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Inertial-based methods have the drawback of not preserving the
Fejér monotonicity of iterative sequences, which may result in slower
convergence compared to their corresponding non-inertial versions.
To overcome this issue, Mu and Peng [Stat. Optim. Inf. Com-
put. 3 (2015), 241–248; MR3393305] suggested an alternating in-
ertial method that can recover the Fejér monotonicity of even sub-
sequences. In this paper, we propose a modified version of the
forward-backward algorithm with alternating inertial and relax-
ation effects to solve an inclusion problem in real Hilbert spaces.
The weak and linear convergence of the presented algorithm is
established under suitable and mild conditions on the involved op-
erators and parameters. Furthermore, the Fejér monotonicity of
even subsequences generated by the proposed algorithm with re-
spect to the solution set is recovered. Finally, our tests on image
restoration problems demonstrate the superiority of the proposed
algorithm over some related results.
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1. Introduction

The Monotone Inclusion Problem (shortly, MIP) is a fundamental problem

in mathematics and operational research that arises in many fields, including
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physics, engineering, and economics. Solving the MIP is essential for numer-
ous practical applications, such as image processing, signal processing, and
machine learning; see, e.g., [1, 2, 3]. Recall that the MIP is described as
finding a point in the intersection of two or more sets, and each of them is
defined as the solution set of a monotone operator. In this paper, our goal
is to solve the zero-point problem of the sum of two monotone operators.
That is, we want to find the solution to the following mathematical problem

(1) find x∗ ∈ H such that 0 ∈ (A+B)x∗,

where H denotes a real Hilbert space with inner product 〈· , ·〉 and induced
norm ‖ · ‖, single-valued operator A : H → H is monotone, and multi-valued
operator B : H → 2H is maximally monotone. The solution set to problem
(1) is denoted by Ω throughout the paper.

Monotone operators play a crucial role in optimization and variational
analysis because they have special properties that make them suitable for
solving a wide range of problems. Many optimization problems involve mini-
mizing a function subject to constraints. The constraints are often expressed
in terms of a set, and the optimization problem is to find a point in the in-
tersection of these sets. Monotone operators arise naturally in this context
because the solution sets of many optimization problems can be expressed
as the zero points of monotone operators. The importance of monotone op-
erators is not limited to optimization problems. Indeed, they also have been
used in various areas, such as partial differential equations, image processing,
and signal processing.

To solve problem (1) efficiently, various numerical methods have been de-
veloped. One approach is the operator splitting method, which decomposes
the original problem into simpler sub-problems that can then be solved in
turn. This type of algorithms has gained significant attention in recent years
due to its efficiency in solving large-scale problems. It has been applied to
various areas, such as compressed sensing, inverse problems, and convex op-
timization. The forward-backward (FB) splitting algorithm (see [4, 5]) is a
widely-used method for solving optimization problems that can be decom-
posed into the sum of two convex functions. This algorithm consists of two
phases: a forward phase that computes a gradient step of one of the con-
vex functions, and a backward phase that computes a proximal operator
of the other convex function. By alternating between these two phases, the
algorithm produces an iterative sequence that converges to a solution of the
original optimization problem. To improve the convergence condition and
computational speed of the FB algorithm, Tseng [6] proposed an improved
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version of the FB algorithm, namely the forward-backward-forward (FBF)

algorithm, also known as the Tseng splitting method. The FBF algorithm

is known for its simplicity, efficiency, and versatility, and has been applied

to a wide range of problems in various fields.

The convergence speed of algorithms is a key concern for scholars. It is

known that the inertial method (cf. [7]), as an important technique for ac-

celerating algorithm’s convergence speed, was widely used by scholars. The

basic idea of the inertial method is that the value of the current iterative

sequence is jointly determined by the combination of two or more previous

values. Over the past few decades, researchers proposed a large number of

inertial-based algorithms to solve optimization problems, such as variational

inequalities, equilibrium problems, inclusion problems, and splitting prob-

lems; see, e.g., [8, 9, 10, 11] and the references therein. On the other hand,

looking back to the projection and contraction (PC) algorithm introduced

by He [12] for solving variational inequality problems, it aims to improve

the convergence conditions and computational efficiency of the extragradi-

ent method. Now, the PC algorithm is also used to solve monotone inclusion

problems. Indeed, Gibali et al. [13] proposed a modified FB algorithm based

on the inertia method, the FB algorithm, and the PC algorithm to solve

the MIP. Under appropriate conditions, they proved the weak convergence

of the suggested algorithm. Subsequently, Thong et al. [14] also introduced

an improved FBF algorithm with inertial and relaxation effects to solve the

MIP and established the weak and linear convergence of the algorithm.

It should be noted that the common drawback of the algorithms in

references [13, 14] is that the generated iterative sequence does not enjoy

Fejér monotonicity, which to some extent affects the computational effi-

ciency of these algorithms. To overcome this, Mu and Peng [15] introduced

an improved version of the inertial method, namely the alternated inertial

method. This method maintains the original values of the sequence at even

terms and uses the inertial method to update the values of the sequence at

odd terms. The advantage of the alternated inertial method is that it can

recover the Fejér monotonicity of even sub-sequences. Recently, Shehu et al.

[16] proposed a modified FBF algorithm with alternating inertial terms to

find solutions of the MIP. Under suitable conditions, they also established

the weak and linear convergence of the proposed algorithm, and verified the

computational efficiency of the method through experiments on optimal con-

trol problems. In recent years, the alternated inertial method was extended

to solve other optimization problems; see, e.g., [17, 18, 19, 20, 21, 22, 23]

and the references therein.
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Inspired and motivated by the above results, our goal in this paper is

to explore the theoretical analysis and practical applications of an improved

PC algorithm for solving the monotone inclusion problem. The rest of the

paper is organized as follows. In Section 2, we provide some definitions and

lemmas that are needed subsequently. In Section 3, we introduce an im-

proved PC algorithm with alternating inertial terms and relaxation effects

to discover solutions to the MIP and analyze the weak convergence and

linear convergence of the suggested algorithm under certain conditions of

operators and parameters. In Section 4, the proposed algorithm in compari-

son with some pertinent algorithms is tested on image processing problems.

Finally, we conclude the paper in Section 5, the last section.

2. Preliminaries

Throughout the paper, let C be a nonempty, closed, and convex subset of

a real Hilbert space H. The weak convergence of the sequence {un} to x as

n → ∞ is indicated by un ⇀ x, while the strong convergence of the sequence

{un} to x as n → ∞ is represented by un → x.

The following definitions are common and can be found in any books

and articles on convex analysis or operator theory; see, e.g., [24].

Definition 2.1. Let A : H → H denote a single-valued operator and B :

H → 2H a multi-valued operator.

(i) A is called L-Lipschitz continuous with L > 0 if

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H.

(ii) A is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ H.

(iii) B is called monotone if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ H, u ∈ Bx, v ∈ By.

(iv) B is called μ-strongly monotone if there exists a number μ > 0 such

that

〈u− v, x− y〉 ≥ μ‖x− y‖2, ∀x, y ∈ H, u ∈ Bx, v ∈ By.
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(v) B is called maximally monotone, if it is monotone and if for any
(x, u) ∈ H × H, 〈u − v, x − y〉 ≥ 0 for every (y, v) ∈ Graph(B) (the
graph of operator B) implies that u ∈ Bx.

Definition 2.2. Let C be a nonempty subset of H, and let {un} be a se-
quence inH. Then {un} is Fejér monotone with respect to C if ‖un+1 − u‖ ≤
‖un − u‖ , ∀u ∈ C, n ∈ N.

Definition 2.3. Let {un} be a sequence in H. Then {un} is said to converge
R-linearly to p with rate ρ ∈ [0, 1) if there is a constant c > 0 such that
‖un − p‖ ≤ cρn, ∀n ∈ N.

The following two lemmas play a crucial role in the weak convergence
analysis of the algorithm presented in Section 3.

Lemma 2.1 ([25]). Let A : H → H be Lipschitz continuous and mono-
tone and B : H → 2H be maximally monotone. Then A + B is maximally
monotone.

Lemma 2.2 ([26]). Let C be a nonempty set of H and {un} be a sequence
in H. If limn→∞ ‖un − x‖ exists for every x ∈ C, and every sequential weak
cluster point of {un} is in C, then {un} converges weakly to a point in C.

3. Main results

In this section, we propose an alternated inertial projection and contraction
algorithm to solve the monotone inclusion problem. The proposed method
can adaptively work without the prior information of the Lipschitz constant
of the involved operator. Under some appropriate conditions, the weak and
linear convergence of the proposed algorithm is proved. We first assume
that the following conditions are satisfied for the convergence analysis of
our algorithm:

(C1) the solution set of problem (1) is nonempty, i.e., Ω :=(A+B)−1(0) �=∅;
(C2) operator A : H → H is L-Lipschitz continuous and monotone and

operator B : H → 2H is maximally monotone;
(C3) let ζ1 > 0, χ ∈ (0, 1], ψ ∈ (0, 1), α ∈ (0, 2), and ν ∈ [0, 2

αχ −1). Choose

{ξn} ⊂ [1,∞) such that
∑∞

n=0(ξn − 1) < ∞ and {τn} ⊂ [0,∞) such
that

∑∞
n=0 τn < ∞.

We are now in the position to present Algorithm 3.1.

Remark 3.1. Note that the inertial parameter ν in (2) allows ν ≥ 1 when
αχ < 1 (cf. ν ∈ [0, 2

αχ − 1) in Condition (C3)).



326 Bing Tan and Xiaolong Qin

Algorithm 3.1 An alternated inertial algorithm for solving monotone in-
clusions
Initialization: Give ζ1 > 0, χ ∈ (0, 1], ψ ∈ (0, 1), α ∈ (0, 2), and ν ∈ [0, 2

αχ − 1).

Choose {ξn} ⊂ [1,∞) such that
∑∞

n=0(ξn − 1) < ∞ and {τn} ⊂ [0,∞) such that∑∞
n=0 τn < ∞. Select starting points u0, u1 ∈ H and set n := 1.

Iterative Steps: Given the iterates un, un−1, perform the following steps.
Step 1. Compute

(2) sn =

{
un n = even;

un + ν (un − un−1) n = odd.

Step 2. Compute
pn = (I + ζnB)

−1
(I − ζnA) sn.

If pn = sn, then stop and pn ∈ Ω. Otherwise, go to Step 3.
Step 3. Compute

tn = sn − αδnrn,

where

(3) rn := sn − pn − ζn (Asn −Apn) , δn :=
〈sn − pn, rn〉

‖rn‖2
.

Step 4. Compute
un+1 = (1− χ)sn + χtn.

Update ζn+1 by

(4) ζn+1 =

⎧⎨
⎩min

{
ψ ‖sn − pn‖
‖Asn −Apn‖

, ξnζn + τn

}
if Asn −Apn �= 0;

ξnζn + τn otherwise.

Set n := n+ 1 and go to Step 1.

Remark 3.2. If pn = sn, then, according to Step 2 in Algorithm 3.1, we
have

pn = (I + ζnB)−1 (I − ζnA) pn,

which is equivalent to

(I − ζnA) pn ∈ (I + ζnB) pn.

That is, pn ∈ (A+B)−1(0). Thus the iterations of Algorithm 3.1 terminate
when pn = sn.

The following lemmas are useful for the convergence analysis of Algo-
rithm 3.1.
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Lemma 3.1 ([23]). Suppose that Condition (C3) holds. Then the sequence

{ζn} generated by (4) is well defined and limn→∞ ζn exists.

Lemma 3.2. If pn = sn or rn = 0 in Algorithm 3.1, then pn ∈ Ω.

Proof. By (4), one has

‖rn‖ ≥ ‖sn − pn‖ − ζn‖Asn −Apn‖

≥
(
1− ψζn

ζn+1

)
‖sn − pn‖.

It can be easily proved that ‖rn‖ ≤
(
1+ ψζn

ζn+1

)
‖sn−pn‖. Then it follows that

(5)
(
1− ψζn

ζn+1

)
‖sn − pn‖ ≤ ‖rn‖ ≤

(
1 +

ψζn
ζn+1

)
‖sn − pn‖,

and thus sn = pn if and only if rn = 0. Hence, if sn = pn or rn = 0,

then pn ∈ Ω according to Remark 3.2. Thus, the proof of the lemma is

finished.

Lemma 3.3. Assume that sequences {u2n} and {p2n} are formed by Algo-

rithm 3.1. If limn→∞ ‖u2n − p2n‖ = 0 and {u2nk
} converges weakly to some

p ∈ H, then p ∈ Ω.

Proof. Let (v, u) ∈ Graph(A+B), i.e., u ∈ (A+B)v. By using the definition

of p2n and noting s2n = u2n, one obtains (I−ζ2nk
A)u2nk

∈ (I + ζ2nk
B) p2nk

,

which means that

ζ−1
2nk

(u2nk
− p2nk

− ζ2nk
Au2nk

) ∈ Bp2nk
.

Since operator B is maximally monotone, we deduce that

〈
u−Av − ζ−1

2nk
(u2nk

− p2nk
− ζ2nk

Au2nk
) , v − p2nk

〉
≥ 0.

This combining with the monotonicity of A finds that

〈v − p2nk
, u〉 ≥

〈
v − p2nk

, Av + ζ−1
2nk

(u2nk
− p2nk

− ζ2nk
Au2nk

)
〉

= 〈v − p2nk
, Av −Ap2nk

〉+ 〈v − p2nk
, Ap2nk

−Au2nk
〉

+
〈
v − p2nk

, ζ−1
2nk

(u2nk
− p2nk

)
〉

≥〈v − p2nk
, Ap2nk

−Au2nk
〉+

〈
v − p2nk

, ζ−1
2nk

(u2nk
− p2nk

)
〉
.
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We have limk→∞ ‖Ap2nk
−Au2nk

‖ = 0 by means of limn→∞ ‖u2n − p2n‖ = 0

and the fact that A is Lipschitz continuous. According to ζ2nk
> 0, one has

lim
k→∞

〈v − p2nk
, u〉 = 〈v − p, u〉 ≥ 0,

which together with the maximal monotonicity of (A + B) (cf. Lemma 2.1

and Condition (C2)) yields 0 ∈ (A + B)p, i.e., p ∈ Ω. This completes the

proof.

Lemma 3.4. Let {sn}, {pn}, and {tn} be three sequences created by Algo-

rithm 3.1. Then

(6) ‖tn − p‖2 ≤ ‖sn − p‖2 − 2− α

α
‖tn − sn‖2 , ∀p ∈ Ω,

and

(7) ‖sn − pn‖2 ≤
(
1 + ψζn

ζn+1

)2
[
(1− ψζn

ζn+1
)α

]2 ‖sn − tn‖2.

Proof. Let p ∈ Ω. According to the definition of tn, one has

(8) ‖tn − p‖2 = ‖sn − p‖2 − 2αδn 〈sn − p, rn〉+ α2δ2n ‖rn‖2 .

From the definition of rn, one sees that

(9)
〈sn − p, rn〉 = 〈sn − pn, rn〉+ 〈pn − p, rn〉

= 〈sn − pn, rn〉+ 〈pn − p, sn − pn − ζn (Asn −Apn)〉 .

By using the definition of pn, one obtains (I − ζnA) sn ∈ (I + ζnB) pn. Since

B is maximally monotone, there exists vn ∈ Bpn satisfying (I − ζnA) sn =

pn + ζnvn, which means that

(10) vn = ζ−1
n (sn − pn − ζnAsn) .

Thanks to Lemma 2.1 and Condition (C2), we have that (A+B) is maximally

monotone. From Apn + vn ∈ (A + B)pn and 0 ∈ (A + B)p, one infers that

〈Apn + vn, pn − p〉 ≥ 0. This together with (10) further implies that

(11) 〈sn − pn − ζn (Asn −Apn) , pn − p〉 ≥ 0.
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Combining (8), (9), (11), and the definitions of δn and tn, we have

(12)

‖tn − p‖2 ≤ ‖sn − p‖2 − 2αδn 〈sn − pn, rn〉+ α2δ2n ‖rn‖2

= ‖sn − p‖2 − 2αδ2n ‖rn‖2 + α2δ2n ‖rn‖2

= ‖sn − p‖2 − 2− α

α
‖αδnrn‖2

= ‖sn − p‖2 − 2− α

α
‖tn − sn‖2 , ∀p ∈ Ω.

It follows from (4) that ‖Asn −Apn‖ ≤ ψ
ζn+1

‖sn − pn‖, ∀n ≥ 1, which com-
bining with the definition of δn yields that

(13)

δn‖rn‖2 = 〈rn, sn − pn〉 ≥ ‖sn − pn‖2 − ζn ‖Asn −Apn‖ ‖sn − pn‖

≥
(
1− ψζn

ζn+1

)
‖sn − pn‖2 .

Using (13) and ‖rn‖ ≤ (1 + ψζn
ζn+1

)‖sn − pn‖, one has

(14) δ2n‖rn‖2 ≥
(
1− ψζn

ζn+1

)2 ‖sn − pn‖4
‖rn‖2

≥
(
1− ψζn

ζn+1

)2
(
1 + ψζn

ζn+1

)2 ‖sn − pn‖2.

According to the definition of tn and (14), one sees that

‖tn − sn‖2 = α2δ2n‖rn‖2 ≥ α2

(
1− ψζn

ζn+1

)2
(
1 + ψζn

ζn+1

)2 ‖sn − pn‖2.

Hence we obtain

‖sn − pn‖2 ≤
(
1 + ψζn

ζn+1

)2
[
(1− ψζn

ζn+1
)α

]2 ‖sn − tn‖2.

With that, the proof of the lemma is concluded.

Lemma 3.5. Let sequence {un} be generated by Algorithm 3.1 and Con-
ditions (C1)–(C3) hold. Then the sequence {u2n} is Fejér monotone with
respect to the solution set Ω of (1) and limn→∞ ‖u2n − p‖ exists, where
p ∈ Ω. Moreover,

lim
n→∞

‖u2n − p2n‖ = 0, lim
n→∞

‖u2n+1 − u2n‖ = 0.
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Proof. From the definition of u2n+2, one sees that

(15) ‖t2n+1 − s2n+1‖2 =
1

χ2
‖u2n+2 − s2n+1‖2 .

It is known that the following inequality holds for any x, y ∈ H and ν ∈ [0, 1].

(16) ‖νx+ (1− ν)y‖2 = ν‖x‖2 + (1− ν)‖y‖2 − ν(1− ν)‖x− y‖2.

Combining (6), (15), and (16), we have

(17)

‖u2n+2 − p‖2

= (1− χ) ‖s2n+1 − p‖2 + χ ‖t2n+1 − p‖2

− χ(1− χ) ‖s2n+1 − t2n+1‖2

≤ (1− χ) ‖s2n+1 − p‖2 + χ ‖s2n+1 − p‖2

− χ
2− α

α
‖t2n+1 − s2n+1‖2 − χ(1− χ) ‖s2n+1 − t2n+1‖2

= ‖s2n+1 − p‖2 −
(

2

αχ
− 1

)
‖u2n+2 − s2n+1‖2 .

By using (17) (noting that s2n = u2n), one has

(18)

‖u2n+1 − p‖2 ≤ ‖s2n − p‖2 −
(

2

αχ
− 1

)
‖u2n+1 − s2n‖2

= ‖u2n − p‖2 −
(

2

αχ
− 1

)
‖u2n+1 − u2n‖2 .

From (16), (18), and the definition of sn, we obtain

(19)

‖s2n+1 − p‖2

= (1 + ν) ‖u2n+1 − p‖2 − ν ‖u2n − p‖2 + ν (1 + ν) ‖u2n+1 − u2n‖2

≤ (1 + ν)

[
‖u2n − p‖2 −

(
2

αχ
− 1

)
‖u2n+1 − u2n‖2

]
− ν ‖u2n − p‖2 + ν (1 + ν) ‖u2n+1 − u2n‖2

= ‖u2n − p‖2 − (1 + ν)

(
2

αχ
− 1− ν

)
‖u2n+1 − u2n‖2 .
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Substituting (19) into (17), we have

(20)

‖u2n+2 − p‖2 ≤‖u2n − p‖2 −
(

2

αχ
− 1

)
‖u2n+2 − s2n+1‖2

− (1 + ν)

(
2

αχ
− 1− ν

)
‖u2n+1 − u2n‖2 .

Since α ∈ (0, 2), χ ∈ (0, 1], and ν ∈ [0, 2
αχ − 1), it follows from (20) that

‖u2n+2 − p‖ ≤ ‖u2n − p‖ , ∀n ≥ 1.

This implies that sequence {u2n} is Fejér monotone with respect to solution

set Ω and sequences {‖u2n − p‖} and {u2n} are bounded. Furthermore, one

obtains that limn→∞ ‖u2n − p‖ exists. Rearranging (20) and using the fact

that {‖u2n − p‖} is bounded, we deduce that

(21) lim
n→∞

‖u2n+1 − u2n‖ = 0.

It follows from the definition of r2n and (4) that

‖r2n‖ = ‖s2n − p2n − ζ2n (As2n −Ap2n)‖
≤ ‖s2n − p2n‖+ ζ2n ‖As2n −Ap2n‖

≤
(
1 +

ψζ2n
ζ2n+1

)
‖s2n − p2n‖ ,

which implies that

(22)
1

‖r2n‖
≥ 1(

1 + ψζ2n
ζ2n+1

)
‖s2n − p2n‖

.

By using the definition of r2n and (4), one obtains

(23)

〈s2n − p2n, r2n〉 = 〈s2n − p2n, s2n − p2n − ζ2n (As2n −Ap2n)〉
= ‖s2n − p2n‖2 − 〈s2n − p2n, ζ2n (As2n −Ap2n)〉
≥ ‖s2n − p2n‖2 − ζ2n ‖As2n −Ap2n‖ ‖s2n − p2n‖

≥
(
1− ψζ2n

ζ2n+1

)
‖s2n − p2n‖2 .
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Combining the definition of u2n+1 and δ2n, (22), and (23), we have

(24)

‖u2n+1 − s2n‖ = ‖χ (t2n − s2n)‖ = χαδ2n ‖r2n‖

= χα
〈s2n − p2n, r2n〉

‖r2n‖
≥ χα

(
1− ψζ2n

ζ2n+1

1 + ψζ2n
ζ2n+1

)
‖s2n − p2n‖ .

From Lemma 3.1 and ψ ∈ (0, 1), one can check that

lim
n→∞

1− ψζ2n
ζ2n+1

1 + ψζ2n
ζ2n+1

=
1− ψ

1 + ψ
> 0.

By using (21) and (24) (noting that s2n = u2n), we deduce that

lim
n→∞

‖u2n − p2n‖ = 0.

Therefore, the lemma has been demonstrated.

We can now proceed to prove the weak convergence of Algorithm 3.1.

Theorem 3.1 (Weak convergence). Let {un} be any sequence generated by

Algorithm 3.1 and Conditions (C1)–(C3) hold. Then {un} converges weakly

to an element p ∈ Ω.

Proof. Lemma 3.5 implies that {u2n} is bounded, and thus it has weakly

convergent subsequences. Let z ∈ H denote the weak limit of a subsequence

{u2nk
} of {u2n}. Combining this with the fact that limn→∞ ‖u2n − p2n‖ = 0

and Lemma 3.3, we obtain z ∈ Ω. Thus, by Lemma 3.5, limn→∞ ‖u2n − p‖
exists for all p ∈ Ω. Using Lemma 2.2, we can show that the whole sequence

{u2n} converges weakly to a point in Ω. We now prove that this weak limit

is unique. Suppose that {u2n} converges weakly to both p and q in Ω. Then

‖p− q‖2 = 〈p, p− q〉 − 〈q, p− q〉
= lim

n→∞
〈u2n, p− q〉 − lim

n→∞
〈u2n, p− q〉

= lim
n→∞

〈u2n − u2n, p− q〉 = 0.

Hence, the weak limit p is unique. By definition, we obtain that

lim
n→∞

〈u2n − p, x〉 = 0
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for all x ∈ H. Recalling that limn→∞ ‖u2n+1 − u2n‖ = 0 in Lemma 3.5, we
have for all x ∈ H,

|〈u2n+1 − p, x〉| = |〈u2n+1 − p+ u2n − u2n, x〉|
≤ |〈u2n − p, x〉|+ |〈u2n+1 − u2n, x〉|
≤ |〈u2n − p, x〉|+ ‖u2n+1 − u2n‖ ‖x‖ → 0, as n → ∞.

This implies that {u2n+1} also converges weakly to p. Thus we conclude
that the sequence {un} converges weakly to a point p ∈ Ω. The proof is
completed.

With that, we are now going to prove the linear convergence of Algo-
rithm 3.1 under the condition that operator B is strongly monotone.

Theorem 3.2 (Linear convergence). Let any sequence {un} be created by
Algorithm 3.1. Assume that Conditions (C1), (C2)′, and (C3) hold.

(C2)′ The operator A : H → H is L-Lipschitz continuous and monotone,
and the operator B : H → 2H is σ-strongly monotone.

Then {un} converges to the unique solution p of the problem (1) with an
R-linear rate.

Proof. It follows from pn = (I + ζnB)−1 (I − ζnA)sn that (I − ζnA) sn ∈
(I + ζnB) pn. Thus

(25) ζ−1
n (sn − pn − ζnAsn) ∈ Bpn.

Let p ∈ Ω, i.e., p ∈ (A+B)−1(0), which implies that −Ap ∈ Bp. Combining
this with (25) and the fact that B is strongly monotone with constant σ, we
deduce that

〈sn − pn − ζnAsn + ζnAp, pn − p〉 ≥ σζn ‖pn − p‖2 .

By using the monotonicity of A, one has

(26)

〈sn − pn − ζn (Asn −Apn) , pn − p〉
≥ σζn ‖pn − p‖2 + ζn 〈Apn −Ap, pn − p〉
≥ σζn ‖pn − p‖2 .

Combining (8), (9), (12), and (26), we obtain

(27) ‖tn − p‖2 ≤ ‖sn − p‖2 − 2− α

α
‖tn − sn‖2 − 2σαδnζn ‖pn − p‖2 .
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This together with (16) and the definition of un+1 implies that

‖un+1 − p‖2

≤ (1− χ) ‖sn − p‖2 + χ ‖tn − p‖2

≤ (1− χ) ‖sn − p‖2 + χ ‖sn − p‖2 − χ
2− α

α
‖tn − sn‖2

− 2χσαδnζn ‖pn − p‖2 .

That is,

(28) ‖un+1 − p‖2 ≤ ‖sn − p‖2−χ
2− α

α
‖tn − sn‖2 − 2χσαδnζn ‖pn − p‖2 .

From the definition of δn, (5), and (13), we have

(29) δn =
〈sn − pn, rn〉

‖rn‖2
≥

(
1− ψζn

ζn+1

)
‖sn − pn‖2

‖rn‖2
≥

(
1− ψζn

ζn+1

)
(
1 + ψζn

ζn+1

)2 .

Combining (7), (28), and (29), we can present that

(30)

‖un+1 − p‖2 ≤ ‖sn − p‖2 − χ
2− α

α

[(
1− ψζn

ζn+1

)
α
]2

(
1 + ψζn

ζn+1

)2 ‖sn − pn‖2

− 2χσαζn

(
1− ψζn

ζn+1

)
(
1 + ψζn

ζn+1

)2 ‖pn − p‖2 .

Let β := min

{
χα(2− α)

2

(1− ψ)2

(1 + ψ)2
, χσαζ

1− ψ

(1 + ψ)2

}
, where ζ := limn→∞ ζn.

Note that β ∈ (0, 12). Then we obtain

lim
n→∞

χ
2− α

α

[(
1− ψζn

ζn+1

)
α
]2

(
1 + ψζn

ζn+1

)2 = χα(2− α)
(1− ψ)2

(1 + ψ)2
≥ 2β,

lim
n→∞

χσαζn

(
1− ψζn

ζn+1

)
(
1 + ψζn

ζn+1

)2 = χσαζ
1− ψ

(1 + ψ)2
≥ β.
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Thus, there exists N ∈ N such that

χ
2− α

α

[(
1− ψζn

ζn+1

)
α
]2

(
1 + ψζn

ζn+1

)2 ≥ 2β, χσαζn

(
1− ψζn

ζn+1

)
(
1 + ψζn

ζn+1

)2 ≥ β, ∀n ≥ N.

From (30), we have

(31)
‖un+1 − p‖2 ≤ ‖sn − p‖2 − 2β ‖pn − sn‖2 − 2β ‖pn − p‖2

≤ ρ ‖sn − p‖2 , ∀n ≥ N,

where ρ := 1− β ∈ (0, 1). By using (31) (noting that s2n = u2n), one has

(32) ‖u2n+1 − p‖2 ≤ ρ‖u2n − p‖2,

and

(33) ‖u2n+2 − p‖2 ≤ ρ‖s2n+1 − p‖2.

Note that (27) can reduced to (6). Thus by the same arguments in (15)–(19),
we also have

(34) ‖s2n+1 − p‖2 ≤ ‖u2n − p‖2 , ∀n ≥ 1.

It follows from (33) and (34) that

‖u2n+2 − p‖2 ≤ ρ ‖u2n − p‖2 ≤ ρ2 ‖u2n−2 − p‖2

≤ · · · ≤ ρn ‖u2 − p‖2 , ∀n ≥ 1,

which implies that

(35) ‖u2n − p‖2 ≤ ‖u2 − p‖2

ρ
ρn, ∀n ≥ 1.

Combining (32) and (35), we have

(36)

‖u2n+1 − p‖2 ≤ ρ ‖u2n − p‖2

≤ ‖u2n − p‖2 ≤ ‖u2 − p‖2

ρ
ρn, ∀n ≥ 1.

Therefore we conclude that {un} converges R-Linearly to p in virtue of (35)
and (36). This finishes the proof of the theorem.
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4. Numerical experiments

In this section, we apply Algorithm 3.1 to solve the image processing problem

and compare it with the methods (see Appendix A) in the literature [13,

14, 16]. All codes were executed in MATLAB 2018a on a personal computer

with RAM 8.00 GB.

Example 4.1. (Image Restoration Problem) The image restoration

problem refers to the task of improving the quality of a degraded or cor-

rupted image. The degradation process can be caused by various factors

such as noise, blur, loss of detail, and other distortions. The objective of

image restoration is to recover the original image as much as possible, by re-

moving these degradation effects. Overall, the image restoration problem is

an important field of research in computer vision and image processing, with

applications in a wide range of areas including medical imaging, astronomy,

and surveillance.

Formulated Model The problem of image restoration can be formu-

lated as the following model:

(37) Cx = b+ v,

where C ∈ R
m×k is a convolution matrix, x ∈ R

k is the original image data,

b ∈ R
m is the degraded image data, and v ∈ R

m is the noise vector. This

problem can be approached as a constraint optimization problem with the

goal of minimizing the function f(x) = ‖Cx−b‖2, subject to the constraint

that x ∈ C. This model can be transformed into a split feasibility problem

by defining C as a box in R
k and Q as either {b} if no noise is added (i.e.

v = 0), or as a set Q = {y ∈ R
m | ‖y − (b+ v)‖ ≤ ε} for a small enough

ε > 0.

Grayscale Image Degradation In this experiment, we picked four

grayscale images with a size of 515 × 512 as our test matters. As is well

known, the range of each pixel value in a grayscale image is from 0 to 1.

This means that the range of C is [0, 1], that is, 0 ≤ xi,j ≤ 1 for each

1 ≤ i ≤ 512 and 1 ≤ j ≤ 512. Two stages of degradation are applied to the

original image to create the degraded image: initially, a 9× 9 Gaussian blur

with a standard deviation of 2 is applied to the original image, and then

zero-mean Gaussian white noise with a standard deviation of 10−4 is added.

Evaluation Indicators To evaluate the quality of the reconstructed

image compared to the original image, we use the Signal-to-Noise Ratio
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(SNR) in decibels and the Structural Similarity Index (SSIM). The SNR is
calculated as follows:

SNR := 20 log10
‖x‖

‖x̃− x‖ ,

where x is an original image and x̃ is a restored image. The calculation of
SSIM directly calls the function “ssimval=ssim(x̃,x)” in MATLAB. It is
well known that higher values of SNR and SSIM indicate better reconstruc-
tions.

Algorithm Parameter Settings The parameters of the proposed
Algorithm 3.1 and the algorithms presented in [13, 14, 16] are set as follows.

• Choose ζ1 = 1, ψ = 0.8, α = 1.5, ν = 0.3, χ = 0.9, ξn = 1 + 1
(n+1)2 ,

and τn = 1
n+1 for the proposed Algorithm 3.1.

• Set νn = 0.3, α = 1.5, and ζn = 0.3
L (where L = ‖C∗C‖) for the

Algorithm 1 introduced by Gibali et al. [13] (shortly, GTV Alg. 1).
Take ζ1 = 1, ψ = 0.8, ν = 0.3, χ = 0.4, and τn = 1

n+1 for the
Algorithm 1 presented by Thong et al. [14] (shortly, TCPDL Alg. 1).
Pick ζ1 = 1, ν = 0.1, ψ = 0.8, and χ = 0.9 for the Algorithm 1
suggested by Shehu et al. [16] (shortly, SLDY Alg. 1).

Restoration Results Now we can use these algorithms to solve
the image restoration problem. The starting points for all algorithms are
u0 = u1 = b, and the iteration process stops after 200 iterations. The origi-
nal test images, the degraded images, and the images recovered by our Algo-
rithm 3.1 are displayed in Figures 1, 2, 3, and 4, respectively. The variation
of SNR and SSIM values with the number of iterations for all algorithms on
the four test images is illustrated in Figures 5 and 6, respectively. Finally,
the SNR and SSIM values of all algorithms after 200 iterations for the four
test images are stated in Table 1.

Table 1: Numerical results for all algorithms under different images

Algorithms
Cameraman Lena Mandril Pirate

SNR SSIM SNR SSIM SNR SSIM SNR SSIM
Our Alg. 3.1 29.5488 0.9570 27.5188 0.9032 22.2740 0.8506 23.7240 0.8556
SLDY Alg. 1 28.5557 0.9485 27.0257 0.8958 21.6515 0.8251 23.3439 0.8435
TCPDL Alg. 1 27.7342 0.9406 26.5654 0.8885 21.0840 0.7977 23.0044 0.8319
GTV Alg. 1 27.4197 0.9373 26.3897 0.8856 20.8604 0.7857 22.8753 0.8273

Remark 4.1. It is intuitively evident from Figures 1, 2, 3, and 4 that the
Algorithm 3.1 proposed in this paper can effectively restore the original im-
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Figure 1: The original Cameraman image, the degraded image, and the
image recovered by our Algorithm 3.1.

Figure 2: The original Lena image, the degraded image, and the image re-
covered by our Algorithm 3.1.

Figure 3: The original Mandril image, the degraded image, and the image
recovered by our Algorithm 3.1.

age from the degraded image. According to numerical results, the suggested

Algorithm 3.1 has higher SNR and SSIM values than the algorithms in ref-

erences [13, 14, 16] under the same tests (cf. Figures 5 and 6, and Table 1),
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Figure 4: The original Pirate image, the degraded image, and the image
recovered by our Algorithm 3.1.

Figure 5: The variation of SNR for all algorithms with four images.

which means that our algorithm performs better. Therefore, the solution

scheme introduced in this paper can provide a reference for solving image

processing problems and develop new ideas for addressing other monotone
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Figure 6: The variation of SSIM for all algorithms with four images.

inclusion problems.

5. Conclusions

In this paper, a novel iterative scheme was introduced based on the alter-
nating inertial method, the forward-backward algorithm, the projection and
contraction algorithm, and the relaxation method to solve the monotone
inclusion problem. The weak convergence of the suggested algorithm was
proved under the assumption that the involved single-valued operator is
Lipschitz continuous and monotone, and the involved multi-valued operator
is maximally monotone in real Hilbert spaces. Furthermore, the R-linear
convergence of the proposed algorithm was established under the condition
that the multi-valued operator is strongly monotone. Finally, our algorithm
is applied to image restoration problems and it exhibits better performance
than related results. The proposed algorithm improves and generalizes many
known results in the literature.
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Appendix A. Algorithms for comparison in numerical
experiments

In the appendix, we state the three comparison algorithms in the literature
[13, 14, 16] referred to in this paper. The symbol Ω in following algorithms
denotes the solution set of problem (1).

Algorithm Gibai et al’s Algorithm 1 [13] (GTV Alg. 1)

Initialization: Take α ∈ (1, 2), {νn} ⊂ [0, 1), and {ζn} ⊂
(
0, 1

L

)
. Let u0, u1 ∈ H

and set n := 1.
Iterative Steps: Given the iterates un, un−1, perform the following steps.
Step 1. Compute sn = un + νn (un − un−1).

Step 2. Compute pn = (I + ζnB)
−1

(I − ζnA) sn. If pn = sn then stop and pn ∈
Ω.
Step 3. Compute un+1 = sn − αδnrn, where

rn := sn − pn − ζn (Asn −Apn) , δn :=
〈sn − pn, rn〉

‖rn‖2
.

Set n := n+ 1 and go to Step 1.

Algorithm Thong et al.’s Algorithm 1 [14] (TCPDL Alg. 1)

Initialization: Let ζ1 > 0, χ ∈ (0, 1
2 ), ψ ∈ (0, 1), and ν ∈ [0, 1]. Let {τn} be a

nonnegative real numbers sequence such that
∑∞

n=1 τn < +∞. Select u0, u1 ∈ H
and set n := 1.
Iterative Steps: Given the iterates un, un−1, perform the following steps.
Step 1. Compute sn = un + ν (un − un−1).

Step 2. Compute pn = (I + ζnB)
−1

(I − ζnA) sn. If pn = sn then stop and pn ∈
Ω.
Step 3. Compute un+1 = (1− χ)un + χ (pn − ζn(Apn −Asn)). Update ζn+1 by

ζn+1 =

⎧⎨
⎩min

{
ψ ‖sn − pn‖
‖Asn −Apn‖

, ζn + τn

}
if Asn −Apn �= 0;

ζn + τn otherwise.

Set n := n+ 1 and go to Step 1.
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Algorithm Shehu et al.’s Algorithm 1 [16] (SLDY Alg. 1)

Initialization: Let ζ1 > 0, χ ∈ (0, 1], ψ ∈ (0, 1), and ν ∈ [0, 1−ψ
1+ψ ). Let u0, u1 ∈ H

and set n := 1.
Iterative Steps: Given the iterates un, un−1, perform the following steps.
Step 1. Compute

sn =

{
un, n = even;

un + ν (un − un−1) , n = odd.

Step 2. Compute pn = (I + ζnB)
−1

(I − ζnA) sn. If pn = sn then stop and pn ∈
Ω.
Step 3. Compute un+1 = (1− χ)sn + χ (pn − ζn(Apn −Asn)). Update ζn+1 by

ζn+1 =

⎧⎨
⎩min

{
ψ ‖sn − pn‖
‖Asn −Apn‖

, ζn

}
if Asn −Apn �= 0;

ζn otherwise.

Set n := n+ 1 and go to Step 1.
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