references therein.

The simplest way to solve (VIP) is the gradient-projection algorithm, which involves
computing only one projection on the feasible set in each iteration. However, the
drawback of this method is that its convergence requires the operator to be strongly
monotonic, which is a slightly strong and restrictive assumption. To overcome this
difficulty, Korpelevich [23] proposed a two-step iterative scheme known as the extra-
gradient method (shortly, EGM), which includes calculating the projection on the
feasible set twice in each iteration. The convergence of the EGM was proved under
the condition that the operator is monotone (or even, pseudo-monotone). It is known
that computing the projection is not easy, especially when the form of the feasible set
is complex. Recently, some methods that require calculating only one projection on
the feasible set were proposed to solve (VIP); such as the projection and contraction
method [17], the Tseng extragradient method [43], the subgradient extragradient
method [5, 6, 7], and the projected gradient method [27, 26]. These methods greatly
improve the computational efficiency of the EGM due to the fact that they reduce the
computation of one projection on the feasible set in each iteration. In recent years, a
large number of variants and improved forms were proposed by many scholars based
on the methods; see, e.g., [13, 16, 37, 34, 41] and the references therein.

Recently, the inertial extrapolation method, which is based on a discrete version of a
second-order dissipative dynamical system (see [1, 32]), was widely studied by scholars
as one of the techniques to accelerate the convergence speed of algorithms. The main
idea of inertial-type methods is that the next iteration depends on the combination
of the previous two (or more) iterations. Noting this small change can improve the
convergence speed of the methods used. Some inertial projection-based algorithms
for solving variational inequality problems can be found in [8, 14, 12, 15, 19, 39, 40]
and the references therein. Very recently, Shehu et al. [40] proposed two new inertial
projection-type algorithms, which are based on the inertial method, the projection
and contraction method, and the relaxation method, for solving variational inequality
problems. Specifically, their algorithms are stated in Algorithms 1.1 and 1.2 below.

We observe that the Algorithm 1.1 and the Algorithm 1.2 compute xn+1 differently
in the third step, which results in different ranges of values for their inertial parameter α
and relaxation parameter θ. Indeed, the Algorithm 1.1 is an over-relaxed projection and
contraction method (see [40, Remark 3.5]), while the Algorithm 1.2 is an under-relaxed
version. In addition, the upper bound of the inertial parameter α in Dong et al.’s
Algorithm 3.1 [12] and Shehu et al.’s Algorithm 1.1 [40] is less than 1, while this
upper bound is extended to equal 1 in the Algorithm 1.2 introduced in [40] (i.e.,
α = 1 is available for Algorithm 1.2). Moreover, Shehu et al. [40] established the
linear convergence of the iterative sequence generated by the Algorithm 1.2. Some
numerical experiments are also provided to demonstrate the computational efficiency
of the proposed algorithms with respect to some related schemes.

On the other hand, it is worth noting that non-inertial projection methods enjoy
the Fejér monotonicity of the iterative sequence with respect to the solution, which is
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Algorithm 1.1 The Algorithm 3.2 of Shehu et al. [40]

Initialization: Take γ ∈ (0, 2), α ∈ [0, 1), µ ∈ (0, 1), λ1 > 0, and

θ ∈
(

0,
2(1− α)2

γα(1 + α) + γ(1− α)2

)
.

Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute wn = xn + α (xn − xn−1).
Step 2. Compute yn = PC (wn − λnAwn), where

λn+1 =

min

{
µ ‖wn − yn‖
‖Awn −Ayn‖

, λn

}
, Awn 6= Ayn;

λn, otherwise.
(S1)

If wn = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)wn + θ (wn − γηndn), where

ηn =


〈wn − yn, dn〉
‖dn‖2

, dn 6= 0;

0, dn = 0,

and dn = wn − yn − λn (Awn −Ayn) . (1.1)

Set n := n+ 1 and go to Step 1.

Algorithm 1.2 The Algorithm 4.1 of Shehu et al. [40]

Initialization: Take γ ∈ (0, 2), α ∈ [0, 1], µ ∈ (0, 1), λ1 > 0, and θ ∈ (0, 1/2).
Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute wn = xn + α (xn − xn−1).
Step 2. Compute yn = PC (wn − λnAwn), and update λn+1 by (S1). If wn = yn,
then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)xn + θ (wn − γηndn), where ηn and dn are defined
in (1.1).
Set n := n+ 1 and go to Step 1.

not being enjoyed by their corresponding inertial versions for variational inequalities.
This lack of Fejér monotonicity causes inertial projection methods for variational
inequalities sometimes not to converge faster than their corresponding non-inertial
versions. Recently, Mu and Peng [28] proposed an alternated inertial method that
recovers the Fejér monotonicity of even subsequences to overcome the above problem.
This alternated inertial idea was further extended by many authors to some iterative
algorithms for solving variational inequalities, fixed point problems, split feasibilities,
split equality problems, split common null point problems, and other optimization
problems; see, e.g., [20, 21, 22, 11, 29, 38, 36, 35] and the references therein. Their nu-
merical experiments show that alternated inertial methods exhibit better performance
than inertial-type ones.

It is our aim in this paper to present several alternated inertial projection methods to
solve the (VIP). We next review several alternated inertial methods that already exist
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in the literature [29, 38] for solving variational inequality problems, which motivate
us to explore some new iterative schemes. Recently, based on the alternated inertial
method [28] and the projection and contraction method [17], Shehu and Iyiola [38]
proposed two alternated inertial projection algorithms (one with a fixed step size
and the other with an adaptive step size) for solving pseudo-monotone variational
inequalities in real Hilbert spaces. More precisely, the adaptive scheme suggested by
Shehu and Iyiola [38] is described in Algorithm 1.3 below.

Algorithm 1.3 The Algorithm 2 of Shehu and Iyiola [38]

Initialization: Take γ ∈ (0, 2), 0 ≤ αn ≤ α < (2− γ)/γ, µ ∈ (0, 1), and λ1 > 0.
Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute

wn =

{
xn, n = even;

xn + αn (xn − xn−1) , n = odd.
(1.2)

Step 2. Compute yn = PC (wn − λnAwn), and update λn+1 by (S1). If wn = yn,
then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = wn − γηndn, where ηn and dn are defined in (1.1).
Set n := n+ 1 and go to Step 1.

Under some suitable conditions, Shehu and Iyiola [38] established a weak convergence
theorem for the proposed Algorithm 1.3. Under the assumption that the operator A
is strongly pseudo-monotone, they also verified the R-linear convergence rate of a new
scheme (i.e., the scheme resulting from missing step 3 in Algorithm 1.3 and changing yn
to xn+1 in the second step). The computational efficiency of the algorithms proposed
by Shehu and Iyiola [38] compared to some known inertial projection and contraction
methods is illustrated by several numerical examples in finite-dimensional spaces.

Very recently, inspired by the Tseng extragradient method [43] and the work of
Shehu and Iyiola [38], Ogbuisi, Shehu and Yao [29] introduced a new alternated inertial
Tseng exragradient method with relaxation effects and adaptive step sizes to discover
solutions of pseudo-monotone inequality problems in real Hilbert spaces. Indeed, their
scheme is shown in Algorithm 1.4 below.

Algorithm 1.4 The Algorithm 3.1 of Ogbuisi, Shehu and Yao [29]

Initialization: Take θ ∈ (0, 1], 0 ≤ αn ≤ (1− µ)2/(1 + µ)2, µ ∈ (0, 1), and λ1 > 0.
Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute wn by (1.2).
Step 2. Compute yn = PC (wn − λnAwn), and update λn+1 by (S1). If wn = yn,
then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)wn + θzn, where zn = yn − λn (Ayn −Awn).
Set n := n+ 1 and go to Step 1.

Under some mild conditions, Ogbuisi et al. [29] confirmed that the iterative sequence
generated by the proposed Algorithm 1.4 converges weakly to the solution of (VIP)
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and further obtained the R-linear convergence rate of Algorithm 1.4. They provide
some numerical examples occurring in a finite-dimensional space to demonstrate the
computational performance of the proposed algorithm in comparison with some relaxed
inertial projection-type methods. Notice that the Algorithms 1.3 and 1.4 need to
compute the projection on the feasible set only once in each iteration and can recover
the Fejér monotonicity of the even subsequence with respect to the solution. These
two advantages make their performance better than some known inertial projection-
type algorithms. On the other hand, it is worth noting that the adaptive step size
criterion (S1) generates a non-increasing sequence of steps, which further may affect
the computational efficiency of the algorithms used.

Inspired and motivated by the above work, in this paper, we propose three new
alternated inertial extragradient methods with adaptive non-monotonic step sizes
and relaxation effects to find solutions of pseudo-monotone variational inequality
problems. Our algorithms need to perform the projection computation on the feasible
set only once in each iteration, and they also recover the Fejér monotonicity of the even
subsequence with respect to the solution. Under some mild and suitable conditions,
the weak convergence theorems of the proposed methods are established in real Hilbert
spaces. Moreover, the R-linear convergence rates of the proposed algorithms are verified
under the condition that the operators are strongly pseudo-monotone. Finally, some
numerical tests occurring in finite- and infinite-dimensional spaces and applications to
optimal control problems are given to illustrate the advantages and efficiency of the
proposed algorithms over some known inertial iterative schemes.

The outline of this paper is as follows. In Section 2, we review some definitions
and lemmas that need to be used in the sequel. Section 3 is devoted to stating three
alternated inertial algorithms and analyzing their convergence. The linear convergence
rates of the proposed algorithms under the condition that the operators are strongly
pseudo-monotone are given in Section 4. Section 5 illustrates the computational
performance of the proposed algorithms with respect to some known iterative methods
through several numerical experiments and applications. Finally, the paper is concluded
by a brief summary in Section 6, the last section.

2. Preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H. The
weak convergence and strong convergence of {xn} to x are represented by xn ⇀ x and
xn → x, respectively. For each x, y ∈ H and α ∈ R, we have the following inequality.

‖αx+ (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2. (2.1)

Definition 2.1. Let C be a nonempty, closed and convex subset of H. PC is called
the metric projection of H onto C if, for any point x ∈ H, there exists a unique point
PC(x) ∈ C such that ‖x− PC(x)‖ ≤ ‖x− y‖, ∀y ∈ C.

It is known that PC has the following basic properties:

〈x− PC(x), y − PC(x)〉 ≤ 0, ∀x ∈ H,∀y ∈ C, (2.2)

and
‖PC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PC(x)‖2, ∀x ∈ H, y ∈ C. (2.3)
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Definition 2.2. A mapping A : H → H is said to be

(1) η-strongly monotone on H if there exists a constant η > 0 such that

〈Ax−Ay, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H;

(2) monotone if 〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ H.
(3) δ-strongly pseudo-monotone on H if there exists δ > 0 such that

〈Ay, x− y〉 ≥ 0⇒ 〈Ax, x− y〉 ≥ δ‖x− y‖2, ∀x, y ∈ H;

(4) pseudo-monotone if 〈Ax, y − x〉 ≥ 0⇒ 〈Ay, y − x〉 ≥ 0, ∀x, y ∈ H.
(5) L-Lipschitz continuous with L > 0 if ‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H.
(6) sequentially weakly continuous if for each sequence {xn} converges weakly to x

implies that {Axn} converges weakly to Ax.

Remark 2.1. Note that (1) implies (2), (1) implies (3), (3) implies (4), and (2)
implies (4) in the above definitions. Furthermore, if (3) is satisfied, then the (VIP)
has a unique solution.

Definition 2.3. A sequence {xn} in H is said to be

• Fejér monotone with respect to a set Q if each point in the sequence is not strictly
farther from any point in Q than its predecessor. That is,

‖xn+1 − x‖ ≤ ‖xn − x‖ ,∀x ∈ Q;

• convergent weakly to p ∈ H if limn→∞ 〈xn, x〉 = 〈p, x〉, ∀x ∈ H;
• convergent R-linearly to x∗ with rate η ∈ [0, 1) if there exists a constant c > 0

such that ‖xn − x∗‖ ≤ cηn, ∀n ∈ N.

Lemma 2.1 ([31]). Let {λn}, {ξn} , and {ζn} be three sequences of nonnegative
numbers such that

λn+1 ≤ ξnλn + ζn, ∀n ∈ N.

If {ξn} ⊂ [1,+∞),

∞∑
n=1

(ξn − 1) <∞, and

∞∑
n=1

ζn <∞, then limn→∞ λn exists.

Lemma 2.2 ([30]). Let C be a nonempty set of H, and {xn} be a sequence in H.
If limn→∞ ‖xn − x‖ exists for any x ∈ C, and every sequential weak cluster point of
{xn} is in C, then {xn} converges weakly to a point in C.

3. Main Results

In this section, we present three new alternated inertial single projection methods
with adaptive non-monotonic step sizes and relaxation effects to discover solutions
of pseudo-monotone variational inequalities in real Hilbert spaces. We first assume
that the following conditions hold in order to analyze the convergence of the proposed
algorithms.

(C1) The feasible set C is a nonempty, closed, and convex subset of H.
(C2) The solution set of the (VIP) is nonempty, that is, VI(C,A) 6= ∅.
(C3) The mapping A : H → H is pseudo-monotone, L-Lipschitz continuous and

sequentially weakly continuous on bounded subsets of H.
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3.1. The first algorithm. In this subsection, we introduce a relaxed and modified
subgradient extragradient method with alternating inertial extrapolation steps to solve
the variational inequality problem (VIP). Now, our first proposed method is shown in
Algorithm 3.1 below.

Algorithm 3.1 The first modified subgradient extragradient method for (VIP).

Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute

wn =

{
xn, n = even;

xn + αn (xn − xn−1) , n = odd.
(3.1)

Step 2. Compute yn = PC (wn − λnAwn), where

λn+1 =

min

{
µqn ‖wn − yn‖
‖Awn −Ayn‖

, ξnλn + ζn

}
, Awn 6= Ayn;

ξnλn + ζn, otherwise.
(S2)

If wn = yn, then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)wn + θzn, where

zn = PTn(wn − βλnAyn),

and
Tn = {x ∈ H | 〈wn − λnAwn − yn, x− yn〉 ≤ 0} . (3.2)

Set n := n+ 1 and go to Step 1.

Remark 3.1. Notice that the proposed Algorithm 3.1 and the subgradient extra-
gradient method suggested by Censor et al. [5, 6, 7] are different in computing zn.
Specifically, in updating zn we utilize the projection from wn − βλnAyn to Tn, while
Censor et al. uses the projection from wn − λnAyn to Tn. We insert a new parameter
β and the computational advantage of the proposed Algorithm 3.1 is illustrated by
the numerical experiments given in Sect. 5. Furthermore, if the parameters θ = 1 and
β = 1 in Algorithm 3.1, then it turns out to be an alternated inertial version of the
subgradient extragradient method (see [5, 6, 7]) for solving variational inequalities.
It is noted that the proposed Algorithm 3.1 can solve pseudo-monotone variational
inequalities, while the methods proposed in [5, 6, 7] can only solve monotone variational
inequalities. Therefore, the proposed Algorithm 3.1 has a wide range of applications.

To perform the convergence analysis of the proposed Algorithm 3.1, we assume that
it satisfies the following conditions (C4) and (C5).

(C4) Let λ1 > 0, µ ∈ (0, 1), {qn} ⊂ [1,∞) such that limn→∞ qn = 1, {ξn} ⊂ [1,∞)

such that

∞∑
n=0

(ξn − 1) <∞, and {ζn} ⊂ [0,∞) such that

∞∑
n=0

ζn <∞.

(C5) Let θ ∈ (0, 1], β ∈ (0, 2/(1 + µ)), 0 ≤ αn ≤ α <
β∗ + 2(1− θ)

2θ
, where

β∗ = 2− β − βµ when β ∈ [1, 2/(1 + µ)) and β∗ = β − βµ when β ∈ (0, 1).
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Remark 3.2. It is easy to verify that Condition (C4) is easily satisfied, for example,
by taking

qn = (n+ 1)/n, ξn = 1 + 1/(n+ 1)1.1 and ζn = 1/(n+ 1)1.1.

In addition, note that the inertial parameter αn in Condition (C5) is allowed to be
greater than or equal to 1 when the relaxation parameter θ ∈ (0, 1), for instance, by
choosing θ = 0.5, then αn ≤ α < β∗ + 1 (β∗ > 0 for all β ∈ (0, 2/(1 + µ))).

The following lemmas are important for the convergence analysis of our main results.

Lemma 3.1. Suppose that Conditions (C2) and (C4) hold. Then the sequence {λn}
generated by (S2) is well defined and limn→∞ λn exists.

Proof. Since A is Lipschitz continuous with L > 0 and qn ≥ 1, one sees that

µqn‖wn − yn‖
‖Awn −Ayn‖

≥ µqn‖wn − yn‖
L‖wn − yn‖

≥ µ

L
.

Thus

λn+1 = min

{
µqn ‖wn − yn‖
‖Awn −Ayn‖

, ξnλn + ζn

}
≥ min

{µ
L
, λn

}
,

where ξn ≥ 1 and ζn > 0. By induction, one obtains that the sequence {λn} has a
lower bound {µ/L, λ1}. It follows from (S2) that

λn+1 ≤ ξnλn + ζn.

Thanks to Condition (C4) holds, which together with Lemma 2.1 produces that
limn→∞ λn exists. That is the desired result. �

Remark 3.3. It should be noted that the step size update criterion (S2) is preferable
to (S1) due to the fact that the step size sequence generated by (S2) is non-monotonic
(i.e., it allows λn+1 ≥ λn for some n), whereas the step size update criterion (S1)
produces a non-increasing step size sequence (i.e., it must satisfy λn+1 ≤ λn for all
n ≥ 1). Furthermore, our step size criterion (S2) contains some known step size update
methods in the literature. To see this, we next enumerate some special cases of (S2).
If qn = ξn = 1 and ζn = 0 in (S2), then it reduces to (S1), which is used by many
authors (e.g., [29, 38]). If qn = ξn = 1 and ζn 6= 0 in (S2), then it evolves to the step
size proposed by Liu and Yang [24]. If qn = 1 in (S2), then it degenerates to the step
size recently introduced by Ma and Liu [25].

Lemma 3.2. Assume that Conditions (C2) and (C5) hold, and the sequence {xn} is
generated by Algorithm 3.1. Then the sequence {x2n} is Fejér monotone with respect
to VI(C,A) and limn→∞ ‖x2n − x∗‖ exists, where x∗ ∈ VI(C,A). Furthermore,

lim
n→∞

‖x2n − y2n‖ = 0

and

lim
n→∞

‖x2n+1 − x2n‖ = 0.
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Proof. By the definition of z2n+1 and (2.3), we obtain

‖z2n+1 − x∗‖2

=
∥∥PT2n+1

(w2n+1 − βλ2n+1Ay2n+1)− x∗
∥∥2

≤ ‖w2n+1 − βλ2n+1Ay2n+1 − x∗‖2 − ‖w2n+1 − βλ2n+1Ay2n+1 − z2n+1‖2

= ‖w2n+1 − x∗‖2 + (βλ2n+1)
2 ‖Ay2n+1‖2

− 2 〈w2n+1 − x∗, βλ2n+1Ay2n+1〉 − ‖w2n+1 − z2n+1‖2

− (βλ2n+1)
2 ‖Ay2n+1‖2 + 2 〈w2n+1 − z2n+1, βλ2n+1Ay2n+1〉

= ‖w2n+1 − x∗‖2 − ‖w2n+1 − z2n+1‖2 − 2 〈βλ2n+1Ay2n+1, z2n+1 − x∗〉

= ‖w2n+1 − x∗‖2 − ‖w2n+1 − z2n+1‖2 − 2 〈βλ2n+1Ay2n+1, z2n+1 − y2n+1〉
− 2 〈βλ2n+1Ay2n+1, y2n+1 − x∗〉 .

(3.3)

Since x∗ ∈ VI(C,A) and y2n+1 ∈ C, we have 〈Ax∗, y2n+1 − x∗〉 ≥ 0. This together
with the pseudo-monotonicity of mapping A implies that 〈Ay2n+1, y2n+1 − x∗〉 ≥ 0.
Therefore, (3.3) reduces to

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − ‖w2n+1 − z2n+1‖2

− 2 〈βλ2n+1Ay2n+1, z2n+1 − y2n+1〉 .
(3.4)

Now we estimate 2 〈βλ2n+1Ay2n+1, z2n+1 − y2n+1〉. Note that

−‖w2n+1 − z2n+1‖2 = −‖w2n+1 − y2n+1‖2 − ‖y2n+1 − z2n+1‖2

+ 2 〈w2n+1 − y2n+1, z2n+1 − y2n+1〉 .
(3.5)

In addition,
〈w2n+1 − y2n+1, z2n+1 − y2n+1〉

= 〈w2n+1 − y2n+1 − λ2n+1Aw2n+1 + λ2n+1Aw2n+1

−λ2n+1Ay2n+1 + λ2n+1Ay2n+1, z2n+1 − y2n+1〉
= 〈w2n+1 − λ2n+1Aw2n+1 − y2n+1, z2n+1 − y2n+1〉

+ λ2n+1 〈Aw2n+1 −Ay2n+1, z2n+1 − y2n+1〉
+ 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉 .

(3.6)

Since z2n+1 ∈ T2n+1, one has

〈w2n+1 − λ2n+1Aw2n+1 − y2n+1, z2n+1 − y2n+1〉 ≤ 0. (3.7)

According to the definition of λ2n+1, it is easy to obtain

〈Aw2n+1 −Ay2n+1, z2n+1 − y2n+1〉
≤ ‖Aw2n+1 −Ay2n+1‖ ‖z2n+1 − y2n+1|

≤ µq2n+1

λ2n+2
‖w2n+1 − y2n+1‖ ‖z2n+1 − y2n+1|

≤ µq2n+1

2λ2n+2

(
‖w2n+1 − y2n+1‖2 + ‖z2n+1 − y2n+1‖2

)
.

(3.8)
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Let
a2n+1 := ‖w2n+1 − y2n+1‖2 + ‖z2n+1 − y2n+1‖2 . (3.9)

Substituting (3.6), (3.7), (3.8) and (3.9) into (3.5), we obtain

−‖w2n+1 − z2n+1‖2 ≤ 2 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉

−
(

1− µq2n+1λ2n+1

λ2n+2

)
a2n+1,

(3.10)

From (3.10) (noting that β > 0), one has

− 2 〈βλ2n+1Ay2n+1, z2n+1 − y2n+1〉

≤ −β
(

1− µq2n+1λ2n+1

λ2n+2

)
a2n+1 + β ‖w2n+1 − z2n+1‖2 .

(3.11)

Combining (3.4) and (3.11), we have

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − (1− β) ‖w2n+1 − z2n+1‖2

− β
(

1− µq2n+1λ2n+1

λ2n+2

)
a2n+1.

(3.12)

Note that

‖w2n+1 − z2n+1‖2 ≤ 2
(
‖w2n+1 − y2n+1‖2 + ‖z2n+1 − y2n+1‖2

)
= 2a2n+1,

which yields that

−(1− β) ‖w2n+1 − z2n+1‖2 ≤ −2(1− β)a2n+1, ∀β ≥ 1.

This together with (3.12) implies

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
(

2− β − βµq2n+1λ2n+1

λ2n+2

)
a2n+1, ∀β ≥ 1.

On the other hand, if β ∈ (0, 1), then we obtain

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − β
(

1− µq2n+1λ2n+1

λ2n+2

)
a2n+1, ∀β ∈ (0, 1).

Therefore, we conclude that

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − β∗2n+1a2n+1, (3.13)

where

β∗2n+1 = 2− β − βµq2n+1λ2n+1

λ2n+2
when β ∈ [1, 2/(1 + µ))

and

β∗2n+1 = β − βµq2n+1λ2n+1

λ2n+2
when β ∈ (0, 1).

By Condition (C4) and Lemma 3.1, we have

β∗ := lim
n→∞

β∗2n+1 =

{
2− β − βµ, β ∈ [1, 2/(1 + µ));

β − βµ, β ∈ (0, 1).

Thus, limn→∞ β∗2n+1 > 0 for all β ∈ (0, 2/(1 + µ)). There exists a positive constant
N0 such that β∗2n+1 > 0 holds for all n ≥ N0.
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From (2.1) and (3.13) (noting that ‖w2n+1 − z2n+1‖2 ≤ 2a2n+1), we obtain

‖x2n+2 − x∗‖2 = ‖(1− θ) (w2n+1 − x∗) + θ (z2n+1 − x∗)‖2

= (1− θ) ‖w2n+1 − x∗‖2 + θ ‖z2n+1 − x∗‖2

− θ(1− θ) ‖w2n+1 − z2n+1‖2

≤ (1− θ) ‖w2n+1 − x∗‖2 + θ ‖w2n+1 − x∗‖2

− θβ∗2n+1a2n+1 − θ(1− θ) ‖w2n+1 − z2n+1‖2

= ‖w2n+1 − x∗‖2 − θβ∗2n+1a2n+1 − θ(1− θ) ‖w2n+1 − z2n+1‖2

≤ ‖w2n+1 − x∗‖2 − θ
(

1

2
β∗2n+1 + (1− θ)

)
‖w2n+1 − z2n+1‖2 .

(3.14)

By (3.14) (noting that w2n = x2n), we observe that

‖x2n+1 − x∗‖2 ≤ ‖w2n − x∗‖2 − θ
(

1

2
β∗2n + (1− θ)

)
‖w2n − z2n‖2

= ‖x2n − x∗‖2 − θ
(

1

2
β∗2n + (1− θ)

)
‖x2n − z2n‖2 .

(3.15)

Combining (2.1) and (3.15), we have

‖w2n+1 − x∗‖2

= ‖x2n+1 + α2n+1 (x2n+1 − x2n)− x∗‖2

= ‖(1 + α2n+1) (x2n+1 − x∗)− α2n+1 (x2n − x∗)‖2

= (1 + α2n+1) ‖x2n+1 − x∗‖2 − α2n+1 ‖x2n − x∗‖2

+ α2n+1 (1 + α2n+1) ‖x2n+1 − x2n‖2

≤ (1 + α2n+1)

[
‖x2n − x∗‖2 − θ

(
1

2
β∗2n + (1− θ)

)
‖x2n − z2n‖2

]
− α2n+1 ‖x2n − x∗‖2 + α2n+1 (1 + α2n+1) ‖x2n+1 − x2n‖2

= ‖x2n − x∗‖2 − θ (1 + α2n+1)

(
1

2
β∗2n + (1− θ)

)
‖x2n − z2n‖2

+ α2n+1 (1 + α2n+1) ‖x2n+1 − x2n‖2 .

(3.16)

By the definition of x2n+1 (noting that w2n = x2n), one sees that

θ2 ‖z2n − x2n‖2 = ‖x2n+1 − x2n‖2 . (3.17)

Thus, we conclude from (3.16) that

‖w2n+1 − x∗‖2

≤ ‖x2n − x∗‖2 − θ (1 + α2n+1)

(
1

2
β∗2n + (1− θ)− α2n+1θ

)
‖x2n − z2n‖2 .

(3.18)
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Using (3.18) in (3.14), we have

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − θ
(

1

2
β∗2n+1 + (1− θ)

)
‖w2n+1 − z2n+1‖2

− θ (1 + α2n+1)

(
1

2
β∗2n + (1− θ)− α2n+1θ

)
‖x2n − z2n‖2 .

(3.19)

Since θ ∈ (0, 1], 0 ≤ α2n+1 ≤ α < β∗+2(1−θ)
2θ and β∗2n, β

∗
2n+1 > 0, ∀n ≥ N0, it follows

from (3.19) that

‖x2n+2 − x∗‖ ≤ ‖x2n − x∗‖ , ∀n ≥ N0.

This implies that the sequences {‖x2n − x∗‖} and {x2n} are bounded, and
moreover limn→∞ ‖x2n − x∗‖ exists. In addition, we find from (3.19) that
limn→∞ ‖x2n − z2n‖ = 0, and thus {z2n} is bounded. It follows that
limn→∞ ‖x2n+1 − x2n‖ = 0 by means of (3.17). In view of (3.13), one can show
that (noting that w2n = x2n)

‖z2n − x∗‖2 ≤ ‖x2n − x∗‖2 − β∗2na2n,

which implies that

β∗2na2n ≤ ‖x2n − x∗‖2 − ‖z2n − x∗‖2

= (‖x2n − x∗‖+ ‖z2n − x∗‖) (‖x2n − x∗‖ − ‖z2n − x∗‖)
≤ (‖x2n − x∗‖+ ‖z2n − x∗‖) ‖x2n − z2n‖ → 0, as n→∞.

Therefore, we infer that limn→∞ a2n = 0, i.e.,

lim
n→∞

‖x2n − y2n‖ = 0, lim
n→∞

‖z2n − y2n‖ = 0.

The proof is completed. �

Remark 3.4. Lemma 3.2 shows that unlike the inertial projection-type methods
in [14, 12, 15, 39, 40], our proposed method yields Fejér monotonicity of the even
iterative subsequence with respect to the solution.

We can easily obtain the following Lemma 3.3 by making a simple modification of
Lemma 4.3 in [38]. To avoid repetitive expressions, we omit the proof here.

Lemma 3.3 ([38]). Assume that {xn} is generated by Algorithm 3.1. Let p ∈ H
denote the weak limit of the subsequence {x2nk} of {x2n}. Then p ∈ VI(C,A).

Remark 3.5. Notice that the proof of Lemma 3.3 is not necessary to impose the
sequential weak continuity contained in Condition (C3) on the mapping A when it is
monotone (see, e.g., [40, Remark 3.11]).

Now, we are in a position to proof the weak convergence of the proposed Algorithm 3.1.

Theorem 3.1. Suppose that the sequence {xn} is generated by Algorithm 3.1 and
Conditions (C1)–(C5) hold. Then {xn} converges weakly to a point in VI(C,A).
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Proof. It follows from Lemma 3.2 that {x2n} is bounded and thus {x2n} has weakly
convergent subsequences. Suppose that p ∈ H represents the weak limit of such a
subsequence {x2nk} of {x2n}. Using Lemma 3.3, one obtains p ∈ VI(C,A). Meanwhile,
we have that limn→∞ ‖x2n − p‖ exists by means of Lemma 3.2. Thus, from Lemma 2.2,
one can show that the whole sequence {x2n} converges weakly to a point in VI(C,A).
Next, we show that the weak limit is unique. Suppose that {x2n} converges weakly to
p ∈ VI(C,A) and {x2n} converges weakly to q ∈ VI(C,A). Then

‖p− q‖2 = 〈p, p− q〉 − 〈q, p− q〉
= lim
n→∞

〈x2n, p− q〉 − lim
n→∞

〈x2n, p− q〉

= lim
n→∞

〈x2n − x2n, p− q〉 = 0.

Hence, the weak limit p is unique. By definition, we obtain that lim
n→∞

〈x2n − p, z〉 = 0

for all z ∈ H. Recalling that limn→∞ ‖x2n+1 − x2n‖ = 0 in Lemma 3.2, we have for
all z ∈ H,

|〈x2n+1 − p, z〉| = |〈x2n+1 − p+ x2n − x2n, z〉|
≤ |〈x2n − p, z〉|+ |〈x2n+1 − x2n, z〉|
≤ |〈x2n − p, z〉|+ ‖x2n+1 − x2n‖ ‖z‖ → 0, as n→∞,

which implies that {x2n+1} also converges weakly to p. Thus, we conclude that the
sequence {xn} converges weakly to a point p ∈ VI(C,A). The proof is completed. �

3.2. The second algorithm. In this subsection, we present another version of the
suggested Algorithm 3.1. Specifically, our second alternated inertial subgradient
extragradient scheme with relaxation effects and adaptive non-monotonic step size is
shown in Algorithm 3.2 below.

Algorithm 3.2 The second modified subgradient extragradient method for (VIP).

Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute wn by (3.1).
Step 2. Compute yn = PC (wn − βλnAwn), and update λn+1 by (S2). If wn = yn,
then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)wn + θzn, where zn = PHn(wn − λnAyn), and

Hn = {x ∈ H | 〈wn − βλnAwn − yn, x− yn〉 ≤ 0} . (3.20)

Set n := n+ 1 and go to Step 1.

Remark 3.6. It should be emphasized that our Algorithm 3.2 in computing yn and Tn
is different from the proposed Algorithm 3.1 and the subgradient extragradient method
introduced by Censor et al. [5, 6, 7]. The computational efficiency of Algorithm 3.2 is
demonstrated in the numerical examples provided in Sect. 5. It is worth noting that
the proposed Algorithm 3.1 and Algorithm 3.2 are equivalent when β = 1.

We assume that the proposed Algorithm 3.2 satisfies the following condition (C6)
for the purpose of its weak convergence analysis.
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(C6) Let θ ∈ (0, 1], β ∈ (1/(2−µ), 1/µ), 0 ≤ αn ≤ α < β†+2(1−θ)
2θ , where β† = 2− 1

β−µ
when β ∈ (0, 1] and β† = 1

β − µ when β > 1.

Remark 3.7. Note that the inertial parameter αn in Condition (C6) is allowed to be
greater than or equal to 1 when the relaxation parameter θ ∈ (0, 1); e.g., by choosing
θ = 0.5, then αn ≤ α < β† + 1 (β† > 0 for all β ∈ (1/(2− µ), 1/µ)).

Similar to the proof of Lemma 3.2, we can obtain the following Lemma 3.4, which
is essential for the convergence analysis of Algorithm3.2.

Lemma 3.4. Assume that Conditions (C2) and (C6) hold, and the sequence {xn}
is created by Algorithm 3.2. Then the sequence {x2n} is Fejér monotone with re-
spect to VI(C,A) and limn→∞ ‖x2n − x∗‖ exists, where x∗ ∈ VI(C,A). Moreover,
limn→∞ ‖x2n − y2n‖ = 0 and limn→∞ ‖x2n+1 − x2n‖ = 0.

Proof. Using (3.3) and (3.4), we have

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − ‖w2n+1 − z2n+1‖2

− 2 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉 .
(3.21)

Now we estimate 2 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉. Note that

−‖w2n+1 − z2n+1‖2 = −‖w2n+1 − y2n+1‖2 − ‖y2n+1 − z2n+1‖2

+ 2 〈w2n+1 − y2n+1, z2n+1 − y2n+1〉 .
(3.22)

In addition,

〈w2n+1 − y2n+1, z2n+1 − y2n+1〉
= 〈w2n+1 − y2n+1 − βλ2n+1Aw2n+1 + βλ2n+1Aw2n+1

−βλ2n+1Ay2n+1 + βλ2n+1Ay2n+1, z2n+1 − y2n+1〉
= 〈w2n+1 − βλ2n+1Aw2n+1 − y2n+1, z2n+1 − y2n+1〉

+ βλ2n+1 〈Aw2n+1 −Ay2n+1, z2n+1 − y2n+1〉
+ 〈βλ2n+1Ay2n+1, z2n+1 − y2n+1〉 .

(3.23)

Since z2n+1 ∈ H2n+1, one has

〈w2n+1 − βλ2n+1Aw2n+1 − y2n+1, z2n+1 − y2n+1〉 ≤ 0. (3.24)

Putting (3.8), (3.23) and (3.24) into (3.22), we arrive at

− ‖w2n+1 − z2n+1‖2

≤ 2β 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉

−
(

1− βµq2n+1λ2n+1

λ2n+2

)
(‖w2n+1 − y2n+1‖2 + ‖z2n+1 − y2n+1‖2︸ ︷︷ ︸

a2n+1

),

which implies that

− 2 〈λ2n+1Ay2n+1, z2n+1 − y2n+1〉

≤ −
(

1

β
− µq2n+1λ2n+1

λ2n+2

)
a2n+1 +

1

β
‖w2n+1 − z2n+1‖2 .

(3.25)
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Combining (3.21) and (3.25), we obtain

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
(

1

β
− µq2n+1λ2n+1

λ2n+2

)
a2n+1

−
(

1− 1

β

)
‖w2n+1 − z2n+1‖2 .

(3.26)

Note that ‖w2n+1 − z2n+1‖2 ≤ 2a2n+1, which yields

−
(

1− 1

β

)
‖w2n+1 − z2n+1‖2 ≤ −2

(
1− 1

β

)
a2n+1, ∀β ∈ (0, 1].

This together with (3.26) implies that

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
(

2− 1

β
− µq2n+1λ2n+1

λ2n+2

)
a2n+1, ∀β ∈ (0, 1].

On the other hand, if β > 1, then

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
(

1

β
− µq2n+1λ2n+1

λ2n+2

)
a2n+1, ∀β > 1.

Thus, we conclude that

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 − β†2n+1a2n+1,

where β†2n+1 = 2− 1
β −

µq2n+1λ2n+1

λ2n+2
when β ∈ (0, 1] and β†2n+1 = 1

β −
µq2n+1λ2n+1

λ2n+2
when

β > 1. By Condition (C4) and Lemma 3.1, we have

β† := lim
n→∞

β†2n+1 =

{
2− 1

β − µ, β ∈ (1/(2− µ), 1];
1
β − µ, β ∈ (1, 1/µ).

Hence, limn→∞ β†2n+1 > 0 for all β ∈ (1/(2−µ), 1/µ). There exists a positive constant

N1 such that β†2n+1 > 0 holds for all n ≥ N1.
With the help of the proof of Lemma 3.2, we can easily obtain

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 − θ
(

1

2
β†2n+1 + (1− θ)

)
‖w2n+1 − z2n+1‖2

− θ (1 + α2n+1)

(
1

2
β†2n + (1− θ)− α2n+1θ

)
‖x2n − z2n‖2 .

(3.27)

Since θ ∈ (0, 1], 0 ≤ α2n+1 ≤ α < β†+2(1−θ)
2θ and β†2n, β

†
2n+1 > 0, ∀n ≥ N1, we see

from (3.27) that

‖x2n+2 − x∗‖ ≤ ‖x2n − x∗‖ , ∀n ≥ N1.

This implies that {x2n} is bounded and that limn→∞ ‖x2n − x∗‖ exists. Moreover,
one can show that limn→∞ ‖x2n − y2n‖ = 0 and limn→∞ ‖x2n+1 − x2n‖ = 0 by means
of Lemma 3.2. This completes the proof. �

Similarly, we can obtain the following Lemma 3.5 by performing a simple modifica-
tion of Lemma 4.3 in [38]. We omit the proof to avoid redundancy.
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Lemma 3.5 ([38]). Assume that the sequence {xn} is created by Algorithm 3.2. Let
p ∈ H denote the weak limit of the subsequence {x2nk} of {x2n}. Then p ∈ VI(C,A).

Theorem 3.2. Suppose that the sequence {xn} is created by Algorithm 3.2 and
Conditions (C1)–(C4) and (C6) hold. Then {xn} converges weakly to a point in
VI(C,A).

Proof. From Lemma 3.4 and Theorem 3.1, we can easily obtain the conclusion required.
�

3.3. The third algorithm. In this subsection, inspired by the work in [29, 40, 38],
we present the last adaptive alternated inertial iterative scheme with relaxation effects
proposed in this paper, which is shown in Algorithm 3.3 below.

Algorithm 3.3 The modified projection and contraction method for (VIP).

Iterative Steps: Let x0, x1 ∈ H. Calculate xn+1 as follows:
Step 1. Compute wn by (3.1).
Step 2. Compute yn = PC (wn − βλnAwn), and update λn+1 by (S2). If wn = yn,
then stop and yn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute xn+1 = (1− θ)wn + θzn, where zn = wn − γηndn, and

ηn =


〈wn − yn, dn〉
‖dn‖2

, dn 6= 0;

0, dn = 0,

and dn = wn − yn − βλn (Awn −Ayn) . (3.28)

Set n := n+ 1 and go to Step 1.

Remark 3.8. Our Algorithm 3.3 improves the results in the literature [12, 40, 38]
based on the following observations: (1) our Algorithm 3.3 allows the inertial parameter
αn ≥ 1, which is not permitted in the Algorithm 3.1 suggested by Dong et al. [12] and
the Algorithm 3.1 proposed by Shehu et al. [40]; (2) the even subsequence generated by
our Algorithm 3.3 is Fejér monotone with respect to the solution, while this property
is not enjoyed in the algorithms presented in [12, 40]; (3) our Algorithm 3.3 is different
from the algorithms presented in [12, 40, 38] in the computation of yn, ηn, dn and
zn due to the fact that the insertion of a new parameter β; (4) the Algorithm 3.1
introduced in [12] utilizes a fixed-step and the algorithms presented in [40, 38] use
a non-increasing step size criterion (S1), while our Algorithm 3.3 employs a non-
monotonic step size criterion (S2), which is preferable in practical applications; (5)
when β = θ = 1, qn = ξn = 1 and ζn = 0 in our Algorithm 3.3, it degenerates to the
Algorithm 2 introduced in [38]; and (6) the operator A of our proposed Algorithm 3.3
is pseudo-monotone, so it is more useful than the Algorithm 3.1 of Dong et al. [12],
where operator A is assumed to be monotone. Therefore, our Algorithm 3.3 is more
useful and efficient than the algorithms in [12, 40, 38].

The proposed Algorithm 3.3 is assumed to meet the following condition (C7) in
order to perform its convergence analysis.

(C7) Let θ ∈ (0, 1], γ ∈ (0, 2), 0 ≤ αn ≤ α < 2
γθ − 1, and β ∈ (0, 1/µ).
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Remark 3.9. It is important to note that the inertial parameter in Condition (C7)
allows αn ≥ 1 when γθ < 1.

The establishment of the following two lemmas is crucial for the convergence analysis
of the proposed Algorithm 3.3.

Lemma 3.6. Assume that Conditions (C2) and (C7) hold, and the sequence {xn}
is formed by Algorithm 3.3. Then the sequence {x2n} is Fejér monotone with re-
spect to VI(C,A) and limn→∞ ‖x2n − x∗‖ exists, where x∗ ∈ VI(C,A). Moreover,
limn→∞ ‖x2n − y2n‖ = 0 and limn→∞ ‖x2n+1 − x2n‖ = 0.

Proof. From the definition of z2n+1, one obtains

‖z2n+1 − x∗‖2 = ‖w2n+1 − γη2n+1d2n+1 − x∗‖2

= ‖w2n+1 − x∗‖2 + γ2η2
2n+1 ‖d2n+1‖2

− 2γη2n+1 〈w2n+1 − x∗, d2n+1〉 .
(3.29)

Note that

〈w2n+1 − x∗, d2n+1〉 = 〈w2n+1 − y2n+1, d2n+1〉+ 〈y2n+1 − x∗, d2n+1〉 . (3.30)

By y2n+1 = PC (w2n+1 − βλ2n+1Aw2n+1) and (2.2), we have

〈w2n+1 − y2n+1 − βλ2n+1Aw2n+1, y2n+1 − x∗〉 ≥ 0. (3.31)

Using x∗ ∈ VI(C,A) and y2n+1 ∈ C, we have 〈Ax∗, y2n+1 − x∗〉 ≥ 0, which together
with the pseudo-monotonicity of mapping A yields that 〈Ay2n+1, y2n+1 − x∗〉 ≥ 0.
Thus

〈βλ2n+1Ay2n+1, y2n+1 − x∗〉 ≥ 0. (3.32)

Adding (3.31) and (3.32), we obtain

〈w2n+1 − y2n+1 − βλ2n+1(Aw2n+1 −Ay2n+1), y2n+1 − x∗〉 ≥ 0,

i.e.,

〈y2n+1 − x∗, d2n+1〉 ≥ 0. (3.33)

Combining (3.30) and (3.33), we deduce that

〈w2n+1 − x∗, d2n+1〉 ≥ 〈w2n+1 − y2n+1, d2n+1〉 . (3.34)

Putting (3.34) into (3.29) (noting that η2n+1 ‖d2n+1‖2 = 〈w2n+1 − y2n+1, d2n+1〉), we
have

‖z2n+1 − x∗‖2

≤ ‖w2n+1 − x∗‖2 − 2γη2n+1 〈w2n+1 − y2n+1, d2n+1〉+ γ2η2
2n+1 ‖d2n+1‖2

= ‖w2n+1 − x∗‖2 − 2γη2
2n+1 ‖d2n+1‖2 + γ2η2

2n+1 ‖d2n+1‖2

= ‖w2n+1 − x∗‖2 −
2− γ
γ
‖γη2n+1d2n+1‖2.

This together with the definition of z2n+1 yields

‖z2n+1 − x∗‖2 ≤ ‖w2n+1 − x∗‖2 −
2− γ
γ
‖z2n+1 − w2n+1‖2 . (3.35)
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By the definition of x2n+2, one concludes

‖z2n+1 − w2n+1‖2 =
1

θ2
‖x2n+2 − w2n+1‖2 . (3.36)

Using (2.1), (3.35), and (3.36), one has

‖x2n+2 − x∗‖2 = ‖(1− θ) (w2n+1 − x∗) + θ (z2n+1 − x∗)‖2

= (1− θ) ‖w2n+1 − x∗‖2 + θ ‖z2n+1 − x∗‖2

− θ(1− θ) ‖w2n+1 − z2n+1‖2

≤ (1− θ) ‖w2n+1 − x∗‖2 + θ ‖w2n+1 − x∗‖2

− θ2− γ
γ
‖z2n+1 − w2n+1‖2 − θ(1− θ) ‖w2n+1 − z2n+1‖2

= ‖w2n+1 − x∗‖2 −
(

2

γθ
− 1

)
‖x2n+2 − w2n+1‖2 .

(3.37)

From (3.37) (noting that w2n = x2n), we infer that

‖x2n+1 − x∗‖2 ≤ ‖w2n − x∗‖2 −
(

2

γθ
− 1

)
‖x2n+1 − w2n‖2

= ‖x2n − x∗‖2 −
(

2

γθ
− 1

)
‖x2n+1 − x2n‖2 .

(3.38)

Combining (2.1) and (3.38), we obtain

‖w2n+1 − x∗‖2

= ‖(1 + α2n+1) (x2n+1 − x∗)− α2n+1 (x2n − x∗)‖2

= (1 + α2n+1) ‖x2n+1 − x∗‖2 − α2n+1 ‖x2n − x∗‖2

+ α2n+1 (1 + α2n+1) ‖x2n+1 − x2n‖2

≤ (1 + α2n+1)

[
‖x2n − x∗‖2 −

(
2

γθ
− 1

)
‖x2n+1 − x2n‖2

]
− α2n+1 ‖x2n − x∗‖2 + α2n+1 (1 + α2n+1) ‖x2n+1 − x2n‖2

= ‖x2n − x∗‖2 − (1 + α2n+1)

(
2

γθ
− 1− α2n+1

)
‖x2n+1 − x2n‖2 .

(3.39)

Using (3.39) in (3.37), we have

‖x2n+2 − x∗‖2 ≤‖x2n − x∗‖2 −
(

2

γθ
− 1

)
‖x2n+2 − w2n+1‖2

− (1 + α2n+1)

(
2

γθ
− 1− α2n+1

)
‖x2n+1 − x2n‖2 .

(3.40)

Since γ ∈ (0, 2), θ ∈ (0, 1] and 0 ≤ α2n+1 ≤ α < 2
γθ − 1, it follows from (3.40) that

‖x2n+2 − x∗‖ ≤ ‖x2n − x∗‖ , ∀n ≥ 1.
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This implies that the sequence {‖x2n − x∗‖} and {x2n} are bounded. Furthermore,
one obtains limn→∞ ‖x2n − x∗‖ exists. Rearranging (3.40) and using the fact that
{‖x2n − x∗‖} is bounded, we have

lim
n→∞

‖x2n+1 − x2n‖ = 0. (3.41)

From the definition of d2n and (S2), we obtain

‖d2n‖ = ‖w2n − y2n − βλ2n (Aw2n −Ay2n)‖
≤ ‖w2n − y2n‖+ βλ2n ‖Aw2n −Ay2n‖

≤
(

1 +
βq2nµλ2n

λ2n+1

)
‖w2n − y2n‖ ,

which implies that
1

‖d2n‖
≥ 1(

1 + βµq2nλ2n

λ2n+1

)
‖w2n − y2n‖

. (3.42)

From the definition of d2n and (S2), one has

〈w2n − y2n, d2n〉 = 〈w2n − y2n, w2n − y2n − βλ2n (Aw2n −Ay2n)〉

= ‖w2n − y2n‖2 − 〈w2n − y2n, βλ2n (Aw2n −Ay2n)〉

≥ ‖w2n − y2n‖2 − βλ2n ‖Aw2n −Ay2n‖ ‖w2n − y2n‖

≥ ‖w2n − y2n‖2 −
βµq2nλ2n

λ2n+1
‖w2n − y2n‖2

=

(
1− βµq2nλ2n

λ2n+1

)
‖w2n − y2n‖2 .

(3.43)

Combining the definition of x2n+1 and η2n, (3.42) and (3.43), we have

‖x2n+1 − w2n‖ = ‖θ (z2n − w2n)‖ = θγη2n ‖d2n‖

= θγ
〈w2n − y2n, d2n〉

‖d2n‖
≥ θγ

(
1− βµq2nλ2n

λ2n+1

1 + βµq2nλ2n

λ2n+1

)
‖w2n − y2n‖ .

(3.44)

Using Condition (C4), Lemma 3.1 and β ∈ (0, 1/µ), we obtain

lim
n→∞

1− βµq2nλ2n

λ2n+1

1 + βµq2nλ2n

λ2n+1

= lim
n→∞

1− βµ
1 + βµ

> 0.

By (3.41) and (3.44) (noting that w2n = x2n), we deduce that

lim
n→∞

‖x2n − y2n‖ = 0.

The proof is completed. �

We can also obtain the following Lemma 3.7 by a simple modification of Lemma 4.3
in [38], so that the proof is omitted.

Lemma 3.7 ([38]). Assume that the sequence {xn} is formed by Algorithm 3.3. Let
p ∈ H denote the weak limit of the subsequence {x2nk} of {x2n}. Then p ∈ VI(C,A).



410 BING TAN, ADRIAN PETRUŞEL, XIAOLONG QIN AND JEN-CHIH YAO

Theorem 3.3. Suppose that the sequence {xn} is formed by Algorithm 3.3 and
Conditions (C1)–(C4) and (C7) hold. Then {xn} converges weakly to a point in
VI(C,A).

Proof. We can easily prove the theorem by combining Theorem 3.1 and Lemma 3.6. �

4. Linear convergence rate

In this section, we perform linear convergence rate analysis for the proposed
Algorithms 3.1–3.3 under the condition that the operator A is δ-strongly pseudo-
monotone. Therefore, we need to replace the previous Condition (C3) with the
following Condition (C8).

(C8) The mapping A : H → H is δ-strongly pseudo-monotone, L-Lipschitz continuous
and sequentially weakly continuous on bounded subsets of H.

Now, we are in a position to prove the following theorems with the help of the
techniques in [29, 40, 38].

Theorem 4.1. Let the sequence {xn} be generated by Algorithm 3.1. If Condi-
tions (C1), (C2), (C4), (C5) and (C8) hold, then {xn} converges at least R-linearly
to the unique solution x∗ of (VIP).

Proof. From the definition of y2n, x∗ ∈ C and (2.2), we obtain

〈w2n − λ2nAw2n − y2n, x
∗ − y2n〉 ≤ 0. (4.1)

By x∗ ∈ VI(C,A) and y2n ∈ C, we have 〈Ax∗, y2n − x∗〉 ≥ 0. This together with the
δ-strongly pseudo-monotonicity of mapping A implies that

〈Ay2n, y2n − x∗〉 ≥ δ ‖x∗ − y2n‖2 . (4.2)

Combining (S2), (4.1) and (4.2), we have

〈w2n − y2n, x
∗ − y2n〉 ≤ λ2n 〈Aw2n, x

∗ − y2n〉
= λ2n 〈Aw2n −Ay2n, x

∗ − y2n〉+ λ2n 〈Ay2n, x
∗ − y2n〉

≤ λ2n 〈Aw2n −Ay2n, x
∗ − y2n〉 − δλ2n ‖x∗ − y2n‖2

≤ µq2nλ2n

λ2n+1
‖w2n − y2n‖ ‖x∗ − y2n‖ − δλ2n ‖x∗ − y2n‖2 ,

which implies that

δλ2n ‖x∗ − y2n‖2 ≤
µq2nλ2n

λ2n+1
‖w2n − y2n‖ ‖x∗ − y2n‖+ 〈w2n − y2n, y2n − x∗〉

≤ µq2nλ2n

λ2n+1
‖w2n − y2n‖ ‖x∗ − y2n‖+ ‖w2n − y2n‖ ‖x∗ − y2n‖ .

Thus

‖x∗ − y2n‖ ≤
1 + µq2nλ2n

λ2n+1

δλ2n
‖w2n − y2n‖ .

Let ∆2n =
1+

µq2nλ2n
λ2n+1

δλ2n
. Therefore

‖w2n − x∗‖ ≤ ‖w2n − y2n‖+ ‖x∗ − y2n‖ ≤ (1 + ∆2n) ‖w2n − y2n‖ . (4.3)
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By (4.3) (noting that w2n = x2n), one sees that

‖x2n − y2n‖ ≥ (1 + ∆2n)
−1 ‖x2n − x∗‖ . (4.4)

From the definition of a2n in (3.9) and the inequality ‖a‖2 + ‖b‖2 ≤ ‖a+ b‖2 (noting
that w2n = x2n), we obtain

a2n = ‖w2n − y2n‖2 + ‖z2n − y2n‖2 ≤ ‖w2n − z2n‖2 = ‖x2n − z2n‖2 . (4.5)

Combining (3.19), (4.4) and (4.5), we have

‖x2n+2 − x∗‖2

≤ ‖x2n − x∗‖2 − θ
(

1

2
β∗2n + (1− θ)− α2n+1θ

)
︸ ︷︷ ︸

Γ2n

‖x2n − z2n‖2

≤ ‖x2n − x∗‖2 − Γ2na2n

≤ ‖x2n − x∗‖2 − Γ2n ‖x2n − y2n‖2

≤
[
1− Γ2n (1 + ∆2n)

−2
]
‖x2n − x∗‖2 .

(4.6)

Note that Γ2n (1 + ∆2n)
−2

> 0, ∀n > N0 and thus 1 − Γ2n (1 + ∆2n)
−2

:= σ < 1,
∀n > N0. It follows from (4.6) that

‖x2n+2 − x∗‖2 ≤ σ ‖x2n − x∗‖2 ≤ σ2 ‖x2n−2 − x∗‖2

≤ · · · ≤ σ(n+1)−N ‖x2N − x∗‖2 , ∀n > N0,

which implies that

‖x2n − x∗‖2 ≤
‖x2N − x∗‖2

σN
σn, ∀n ≥ N0. (4.7)

From (3.15) and (4.6), we have

‖x2n+1 − x∗‖2 ≤ ‖x2n − x∗‖2 − θ
(

1

2
β∗2n + (1− θ)

)
‖x2n − z2n‖2

≤ ‖x2n − x∗‖2 − θ
(

1

2
β∗2n + (1− θ)− α2n+1θ

)
‖x2n − z2n‖2

≤
[
1− Γ2n (1 + ∆2n)

−2
]
‖x2n − x∗‖2 ,

which combining with (4.7) yields

‖x2n+1 − x∗‖2 ≤ σ ‖x2n − x∗‖2

≤ ‖x2n − x∗‖2 ≤
‖x2N − x∗‖2

σN
σn, ∀n ≥ N0.

(4.8)

Thus, we deduce that {xn} converges R-Linearly to x∗ by means of (4.7) and (4.8).
The proof is completed. �
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Theorem 4.2. Let the sequence {xn} be created by Algorithm 3.2. If Conditions (C1),
(C2), (C4), (C6) and (C8) hold, then {xn} converges at least R-linearly to the unique
solution x∗ of (VIP).

Proof. Combining Lemma 3.3 and Theorem 4.1, we can easily obtain the conclusion
required. Therefore, we omit the details of the proof. �

Theorem 4.3. Let the sequence {xn} be formed by Algorithm 3.3. If Conditions (C1),
(C2), (C4), (C7) and (C8) hold, then {xn} converges at least R-linearly to the unique
solution x∗ of (VIP).

Proof. By (3.40) (noting that 2
γθ − 1 > 0 and 2

γθ − 1− α2n+1 > 0), one has

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 −
(

2

γθ
− 1− α2n+1

)
‖x2n+1 − x2n‖2 . (4.9)

Combining (3.44) and (4.9) (noting that w2n = x2n), we obtain

‖x2n+2 − x∗‖2

≤ ‖x2n − x∗‖2 −
(

2

γθ
− 1− α2n+1

)
‖x2n+1 − x2n‖2

≤ ‖x2n − x∗‖2 − θ2γ2

(
1− βµq2nλ2n

λ2n+1

1 + βµq2nλ2n

λ2n+1

)2(
2

γθ
− 1− α2n+1

)
︸ ︷︷ ︸

Υn

‖x2n − y2n‖2 .
(4.10)

From (4.4) and (4.10), we have

‖x2n+2 − x∗‖2 ≤ ‖x2n − x∗‖2 −Υ2n ‖x2n − y2n‖2

≤
[
1−Υ2n (1 + ∆2n)

−2
]
‖x2n − x∗‖2 .

(4.11)

Note that Υ2n (1 + ∆2n)
−2

> 0, ∀n > 1 and thus 1 − Υ2n (1 + ∆2n)
−2

:= ρ < 1,
∀n > 1. It follows from (4.11) that

‖x2n+2 − x∗‖2 ≤ ρ ‖x2n − x∗‖2 ≤ ρ2 ‖x2n−2 − x∗‖2

≤ · · · ≤ ρn ‖x2 − x∗‖2 , ∀n ≥ 1,

which implies that

‖x2n − x∗‖2 ≤
‖x2 − x∗‖2

ρ
ρn, ∀n ≥ 1. (4.12)

Using (3.38), (3.44) and (4.4), we deduce that

‖x2n+1 − x∗‖2 ≤ ‖x2n − x∗‖2 − θ2γ2

(
1− βµq2nλ2n

λ2n+1

1 + βµq2nλ2n

λ2n+1

)(
2

γθ
− 1

)
‖x2n − y2n‖2

≤ ‖x2n − x∗‖2 −Υ2n ‖x2n − y2n‖2

≤
[
1−Υ2n (1 + ∆2n)

−2
]
‖x2n − x∗‖2 ,
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which together with (4.12) yields that

‖x2n+1 − x∗‖2 ≤ ρ ‖x2n − x∗‖2

≤ ‖x2n − x∗‖2 ≤
‖x2 − x∗‖2

ρ
ρn, ∀n ≥ 1.

(4.13)

Thus, from (4.12) and (4.13), we conclude that {xn} converges R-Linearly to x∗. This
completes the proof. �

Remark 4.1. We summarize our contributions in this paper as follows.

(1) We propose three adaptive relaxed projection methods with alternating iner-
tial extrapolation steps to solve variational inequalities in infinite-dimensional
Hilbert spaces. The proposed algorithms have a significant computational
advantage over the extragradient-type methods (see, e.g., [14, 23]) when com-
puting the projection onto the feasible set is difficult, which is due to the
fact that our algorithms require computing the projection onto the feasi-
ble set only once in each iteration, instead of twice as required toward the
extragradient-type methods in [14, 23].

(2) Our alternated inertial projection algorithms differ from the inertial projection-
type methods in the literature [14, 12, 15, 39, 40]. Our algorithms can recover
the Fejér monotonicity of the even subsequence with respect to the solution,
while the inertia-type methods proposed in [14, 12, 15, 39, 40] do not enjoy
this property. Furthermore, it is worth noting that our relaxed methods
allow inertial parameters αn ≥ 1. This is not available in many known
(alternated) inertial projection-type methods; see, for example, the algorithms
in [14, 12, 15, 29, 39] that require αn < 1.

(3) Our three iterative schemes can be applied to pseudo-monotone variational
inequality problems, which extends many results in the literature (see, e.g.,
[13, 14, 12, 16, 15, 37, 39]) for solving monotone variational inequalities. Thus,
our methods have a wide range of applications. In addition, the R-linear
convergence rates of the proposed algorithms are proved under the assumption
that the operator A is strongly pseudo-monotone.

(4) The suggested methods contain some known results in the literature [5, 6, 7, 17,
38]. For example, when α = 0, β = 1 and θ = 1 in the proposed Algorithm 3.1
(or Algorithm 3.2) and Algorithm 3.3, they degenerate to the subgradient
extragradient method introduced by Censor et al. [5, 6, 7] and the projection
and contraction method proposed by He [17], respectively. Moreover, our
Algorithm 3.3 with β = 1 is a relaxed version of the Algorithm 2 proposed by
Shehu and Iyiola [38].

(5) Our methods use a non-monotonic step size criterion, which makes them more
efficient than the methods presented in [15, 29, 39, 40, 38, 41] that use a
non-increasing step size, the methods introduced in [13, 16, 37] that apply
an Armijo-type step size, and the fixed-step methods offered in [14, 12, 34].
We provide some numerical experiments and applications to show that the
proposed methods have a competitive advantage over some (alternated) inertial
projection methods (cf. Sect. 5).
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5. Numerical experiments and applications

In this section, we offer some numerical examples occurring in finite- and infinite-
dimensional spaces and applications in optimal control problems to illustrate the
computational efficiency of the proposed algorithms compared to some known ones in
the literature [29, 40, 38]. All the programs are implemented in MATLAB 2018a on a
Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz computer with RAM 8.00 GB.

5.1. Theoretical examples.

Example 5.1. Let the operator A : Rm → Rm be defined by A(x) = Gx + g,
where G = BBT + S + E, g ∈ Rm, B ∈ Rm×m, S ∈ Rm×m is skew-symmetric, and
E ∈ Rm×m is a diagonal matrix whose diagonal terms are non-negative (hence G
is positive symmetric definite). Let the feasible set C be a box constraint with the
form C = [−2, 5]m. It can be check that A is monotone and Lipschitz continuous
with constant L = ‖G‖. In this example, all entries of B,S are generated randomly
in [−2, 2] and E is generated randomly in [0, 2]. Let g = 0. Then the solution set
of the (VIP) is x∗ = {0}. We use Dn = ‖xn − x∗‖ to measure the n-th iteration
error of the algorithms. The maximum number of iterations of 2000 as a common
stopping criterion and the initial values x0 = x1 are randomly generated by rand(m,1)
in MATLAB. Next we test the performance of the proposed algorithms under different
parameters. Specifically, we consider the following four cases.
Case 1: Compare λn. Set α = 0.6, µ = 0.3, λ1 = 0.6 and θ = 0.5 for the proposed
Algorithms 3.1–3.3. Take β = 1.5 for Algorithm 3.1, β = 0.8 for Algorithm 3.2, and
β = 1.0 and γ = 1.5 for Algorithm 3.3. We consider the impact of different parameter
choices in the step size criterion (S2) on the proposed algorithms. Specifically, we
consider the following two cases: (1) setting qn = 1 + 1/n, ξn = 1 + 1/(n+ 1)1.1 and
ζn = 1/(n + 1)1.1 in (S2) for all the proposed algorithms; (2) setting qn = ξn = 1
and ζn = 0 in (S2) (i.e., it becomes the step size criterion (S1)) for all the proposed
algorithms. The numerical behavior of the proposed algorithms applying two different
step size criteria is expressed in Fig. 1.
Case 2: Compare β. Set α = 0.6, θ = 0.5, µ = 0.3, qn = 1 + 1/n, ξn = 1 + 1/(n+ 1)1.1

and ζn = 1/(n + 1)1.1 and λ1 = 0.6 for the proposed Algorithms 3.1–3.3. Take
γ = 1.5 for Algorithm 3.3. The numerical performance of the proposed algorithms
with different parameters β is shown in Fig. 2.
Case 3: Compare the inertial parameter α. Set θ = 0.5, µ = 0.3, qn = 1 + 1/n,
ξn = 1+1/(n+1)1.1 and ζn = 1/(n+1)1.1 and λ1 = 0.6 for the proposed Algorithms 3.1–
3.3. Pick γ = 1.5 for Algorithm 3.3. The numerical behavior of the proposed algorithms
with different parameters α is illustrated in Fig. 3.
Case 4: Compare the relaxation parameter θ. Set α = 0.2, µ = 0.3, qn = 1 + 1/n,
ξn = 1+1/(n+1)1.1 and ζn = 1/(n+1)1.1 and λ1 = 0.6 for the proposed Algorithms 3.1–
3.3. Choose γ = 1.5 for Algorithm 3.3. The numerical performance of the proposed
algorithms with different parameters θ is demonstrated in Fig. 4.

To end this example, we compare the proposed algorithms with some known methods
in the literature, which include the Algorithm 3.2 and the Algorithm 4.1 presented
by Shehu et al. [40] (shortly, SLMD Alg. 3.2 and SLMD Alg. 4.1), the Algorithm 2
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Figure 1. The behavior of our algorithms with different stepsize in
Example 5.1 (m = 20)
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Figure 2. Our algorithms with different β in Example 5.1 (m = 20)
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Figure 3. Our algorithms with different α in Example 5.1 (m = 20)
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Figure 4. Our algorithms with different θ in Example 5.1 (m = 20)

suggested by Shehu and Iyiola [38] (shortly, SI Alg. 2), and the Algorithm 3.1 offered by
Ogbuisi, Shehu and Yao [29] (shortly, OSY Alg. 3.1). The parameters of all algorithms
are set in Table 1, where “–” in Table 1 indicates that the parameter is not defined
in the algorithm. The numerical behavior and numerical results of all algorithms in
three different dimensions are shown in Fig. 5 and Table 2, respectively.

Table 1. Parameter settings for all algorithms in Example 5.1

Algorithms α θ β γ µ qn ξn ζn λ1

Our Alg. 3.1 1.0 0.4 1.5 – 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

Our Alg. 3.2 1.0 0.4 0.8 – 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

Our Alg. 3.3 1.0 0.4 1.0 1.5 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

SI Alg. 2 0.2 – – 1.5 0.3 – – – 0.6
OSY Alg. 3.1 0.2 0.4 – – 0.3 – – – 0.6
SLMD Alg. 3.2 0.2 0.4 – 1.5 0.3 – – – 0.6
SLMD Alg. 4.1 1.0 0.4 – 1.5 0.3 – – – 0.6
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Figure 5. The behavior of all algorithms in different dimensions for Example 5.1
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Table 2. Numerical results of all algorithms for Example 5.1

Algorithms
m = 20 m = 50 m = 100

Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Alg. 3.1 7.83E-17 0.1420 2.60E-08 0.1455 1.16E-04 0.2147
Our Alg. 3.2 3.01E-14 0.1465 5.11E-07 0.1548 1.02E-03 0.2122
Our Alg. 3.3 4.74E-18 0.1716 5.15E-09 0.1732 5.98E-05 0.2112
SI Alg. 2 5.53E-11 0.1400 4.17E-06 0.1581 3.04E-03 0.2063
OSY Alg. 3.1 7.03E-03 0.1259 1.64E-01 0.1465 1.32E+00 0.2080
SLMD Alg. 3.2 3.48E-05 0.1447 4.80E-03 0.1490 8.34E-02 0.2267
SLMD Alg. 4.1 3.89E-07 0.1502 8.09E-04 0.1557 3.21E-02 0.2388

Example 5.2. We consider an example in the Hilbert space H = L2([0, 1]) associated
with inner product

〈x, y〉 :=

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ H,

and induced norm

‖x‖ :=

(∫ 1

0

|x(t)|2dt

)1/2

, ∀x ∈ H.

Let the feasible set be the unit ball C := {x ∈ H : ‖x‖ ≤ 1}. Define an operator
A : C → H by

(Ax)(t) =

∫ 1

0

[x(t)−G(t, s)g(x(s))] ds+ h(t), t ∈ [0, 1], x ∈ C,

where

G(t, s) =
2tset+s

e
√

e2 − 1
, g(x) = cosx, h(t) =

2tet

e
√

e2 − 1
.

It is known that A is monotone and L-Lipschitz continuous with L = 2 (see [18]),
and x∗(t) = 0 is the solution of the corresponding variational inequality problem. We
also compare the proposed algorithms with the ones mentioned in Example 5.1. The
parameters of all algorithms are set in Table 3.

Table 3. Parameter settings for all algorithms in Example 5.2

Algorithms α θ β γ µ qn ξn ζn λ1

Our Alg. 3.1 0.2 1.0 1.3 – 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

Our Alg. 3.2 0.2 1.0 0.8 – 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

Our Alg. 3.3 0.2 1.0 1.0 1.5 0.3 1 + 1
n 1 + 1

(n+1)1.1
1

(n+1)1.1 0.6

SI Alg. 2 0.2 – – 1.5 0.3 – – – 0.6
OSY Alg. 3.1 0.2 1.0 – – 0.3 – – – 0.6
SLMD Alg. 3.2 0.2 0.9 – 1.5 0.3 – – – 0.6
SLMD Alg. 4.1 1.0 0.4 – 1.5 0.3 – – – 0.6
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We use Dn = ‖xn(t)− x∗(t)‖ to measure the n-th iteration error of all algorithms
and choose the maximum number of iterations of 50 as the common stopping criterion.
Figure 6 and Table 4 show the numerical performance and numerical results of all
algorithms for three different types of initial values x0(t) = x1(t).
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(a) x0(t) = x1(t) = 10t3
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Figure 6. The behavior of all algorithms with different initial values
for Example 5.2

Table 4. Numerical results of all algorithms with different initial
values for Example 5.2

Algorithms
x1(t) = 10t3 x1(t) = 10 sin(6t) x1(t) = 10 log(4t)

Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Alg. 3.1 1.23E-08 22.9275 7.90E-09 22.3638 4.96E-09 23.5230
Our Alg. 3.2 2.09E-07 21.7844 1.35E-07 21.3949 8.29E-08 22.1280
Our Alg. 3.3 4.45E-18 23.6675 1.29E-16 24.1700 6.04E-15 25.7202
SI Alg. 2 4.43E-14 23.6249 4.30E-13 24.8159 2.55E-12 25.7061
OSY Alg. 3.1 3.68E-05 20.8452 3.28E-06 21.2197 3.83E-05 23.0713
SLMD Alg. 3.2 3.39E-15 25.7996 1.94E-15 24.5903 8.49E-13 25.7472
SLMD Alg. 4.1 9.23E-06 24.0537 3.71E-05 24.5627 1.62E-05 25.1763

Example 5.3. Let H = L2([0, 1]) be an infinite-dimensional Hilbert space with inner
product

〈x, y〉 =

∫ 1

0

x(t)y(t) dt, ∀x, y ∈ H

and induced norm

‖x‖ =

(∫ 1

0

|x(t)|2 dt

)1/2

, ∀x ∈ H.

Assume that r and R are two positive real numbers such that R/(k+1) < r/k < r < R
for some k > 1. Let the feasible set be defined by C = {x ∈ H : ‖x‖ ≤ r} and the
operator A : H → H be given by

Ax = (R− ‖x‖)x, ∀x ∈ H .
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Note that A is Lipschitz continuous and pseudo-monotone rather than monotone (see
[42, Example 4.2]). For the experiment, we chooseR = 1.5, r = 1, k = 1.1. The solution
of the variational inequality problem (VIP) with A and C given above is x∗(t) = 0.
The parameters of all algorithms are set as in Table 3. The maximum number of
iterations of 50 is used as a common stopping criterion and Dn = ‖xn(t)− x∗(t)‖ is
used to measure the error of the n-th iteration step of all algorithms. The numerical
performance and numerical results of all algorithms with three different initial values
x0(t) = x1(t) are stated in Fig. 7 and Table 5.
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(a) x0(t) = x1(t) = 9t3
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Figure 7. The behavior of all algorithms with different initial values
for Example 5.3

Table 5. Numerical results of all algorithms with different initial
values for Example 5.3

Algorithms
x1(t) = 9t3 x1(t) = log(t) x1(t) = 6t

Dn CPU (s) Dn CPU (s) Dn CPU (s)

Our Alg. 3.1 1.38E-09 16.8353 6.69E-09 16.8393 1.57E-09 16.7370
Our Alg. 3.2 4.37E-08 19.1554 1.54E-07 16.3324 4.86E-08 16.1349
Our Alg. 3.3 2.03E-18 21.9592 4.75E-19 19.1315 4.01E-19 19.1473
SI Alg. 2 3.48E-12 21.4797 1.11E-16 19.0594 3.62E-12 19.0252
OSY Alg. 3.1 5.94E-05 16.8186 7.88E-07 15.8354 2.22E-05 15.8098
SLMD Alg. 3.2 2.89E-11 18.8474 2.22E-18 18.8823 8.79E-15 18.8880
SLMD Alg. 4.1 1.05E-05 18.8571 3.15E-07 19.0200 2.85E-06 18.9539

Remark 5.1. We have the following observations for Examples 5.1–5.3.

(1) It can be seen from Fig. 1 that our algorithms using the non-monotonic step
size criterion (S2) have a faster convergence speed and higher accuracy than our
algorithms using the non-increasing step size criterion (S1). This shows that the
non-monotonic step size rule introduced in this paper is useful and efficient.

(2) As can be seen in Figs. 2, 3, and 4, different parameters β, α, and θ have
different effects on the proposed algorithms. Specifically, we have the following
observations: (1) the proposed Algorithms 3.1 and 3.3 have a higher accuracy
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when the parameter β is larger, while the proposed Algorithm 3.2 has a better
performance when the parameter β is smaller (cf. Fig. 2); (2) our three algorithms
perform better and better as the inertial factor α increases (cf. Fig. 3); and (3)
our three algorithms have a higher accuracy when the relaxation factor θ becomes
larger (cf. Fig. 4).

(3) The performance of our algorithms is better than the schemes presented in [29, 40,
38]. More precisely, our algorithms have a higher accuracy and faster convergence
speed than the ones in [29, 40, 38] under the same stopping conditions achieved,
and these results are not related to the size of the dimension and the choice
of initial values. Moreover, it can be seen from Tables 2, 4 and 5 that the
computational complexity of our algorithms is the same as that of the schemes
in [29, 40, 38], i.e., the time consumed by these algorithms is not much different.
Thus, the methods proposed in this paper are efficient and robust.

(4) Notice that the solutions x∗ of the three examples provided are known, and we all
use Dn = ‖xn − x∗‖ to denote the n-th iteration error for all algorithms. It can
be seen intuitively from Figs. 1, 2, 3, 4, 5, 6 and 7 that the sequence {‖xn − x∗‖}
generated by our three algorithms is monotonically decreasing, which further
implies that the even subsequence {‖x2n − x∗‖} is also monotonically decreasing
(i.e., ‖x2n+2 − x∗‖ ≤ ‖x2n − x∗‖), and this observation also verifies the fact in
Lemma 3.2, Lemma 3.4 and Lemma 3.6 that {x2n} is Fejér monotone with respect
to VI(C,A), the solution set of the variational inequality problem (VIP).

(5) It should be noted that the operator A in Example 5.3 is pseudo-monotone rather
than monotone, which means that the methods proposed in the literature (see,
e.g., [13, 14, 12, 16, 15, 37, 39]) for solving monotone variational inequalities will
not be available. On the other hand, many of the fixed-step methods introduced
in the literature (see, e.g., [14, 12, 34]) will also fail in Example 5.3 because the
Lipschitz constant of the operator A in Example 5.3 is unknown.

Therefore, our three algorithms proposed in this paper are efficient, useful and have a
broader scope of applications.

5.2. Application to optimal control problems. In this subsection, we use the
proposed algorithms to solve the (VIP) that appears in optimal control problems.
Assume that L2 ([0, T ],Rm) represents the square-integrable Hilbert space with inner
product

〈p, q〉 =

∫ T

0

〈p(t), q(t)〉dt

and norm ‖p‖ =
√
〈p, p〉. The optimal control problem is described as follows:

p∗(t) ∈ Argmin{g(p) | p ∈ V },
g(p) = Φ(x(T )),

V =
{
p(t) ∈ L2 ([0, T ],Rm) : pi(t) ∈

[
p−i , p

+
i

]
, i = 1, 2, . . . ,m

}
,

s.t. ẋ(t) = Q(t)x(t) +W (t)p(t), 0 ≤ t ≤ T, x(0) = x0,

(5.1)

where g(p) means the terminal objective function, Φ is a convex and differentiable
defined on the attainability set, p(t) denotes the control function, V represents a set
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of feasible controls composed of m piecewise continuous functions, x(t) stands for
the trajectory, and Q(t) ∈ Rn×n and W (t) ∈ Rn×m are given continuous matrices
for every t ∈ [0, T ]. By the solution of problem (5.1), we mean a control p∗(t) and a
corresponding (optimal) trajectory x∗(t) such that its terminal value x∗(T ) minimizes
objective function g(p). It is known that the optimal control problem (5.1) can be
transformed into a variational inequality problem (see [33, 44]). We first use the
classical Euler discretization method to decompose the optimal control problem (5.1)
and then apply the proposed algorithms to solve the variational inequality problem
corresponding to the discretized version of the problem (see [33, 44] for more details).

Example 5.4 (Rocket car [33]).

minimize
1

2

(
(x1(5))

2
+ (x2(5))

2
)
,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 5],

x1(0) = 6, x2(0) = 1, p(t) ∈ [−1, 1].

The exact optimal control of Example 5.4 is p∗(t) = −1 if t ∈ (0, 3.517] and p∗(t) = 1
if t ∈ (3.517, 5]. We compare the proposed algorithms with the ones mentioned in
Example 5.1. The parameters of all algorithms are set as in Table 3. The initial
controls p0(t) = p1(t) are randomly generated in [−1, 1] and the stopping criterion
is either En = ‖pn+1 − pn‖ ≤ 10−4 or the maximum number of iterations is reached
1000. The approximate optimal control and the corresponding trajectories of the
proposed Algorithm 3.1 are plotted in Fig. 8.
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Figure 8. Numerical results for Example 5.4
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Example 5.5 (See [3]).

minimize − x1(2) + (x2(2))
2
,

subject to ẋ1(t) = x2(t),

ẋ2(t) = p(t), ∀t ∈ [0, 2],

x1(0) = 0, x2(0) = 0, p(t) ∈ [−1, 1].

The exact optimal control of Example 5.5 is p∗(t) = 1 if t ∈ [0, 1.2) and p∗(t) = −1 if
t ∈ (1.2, 2]. The parameters and stopping criteria of all algorithms are the same as
in Example 5.4. Fig. 9 gives the approximate optimal control and the corresponding
trajectories of the proposed Algorithm 3.2.
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Figure 9. Numerical results for Example 5.5

Finally, the numerical results of all algorithms in Examples 5.4 and 5.5 are shown in
Fig. 10 and Table 6.
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Figure 10. Numerical behavior of all algorithms in Examples 5.4 and 5.5
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Table 6. Numerical results of all algorithms in Examples 5.4 and 5.5

Algotithms
Example 5.4 Example 5.5

Iter. CPU (s) En Iter. CPU (s) En

Our Alg. 3.1 185 0.0765 9.7251E-05 109 0.0501 9.5801E-05
Our Alg. 3.2 227 0.0813 9.8148E-05 129 0.0471 9.9337E-05
Our Alg. 3.3 249 0.0866 9.9584E-05 142 0.0501 9.7687E-05
SI Alg. 2 1000 0.3181 1.1931E-03 454 0.1431 9.9589E-05
OSY Alg. 3.1 1000 0.3118 2.4855E-03 700 0.2121 9.9927E-05
SLMD Alg. 3.2 1000 0.3188 1.1461E-03 444 0.1353 9.9757E-05
SLMD Alg. 4.1 1000 0.3053 4.7566E-03 745 0.2246 9.9958E-05

Remark 5.2. From Fig. 8, Fig. 9, Fig. 10 and Table 6, it is known that the three
algorithms proposed in this paper can be applied to solve optimal control problems.
Moreover, they perform better than the schemes presented in the literature [29, 40, 38].
Specifically, they require fewer iterations and less execution time than the algorithms
in [29, 40, 38] to achieve the same stopping conditions, and these results are independent
of the choice of the problem. Thus, our algorithms are efficient and robust.

6. Conclusions

In this paper, three new single projection methods with alternating inertial extrapo-
lation steps and relaxation effects are introduced to solve pseudo-monotone variational
inequality problems in real Hilbert spaces. The proposed algorithms are inspired by the
alternated inertial method, the subgradient extragradient method, the projection and
contraction method, and the relaxation method. Our schemes apply a non-monotonic
step size criterion allowing them to work without the prior knowledge of the Lipschitz
constant of the operator. The weak convergence of the iterative sequences generated
by the proposed algorithms is proved under some suitable conditions. The Fejér
monotonicity of the even subsequences generated by our algorithms is recovered and
the linear convergence rate is confirmed under the assumption that the operator is
strongly pseudo-monotone. Finally, some numerical tests and applications are given
to illustrate the performance of the presented approaches compared to some known
inertial projection methods which also include some recent alternated inertial methods.
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