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Abstract
In this paper, several extragradient algorithms with inertial effects and adaptive non-
monotonic step sizes are proposed to solve pseudomonotone variational inequalities
in real Hilbert spaces. The strong convergence of the proposed methods is established
without the prior knowledge of the Lipschitz constant of the mapping. Some numer-
ical experiments are given to illustrate the advantages and efficiency of the proposed
schemes over previously known ones.
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1 Introduction

Our goal in this paper is to develop some efficient numerical algorithms to solve the
following variational inequality problem (shortly, VIP):

find such that 0 (VIP)
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where is a nonempty, closed, and convex subset of a real Hilbert space with
inner product and induced norm , and is an operator. Through-
out the paper, the solution set of the (VIP) is denoted as VI and is assumed
to be nonempty. Variational inequalities have been widely applied to problems such
as equilibrium problems in economics, operations research problems and urban
transportation network modeling. They provide a general and useful framework for
solving engineering problems, data science and other fields (see, e.g., [1–4]). There-
fore, the study of numerical methods for solving variational inequalities has attracted
the interest of many researchers.

Next, we introduce some algorithms in the literature for solving variational
inequalities that will help us to develop several new efficient iterative schemes.
One of the most popular methods for solving the (VIP) is the extragradient method
(shortly, EGM) introduced by Korpelevich [5]. It should be noted that the EGM is
an iterative scheme that requires computing the projection onto the feasible set twice
in each iteration. If the projection onto the feasible set is difficult to compute, it
will affect the execution efficiency of the method. To overcome this shortcoming, a
large number of variants of the EGM, which only need to compute the projection
on the feasible set once in each iteration, have been proposed to solve variational
inequalities (see, e.g., [6–11]). The method to be emphasized is the subgradient extra-
gradient method (shortly, SEGM) suggested by Censor, Gibali and Reich [8–10]. The
SEGM replaces the projection on the feasible set in the second step of the EGM with
the projection on a special half-space (noting that this projection can be computed
explicitly). This modification significantly improves the computational efficiency of
the EGM. In the last decade, a number of improved versions of the SEGM were
proposed to solve variational inequalities, equilibrium problems, and other optimiza-
tion problems (see, e.g., [12–15]). It is worth noting that the EGM and SEGM can
only obtain weak convergence in infinite-dimensional Hilbert spaces. Some practical
applications in quantum physics and machine learning show that strong convergence
results are preferable to weak convergence results in infinite-dimensional spaces.
Recently, scholars have proposed a large number of strongly convergent methods to
solve variational inequalities (see, e.g., [9, 16–20]).

Another issue of concern in terms of the computational efficiency of iterative algo-
rithms is the step size. The EGM and SEGM will fail if the Lipschitz constant of
the mapping is unknown because the update of their step size requires a prior infor-
mation of this constant. However, the Lipschitz constant of the mapping involved is
not easily available in practical applications. Recently, some adaptive methods that
do not require the prior knowledge of the Lipschitz constant were provided to solve
variational inequalities (see, e.g., [17–21]). Note that the algorithms offered in [19–
21] produce a non-increasing sequence of stepsizes, which will affect the execution
efficiency of such algorithms. Recently, Liu and Yang [22] presented some iterative
schemes with a non-monotonic sequence of stepsizes. Their numerical experiments
illustrate the computational performance of the proposed algorithms. On the other
hand, in practical applications of variational inequalities, the condition that the oper-
ator needs to satisfy Lipschitz continuity is strong, which will lead to the failure of
those algorithms that require the operator to be Lipschitz continuous. To overcome
this drawback, some methods with Armijo-type stepsizes were proposed for solving
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monotone (or pseudomonotone) uniformly continuous variational inequalities (see,
e.g., [23–29] and the references therein). In recent years, inertial terms have attracted
the attention of researchers as a technique to speed up the convergence speed of
iterative algorithms. A common feature of inertial-type schemes is that the next iter-
ation depends on the combination of the previous two iterations (see [30, 31] for
more details). This small change greatly improves the computational performance
of inertial-type algorithms. Recently, many researchers proposed a large number of
inertia-type algorithms to solve variational inequalities, equilibrium problems, split
feasibility problems, fixed point problems, and other optimization problems (see,
e.g., [32–36] and the references therein).

Motivated by the above works and by the ongoing research in these directions, this
paper proposes several modified subgradient extragradient methods for solving pseu-
domonotone variational inequalities in real Hilbert spaces. The operators involved
in our algorithms are either Lipschitz continuous (the Lipschitz constant does not
need to be known) or non-Lipschitz continuous. In addition, we use two new non-
monotonic step size criteria that allow the proposed algorithms to work adaptively.
The strong convergence theorems of the suggested methods are established under
some mild conditions imposed on the parameters. Some numerical experiments and
applications are given to verify the theoretical results.

The paper is organized as follows. In Section 2, we collect some definitions and
lemmas that need to be used in the sequel. Section 3 presents the algorithms and
analyzes their convergence. Some numerical examples are given in Section 4 to illus-
trate the efficiency of the proposed algorithms over some related ones. Finally, we
conclude the paper with a brief summary in Section 5.

2 Preliminaries

Let be a nonempty, closed and convex subset of a real Hilbert space . The weak
convergence and strong convergence of the sequence to are represented by

and , respectively. For each , we have the following
inequality:

2 2 2 . (2.1)
1 2 2 1 2 1 2 . (2.2)

Let be the metric (nearest point) projection from onto , charac-
terized by argmin . It is known that has the following
basic properties:

0 . (2.3)
2 2 2 . (2.4)

We give some projection calculation formulas that need to be used in numerical
experiments.

(1) The projection of onto a half-space is computed by

max
2

0 .
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(2) The projection of onto a box Box is computed by

Box min max .

(3) The projection of onto a ball is computed by

max
.

Recall that a mapping is said to be

(i) -Lipschitz continuous with 0 if ;
(ii) -contractive with 0 1 if ;
(iii) monotone if 0 ;
(iv) pseudomonotone if 0 0 ;
(v) sequentially weakly continuous if for each sequence converges weakly to

implies converges weakly to .

Lemma 2.1 [37] Let be a positive sequence, be a sequence of real
numbers, and be a sequence in 0 1 such that 1 . Assume that

1 1 1.

If lim sup 0 for every subsequence of satisfying lim inf
1 0, then lim 0.

3 Main results

In this section, we present four modified subgradient extragradient algorithms to
approximate the solution of (VIP) in real Hilbert spaces and analyze their conver-
gence. The advantage of the proposed algorithms is that they can work without the
prior knowledge of the Lipschitz constant of the mapping.

3.1 The first type of modified subgradient extragradient methods

Our first iterative scheme is stated in Algorithm 3.1 below. To begin with, we assume
that the Algorithm 3.1 satisfies the following conditions.

(C1) The feasible set is a nonempty, closed and convex subset of a real Hilbert
space .

(C2) The operator is pseudomonotone, -Lipschitz continuous on
and sequentially weakly continuous on .

(C3) The mapping is -contractive with constant 0 1 .
(C4) Let be a positive sequence such that lim 0, where

0 1 satisfies lim 0 and 1 .

We are now ready to introduce the Algorithm 3.1.
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The following lemmas are useful in the convergence analysis of Algorithm 3.1.

Lemma 3.1 Suppose that Condition (C2) holds. Then the sequence generated
by (3.3) is well defined and lim and min 1 1 1 .

Proof The proof is similar to Lemma 3.1 in [22]. So we omit the details.

Lemma 3.2 Assume that Condition (C2) holds. Let be a sequence created by
Algorithm 3.1. Then, for all VI ,

2 2 2 2

where 2
1
if 1 2 1 and

1
if 0 1 .

Proof From the definition of and (2.4), we have

2 2

2 2

2 2 2 2 2

2 2 2
2 2 2
2 2 2 2 . (3.4)
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Since VI and , we have 0. By the pseudomono-
tonicity of mapping , we obtain 0. Thus the inequality (3.4)
reduces to

2 2 2 2 . (3.5)

Now we estimate 2 . Note that

2 2 2 2 . (3.6)

In addition,

. (3.7)

Since , one has

0. (3.8)

According to the definition of 1, it is easy to obtain

2 1

2

2 1

2 . (3.9)

Substituting (3.7), (3.8) and (3.9) into (3.6), we have

2 1
1

2 2 2

which implies that

2 1
1

2 2

2 . (3.10)

Combining (3.5) and (3.10), we conclude that

2 2 1
1

2 2

1 2 . (3.11)

Note that
2 2 2 2

which yields that

1 2 2 1 2 2 1.

This together with (3.11) implies

2 2 2
1

2 2 1.
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On the other hand, if 0 1 , then we obtain

2 2 1
1

2 2 0 1 .

This completes the proof of the lemma.

Remark 3.1 From Lemma 3.1 and the assumptions of the parameters and (i.e.,
0 1 and 0 2 1 ), we can obtain that 0 for all 0 in

Lemma 3.2 always holds.

Lemma 3.3 ([38, Lemma 3.3]) Suppose that Conditions (C1) and (C2) hold. Let
and be two sequences formulated by Algorithm 3.1. If there exists a subse-

quence of such that converges weakly to and lim
0, then VI .

Theorem 3.1 Suppose that Conditions (C1)–(C4) hold. Then the sequence
generated by Algorithm 3.1 converges to † VI in norm, where †

VI
† .

Proof First, we show that the sequence is bounded. Indeed, thanks to Lemma 3.2
and Remark 3.1, one sees that

† †
0. (3.12)

From the definition of , one sees that

† †
1 . (3.13)

According to Condition (C4), we have 1 0 as . Therefore,
there exists a constant 1 0 such that

1 1 1

which together with (3.12) and (3.13) implies that
† † †

1 0. (3.14)

Using the definition of 1 and (3.14), we have

1
† † 1 †

† † † 1 †

† † † 1 †

1 1 † 1 1
† †

1

max † 1
† †

1
0

max 0
† 1

† †

1
.
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This implies that the sequence is bounded. We have that the sequences ,
and are also bounded.

From (3.14), one sees that

† 2 †
1

2

† 2 2 1
† 2

1
† 2

2 (3.15)

for some 2 0. By combining Lemma 3.2, (2.2), and (3.15), we obtain

1
† 2 † † †

2
1 † 2

† † †
2

1 † 2

† 2 1 † 2

2 † † † † † 2

† 2 1 † 2
3

† 2 1 2 2
4 0

where 3 sup 2 † † † † † 2 , 4 2

3 and is defined in Lemma 3.2. Thus we infer that

1 2 2

† 2
1

† 2
4 0. (3.16)

By the definition of , we have

† 2 † 2 2 †
1

2
1

2

† 2 3 1 (3.17)

where sup †
1 0. Combining (2.1), (2.2), (3.12)

and (3.17), we obtain

1
† 2

† 1 † † † 2

† 1 † 2 2 † †
1

†

† 2 1 † 2 2 † †
1

†

† 2 1 † 2 2 † †
1

†

1 1 † 2 1
3

1
1

2

1
† †

1
†

0. (3.18)

Finally, we need to show that the sequence † 2 converges to zero. We set

† 2 3

1
1

2

1
† †

1
† .
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Then the last inequality in (3.18) can be written as 1 1 1
1 0. Note that the sequence 1 is in 0 1 and

1 1 . By Lemma 2.1, it remains to show that lim sup
0 for every subsequence of satisfying lim inf 1

0. For this purpose, we assume that is a subsequence of such that
lim inf 1 0. From (3.16) and the assumption on , one obtains

1 2 2

lim sup 4 lim sup 1

lim inf 1 0.

It follows from Remark 3.1 that

lim 0 and lim 0

which implies that lim 0. Moreover, we have

1 0 as

and

1 0 as .

It follows that

1 1 0 as . (3.19)

Since the sequence is bounded, there exists a subsequence of such
that and

lim sup † † † lim † † † † † † .

(3.20)
We obtain that since 0. This together with lim

0 and Lemma 3.3 obtains VI . From the definition of †, (2.3) and
(3.20), we have

lim sup † † † † † † 0. (3.21)

Combining (3.19) and (3.21), we obtain

lim sup † †
1

† lim sup † † † 0 (3.22)

which together with lim 1 0 yields that lim sup 0.

Therefore, we conclude that lim † 0. That is, † as .
This completes the proof.

Next, we present an iterative scheme (see Algorithm 3.2) for solving (VIP) with
a pseudomonotone and non-Lipschitz continuous operator. In our Algorithm 3.2, we
replace the condition (C2) in Algorithm 3.1 with the following condition (C5).
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(C5) The mapping is pseudomonotone, uniformly continuous on
and sequentially weakly continuous on .

The form of Algorithm 2 is shown below.

Similar to Lemmas 3.1–3.3 in Algorithm 3.1, we have the following Lemmas 3.4–
3.6 for Algorithm 3.2.

Lemma 3.4 Suppose that Condition (C5) holds. Then the Armijo-like criteria (3.23)
is well defined.

Proof The proof is similar to the Lemma 3.1 in [29]. Therefore we omit the details.

Lemma 3.5 Assume that Condition (C5) holds. Let be a sequence generated by
Algorithm 3.2. Then, for all VI ,

2 2 2 2

where 2 if 1 2 1 and if 0 1 .

Proof The proof follows the proof of Lemma 3.2 and thus it is omitted.

Lemma 3.6 Suppose that Conditions (C1) and (C5) hold. Let and be two
sequences generated by Algorithm 3.2. If there exists a subsequence of
such that converges weakly to and lim 0, then

VI .

Proof The proof follows the proof of the Lemma 3.2 of [28]. So it is omitted.

Theorem 3.2 Suppose that Conditions (C1) and (C3)–(C5) hold. Then the sequence
generated by Algorithm 3.2 converges to † VI in norm, where †

VI
† .
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Proof The proof follows almost in the same way as that of Theorem 3.1, but we
apply Lemma 3.5 and Lemma 3.6 in place of Lemmas 3.2 and 3.3, respectively. We
leave it to the reader to verify it.

3.2 The second type of modified subgradient extragradient methods

In this section, we introduce two new iterative schemes to solve the variational
inequality problem (VIP). Our first scheme is shown in Algorithm 3.3 below.

Lemma 3.7 Assume that Condition (C2) holds. Let be a sequence generated by
Algorithm 3.3. Then, for all VI ,

2 2 † 2 2

where † 2 1
1
if 0 1 and † 1

1
if 1.

Proof From (3.4) and (3.5), we obtain

2 2 2 2 . (3.24)

Now we estimate 2 . Note that

2 2 2 2 . (3.25)

In addition,

. (3.26)

Since , one sees that

0. (3.27)
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According to the definition of 1, it is easy to obtain

2 1

2

2 1

2 . (3.28)

Substituting (3.26), (3.27) and (3.28) into (3.25), we have

2 1
1

2 2 2

which implies that

2
1

1

2 2

1 2 . (3.29)

Combining (3.24) and (3.29), we conclude that

2 2 1

1

2 2

1
1 2 . (3.30)

Note that
2 2 2 2

which yields that

1
1 2 2 1

1 2 2 0 1 .

This together with (3.30) implies

2 2 2
1

1

2 2 0 1 .

On the other hand, if 1, then we obtain

2 2 1

1

2 2 1.

This completes the proof of the lemma.

Remark 3.2 From Lemma 3.1 and the assumptions of the parameters and (i.e.,
0 1 and 1 2 1 ), we can obtain that † 0 for all 1 in

Lemma 3.7 always holds.

Lemma 3.8 Suppose that Conditions (C1) and (C2) hold. Let and be two
sequences generated by Algorithm 3.3. If there exists a subsequence of
such that converges weakly to and lim 0, then

VI .

Numerical Algorithms (2022) 90:1593–16151604



Proof The conclusion can be obtained by applying a similar statement
in [38, Lemma 3.3].

Theorem 3.3 Suppose that Conditions (C1)–(C4) hold. Then the sequence
generated by Algorithm 3.3 converges to † VI in norm, where †

VI
† .

Proof The proof follows almost in the same way as that of Theorem 3.1, but we
apply Lemmas 3.7 and 3.8 in place of Lemmas 3.2 and 3.3, respectively. We omit the
details of the proof in order to avoid repetitive expressions.

Now, we state the last scheme proposed in this paper in Algorithm 3.4. Notice that
the Algorithm 3.4 can solve non-Lipschitz continuous variational inequalities.

Lemma 3.9 Assume that Condition (C5) holds. Let be a sequence generated by
Algorithm 3.4. Then, for all VI ,

2 2 ‡ 2 2

where ‡ 2 1 if 0 1 and ‡ 1 if 1.

Proof The proof of this lemma follows the proof of Lemma 3.7. So it is omitted.

Lemma 3.10 Suppose that Conditions (C1) and (C5) hold. Let and be two
sequences generated by Algorithm 3.4. If there exists a subsequence of
such that converges weakly to and lim 0, then

VI .

Proof We can obtain the conclusion by a simple modification of [28, Lemma 3.2].

Theorem 3.4 Suppose that Conditions (C1) and (C3)–(C5) hold. Then the sequence
generated by Algorithm 3.4 converges to † VI in norm, where †

VI
† .
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Proof The proof follows almost in the same way as that of Theorem 3.1, but we
apply Lemmas 3.9 and 3.10 in place of Lemmas 3.2 and 3.3, respectively.

Remark 3.3 We have the following observations for the proposed algorithms.

Notice that if 1, then the proposed Algorithm 3.1 (respectively,
Algorithm 3.2) and Algorithm 3.3 (respectively, Algorithm 3.4) are equivalent.
The algorithms proposed in this paper obtain strong convergence in an infinite-
dimensional Hilbert space, while the algorithms introduced in the literature [8,
10, 12, 21] can only obtain weak convergence. Therefore, our algorithms are
preferable in infinite-dimensional Hilbert spaces.
It should be noted that the proposed Algorithms 3.1 and 3.3 can solve pseu-
domonotone and Lipschitz continuous variational inequalities, while the sug-
gested Algorithms 3.2 and 3.4 can solve pseudomonotone and non-Lipschitz
continuous variational inequalities. The algorithms presented in this paper extend
many results in the literature for solving monotone (or pseudomonotone) Lip-
schitz continuous variational inequalities (see, e.g., [16–21]) and monotone
non-Lipschitz continuous variational inequalities (see, e.g., [23–25]).
Our algorithms embed two adaptive step size criteria that allow them to work
well without the prior information about the Lipschitz constant of the operator.
The proposed Algorithms 3.1 and 3.3 apply a new non-monotonic step size cri-
terion derived from Liu and Yang [22]. In addition, the suggested Algorithms 3.2
and 4 employ a new Armijo-type step size criterion, which comes from a recent
paper by Cai et al. [28]. We embed these two latest step size criteria into the
modified subgradient extragradient methods proposed in this paper. Numerical
experimental results show that our algorithms are efficient and have a faster
convergence speed than some previously known ones (see Section 4).

4 Numerical experiments

In this section, we provide several numerical examples to demonstrate the effi-
ciency of our algorithms compared to some known ones. All the programs were
implemented in MATLAB 2018a on a Intel(R) Core(TM) i5-8250S CPU@1.60GHz
computer with RAM 8.00 GB.

4.1 Theoretical examples

Example 4.1 Consider the linear operator 20 in the form
, where and T , is a matrix, is

a skew-symmetric matrix, and is a diagonal matrix with its diagonal
entries being nonnegative (hence is positive symmetric definite). The feasible set

is given by 2 5 1 . It is clear that is
monotone and Lipschitz continuous with constant . In this experiment, all
entries of are generated randomly in 2 2 , is generated randomly in 0 2
and 0. It is easy to check that the solution of the variational inequality problem
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(VIP) is 0 . We apply the proposed four algorithms to solve the variational
inequality problem (VIP) with and given above. Take 1 1 ,
100 1 2 and 0.1 for all algorithms. Choose 1 1 and 0.2
for Algorithms 3.1 and 3.3. Select 2, 0.5, 0.2 for Algorithms 3.2
and 4. The maximum number of iterations 500 is used as a stopping criterion. We
use to measure the error of the th iteration step. Next we test
the effect of different parameters , and on the convergence behavior of the
proposed algorithms. Figures 1, 2 and 3 show the numerical behavior of the proposed
algorithms for different parameters , and , respectively.

Example 4.2 Let 2 0 1 be an infinite-dimensional Hilbert space with
inner product 1

0 d and induced norm
1
0

2 d
1 2

. Let and be two positive real numbers such that

1 for some 1. Take the feasible set as
. The operator is given by

.

Fig. 1 Example 4.1, compare
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Fig. 2 Example 4.1, compare

It is not hard to check that operator is pseudomonotone rather than monotone. For
the experiment, we choose 1.5, 1, 1.1. The solution of the problem
(VIP) is 0. We compare the proposed Algorithms 3.1–3.4 with the Algo-
rithm 3.2 introduced by Thong, Hieu and Rassias [38] (shortly, THR Alg. 3.2). Set

1 1 , 0.3, 100 1 2 and 0.1 for all algorithms. Take
0.4 and 1 1 for the suggested Algorithm 3.1, Algorithm 3.3 and THR Alg. 3.2.

Choose 1 1 1.1 for the suggested Algorithms 3.1 and 3.3. Select 1,
0.5 and 0.4 for the suggested Algorithms 3.2 and 3.4. The maximum num-

ber of iterations 50 is used as a common stopping criterion and
is used to measure the error of the th iteration step of all algorithms. The numerical
behavior of all algorithms with four starting points 0 1 is shown in Fig. 4.

Example 4.3 Consider the Hilbert space 2 1 2

1
2 equipped with inner product 1

and induced norm . Let 1 . Define
an operator by

1

Numerical Algorithms (2022) 90:1593–16151608



Fig. 3 Example 4.1, compare

for some 0. It can be verified that mapping is pseudomonotone on ,
uniformly continuous and sequentially weakly continuous on but not Lipschitz
continuous on (see [40]). In the following cases, we take 0.5, for

Fig. 4 Numerical results of all algorithms for Example 4.2
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different values of . In those cases, the feasible set is a box
1 1 1 2 .We compare the proposed Algorithms 3.2 and 4

with several strongly convergent algorithms that can solve the (VIP) with uniformly
continuous operators, including the Algorithm 3.4 proposed by Reich et al. [27]
(shortly, RTDLD Alg. 4), the Algorithm 3.1 introduced by Cai et al. [28] (shortly,
CDP Alg. 3.1) and the Algorithm 3 suggested by Thong et al. [39] (shortly, TSI
Alg. 3). Take 1 1 , 0.1 , 2, 0.5, 0.1 for all algo-
rithms. Choose 0.5 for RTDLD Alg. 4. Select 0.4 and 100 1 2

for the suggested Algorithm 3.2 and Algorithm 3.4. The initial values 0 1
5rand(m,1) are randomly generated by MATLAB. The maximum number of itera-
tions 200 is used as a common stopping criterion. The numerical performance of the
sequence 1 of all algorithms with four different dimensions is reported
in Fig. 5.

Remark 4.1 We have the following observation for Examples 4.1–4.3.

The following conclusions can be drawn from Example 4.1: (1) the proposed
algorithms with inertial terms converge faster than those without inertial terms
(see Fig. 1); (2) our algorithms can obtain a faster convergence speed when

Fig. 5 Numerical results of all algorithms for Example 4.3
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choosing a suitable value of (see Fig. 2), which indicates that the modified
subgradient extragradient methods proposed in this paper are efficient; (3) the
suggested Algorithms 3.1 and 3.3 converge faster when using a non-monotonic
step size (i.e., 0) than when using a non-increasing step size (i.e., 0)
(see Fig. 3).
It can be seen from Figs. 4 and 5 that our algorithms converge faster than the
schemes presented in [27, 28, 38, 39] and that these results are independent of
the selection of initial values and the size of the dimensions. Therefore, the algo-
rithms proposed in this paper are efficient and robust. Moreover, we can obtain
that the proposed algorithms have a faster convergence speed when a suitable
value of is chosen. Specifically, the proposed Algorithm 3.1 (Algorithm 3.2)
converges faster at 1.5 and the proposed Algorithm 3.3 (Algorithm 3.4)
converges faster at 0.8 than when they are at 1.
Note that our Algorithms 3.2 and 3.4 take more time to reach the common
stopping criterion in infinite-dimensional spaces than the adaptive-type Algo-
rithms 3.1 and 3.3, due to the fact that the proposed Algorithms 3.2 and 3.4 use
an Armijo-type stepsize criterion which may require computing multiple pro-
jections on the feasible set in each iteration to find the appropriate step size
and thus increases the computation time of the algorithms. On the other hand,
note that the operator in Example 4.3 is uniformly continuous rather than
Lipschitz continuous. So we do not report numerical results for the proposed
Algorithms 3.1 and 3.3 in this example because they are not available. At the
same time, many algorithms used in the literature (see, e.g., [17–21]) for solving
Lipschitz continuous variational inequalities will not be available. Therefore, the
iterative schemes proposed in this paper improved and extended many known
results in the literature for solving variational inequalities.

4.2 Application to optimal control problems

Next, we use the proposed algorithms to solve the (VIP) that appears in optimal con-
trol problems. Assume that 2 0 represents the square-integrable Hilbert
space with inner product 0 d and norm . The
optimal control problem is described as follows:

Argmin 0 (4.1)

where represents a set of feasible controls composed of piecewise continuous
functions. Its form is expressed as follows:

2 0 1 2 . (4.2)

In particular, the control may be a piecewise constant function (bang-bang type).
The terminal objective function has the form

(4.3)

Numerical Algorithms (2022) 90:1593–1615 1611



where is a convex and differentiable defined on the attainability set. Assume that
the trajectory 2 0 satisfies the constraints of the linear differential
equation system:

d

d
0 0 0 (4.4)

where , are given continuous matrices for every
0 . By the solution of problem (4.1)–(4.4), we mean a control and a cor-
responding (optimal) trajectory such that its terminal value minimizes
objective function (4.3). It is known that the optimal control problem (4.1)–(4.4)
can be transformed into a variational inequality problem (see [26, 41]). We first use
the classical Euler discretization method to decompose the optimal control problem
(4.1)–(4.4) and then apply the proposed algorithms to solve the variational inequal-
ity problem corresponding to the discretized version of the problem (see [26, 41]
for more details). In the proposed Algorithms 3.1–3.4, we set 100, 0.01,

10 4 1 2, 10 4 1 and 0.1 . Pick 1 0.4,
0.5 and 1 1 1.1 for Algorithm 3.1 and Algorithm 3.3. Select

2, 0.5 and 0.5 for Algorithm 3.2 and Algorithm 3.4. The initial con-
trols 0 1 are randomly generated in 1 1 and the stopping criterion is

1 10 4.

Example 4.4 (Rocket car [41])

minimize
1

2
1 5 2

2 5 2

subject to 1 2

2 0 5

1 0 6 2 0 1

1 1 .

Fig. 6 Numerical results for Example 4.4
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The exact optimal control of Example 4.4 is

1 if 3.517 5

1 if 0 3.517 .

The approximate optimal control of the suggested Algorithm 3.1 is plotted in Fig. 6a.
In addition, the numerical behavior of the stated algorithms is shown in Fig. 6b.

Remark 4.2 As it can be seen in Fig. 6, the algorithms proposed in this paper can
solve the optimal control problem. Moreover, our algorithms can obtain a faster
convergence speed when a suitable value of is chosen, which is the same as the
previous conclusion.

5 Conclusions

In this paper, we introduced four new efficient iterative schemes to solve pseu-
domonotone variational inequalities in the framework of infinite-dimensional Hilbert
spaces. The proposed algorithms are motivated by the inertial method, the subgradi-
ent extragradient method, and the viscosity method. It is noted that our two schemes
with Armijo-type step size criterion can solve non-Lipschitz continuous variational
inequalities. The strong convergence of the iterative sequences generated by the pro-
posed schemes is established without the prior knowledge of the Lipschitz constant of
the involved mapping. Finally, some numerical experiments occurring on finite and
infinite-dimensional spaces and applications in optimal control problems are given
to demonstrate the computational efficiency and advantages of the suggested algo-
rithms over some known schemes. The methods presented in this paper improved
and extended some existing results in the literature for solving variational inequali-
ties. In future work, we will consider extending the results of this paper to a reflexive
Banach space with the help of the ideas in [42].
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