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Two relaxed inertial
forward-backward-forward algorithms for
solving monotone inclusions and an
application to compressed sensing
Bing Tan and Xiaolong Qin
Abstract. Two novel algorithms, which incorporate inertial terms and relaxation effects, are
introduced to tackle a monotone inclusion problem. The weak and strong convergence of the
algorithms are obtained under certain conditions, and the R-linear convergence for the first
algorithm is demonstrated if the set-valued operator involved is strongly monotone in real Hilbert
spaces. The proposed algorithms are applied to signal recovery problems and demonstrate improved
performance compared to existing algorithms in the literature.

1 Introduction

In this paper, our main goal is to devise accelerated iterative algorithms for solving
the classical zero point problem of the sum of two monotone operators, which is
also known as the monotone inclusion problem (shortly, MIP). Recall that the MIP
is formed as follows:

find x∗ ∈ H such that 0 ∈ (A + B)x∗ ,(1.1)

where H denotes a real Hilbert space with the inner product ⟨⋅ , ⋅⟩ and the induced
norm ∥ ⋅ ∥, A ∶ H → H is a single valued operator, and B ∶ H → 2H is a multi-valued
operator. The monotone inclusion problem is an important problem widely studied in
the fields of mathematics, engineering, physics, economics, and computer science. Its
applications are extremely wide-ranging, including portfolio optimization, resource
allocation, production planning, optimal control, image processing, signal recovery,
and more; see, for example, [1, 2, 3, 4]. The MIP is a challenging problem and has been
the subject of extensive research, leading to the development of various algorithms
and methods for solving it.

Next, we give the connection between the inclusion problem and the split feasibility
problem and show its application to signal processing problems.
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2 B. Tan and X. Qin

Example 1.1 The split feasibility problem (SFP) involves finding an x in the nonempty
closed convex subset C of real Hilbert space H1 such that Tx is in another nonempty
closed convex subset Q of real Hilbert space H2, where T is a bounded linear operator
mapping from H1 to H2. This problem arises in image reconstruction and signal
processing. From an optimization perspective, x∗ solves SFP if it is a solution to the
minimization problem with zero optimal value:

min
x∈C

h(x) = 1
2

∥Tx − PQ Tx∥2 ,

where PQ is the metric projection of H2 onto Q. Note that h is a convex differentiable
function and its gradient, ∇h(x) = T∗ (I − PQ ) Tx, is ∥T ∥2-Lipschitz continuous and
monotone. Hence, x∗ solves the SFP if it finds the solutions of the following inclusion
problem: find x∗ ∈ H1 such that 0 ∈ ∇h(x∗) + ∂δC (x∗), where δC is the indicator
function of C. In (1.1), setting A ∶= ∇h and B ∶= ∂δC , we can obtain the SFP as a special
case of the MIP.

Now we show how the signal processing problem can be modeled in the form of an
SFP and thus extended to the inclusion problem. The original signal, x, is a vector in
R

N with only k non-zero elements where k is much smaller than N. The bounded linear
operator C ∶ RM×N represents the transformation of the signal during transmission,
and ε is the noise introduced during the process. The resulting noise signal, y, can be
modeled as y = Cx + ε, where y is a vector inR

M . To solve this model, we can formulate
an unconstrained optimization problem as follows:

min
x∈RN

1
2

∥y − Cx∥2 subject to ∥x∥1 ≤ t, where t is a positive constant.

By setting C ∶= {∥x∥1 ≤ t} and Q ∶= {y}, the optimization problem defined above can
be converted into an SFP model; thus, we can solve the signal processing problem by
using algorithms that solve the MIP (1.1).

Splitting methods are a well known and important class of techniques for solving
inclusion problems. They involve decomposing the original problem into two or
simpler subproblems, which can then be solved more easily. The solutions to the
subproblems are then combined to find the solution to the original problem. Splitting
methods have been widely used in various fields, such as optimization, control
theory, and computer science. They are known for their simplicity, efficiency, and
versatility, making them a popular choice for solving inclusion problems. Among
splitting methods, the forward-backward (FB) splitting algorithms [5, 6] are a
prominent method for solving monotone inclusion problems. This method splits
the original problem into two subproblems: a forward step, which involves finding
a solution that increases the objective function, and a backward step, which involves
finding a solution that decreases the objective function. The role of the forward
and backward steps is to balance the trade-off between convergence and feasibility,
allowing the algorithm to converge to the optimal solution while ensuring that the
constraints are satisfied. By alternating between the forward and backward steps,
the forward-backward splitting algorithm is able to find the optimal solution to
the monotone inclusion problem in an efficient and effective manner. The forward-
backward splitting algorithms have been extensively studied and are considered to
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Two relaxed inertial FBF algorithms for monotone inclusions 3

be a powerful tool for solving monotone inclusion problems in various fields because
they are simple to implement, computationally efficient, and can be easily extended
to handle more complex problems.

The convergence of an FB algorithm can be slow or inefficient when the problem is
highly nonlinear or when the objective function has multiple local minima. To address
these challenges, a more advanced variant of the forward-backward splitting algorithm
called the forward-backward-forthward (FBF) algorithm (sometimes known as the
Tseng’s algorithm) has been developed by Tseng [7]. The FBF algorithm extends the
forward-backward algorithm by adding a third step, called the forward step, which
involves applying an operator that maps the current solution to a new solution that
is guaranteed to increase the objective function even further. By incorporating the
forward step, the FBF algorithm is able to overcome the convergence limitations of
the FB algorithm and find the optimal solution more quickly and efficiently, especially
for problems with highly nonlinear constraints or multiple local minima. For more
improved versions of the FB algorithm and the FBF algorithm for solving monotone
inclusion problems and their convergence results, see, for example, [8, 9, 10, 11, 12,
13, 14, 15, 16]. However, strong convergence is considered to be a more important
concept than weak convergence in infinite dimensional spaces. This is because strong
convergence implies that the limit of a sequence of functions converges not only in
the sense of distribution but also pointwise. This stronger convergence notion allows
for a more robust and accurate analysis of the limit behavior and often provides
stronger conclusions about the limit. In contrast, weak convergence only guarantees
convergence in distribution, which may not capture the fine details of the limit behav-
ior. As a result, strong convergence is often preferred in infinite dimensional spaces
when a more precise and rigorous analysis is desired. In 2018, Gibali and Thong [17]
proposed two modification schemes of the FBF algorithm by combining the FBF
algorithm with the Mann-type method and the viscosity-type method, respectively.
They established strong convergence theorems for the proposed algorithms, provided
that the parameters and operators satisfy some suitable conditions. More precisely,
their two iterative algorithms are shown below.

Gibali et al.’s Mann-type FBF Algorithm 1 [17]
Initialization: Given ψ1 > 0, η ∈ (0, 1). Let {αn } and {δn } be two real
sequences in (0, 1) such that {δn } ⊂ (a, b) ⊂ (0, 1 − αn ) for some a > 0,
b > 0 and limn→∞ αn = 0, ∑∞n=1 αn = ∞. Let t0 ∈ H be arbitrary.
Iterative process:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

gn = (I + ψn B)−1 (I − ψn A) tn ,
un = gn − ψn (Agn − Atn ) ,
tn+1 = (1 − αn − δn )tn + δnun , ∀n ≥ 1.

Update ψn+1 by

ψn+1 =
⎧⎪⎪⎨⎪⎪⎩

min { η∥tn−gn∥
∥Atn−Agn∥

, ψn } , if Atn − Agn ≠ 0,
ψn , otherwise.

(1.2)
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Gibali et al.’s viscosity-type FBF Algorithm 2 [17]
Initialization: Given ψ1 > 0, η ∈ (0, 1). Let f ∶ H → H be a contraction
mapping with constant ρ ∈ (0, 1). Assume {αn } is a real sequence such
that limn→∞ αn = 0, ∑∞n=1 αn = ∞. Let t0 ∈ H be arbitrary.
Iterative process:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

gn = (I + ψn B)−1 (I − ψn A) tn ,
un = gn − ψn (Agn − Atn ) ,
tn+1 = αn f (tn ) + (1 − αn )un , ∀n ≥ 1.

Update ψn+1 by (1.2).

Recently, in order to speed up the convergence speed of algorithms proposed by
Gibali et al. [17] and also to speed up the FBF algorithm, Thong et al. [18] combined
the FBF algorithm with inertial and relaxation techniques. Indeed, they proposed a
modified FBF algorithm with a non-monotonic sequence of step sizes as follows.

Thong et al.’s relaxed FBF Algorithm 1 [18]
Initialization: Given ψ1 > 0, γ ∈ (0, 1), η ∈ (0, 1), σ ∈ [0, 1

2 ). Let {τn } be
a nonnegative real numbers sequence such that ∑∞n=1 τn < +∞. Select
starting points t0 , t1 ∈ H.
Iterative process:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dn = tn + γ (tn − tn−1 ) ,
gn = (I + ψn B)−1 (I − ψn A) dn ,
un = gn − ψn (Agn − Adn ) ,
tn+1 = (1 − σ )tn + σun , ∀n ≥ 1.

Update ψn+1 by

ψn+1 =
⎧⎪⎪⎨⎪⎪⎩

min { η∥dn−gn∥
∥Adn−Agn∥

, ψn + τn } , if Adn − Agn ≠ 0,
ψn + τn , otherwise.

(1.3)

Inspired and motivated by the above results, our main goal in this paper is to
establish some accelerated FBF algorithms with convergence guarantee to solve the
monotone inclusion problem. The structure of this paper is as follows. In Section 2,
we introduce some auxiliary knowledge used throughout the paper. In Section 3, two
modified FBF algorithms are presented, which incorporate the influences of inertial
and relaxation and introduce a new adaptive step size scheme. Then, weak and strong
convergence analyses are performed for both algorithms, respectively. Moreover, the
R-linear convergence analysis of the first suggested algorithm is carried out under the
condition that the involved operator is strongly monotone. In Section 4, the proposed
algorithms are applied to signal recovery problems and compared with some related
algorithms. Finally, we summarize the paper in Section 5, the last section.
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2 Preliminaries

Consider a real Hilbert space H and a nonempty, closed, and convex subset C of H.
The symbol tn ⇀ x as n → ∞ represents the weak convergence of the sequence {tn }
to x, while the expression tn → x as n → ∞ indicates the strong convergence of {tn }
to x.

For all x , y ∈ H and for all γ ∈ [0, 1], we have
(i) ∥x + y∥2 ≤ ∥x∥2 + 2⟨y, x + y⟩.

(ii) ∥γx + (1 − γ)y∥2 = γ∥x∥2 + (1 − γ)∥y∥2 − γ(1 − γ)∥x − y∥2.

Definition 2.1 Let A ∶ H → H denote a single-valued operator and B ∶ H → 2H
denote a multi-valued operator.
(i) The operator A is called L-Lipschitz continuous with L > 0 if

∥Ax − Ay∥ ≤ L∥x − y∥, ∀x , y ∈ H.

(ii) The operator A is called monotone if

⟨Ax − Ay, x − y⟩ ≥ 0, ∀x , y ∈ H.

(iii)The operator B is called monotone if

⟨u − v , x − y⟩ ≥ 0, ∀x , y ∈ H, u ∈ Bx , v ∈ By.

(iv) The operator B is called μ-strongly monotone if there exists a number
μ > 0 such that

⟨u − v , x − y⟩ ≥ μ∥x − y∥2 , ∀x , y ∈ H, u ∈ Bx , v ∈ By.

(v) The operator B is called maximal monotone if it is monotone and if for
any (x , u) ∈ H × H, ⟨u − v , x − y⟩ ≥ 0 for every (y, v) ∈ Graph(B) (the graph of
operator B) implies that u ∈ Bx.

Definition 2.2 For all x ∈ H, there exists a unique nearest point in C, denoted by
PC (x), such that

∥x − PC (x)∥ ≤ ∥x − y∥, ∀y ∈ C ,

where PC is the metric projection of H onto C.

Remark 2.1 Let C be a nonempty closed convex subset of H. The projection PC (x)
of a point x ∈ H onto C is characterized by (see, for example, [19, p. 535, Eq. (29.1)])

⟨x − PC (x), y − PC (x)⟩ ≤ 0, ∀x ∈ H, y ∈ C .(2.1)

More information concerning the metric projection can be found in [20, Section 3].

Definition 2.3 [21] A sequence {tn } in H is said to converge R-linearly to p with rate
ρ ∈ [0, 1) if there is a constant c > 0 such that ∥tn − p∥ ≤ cρn , ∀n ∈ N.

These following lemmas are crucial to the convergence analysis of main results.

Lemma 2.2 [22] Let A ∶ H → H be Lipschitz continuous and monotone and
B ∶ H → 2H be maximal monotone. Then the operator A + B is maximal monotone.
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Lemma 2.3 [23] Let {tn }, {μn }, and {αn } be nonnegative sequences such that

tn+1 ≤ tn + αn (tn − tn−1 ) + μn , ∀n ≥ 1.

If there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N and ∑∞n=1 μn < +∞, then
the following hold: (i) ∑∞n=1 [tn − tn−1 ]+ < +∞, where [t]+ ∶= max{t, 0}; and (ii) there
exists t∗ ∈ [0, +∞) such that limn→+∞ tn = t∗.

Lemma 2.4 [24] Let C be a nonempty set of H and {tn } be a sequence in H. If
limn→∞ ∥tn − x∥ exists for every x ∈ C and every sequential weak cluster point of {tn }
is in C, then {tn } converges weakly to a point in C.

Lemma 2.5 [25] Let {tn } be a nonnegative sequence, {σn } be a sequence of real
numbers, and {δn } ⊂ (0, 1) be a sequence such that ∑∞n=1 δn = ∞. Assume that

tn+1 ≤ (1 − δn ) tn + δn σn , ∀n ≥ 1.

If lim sup
k→∞

σnk ≤ 0 for every subsequence {tnk } of {tn } satisfying lim inf
k→∞

(tnk+1 −

tnk ) ≥ 0, then limn→∞ tn = 0.

3 Main results

In this section, we introduce two new iterative schemes based on the forward-
backward-forward algorithm and the techniques of inertial and relaxation to solve
the monotone inclusion problem. In the framework of real Hilbert spaces, the first
proposed algorithm obtains weak convergence and R-linear convergence, while the
second suggested algorithm can achieve strong convergence. Our algorithms directly
improve on the results in [1, 2, 3, 17, 18] and many more.

3.1 Weak and linear convergence of Algorithm 3.1

The solution set of problem (1.1) is denoted as MIP(A, B). Before starting, we first
assume that the proposed Algorithm 3.1 satisfies the following conditions.
(C1) The solution set of (1.1) is nonempty (i.e., MIP(A, B) ∶= (A + B)−1 (0) ≠ ∅).
(C2) The operator A ∶ H → H is L-Lipschitz continuous and monotone, and the

operator B ∶ H → 2H is maximal monotone.
(C3) Choose the parameters η ∈ (0, 1), γ ∈ [0, 1), and σ ∈ (0, 1] satisfying the follow-

ing condition:

σ (1 − η2 )
2 − σ + σ η

(1 − γ)2 − (1 + γ)γ > 0.(3.1)

Remark 3.1 When the parameters η and γ are fixed, by solving Equation (3.1), we
can obtain a lower bound on σ as

σ = 2ω
1 − η2 + ω − ωη

, where ω ∶= γ(1 + γ)
(1 − γ)2 .

In other words, the parameter range of σ is σ ∈ (σ , 1] when η and γ are fixed. Figure 1
gives the variation of σ with γ when η is fixed.
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Figure 1: The relationship between the parameters γ, η, and σ .

We now proceed to present the proposed Algorithm 3.1.

Algorithm 3.1
Initialization: Given ψ1 > 0. Select η ∈ (0, 1), γ ∈ [0, 1), and σ ∈ (0, 1) satisfy Equa-
tion (3.1). Let t0 , t1 ∈ H and set n ∶= 1.
Iterative Steps: Given the iterates tn , tn−1, perform the following steps.
Step 1. Compute dn = tn + γ (tn − tn−1 ).
Step 2. Compute gn = (I + ψn B)−1 (I − ψn A) dn . If gn = dn then stop and gn ∈
MIP(A, B). Otherwise, go to Step 3.
Step 3. Compute un = gn − ψn (Agn − Adn ).
Step 4. Compute tn+1 = (1 − σ )dn + σun , and update ψn+1 by

(3.2) ψn+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min { η ∥dn − gn ∥
∥Adn − Agn ∥ , ξnψn + τn } , if Adn − Agn ≠ 0,

ξnψn + τn , otherwise.

Set n ∶= n + 1 and go to Step 1.

The following lemmas are important for the convergence analysis of Algorithm 3.1.

Lemma 3.2 [26] Suppose that Condition (C3) holds. Then the step size sequence {ψn }
created by (3.2) is well defined, and limn→∞ ψn exists.

Lemma 3.3 [27] Let the sequences {dn } and {gn } be generated by Algorithm 3.1. If
limn→∞ ∥dn − gn ∥ = 0 and {dnk } converges weakly to some z ∈ H, then z ∈ MIP(A, B).

Theorem 3.4 (Weak convergence) Suppose that Conditions (C1)–(C3) hold and let
{tn } be any sequence formed by Algorithm 3.1. Then {tn } converges weakly to an p ∈
MIP(A, B).
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Proof Let p ∈ MIP(A, B). From the definition of gn , one has (I − ψn A) dn ∈
(I + ψn B) gn . Since B is maximal monotone, there exists vn ∈ Bgn satisfying
(I − ψn A) dn = gn + ψnvn . This is equivalent to

vn = ψ−1
n (dn − gn − ψn Adn ) .(3.3)

We have (A + B) is maximal monotone by means of Condition (C2) and Lemma 2.2.
This combined with Agn + vn ∈ (A + B)gn and 0 ∈ (A + B)p implies that ⟨Agn + vn ,
gn − p⟩ ≥ 0, which together with (3.3) further yields

⟨dn − gn − ψn (Adn − Agn ) , gn − p⟩ ≥ 0.(3.4)

By the definition of un , one has

∥un − p∥2 = ∥gn − ψn (Agn − Adn ) − p∥2

= ∥gn − p∥2 + ψ2
n ∥Agn − Adn ∥2 − 2ψn ⟨gn − p, Agn − Adn ⟩

= ∥dn − p∥2 + ∥dn − gn ∥2 + 2 ⟨gn − dn , dn − p⟩ + ψ2
n ∥Agn − Adn ∥2

− 2ψn ⟨gn − p, Agn − Adn ⟩
= ∥dn − p∥2 + ∥dn − gn ∥2 − 2 ⟨gn − dn , gn − dn ⟩ + 2 ⟨gn − dn , gn − p⟩

+ ψ2
n ∥Agn − Adn ∥2 − 2ψn ⟨gn − p, Agn − Adn ⟩

= ∥dn − p∥2 − ∥dn − gn ∥2 − 2 ⟨dn − gn − ψn (Adn − Agn ) , gn − p⟩
+ ψ2

n ∥Agn − Adn ∥2 .
(3.5)

Using (3.2), (3.4), and (3.5), we have

∥un − p∥2 ≤ ∥dn − p∥2 − (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 , ∀p ∈ MIP(A, B).(3.6)

It follows from the definition of tn that

∥tn+1 − p∥2 = ∥(1 − σ ) (dn − p) + σ (un − p)∥2

≤ (1 − σ ) ∥dn − p∥2 + σ ∥un − p∥2 .
(3.7)

Substituting (3.6) into (3.7) gives

∥tn+1 − p∥2 ≤ ∥dn − p∥2 − σ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 , ∀p ∈ MIP(A, B).(3.8)

From the definition of un and (3.2), we obtain

∥un − gn ∥ ≤ η ψn

ψn+1
∥dn − gn ∥ .
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This together with the definition un yields

∥tn+1 − dn ∥ ≤ ∥tn+1 − gn ∥ + ∥dn − gn ∥
= ∥(1 − σ )(dn − gn ) + σ (un − gn )∥ + ∥dn − gn ∥

≤ (2 − σ + σ η ψn

ψn+1
) ∥dn − gn ∥ .

(3.9)

Substituting (3.9) into (3.8), we obtain

∥tn+1 − p∥2 ≤ ∥dn − p∥2 −
σ (1 − η2 ψ2

n
ψ2

n+1
)

2 − σ + σ η ψn
ψn+1

�                                    !                                    "
αn

∥tn+1 − dn ∥2 .(3.10)

By the definition of dn , one sees that

∥tn+1 − dn ∥2 = ∥tn+1 − tn − γ (tn − tn−1 )∥2

= ∥tn+1 − tn ∥2 + γ2 ∥tn − tn−1 ∥2 − 2γ ⟨tn+1 − tn , tn − tn−1 ⟩
≥ ∥tn+1 − tn ∥2 + γ2 ∥tn − tn−1 ∥2 − 2γ ∥tn+1 − tn ∥ ∥tn − tn−1 ∥
≥ (1 − γ) ∥tn+1 − tn ∥2 + (γ2 − γ) ∥tn − tn−1 ∥2 .

(3.11)

Again using the definition of dn , we have

∥dn − p∥2 = ∥tn + γ (tn − tn−1 ) − p∥2

= ∥(1 + γ) (tn − p) − γ (tn−1 − p)∥2

= (1 + γ) ∥tn − p∥2 − γ ∥tn−1 − p∥2 + γ(1 + γ) ∥tn − tn−1 ∥2 .

(3.12)

Putting (3.11) and (3.12) into (3.10), we obtain

∥tn+1 − p∥2 ≤ (1 + γ) ∥tn − p∥2 − γ ∥tn−1 − p∥2 + γ(1 + γ) ∥tn − tn−1 ∥2

− αn ((1 − γ) ∥tn+1 − tn ∥2 + (γ2 − γ) ∥tn − tn−1 ∥2 ) .
(3.13)

This implies that

∥tn+1 − p∥2 − γ ∥tn − p∥2 + [(1 + γ) γ − αn (γ2 − γ)] ∥tn+1 − tn ∥2

≤ ∥tn − p∥2 − γ ∥tn−1 − p∥2 + [(1 + γ) γ − αn (γ2 − γ)] ∥tn − tn−1 ∥2

− [αn (1 − γ) − (1 + γ) γ + αn (γ2 − γ)] ∥tn+1 − tn ∥2 .

(3.14)

Let

Δn ∶= ∥tn − p∥2 − γ ∥tn−1 − p∥2 + [(1 + γ) γ − αn (γ2 − γ)] ∥tn − tn−1 ∥2

and

εn ∶= αn (1 − γ) − (1 + γ) γ + αn (γ2 − γ) .

From (3.14), one has

Δn+1 − Δn ≤ −εn ∥tn+1 − tn ∥2 .
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Note that limn→∞ εn > 0 by Condition (3.1). This means that {Δn } is nonincreasing
for all n ≥ 1. From limn→∞ (1 − η2 ψ2

n
ψ2

n+1
) = 1 − η2 > 0, there exists ε > 0 and N1 ∈ N such

that εn > ε for all n ≥ N1. Hence,

Δn+1 − Δn ≤ −ε ∥tn+1 − tn ∥2 , ∀n ≥ N1 .(3.15)

From σ ∈ (0, 1], η ∈ (0, 1), and limn→∞ ψn exists, one obtains that αn as defined in
(3.10) is greater than 0 for all n ≥ N1. Since γ ∈ [0, 1), one can check that

(1 + γ) γ − αn (γ2 − γ) ≥ 0, ∀n ≥ N1 .

This together with the definition of Δn implies that

Δn ≥ ∥tn − p∥2 − γ ∥tn−1 − p∥2 .

By induction, we have

∥tn − p∥2 ≤ γ ∥tn−1 − p∥2 + Δn

≤ γ ∥tn−1 − p∥2 + ΔN1

≤ ⋅ ⋅ ⋅
≤ γn−N1 ∥tN1 − p∥2 + ΔN1 (γn−N1−1 + ⋅ ⋅ ⋅ + 1)

≤ γn−N1 ∥tN1 − p∥2 + ΔN1

1 − γ
, ∀n ≥ N1 .

(3.16)

It follows from the definition of Δn+1 that

Δn+1 ≥ −γ ∥tn − p∥2 , ∀n ≥ N1 .(3.17)

By using (3.16) and (3.17), we obtain

−Δn+1 ≤ γ ∥tn − p∥2 ≤ γn−N1+1 ∥tN1 − p∥2 + γΔN1

1 − γ
.

This together with (3.15) further yields (noting that γ ∈ [0, 1))

ε
k

∑
n=N1

∥tn+1 − tn ∥2 ≤ ΔN1 − Δk+1

≤ γk−N1+1 ∥tN1 − p∥2 + ΔN1

1 − γ

≤ ∥tN1 − p∥2 + ΔN1

1 − γ
, ∀k > N1 .

This implies ∑∞n=1 ∥tn+1 − tn ∥2 < +∞. Therefore, we obtain

lim
n→∞

∥tn+1 − tn ∥ = 0.(3.18)

By the definition of dn , one sees that

∥tn+1 − dn ∥2 = ∥tn+1 − tn ∥2 + γ2 ∥tn − tn−1 ∥2 − 2γ ⟨tn+1 − tn , tn − tn−1 ⟩ .
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This combined with (3.18) gives

lim
n→∞

∥tn+1 − dn ∥ = 0, lim
n→∞

∥dn − tn ∥ = 0.(3.19)

From (3.13), we obtain

∥tn+1 − p∥2 ≤ ∥tn − p∥2 + γ (∥tn − p∥2 − ∥tn−1 − p∥2 )

+ (γ(1 + γ) − αn (γ2 − γ)) ∥tn − tn−1 ∥2 .
(3.20)

Using γ ∈ (0, 1), ∑∞n=1 ∥tn − tn−1 ∥2 < +∞, (3.20), and Lemma 2.3, we deduce that

lim
n→∞

∥tn − p∥2 = l .(3.21)

By (3.18), (3.19), and (3.21), we obtain

lim
n→∞

∥tn+1 − p∥2 = l , lim
n→∞

∥dn − p∥2 = l .(3.22)

From (3.8) and (3.22), we have

lim
n→∞

∥gn − dn ∥ = 0.(3.23)

Since {tn } is a bounded sequence, there exists a subsequence {tnk } of {tn } and z ∈ H

such that tnk ⇀ z. By means of (3.19), one has dnk ⇀ z. Then it follows from (3.23) and
Lemma 3.3 that z ∈ MIP(A, B). Therefore, we proved that

(i) for every p ∈ MIP(A, B), limn→∞ ∥tn − p∥ exists (see (3.21));
(ii) every sequential weak cluster point of {tn } is in MIP(A, B).
In the light of Lemma 2.4, one concludes that the sequence {tn } converges weakly to
p ∈ MIP(A, B), as desired. ∎

Next, we show the R-linear convergence of Algorithm 3.1 in the case where the
multi-valued operator involved is strongly monotone.

Theorem 3.5 (Linear convergence) Let p be the unique solution and the sequence {tn }
be generated by Algorithm 3.2. Assume that Conditions (C1) and (C2)′ hold.
(C2)′ The operator A ∶ H → H is L-Lipschitz continuous and monotone, and the

operator B ∶ H → 2H is μ-strongly monotone.
Choose η ∈ (0, 1), σ ∈ (0, 1], γ ∈ [0, 1), and ξ ∈ (0, 1) such that

0 ≤ γ ≤ ωε
ωε + 2ω + ε

,(3.24)

where ω and ε are defined in (3.30). Then {tn } converges to the solution p of the problem
(1.1) with an R-linear rate.

Proof Let p ∈ MIP(A, B). It follows from gn = (I + ψn B)−1 (I − ψn A)dn that
(I − ψn A) dn ∈ (I + ψn B) gn . Hence,

ψ−1
n (dn − gn − ψn Adn ) ∈ Bgn .
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Since 0 ∈ (A + B)p, one has −Ap ∈ Bp. Using the fact that B is μ-strongly monotone,
we have

⟨dn − gn − ψn Adn + ψn Ap, gn − p⟩ ≥ μψn ∥gn − p∥2 .

This combined with the monotonicity of A implies

⟨dn − gn − ψn (Adn − Agn ) , gn − p⟩ ≥ μψn ∥gn − p∥2 + ψn ⟨Agn − Ap, gn − p⟩
≥ μψn ∥gn − p∥2 .

(3.25)

By using (3.5), (3.7), and (3.25), we have

∥tn+1 − p∥2

≤ ∥dn − p∥2 − σ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 − 2σ μψn ∥gn − p∥2

= ∥dn − p∥2 − σ (1 − ξ) (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2

− σ ξ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 − 2σ μψn ∥gn − p∥2 .

(3.26)

By means of (3.9), one sees that
1

2 − σ + σ η ψn
ψn+1

∥tn+1 − dn ∥ ≤ ∥dn − gn ∥ .(3.27)

From (3.26) and (3.27), one has

∥tn+1 − p∥2 ≤ ∥dn − p∥2 −
σ (1 − ξ) (1 − η2 ψ2

n
ψ2

n+1
)

(2 − σ + σ η ψn
ψn+1

)
2 ∥tn+1 − dn ∥2

− σ ξ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 − 2σ μψn ∥gn − p∥2 .

(3.28)

Let

δ ∶= min { σ ξ(1 − η2 )
2

, σ μψ} , where ψ ∶= lim
n→∞

ψn .(3.29)

Note that δ ∈ (0, 1) by means of (3.29), σ ∈ (0, 1), ξ ∈ (0, 1), and η ∈ (0, 1). Then we
obtain

lim
n→∞

σ (1 − ξ) (1 − η2 ψ2
n

ψ2
n+1

)

(2 − σ + σ η ψn
ψn+1

)
2 =

σ (1 − ξ) (1 − η2 )
(2 − σ + σ η)2 ≥

σ (1 − ξ) (1 − η2 )
(2 − σ + σ η)2 σ ∶= ε,

lim
n→∞

σ ξ (1 − η2 ψ2
n

ψ2
n+1

) = σ ξ (1 − η2 ) ≥ 2δ,

lim
n→∞

σ μψn = σ μψ ≥ δ.
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Thus, there exists N ∈ N such that

σ (1 − ξ) (1 − η2 ψ2
n

ψ2
n+1

)

(2 − σ + σ η ψn
ψn+1

)
2 ≥ ε, σ ξ (1 − η2 ψ2

n
ψ2

n+1
) ≥ 2δ, σ μψn ≥ δ, ∀n ≥ N .

Let

ω ∶= 1 − δ, ε ∶=
σ 2 (1 − ξ) (1 − η2 )

(2 − σ + σ η)2 .(3.30)

Since ξ ∈ (0, 1), η ∈ (0, 1), and σ ∈ (0, 1], we have ω ∈ (0, 1) and ε ∈ (0, 1). Using (3.27),
we obtain

∥tn+1 − p∥2 ≤ ∥dn − p∥2 − ε ∥tn+1 − dn ∥2 − 2δ (∥dn − gn ∥2 + ∥gn − p∥2 )

≤ ∥dn − p∥2 − ε ∥tn+1 − dn ∥2 − δ ∥dn − p∥2 .

That is,

∥tn+1 − p∥2 ≤ ω ∥dn − p∥2 − ε ∥tn+1 − dn ∥2 , ∀n ≥ N .(3.31)

From (3.11), (3.12), and (3.31), we deduce that

∥tn+1 − p∥2 ≤ ω (1 + γ) ∥tn − p∥2 − ωγ ∥tn−1 − p∥2 + ωγ (1 + γ) ∥tn − tn−1 ∥2

− ε (1 − γ) ∥tn+1 − tn ∥2 + εγ (1 − γ) ∥tn − tn−1 ∥2 , ∀n ≥ N .

This is equivalent to

∥tn+1 − p∥2 − ωγ ∥tn − p∥2 + ε (1 − γ) ∥tn+1 − tn ∥2

≤ ω [∥tn − p∥2 − γ ∥tn−1 − p∥2 + ε (1 − γ) ∥tn − tn−1 ∥2 ]

− (ωε (1 − γ) − ωγ (1 + γ) − εγ (1 − γ)) ∥tn − tn−1 ∥2 , ∀n ≥ N .

We set

Σn ∶= ∥tn − p∥2 − γ ∥tn−1 − p∥2 + ε (1 − γ) ∥tn − tn−1 ∥2 .

Since ω ∈ (0, 1), we have

Σn+1 ≤ ∥tn+1 − p∥2 − ωγ ∥tn − p∥2 + ε (1 − γ) ∥tn+1 − tn ∥2

≤ ωΣn − (ωε (1 − γ) − ωγ (1 + γ) − εγ (1 − γ)) ∥tn − tn−1 ∥2 , ∀n ≥ N .

Thanks to γ ∈ [0, 1) and (3.24), we obtain

ωε (1 − γ) − ωγ (1 + γ) − εγ (1 − γ) ≥ ωε (1 − γ) − 2ωγ − εγ ≥ 0.

This implies that Σn+1 ≤ ωΣn for all n ≥ N . Now, we show that Σn > 0 for all n ≥ N .
From (3.24), we have

γ ≤ ωε
ωε + 2ω + ε

< ε
2 + ε

.
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This yields

ε (1 − γ)
2

− γ > 0.

Using the definition of Σn , we deduce that

Σn = (1 − ε (1 − γ)) ∥tn − p∥2 + ε (1 − γ) (∥tn − p∥2 + ∥tn − tn−1 ∥2 ) − γ ∥tn−1 − p∥2

≥ (1 − ε (1 − γ)) ∥tn − p∥2 + ( ε (1 − γ)
2

− γ) ∥tn−1 − p∥2

≥ (1 − ε (1 − γ)) ∥tn − p∥2 > 0.

Hence, Σn+1 ≤ ωΣn ≤ ⋅ ⋅ ⋅ ≤ ωn−N+1ΣN . That is,

∥tn − p∥2 ≤ ΣN

(1 − ε (1 − γ)) ωN ωn .

This implies that {tn } converges R-linearly to p. This completes the proof. ∎

3.2 Strong convergence of Algorithm 3.2

In this subsection, we present a strongly convergent version of the FBF algorithm.
More precisely, the iterative scheme is shown in Algorithm 3.2.

Algorithm 3.2
Initialization: Given ψ1 > 0, γ > 0, η ∈ (0, 1), and σ ∈ (0, 1]. Let {εn } and {δn } ⊂
(0, 1) satisfy (3.33). Let t0 , t1 ∈ H and set n ∶= 1.
Iterative Steps: Given the iterates tn , tn−1, perform the following steps.
Step 1. Compute dn = (1 − δn )(tn + γn (tn − tn−1 )), where

(3.32) γn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min {γ, εn

∥tn − tn−1 ∥ } , if tn ≠ tn−1 ,

γ, otherwise.

Step 2. Compute gn = (I + ψn B)−1 (I − ψn A) dn . If gn = dn then stop and gn ∈
MIP(A, B). Otherwise, go to Step 3.
Step 3. Compute un = gn − ψn (Agn − Adn ).
Step 4. Compute tn+1 = (1 − σ )dn + σun and update ψn+1 by (3.2).
Set n ∶= n + 1 and go to Step 1.

Theorem 3.6 (Strong convergence) Assume that Conditions (C1), (C2), and (C4) hold.
Then any sequence {tn } created by Algorithm 3.2 converges strongly to an element p ∈
MIP(A, B), where p = PMIP(A,B)(0).
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(C4) Take ψ1 > 0, γ > 0, η ∈ (0, 1), and σ ∈ (0, 1]. Let {εn } and {δn } ⊂ (0, 1) be two
positive sequences that satisfy

lim
n→∞

δn = 0,
∞

∑
n=1

δn = ∞ and lim
n→∞

εn

δn
= 0.(3.33)

Proof Using similar arguments as (3.3)–(3.8) in the proof of Theorem 3.4, we have

∥tn+1 − p∥2 ≤ ∥dn − p∥2 − σ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 , ∀p ∈ MIP(A, B).(3.34)

By the definition of dn , one has

∥dn − p∥ = ∥(1 − δn ) (tn + γn (tn − tn−1 )) − p∥
= ∥(1 − δn ) (tn − p) + (1 − δn ) γn (tn − tn−1 ) − δn p∥
≤ (1 − δn ) ∥tn − p∥ + (1 − δn ) γn ∥tn − tn−1 ∥ + δn ∥p∥

= (1 − δn ) ∥tn − p∥ + δn [(1 − δn ) γn

δn
∥tn − tn−1 ∥ + ∥p∥] .

(3.35)

From (3.32) and (3.33), we have

γn

δn
∥tn − tn−1 ∥ ≤ εn

δn
→ 0 as n → ∞.

This follows that limn→∞ [(1 − δn ) γn
δn

∥tn − tn−1 ∥ + ∥p∥] = ∥p∥; thus, there exists
M > 0 such that

(1 − δn ) γn

δn
∥tn − tn−1 ∥ + ∥p∥ ≤ M , ∀n ≥ 1.(3.36)

Using (3.35) and (3.36), one gives that

∥dn − p∥ ≤ (1 − δn ) ∥tn − p∥ + δn M .(3.37)

Since limn→∞ (1 − η2 ψ2
n

ψ2
n+1

) = 1 − η2 > 0, there exists n0 ∈ N such that 1 − η2 ψ2
n

ψ2
n+1

> 0,
∀n ≥ n0. This together with (3.34) yields that

∥tn+1 − p∥ ≤ ∥dn − p∥ , ∀n ≥ n0 .(3.38)

By using (3.37) and (3.38), we obtain

∥tn+1 − p∥ ≤ (1 − δn ) ∥tn − p∥ + δn M
≤ max {∥tn − p∥ , M} ≤ ⋅ ⋅ ⋅ ≤ max {∥tn0 − p∥ , M} .

This means that the sequence {tn } is bounded. Thus, the sequences {dn }, {gn }, and
{un } are also bounded by means of (3.37), (3.34), and (3.6).
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From (3.37) and note that {δn } ⊂ (0, 1), one finds

∥dn − p∥2 ≤ (1 − δn )2 ∥tn − p∥2 + 2δn (1 − δn ) M ∥tn − p∥ + δ2
n M2

≤ ∥tn − p∥2 + δn M1 ,
(3.39)

where M1 ∶= max {2 (1 − δn ) M ∥tn − p∥ + δn M2 ∶ n ∈ N}. Substituting (3.39) into
(3.34), we have

σ (1 − η2 ψ2
n

ψ2
n+1

) ∥dn − gn ∥2 ≤ ∥tn − p∥2 − ∥tn+1 − p∥2 + δn M1 .(3.40)

Using the inequality (3.38) and the definition of dn , we obtain

∥tn+1 − p∥2 ≤ ∥(1 − δn ) (tn − p) + (1 − δn ) γn (tn − tn−1 ) − δn p∥2

≤ ∥(1 − δn ) (tn − p) + (1 − δn ) γn (tn − tn−1 )∥2 + 2δn ⟨−p, dn − p⟩
≤ (1 − δn )2 ∥tn − p∥2 + 2 (1 − δn ) γn ∥tn − p∥ ∥tn − tn−1 ∥

+ γ2
n ∥tn − tn−1 ∥2 + 2δn ⟨−p, dn − tn+1 ⟩ + 2δn ⟨−p, tn+1 − p⟩ .

This yields that

∥tn+1 − p∥2

≤ (1 − δn ) ∥tn − p∥2 + δn [2 (1 − δn ) ∥tn − p∥ γn

δn
∥tn − tn−1 ∥

+γn ∥tn − tn−1 ∥ γn

δn
∥tn − tn−1 ∥ + 2 ∥p∥ ∥dn − tn+1 ∥ + 2 ⟨p, p − tn+1 ⟩] .

(3.41)

Next, we show that {∥tn − p∥} converges to zero. Indeed, by Lemma 2.5, it suffices to
prove that lim supk→∞ ∥dnk − tnk+1 ∥ = 0 and lim supk→∞⟨p, p − tnk+1 ⟩ ≤ 0 for every
subsequence {∥tnk − p∥} of {∥tn − p∥} satisfying

lim inf
k→∞

(∥tnk+1 − p∥ − ∥tnk − p∥) ≥ 0.(3.42)

For this, assume that {∥tnk − p∥} is a subsequence of {∥tn − p∥} such that (3.42) holds.
Then

lim inf
k→∞

(∥tnk+1 − p∥2 − ∥tnk − p∥2 )

= lim inf
k→∞

[(∥tnk+1 − p∥ − ∥tnk − p∥) (∥tnk+1 − p∥ + ∥tnk − p∥)] ≥ 0.

By (3.40) and limn→∞ δn = 0, we obtain

lim sup
k→∞

σ (1 − η2 ψ2
nk

ψ2
nk+1

) ∥dnk − gnk ∥2

≤ lim sup
k→∞

[∥tnk − p∥2 − ∥tnk+1 − p∥2 + δnk M1 ]
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≤ lim sup
k→∞

[∥tnk − p∥2 − ∥tnk+1 − p∥2 ] + lim sup
k→∞

δnk M1

= − lim inf
k→∞

[∥tnk+1 − p∥2 − ∥tnk − p∥2 ]

≤ 0.

This implies that

lim
k→∞

∥gnk − dnk ∥ = 0.(3.43)

From the definition of un and (3.2), we obtain

∥unk − gnk ∥ ≤ η
ψnk

ψnk+1
∥dnk − gnk ∥ .

This combined with (3.43) yields that

lim
k→∞

∥unk − gnk ∥ = 0.(3.44)

By the definition of tn+1, (3.43), and (3.44), we have

lim
k→∞

∥tnk+1 − dnk ∥ = lim
k→∞

σ ∥unk − dnk ∥ = 0.(3.45)

It follows from the definition of dn that

∥tnk − dnk ∥ = ∥(1 − δnk ) γnk (tnk − tnk−1 ) − δnk tnk ∥

≤ δnk [(1 − δnk ) γnk

δnk

∥tnk − tnk−1 ∥ + ∥tnk ∥] .

Therefore, we deduce that

lim
k→∞

∥tnk − dnk ∥ = 0.(3.46)

From (3.45) and (3.46), we obtain

lim
k→∞

∥tnk+1 − tnk ∥ = 0.(3.47)

Since {tnk } is bounded, there exists a subsequence {tnk j
} of {tnk } such that {tnk j

}
converges weakly to z∗ as j → ∞. Thanks to (3.46), one has dnk ⇀ z∗. This combined
with (3.43) and Lemma 3.3 implies that z∗ ∈ MIP(A, B). By using the property of
projection (cf. (2.1)) and the definition of p = PMIP(A,B)(0), we have

lim sup
k→∞

⟨p, p − tnk ⟩ = lim
j→∞

⟨p, p − tnk j
⟩ = ⟨p, p − z∗⟩ ≤ 0.(3.48)

From (3.47) and (3.48), one gives

lim sup
k→∞

⟨p, p − tnk+1 ⟩ ≤ 0.(3.49)

This together with (3.41), (3.45), limn→∞
γn
δn

∥tn − tn−1 ∥ = 0, and Lemma 2.5 yields that
limn→∞ ∥tn − p∥ = 0. That is, tn → p as n → ∞. ∎
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4 Numerical experiments

In this section, we apply the suggested Algorithms 3.1 and 3.2 to solve the signal
recovery problem described in Example 1.1 and compare them with the ones in the
literature [17, 18]. All codes were executed in MATLAB 2018a on a personal computer
with RAM 8.00 GB.

Example 4.1 (Signal Recovery Problem) In our numerical experiments, the origin
signal x is a vector of N values, where N is significantly greater than k, the number of
randomly created spikes with either +1 or −1. The matrix C with dimensions M × N
is created using a standard normal distribution with a zero mean and unit variance,
and its rows are then orthonormalized. We introduce white Gaussian noise with
a variance of 10−4, represented by ε, to generate the observation y using equation
y = Cx + ε. The recovery procedure starts with the initial signals t0 and t1 set to
zero and terminates after 100 iterations. The accuracy of the restoration is measured
utilizing the mean squared error (MSE), which is calculated as MSE = 1

N ∥x∗ − x∥2 ,
where x∗ is an estimated signal of the origin x and N denotes the dimension of x. The
parameters of our algorithms and the compared ones are set as follows.
• Set ψ1 = 1, η = 0.5, ξn = 1 + 1

(n+1)2 , and τn = 1
n+1 for the proposed Algorithms 3.1

and 3.2. Choose γ = 0.2 and σ = 0.9 for our Algorithm 3.1. Take γ = 0.5, σ = 0.9,
δn = 1

100(n+1) , and εn = 1
(n+1)2 for our Algorithm 3.2.

• Pick ψ1 = 1, η = 0.5, αn = 1
n+1 , and δn = 0.5(1 − αn ) for the Algorithm 1 proposed by

Gibali and Thong [17] (shortly, GT Alg. 1). Set ψ1 = 1, η = 0.5, αn = 1
n+1 , and f (x) =

0.1x for the Algorithm 2 suggested by Gibali and Thong [17] (shortly, GT Alg. 2)
Take ψ1 = 1, η = 0.5, γ = 0.2, σ = 0.4, and τn = 1

n+1 for the Algorithm 1 introduced
by Thong et al. [18] (shortly, TCPDL Alg. 1).
In first test, we set M = 512, N = 1024, and k = 100. The original and noisy signals

are described in Figure 2, and the recovery results employing the proposed algorithms
are shown in Figure 3. The variation of MSE with the number of iterations for all
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Figure 2: Original signal and degraded signal.

https://doi.org/10.4153/S0008414X24000889 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000889


Two relaxed inertial FBF algorithms for monotone inclusions 19

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
S

ig
n
al

 v
al

u
es

0 100 200 300 400 500 600 700 800 900 1000

Index

0 100 200 300 400 500 600 700 800 900 1000

Index

Original signal

Recovered signal

(a) Recovered by our Alg. 3.1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
ig

n
al

 v
al

u
es

Original signal

Recovered signal

(b) Recovered by our Alg. 3.2

Figure 3: The original signal and the signal recovered by our algorithms.
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Figure 4: The variation of MSE with the number of iterations for all algorithms at M = 512, N =
1024, k = 100.

algorithms is stated in Figure 4. Finally, we applied all algorithms to solve the signal
recovery problem under different dimensions and sparsity. The results are presented
in Table 1 and Figure 5.

Remark 4.2 From Figures 2, 3, 4, and 5, and Table 1, it can be seen that the two
algorithms proposed in this paper can effectively recover the original signal. Further-
more, the proposed algorithms perform better in terms of recovery as the original
signal becomes sparser (i.e., when k ≪ N). However, under the same dimensions
and sparsity, the proposed algorithms converge faster and perform better than the
algorithms in references [17, 18].
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M = 256, N = 512 M = 256, N = 512 M = 512, N = 1024 M = 512, N = 1024

Algorithms k = 20 k = 40 k = 40 k = 80

MSE Time MSE Time MSE Time MSE Time

(×10−4) (s) (×10−3) (s) (×10−4) (s) (×10−3) (s)

Our Alg. 3.1 0.4924 0.0138 0.0894 0.0274 0.4003 0.0377 0.0813 0.0375

Our Alg. 3.2 0.5073 0.0164 0.1123 0.0247 0.4126 0.0392 0.1127 0.0417

GT Alg. 1 [17] 28.4918 0.0310 9.0969 0.0286 19.6359 0.0401 10.9875 0.0451

GT Alg. 2 [17] 7.5977 0.0155 2.9808 0.0273 4.7326 0.0472 3.8092 0.0459

TCPDL Alg. 1 [18] 1.0968 0.0132 0.9244 0.0244 0.6320 0.0347 1.3719 0.0436

Table 1: The numerical results of all algorithms under different situations.

Figure 5: The variation of MSE with the number of iterations for all algorithms in four cases.
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5 Conclusions

The paper presents two novel algorithms that solve the monotone inclusion problem
by incorporating improved forward-backward-forward methods with considerations
of both the inertial term and the relaxation effect. Our results demonstrate that the
proposed algorithms converge weakly and strongly, respectively, in real Hilbert spaces
under suitable conditions. Furthermore, the first proposed algorithm is proven to
have R-linear convergence when the multi-valued operator is strongly monotone. The
suggested algorithms have been applied to signal recovery problems and have shown
improved performance compared to previously published methods. These findings
make a significant contribution to the field and open up new opportunities for further
research.
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