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Abstract
We introduce four novel relaxed CQ algorithms with alternating inertial for solving
split feasibility problems in real Hilbert spaces. The proposed algorithms employ a
new non-monotonic adaptive step size criterion and utilize two different step sizes
in each iteration. The weak convergence of the iterative sequences generated by the
proposed algorithms is established under some weak conditions. Moreover, the Fejér
monotonicity of the even subsequence with respect to the solution set is recovered.
Two applications in signal denoising and image deblurring are given to illustrate the
computational efficiency of our algorithms.

Keywords Split feasibility problem · CQ method · Projection and contraction
method · Alternated inertial method · Signal processing · Image restoration

Mathematics Subject Classification (2010) 47J20 · 47J25 · 47J30 · 65K15

1 Introduction

The purpose of this paper is to present several efficient numerical algorithms to solve
the split feasibility problem (SFP) in the framework of real Hilbert spaces. Let H1
and H2 be real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. Let C and Q
be nonempty, closed, and convex subsets in H1 and H2, respectively. Recall that the
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SFP introduced by Censor and Elfving [1]:

find x∗ ∈ C such that Ax∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded and linear operator. Throughout the paper, we use
� to denote the solution set of SFP (1.1), that is,

� := {x∗ ∈ C | Ax∗ ∈ Q}.

Notice that the SFP can be transformed into a Constrained Optimization Problem
(COP), a Fixed Point Problem (FPP), and a Variational Inequality Problem (VIP); see
[2] for more details. That is, finding x∗ ∈ C to solve the SFP is equivalent to locating
the solution to the following problems, respectively.

(1) COP: min
x∈C f (x) := 1

2

∥
∥Ax − PQ(Ax)

∥
∥
2
.

(2) FPP: PC (Id − λA∗ (

Id − PQ
)

A)x∗ = x∗, λ > 0.

(3) VIP: 〈A∗ (

Id − PQ
)

Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C .

Here A∗ represents the adjoint of A (transpose in finite-dimensional spaces), Id denotes
the identity operator, and PC and PQ refer to the projections ontoC and Q, respectively.

TheSFPprovides a unifiedmodel formany inverse problems, and it canbe applied to
phase retrieval problems, signal processing, image reconstruction, intensity-modulated
radiation therapy (IMRT), and other fields; see, e.g., [3–8]. In this paper we introduce
four novel relaxedCQalgorithmswith relaxation effects and alternating inertial extrap-
olation terms to solve split feasibility problem (1.1) and analyze their convergence in
the framework of real Hilbert spaces. Our contribution in this paper is summarized as
follows.

(i) The proposed four algorithms incorporate alternating inertial steps allowing them
to improve the convergence of the algorithms without inertial steps. Moreover,
our four algorithms utilize two different step sizes in each iteration, which per-
forms better than the algorithms using the same step sizes.

(ii) Our iterative algorithms also add relaxation effects, which improve the range of
values of inertial parameters for the methods presented in the literature [9–11].
On the other hand, the proposed algorithms employ a non-monotonic step size
criterion that allows them to work adaptively and accelerate the convergence of
the algorithms.

(iii) The convergence of the iterative sequences generated by the suggested algorithms
is established in infinite-dimensional Hilbert spaces, which enhances the recent
results of Shehu et al. [9, 10] and Dong et al. [11] on alternating inertial methods
in finite-dimensional spaces.

(iv) The performance and advantages of the algorithms proposed in this paper are
confirmed by two applications in signal processing and image restoration.
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This paper is organized as follows. In Section2, we first review some of the known
algorithms in the literature for solving SFPs and then collect some auxiliary results
which will be used in the sequel. The convergence analysis of the proposed four
algorithms is discussed in detail in Section3. In Section4, we provide two applications
in real problems to demonstrate the efficiency and advantages of the suggestedmethods
over previously known schemes. In the final Section5 we summarize the whole paper
with some concluding remarks.

2 Background and preliminaries

2.1 Background

In the past two decades, a large number of numerical algorithms with convergence
guarantees were proposed to solve SFPs in finite- and infinite-dimensional spaces (see,
e.g., [2–16]). One of the most well-known methods for solving the SFP (1.1) is the
CQ algorithm introduced by Byrne [4], which can be summarized in the framework
of the fixed-point method and the gradient projection method (see, e.g., [2, Section 3]
for more details). Let us state the CQ algorithm as follows:

xn+1 = PC
(

xn − λA∗ (

Id − PQ
)

Axn
)

, n ≥ 1, (2.1)

where A∗ represents for the adjoint of A (transpose in finite-dimensional spaces), step
size λ ∈ (

0, 2/‖A‖2), Id denotes the identity operator in Hilbert space H, and PC
and PQ stand for the projection operator. Byrne [4] proved that the iterates generated
via Algorithm (2.1) converge to the solution of problem (1.1) in a finite-dimensional
space. It should bementioned that CQ algorithm (2.1) needs to evaluate the orthogonal
projections onto PC and PQ in each iteration, which may affect the computational
efficiency of the algorithm when the projections are not easy to compute. Indeed, the
projection values PC (x) and PQ(x) have explicit formulas when C and Q are special
closed convex sets (e.g., half-spaces and affine sets); however, the projections onto C
and Q are not easy to obtain in general, since computing the projections is equivalent
to solving a multidimensional optimization problem with constraints. To overcome
this shortcoming, Yang [12] introduced a modified version of CQ algorithm (2.1),
now known as the relaxed CQ algorithm, which produces a sequence of iterations that
converges to the solution of problem (1.1) by the following procedure:

xn+1 = PCn

(

xn − λA∗ (

Id − PQn

)

Axn
)

, n ≥ 1, (2.2)

where step size λ ∈ (

0, 2/‖A‖2) and the half-spacesCn and Qn are defined as follows:

Cn := {

x ∈ R
n | c (xn) + 〈ηn, x − xn〉 ≤ 0

}

, where ηn ∈ ∂c (xn) ,

Qn := {

y ∈ R
m | q (Axn) + 〈ζn, y − Axn〉 ≤ 0

}

, where ζn ∈ ∂q (Axn) .
(2.3)
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The nonempty sublevel sets C and Q are given by

C := {

x ∈ R
n | c(x) ≤ 0

}

, Q := {

x ∈ R
m | q(x) ≤ 0

}

, (2.4)

where c : Rn → R and q : Rm → R are lower semicontinuous convex functions, and
∂c and ∂q denote the subdifferential mappings of c and q, respectively. Note that (2.4)
is sufficiently general since it does not assume the differentiability of the functions
c and q, as pointed out in [12, Section 2]. It is known that if functions c and q are
convex, and bounded on bounded sets defined on finite-dimensional spaces, then their
subdifferentials are nonempty and uniformly bounded on bounded subsets (see [3,
Corollary 7.9]). It is clear from the definitions in (2.3) and (2.4) that C ⊂ Cn and
Q ⊂ Qn . The convergence of Algorithm (2.2) is proved in a finite-dimensional space
(see [12, Theorem 1]).

It should be mentioned that the projection on the half-spaces Cn and Qn can be
computed exactly (see, e.g., [17, Example 29.20]), and thus Algorithm (2.2) greatly
improves the computational efficiency of Algorithm (2.1) especially when the orthog-
onal projections are not available easily. The weak convergence of CQ algorithm (2.1)
and relaxed CQ algorithm (2.2) in infinite-dimensional Hilbert spaces were proved in
[2]. Note that fixed-step algorithms (2.1) and (2.2) may be difficult to implement in
practice since the step size of the algorithms requires the prior knowledge of the norm
of operator A, which is not readily available (see [18] for more details). On the other
hand, it is known that the convergence speed of the algorithm with a fixed step size
may be slow even if we can easily compute the norm of operator A (see, e.g., [19,
Section 4]). To overcome this drawback, many algorithms incorporating adaptive step
sizes were proposed to solve the SFP (1.1) in finite- and infinite-dimensional spaces;
see, e.g., [13, 15, 19–24] and the references therein. It should be emphasized that
the algorithms presented in [13, 20, 21] with Armijo-type step sizes may affect their
computational efficiency because multiple search processes may need to be performed
in each iteration for finding the appropriate step size. To overcome this shortcoming,
some numerical algorithms using adaptive step size criteria, which update the iteration
step size through a simple calculation based on some previously known information,
were proposed; see, e.g., [15, 22–24].

In recent years, inertial techniques (see [25, 26]) were investigated to acceler-
ate the convergence of algorithms. They were incorporated into a large number of
numerical algorithms for solving various optimization problems in finite- and infinite-
dimensional spaces; see, e.g., [9–11, 22–29] and the references therein. Recall that the
fundamental feature of inertial methods is that the next iteration is determined by the
previous two (or more) iterations, and that this small change can greatly improve the
convergence of the non-inertial versions (e.g., see [27] for details of the theory and
experiments). The results of numerous computational tests and applications show that
inertial methods can significantly improve the convergence of non-inertial methods.
However, the monotonicity of the iterative sequence generated by inertial methods
is lost, which results in inertial algorithms sometimes converging more slowly than
those without inertial. To deal with this situation, Mu and Peng [30] introduced an
alternated inertial method that recovers the Fejér monotonicity of the even subse-
quence associated with the solution set of the problem. Recall that the basic idea of
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the alternated inertial method is to add inertial effects only at odd iteration steps and
not at even iteration steps, which is the origin of the word “alternated” in the method.
Recently, many scholars proposed some iterative algorithms with alternating inertial
techniques to solve split feasibility problems, variational inequalities, and others; see,
e.g., [9–11, 31–34]. The advantages of these alternated inertial methods over some
classical inertial methods are verified in theory as well as in numerical experiments.
Recently, Shehu and Gibali [9] introduced a relaxed CQ algorithm with alternating
inertial extrapolation steps for solving the SFP in a finite-dimensional Euclidean space.
An Armijo step size criterion embedded in their proposed method allows it to work
without the prior information of the norm of operator A. More precisely, their adaptive
iterative scheme is stated in Algorithm 2.1.

Algorithm 2.1 Shehu and Gibali’s Algorithm 1.

Initialization: Take γ > 0, � ∈ (0, 1), and μ ∈ (0, 1). Choose {θn} with 0 ≤ θn ≤ θ <
1−μ
1+μ

. Set

∇ fn := A∗ (

Id − PQn

)

A. Define the half-spaces Cn and Qn as follows:

Cn := {

x ∈ R
n | c (wn) + 〈ηn , x − wn〉 ≤ 0

}

, where ηn ∈ ∂c (wn) ,

Qn := {

y ∈ R
m | q (Awn) + 〈ζn , y − Awn〉 ≤ 0

}

, where ζn ∈ ∂q (Awn) ,
(2.5)

where c and q are defined in (2.4). Let x0, x1 ∈ R
n . Set n := 1.

Iterative Steps: Calculate the next iteration point xn+1 as follows.
Step 1. Compute

wn =
{

xn , if n = even,

xn + θn
(

xn − xn−1
)

, if n = odd.
(2.6)

Step 2. Compute yn = PCn (wn − λn∇ fn(wn)), where λn = γ �mn and mn is the smallest non-negative
integer m such that

λn ‖∇ fn(wn) − ∇ fn(yn)‖ ≤ μ ‖wn − yn‖ .

Step 3. Compute xn+1 = PCn (wn − λn∇ fn(yn)).
Set n := n + 1 and go to Step 1.

They prove that the iterates created by Algorithm 2.1 converge to the solution
of SFP (1.1) in Euclidean spaces, see [9, Theorem 3.3]. Notice that Algorithm 2.1
employs an Armijo-like step size criterion (also known as the line search method)
for determining the appropriate step size λn , which may computationally consume
a significant amount of additional time due to the fact that the line search process
may require be evaluated several times for the purpose of finding the smallest non-
negative integer mn . To speed up the convergence of Algorithm 2.1 introduced by
Shehu and Gibali [9], an alternated inertial relaxed CQ algorithm with an adaptive
step size scheme (introduced in [15]) for solving SFPs in finite-dimensional spaces
was recently developed by Shehu et al. [10]. Their iterative scheme is illustrated in
Algorithm 2.2.

The convergence of Algorithm 2.2 is verified in a finite-dimensional space. On
the other hand, motivated by the relaxed CQ algorithm [12], the modified projection
contraction algorithm [20], the alternated inertial method [9], and the adaptive step
size method [28], Dong et al. [11] proposed an adaptive relaxed CQ algorithm without
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Algorithm 2.2 Shehu et al.’s Algorithm 2.
Initialization: Let {χn} ⊂ (0, 4) be non-decreasing. Take the non-negative sequence {θn} such that
0 < α ≤ χn (1 + θn) ≤ β < 4. Define the half-spaces Cn and Qn as in (2.5). Let x0, x1 ∈ R

n . Set
n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows.
Step 1. Compute wn by (2.6).
Step 2. Compute xn+1 = wn − λn∇ fn (wn), where the step size λn is generated by

λn :=
⎧

⎨

⎩

χn fn (wn)

‖∇ fn (wn)‖2 , ‖∇ fn (wn)‖ 
= 0,

0, otherwise,

in which

fn(x) := 1

2

∥
∥
(

Id − PCn

)

x
∥
∥2 + 1

2

∥
∥
(

Id − PQn

)

Ax
∥
∥2 ,

∇ fn(x) = (

Id − PCn

)

x + A∗ (

Id − PQn

)

Ax .

Set n := n + 1 and go to Step 1.

any line search process to discover the solution of SFP in Euclidean spaces. Indeed,
their scheme is described in Algorithm 2.3.

Algorithm 2.3 Dong et al.’s Algorithm 4.1.
Initialization: Take λ1 > 0, μ ∈ (0, 1), and τ ∈ (0, 2). Set ∇ fn := A∗ (

Id − PQn

)

A. Define the
half-spaces Cn and Qn as in (2.5). Let x0, x1 ∈ R

n . Set n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows.
Step 1. Compute wn by (2.6).
Step 2. Compute yn = PCn (wn − λn∇ fn (wn)).

Step 3. Compute x In+1 = wn − τϕndn
(

or compute x I In+1 = PCn (wn − τϕnλn∇ fn (yn))
)

, where

dn = wn − yn − λn (∇ fn (wn) − ∇ fn (yn)) ,

ϕn = 〈wn − yn , dn〉 + λn
∥
∥
(

Id − PQn

)

Ayn
∥
∥2

‖dn‖2 ,

and update the next step size λn+1 by

λn+1 =
⎧

⎨

⎩

min

{
μ‖wn − yn‖

‖∇ fn (wn) − ∇ fn (yn) ‖ , λn

}

, if ‖∇ fn (wn) − ∇ fn (yn) ‖ 
= 0,

λn , otherwise.

Set n := n + 1 and go to Step 1.

In the finite-dimensional space, Dong et al. [11] proved that the iterative sequence
{x In+1} (or {x I In+1}) generated by Algorithm 2.3 converges to the solution of the SFP
under the conditions of θn ∈ (−1, (2 − τ)/τ) and θn ∈ (−1, 0), respectively. The
efficiency of the alternated inertial relaxedCQAlgorithms 2.1–2.3 compared to several
previously knownmethods is verified by some numerical examples and applications in
signal processing and image restoration (see the numerical experiments in the literature
[9–11] for more details).
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Therefore, a natural question arises: How to modify Algorithms 2.1 and 2.3 so
that they can use different step sizes in each iteration and improve the computational
efficiency of the algorithms? Inspired andmotivated by the results in [9–12], we present
in this paper four modified relaxed CQ algorithms for solving the split feasibility
problem in real Hilbert spaces.

2.2 Preliminaries

In this subsection, we collect some important definitions and lemmas for further use in
the convergence analysis of ourmain results. LetH be aHilbert space and A : H → H
be a bounded linear operator. Throughout the paper, we refer to the set of real numbers
and the set of positive integers byR andN, respectively.We use xn⇀x (resp., xn → x)
to denote the weak convergence (resp., strong convergence) of a sequence {xn} to x .
It is well known that the following equation

‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2 (2.7)

holds for all x, y ∈ H and α ∈ R. This is frequently used in our convergence analysis.

Definition 2.1 ([17, Definition 4.1]) Recall that a mapping T : H → H is called

• L-Lipschitz continuous with L > 0 if

‖T x − T y‖ ≤ L‖x − y‖, ∀x, y ∈ H.

• Nonexpansive if
‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H.

• Firmly nonexpansive if

‖T x − T y‖2 ≤ ‖x − y‖2 − ‖(Id − T )x − (Id − T )y‖2, ∀x, y ∈ H,

or equivalently (see [17, Proposition 4.4(iv)]),

‖T x − T y‖2 ≤ 〈x − y, T x − T y〉, ∀x, y ∈ H.

Definition 2.2 ([17, Definition 3.8]) The metric projection of a point x from H onto
C ⊆ H is defined as

PC (x) := argmin{‖x − y‖, y ∈ C}.
One finds that PC (x) has a closed-form expressionswhenC is a special polyhedron.

For example, if C is a half-space defined by C := {x ∈ H | 〈u, x〉 ≤ v}, we can use
the following formula to calculate the exact value of the projection of a point x onto
C (cf. [17, Example 29.20]).

PC (x) = x − max

{ 〈u, x〉 − v

‖u‖2 , 0

}

u.
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For more information about projections onto special polyhedra, the reader can refer
to, e.g., [17, Chapter 29] and [35, Chapter 6]. It is known that the projection operator
PC is firmly nonexpansive (cf. [17, Proposition 4.16]) and it satisfies the following
two properties which are used in the subsequent convergence analysis, where (2.8)
and (2.9) arrive from [17, Proposition 4.16] and [17, Theorem 3.16], respectively.

‖PC (x) − y‖2 ≤ ‖x − y‖2 − ‖x − PC (x)‖2 , ∀x ∈ H, y ∈ C; (2.8)

〈x − PC (x), y − PC (x)〉 ≤ 0, ∀x ∈ H, y ∈ C . (2.9)

Remark 2.1 Let C be a nonempty, closed, and convex subset of H. Then Id − PC is
firmly nonexpansive; see [17, Corollary 4.18].

Definition 2.3 ([17, Definition 1.21]) Let f : H → (−∞,+∞] be a proper function.
Then f is called

• Lower semicontinuous at x if xn → x implies f (x) ≤ lim infn→∞ f (xn).
• Weakly lower semicontinuous at x if xn⇀x implies f (x) ≤ lim infn→∞ f (xn).

Remark 2.2 The two definitions described above are equivalent if f is convex (see
[17, Theorem 9.1]).

Definition 2.4 ([17, Definition 16.1]) The subdifferential ∂ f (x) of a proper function
f : H → (−∞,+∞] at the point x is defined by

∂ f (x) := {s ∈ H | f (y) − f (x) ≥ 〈y − x, s〉, ∀y ∈ H} .

Definition 2.5 ([17, Definition 5.1]) Let C be a nonempty subset ofH, and let {xn} be
a sequence in H. Then xn is Fejér monotone with respect to C if

‖xn+1 − x‖ ≤ ‖xn − x‖, ∀x ∈ C, n ∈ N.

The following lemmas are crucial to the convergence analysis of our algorithms.

Lemma 2.1 ([2, Proposition 3.2]) Let λ > 0 and x∗ ∈ H. Then x∗ solves SFP (1.1) if
and only if x∗ solves the fixed point problem

x∗ = PC
(

x∗ − λA∗ (

Id − PQ
)

Ax∗) .

Lemma 2.2 ([17, Lemma 2.47], [36]) Let C be a nonempty set of H, and {xn} be a
sequence inH. If limn→∞ ‖xn − x‖ exists for any x ∈ C, and every sequential weak
cluster point of {xn} is in C, then {xn} converges weakly to a point in C.

3 Iterativemethods and their convergence analysis

In this section, we introduce four alternated inertial relaxed CQmethods with adaptive
non-monotonic step sizes and relaxation effects for finding the solutions to split fea-
sibility problem (1.1) and analyze their convergence in infinite-dimensional Hilbert
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spaces. Our methods are motivated by the CQ methods [4, 12], the alternated inertial
methods [9–11], and the adaptive step size technique [24, 28]. The proposed algo-
rithms can work well without the prior knowledge of the operator norm ‖A‖ since
they employ an adaptive non-monotonic step size criterion that does not involve any
line search procedure.

To prove the convergence of the relaxed CQ algorithms proposed in this paper, we
suppose that the following two conditions hold:

(A1) The nonempty level setsC and Q in the SFP (1.1) can be presented as follows.

C := {x ∈ H1 | c(x) ≤ 0} , Q := {x ∈ H2 | q(x) ≤ 0} , (3.1)

where c : H1 → R and q : H2 → R are convex and subdifferential functions
on Hilbert spacesH1 andH2, respectively. Then c and q are also weakly lower
semicontinuous (see [17, Theorem 9.1]).

(A2) Let ∂c and ∂q denote the subdifferentials of c and q defined in (3.1), respec-
tively. Assume that at least one subgradient η ∈ ∂c(x) and ζ ∈ ∂q(y) can be
computed for any x ∈ H1 and y ∈ H2. Let Cn and Qn are defined as follows.

Cn := {x ∈ H1 | c (wn) + 〈ηn, x − wn〉 ≤ 0} , where ηn ∈ ∂c (wn) ,

Qn := {y ∈ H2 | q (Awn) + 〈ζn, y − Awn〉 ≤ 0} , where ζn ∈ ∂q (Awn) ,

(3.2)
where wn is calculated by (3.3). Let A : H1 → H2 be a bounded and linear
operator. Suppose that the subdifferentials ∂c and ∂q are bounded operators
(i.e., bounded on bounded sets).

It is clear from the definitions in (3.1) and (3.2) that C ⊂ Cn and Q ⊂ Qn .
Obviously, both Cn and Qn are half-spaces if ηn 
= 0 and ζn 
= 0, so their projections
have explicit formulas (see [21, Remark 2.1]). As done in many papers using (relaxed)
CQ methods, we define

fn(x) := 1

2

∥
∥
(

Id − PQn

)

Ax
∥
∥2 = 1

2
d2Qn

(Ax).

It is known that fn is convex and differentiable inH1. Moreover, the gradient of fn at
x is given by ∇ fn(x) = A∗ (

Id − PQn

)

Ax and ∇ fn is L-Lipschitz continuous with
L = ‖A‖2.

3.1 Twomodified adaptive relaxed CQ algorithms

In this subsection, based on Algorithm 2.1 proposed by Shehu and Gibali [9], we
introduce two relaxed CQ algorithms with adaptive step size criterion and alternating
inertial steps for solving SFP (1.1). In order to analyze the convergence of Algo-
rithm 3.1, we assume the following conditions:

(C1) The solution set of SFP (1.1) is nonempty, that is, � 
= ∅.
(C2) Let λ1 > 0, μ ∈ (0, 1), and {ξn} ⊂ [1,∞) such that

∑∞
n=1(ξn − 1) < ∞, and

{ρn} ⊂ [0,∞) such that
∑∞

n=1 ρn < ∞.
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(C3) Let α ∈ (0, 1], β ∈ (0, 2/(1 + μ)), and 0 ≤ θn ≤ θ <
β∗+2(1−α)

2α , where
β∗ = 2 − β − βμ when β ∈ [1, 2/(1 + μ)), and β∗ = β − βμ when
β ∈ (0, 1).

Now, we are in a position to state our Algorithm 3.1.

Algorithm 3.1
Initialization: Take λ1, μ, α, β, {ξn}, {ρn}, and {θn} such that Conditions (C2) and (C3) hold. Choose
initial points x0, x1 ∈ H. Set n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Compute

wn =
{

xn , if n = even,

xn + θn
(

xn − xn−1
)

, if n = odd.
(3.3)

Step 2. Compute yn = PCn (wn − λn∇ fn (wn)). If yn = wn then the iteration stops and yn is the
solution of SFP; otherwise, turn to Step 3.
Step 3. Compute zn = PCn (wn − βλn∇ fn (yn)).
Step 4. Compute xn+1 = (1 − α) wn + αzn , and update the next step size λn+1 by

λn+1 =
⎧

⎨

⎩

min

{
μ‖wn − yn‖

‖∇ fn (wn) − ∇ fn (yn) ‖ , ξnλn + ρn

}

, if ‖∇ fn (wn) − ∇ fn (yn) ‖ 
= 0,

ξnλn + ρn , otherwise.
(3.4)

Set n := n + 1 and go to Step 1.

Remark 3.1 We show that the iterations of Algorithm 3.1 stop when wn = yn for
some n ≥ 1. Indeed, if wn = yn , then we conclude from the definition of yn that
yn = PCn (yn − βλn∇ fn (yn)). This implies that yn ∈ Cn , and Ayn ∈ Qn by means
of Lemma 2.1, which together with (3.1) and (3.2) yields that yn ∈ C and Ayn ∈ Q.
Therefore, yn is a solution to (1.1) when wn = yn .

Remark 3.2 It should be noted that the step size criterion (3.4) is similar to the step size
criterions in [11, 28, 29]; however, step size criterion (3.4) is more flexible than step
size criterions in [11, 28, 29]. When ξn = 1 in step size criterion (3.4), it degenerates
to the step size rule used in [29, Algorithm 3.1]. If ξn = 1 and ρn = 0 in step size
criterion (3.4), then it becomes the step size criterion employed in [11, Algorithm 3.1]
and [28, Algorithm 1]. In the case of ξn 
= 1, step size criterion (3.4) can choose a
wider range of step sizes than step size criterions in [11, 28, 29]. To the best of our
knowledge, the step size criterion (3.4) is the first time adopted in solving the split
feasibility problem.

The following lemmas are essential for the convergence analysis of Algorithm 3.1.
Let us first establish that the step size created by (3.4) is well defined.

Lemma 3.1 Let step size {λn} be a sequence generated by (3.4). Then it is well defined
and λn ≥ μ

‖A‖2 for all n ∈ N.
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Proof Since the operator ∇ fn is ‖A‖2-Lipschitz continuous, one obtains

μ‖wn − yn‖
‖∇ fn (wn) − ∇ fn (yn) ‖ ≥ μ‖wn − yn‖

‖A‖2‖wn − yn‖ = μ

‖A‖2 .

This combining with (3.4) yields λn+1 ≥ min{λn, μ

‖A‖2 }. By induction, one finds

that λn ≥ min{λ1, μ

‖A‖2 }. On the other hand, it can be seen from (3.4) that λn+1 ≤
ξnλn + ρn for any n ≥ 1. In view of the condition (C2) and [37, Lemma 1], it can be
concluded that limn→∞ λn exists. Since {λn} has a lower bound min{λ1, μ

‖A‖2 }, we
have limn→∞ λn := λ > 0. This completes the proof. ��

Lemma 3.2 Suppose that {wn}, {yn}, and {zn} are sequences created by Algorithm 3.1.
Let p ∈ �. Then,

‖zn − p‖2 ≤ ‖wn − p‖2 − 2βμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2

− βn

(

‖wn − yn‖2 + ‖zn − yn‖2
)

,

where

βn :=
{

2 − β − βμλn
λn+1

, if β ∈ [1, 2/(1 + μ)),

β − βμλn
λn+1

, if β ∈ (0, 1).

Proof Take a point p in the solution set � of SFP (1.1). Combining the definition of
zn , p ∈ Cn , and (2.8), we have

‖zn − p‖2 = ∥
∥PCn (wn − βλn∇ fn (yn)) − p

∥
∥2

≤ ‖(wn − p) − βλn∇ fn (yn)‖2 − ‖zn − wn + βλn∇ fn (yn) ‖2
= ‖wn − p‖2 − 2βλn 〈∇ fn (yn) , wn − p〉 − ‖zn − wn‖2

− 2βλn 〈∇ fn (yn) , zn − wn〉
= ‖wn − p‖2 − ‖zn − wn‖2 − 2βλn 〈∇ fn (yn) , zn − yn〉

− 2βλn 〈∇ fn (yn) , yn − p〉 .

(3.5)

Note that ∇ fn(p) = A∗ (

I − PQn

)

Ap = 0 due to Ap ∈ Qn . From the fact that
Id − PQn is firmly nonexpansive and ∇ fn(p) = 0, we obtain

〈∇ fn (yn) , yn − p〉 = 〈∇ fn (yn) − ∇ fn(p), yn − p〉
= 〈

A∗ (

Id − PQn

)

Ayn − A∗ (

Id − PQn

)

Ap, yn − p
〉

= 〈(

Id − PQn

)

Ayn − (

Id − PQn

)

Ap, Ayn − Ap
〉

≥ ∥
∥
(

Id − PQn

)

Ayn
∥
∥
2
.

(3.6)
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It follows from Lemma 3.1 that λn ≥ μ

‖A‖2 , which together with (3.6) implies

2βλn 〈∇ fn (yn) , yn − p〉 ≥ 2βμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2
. (3.7)

Note that

− ‖wn − zn‖2 = −‖wn − yn‖2 − ‖yn − zn‖2 + 2 〈wn − yn, zn − yn〉 , (3.8)

and

2 〈wn − yn, zn − yn〉
= 2 〈wn − λn∇ fn (wn) − yn, zn − yn〉 + 2 〈λn∇ fn (yn) , zn − yn〉

+ 2λn 〈∇ fn (wn) − ∇ fn (yn) , zn − yn〉 .

(3.9)

By the definition of yn , zn ∈ Cn , and (2.9), we have

〈wn − λn∇ fn (wn) − yn, zn − yn〉 ≤ 0. (3.10)

Using the definition of λn+1, one sees that

2λn 〈∇ fn (wn) − ∇ fn (yn) , zn − yn〉
≤ 2λn ‖∇ fn (wn) − ∇ fn (yn)‖ ‖zn − yn‖
≤ 2μ

λn

λn+1
‖wn − yn‖ ‖zn − yn‖

≤ μ
λn

λn+1

(

‖wn − yn‖2 + ‖zn − yn‖2
)

.

(3.11)

Substituting (3.9), (3.10), and (3.11) into (3.8), we deduce that

−‖wn − zn‖2 ≤ −
(

1 − μλn

λn+1

)(

‖wn − yn‖2 + ‖zn − yn‖2
)

+ 2 〈λn∇ fn (yn) , zn − yn〉 ,

which yields that

−2β 〈λn∇ fn (yn) , zn − yn〉 ≤ −β

(

1 − μλn

λn+1

) (

‖wn − yn‖2 + ‖zn − yn‖2
)

+ β ‖wn − zn‖2 , ∀β > 0.
(3.12)
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Combining (3.5), (3.7), and (3.12), we have

‖zn − p‖2 ≤‖wn − p‖2 − 2βμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2 − (1 − β) ‖wn − zn‖2

− β

(

1 − μλn

λn+1

) (

‖wn − yn‖2 + ‖zn − yn‖2
)

, ∀β > 0.

(3.13)
By applying the inequality ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2), one finds that

‖wn − zn‖2 ≤ 2
(

‖wn − yn‖2 + ‖zn − yn‖2
)

. (3.14)

It follows from (3.13) and (3.14) that

‖zn − p‖2 ≤ ‖wn − p‖2 − 2βμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2

− βn

(

‖wn − yn‖2 + ‖zn − yn‖2
)

,

where βn is defined by

βn :=
{

2 − β − βμλn
λn+1

, if β ∈ [1, 2/(1 + μ)),

β − βμλn
λn+1

, if β ∈ (0, 1).

This is the desired conclusion. ��
Remark 3.3 From μ ∈ (0, 1), β ∈ (0, 2/(1 + μ)), and Lemma 3.1, we have

β∗ := lim
n→∞ βn =

{

2 − β − βμ, β ∈ [1, 2/(1 + μ)),

β − βμ, β ∈ (0, 1).

Thus we obtain that limn→∞ βn > 0 for all β ∈ (0, 2/(1 + μ)). That is, there exists
a positive constant N0 such that βn > 0 holds for all n ≥ N0.

Next we show that the even subsequence generated by alternated inertial relaxed
CQ algorithm 3.1 has the Fejér monotonicity with respect to the solution � of SFP
(1.1).

Lemma 3.3 Let the sequence {xn} be generated by Algorithm 3.1. Then the even sub-
sequence {x2n} is bounded and it is Fejér monotone with respect to the solution set �.
Moreover, for all p ∈ �, limn→∞ ‖x2n − p‖ exists, and limn→∞ ‖x2n − y2n‖ = 0.

Proof It follows from the definition of xn+1 and (2.7) that

‖xn+1 − p‖2 = (1 − α) ‖wn − p‖2 + α ‖zn − p‖2 − α(1 − α) ‖wn − zn‖2 .

(3.15)
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Combining (3.14), (3.15), and Lemma 3.2, we obtain

‖xn+1 − p‖2 ≤ (1 − α) ‖wn − p‖2 + α ‖wn − p‖2 − α(1 − α) ‖wn − zn‖2

− 2αβμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2 − αβn

(

‖wn − yn‖2 + ‖zn − yn‖2
)

≤ ‖wn − p‖2 − α

(
1

2
βn + (1 − α)

)

‖wn − zn‖2

− 2αβμ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥2 .

(3.16)
Taking n + 1 := 2n + 2 in (3.16), one sees that

‖x2n+2 − p‖2 ≤ ‖w2n+1 − p‖2 − α

(
1

2
β2n+1 + (1 − α)

)

‖w2n+1 − z2n+1‖2

− 2αβμ

‖A‖2
∥
∥
(

Id − PQ2n+1

)

Ay2n+1
∥
∥
2
.

(3.17)
Letting n + 1 := 2n + 1 in (3.16) (noting that w2n = x2n), we observe that

‖x2n+1 − p‖2 ≤ ‖x2n − p‖2 − α

(
1

2
β2n + (1 − α)

)

‖x2n − z2n‖2

− 2αβμ

‖A‖2
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥2 .

(3.18)

It follows from the definition of w2n+1 and (2.7) that

‖w2n+1 − p‖2 = ‖(1 + θ2n+1) (x2n+1 − p) − θ2n+1 (x2n − p)‖2
= (1 + θ2n+1) ‖x2n+1 − p‖2 − θ2n+1 ‖x2n − p‖2

+ θ2n+1 (1 + θ2n+1) ‖x2n+1 − x2n‖2 .

(3.19)

Using the definition of x2n+1 and noting that w2n = x2n , one obtains

‖x2n+1 − x2n‖2 = α2 ‖z2n − x2n‖2 . (3.20)

Substituting (3.18) and (3.20) into (3.19), we have

‖w2n+1 − p‖2

≤ (1 + θ2n+1)

[

‖x2n − p‖2 − α

(
1

2
β2n + (1 − α)

)

‖x2n − z2n‖2
]

− θ2n+1 ‖x2n − p‖2 + θ2n+1 (1 + θ2n+1) ‖x2n+1 − x2n‖2

− (1 + θ2n+1)
2αβμ

‖A‖2
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥2

= ‖x2n − p‖2 − α (1 + θ2n+1)

(
1

2
β2n + (1 − α) − θ2n+1α

)

‖x2n − z2n‖2

− (1 + θ2n+1)
2αβμ

‖A‖2
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥2 .

(3.21)
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Combining (3.17) and (3.21), we obtain

‖x2n+2 − p‖2 ≤ ‖x2n − p‖2 − α

(
1

2
β2n+1 + (1 − α)

)

‖w2n+1 − z2n+1‖2

− α (1 + θ2n+1)

(
1

2
β2n + (1 − α) − θ2n+1α

)

‖x2n − z2n‖2

− (1 + θ2n+1)
2αβμ

‖A‖2
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥2 .

(3.22)
Since α ∈ (0, 1], 0 ≤ θ2n+1 ≤ θ <

β∗+2(1−α)
2α , and β2n, β2n+1 > 0, ∀n ≥ N0, we

have

α

(
1

2
β2n+1 + (1 − α)

)

> 0, ∀n ≥ N0

and

α (1 + θ2n+1)

(
1

2
β2n + (1 − α) − θ2n+1α

)

> 0, ∀n ≥ N0.

Thus it follows from (3.22) that

‖x2n+2 − p‖ ≤ ‖x2n − p‖ , ∀n ≥ N0.

This implies that {‖x2n − p‖} and {x2n} are bounded. Moreover, limn→∞ ‖x2n − p‖
exists. Therefore, we conclude from (3.22) that

lim
n→∞ ‖x2n − z2n‖ = 0 and lim

n→∞
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥ = 0. (3.23)

By the fact that {x2n} is bounded and (3.23), one obtains that {z2n} is also bounded.
By virtue of (3.20) and (3.23), one sees that limn→∞ ‖x2n+1 − x2n‖ = 0. In view of
Lemma 3.2, one can show that

‖z2n − p‖2 ≤ ‖x2n − p‖2 − β2n

(

‖x2n − y2n‖2 + ‖z2n − y2n‖2
)

. (3.24)

Since {‖x2n − p‖} and {‖z2n − p‖} are bounded, we deduce from (3.23) that

‖x2n − p‖2 − ‖z2n − p‖2
= (‖x2n − p‖ + ‖z2n − p‖) (‖x2n − p‖ − ‖z2n − p‖)
≤ (‖x2n − p‖ + ‖z2n − p‖) ‖x2n − z2n‖ → 0, as n → ∞.

This together with (3.24) implies that

lim
n→∞

(

‖x2n − y2n‖2 + ‖z2n − y2n‖2
)

= 0.

That is,
lim
n→∞ ‖x2n − y2n‖ = 0 and lim

n→∞ ‖z2n − y2n‖ = 0. (3.25)
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The proof is completed. ��
Lemma 3.4 Suppose that the sequence {xn} is generated by Algorithm 3.1. Let x∗ ∈ H
denote the weak limit of the subsequence

{

x2n j

}

of {x2n}. Then x∗ ∈ �.

Proof Since Id − PQ2n is nonexpansive, one obtains

∥
∥
(

Id − PQ2n

)

Ax2n
∥
∥ ≤ ∥

∥
(

Id − PQ2n

)

Ax2n − (

Id − PQ2n

)

Ay2n
∥
∥

+ ∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥

≤ ‖Ax2n − Ay2n‖ + ∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥

≤‖A‖ ‖x2n − y2n‖ + ∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥ .

(3.26)

In view of (3.23), (3.25), and the fact that A is a bounded operator, we infer from
(3.26) that

lim
n→∞

∥
∥
(

Id − PQ2n

)

Ax2n
∥
∥ = 0. (3.27)

From the assumption that ∂q is bounded on bounded sets, there exists a positive
constant δ such that ‖ζ2n‖ ≤ δ. Combining the definition of Q2n , PQ2n Ax2n ∈ Q2n ,
and (3.27), we obtain

q (Aw2n) = q (Ax2n) ≤ 〈

ζ2n, Ax2n − PQ2n Ax2n
〉

≤ δ
∥
∥
(

Id − PQ2n

)

Ax2n
∥
∥ → 0, as n → ∞.

(3.28)

According to the fact that {x2n} is bounded, there exists a subsequence
{

x2n j

}

of {x2n}
such that x2n j ⇀x∗. Using the weakly lower semicontinuity of q and (3.28), one sees
that

q
(

Ax∗) ≤ lim inf
n→∞ q

(

Ax2n j

) ≤ 0,

which implies that Ax∗ ∈ Q. On the other hand, there exists a positive constant ν

such that ‖η2n j ‖ ≤ ν since ∂c is bounded on bounded sets. By the definition of C2n j ,
y2n j ∈ C2n j , and (3.23), we have

c
(

w2n j

) = c
(

x2n j

) ≤ 〈

η2n j , x2n j − y2n j

〉

≤ ν
∥
∥x2n j − y2n j

∥
∥ → 0, as j → ∞.

(3.29)

Combining the weakly lower semicontinuity of c, x2n j ⇀x∗, and (3.29), we infer that

c
(

x∗) ≤ lim inf
j→∞ c

(

x2n j

) ≤ 0,

which implies that x∗ ∈ C . Therefore we conclude that x∗ ∈ � = {x∗ ∈ C : Ax∗ ∈
Q}. This is the desired result. ��

Now we can prove the weak convergence theorem of Algorithm 3.1.

Theorem 3.1 Let Assumptions (A1)–(A2) and (C1)–(C3) hold and the sequence {xn}
be generated by Algorithm 3.1. Then {xn} converges weakly to a point in �.
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Proof By Lemma 3.3, one sees that sequence {x2n} is bounded, which implies {x2n}
has weakly convergent subsequences. Let p ∈ H be the weak limit of such a sub-
sequence

{

x2nk
}

of {x2n}. By means of Lemma 3.3 and Lemma 3.4, we obtain that
limn→∞ ‖x2n − p‖ exists and p ∈ �, respectively. In view of Lemma 2.2, we have
that {x2n} converges weakly to a point in �. The rest of the proof is required to show
that sequence {x2n+1} also converges weakly to p. Taking z ∈ H, we have

|〈x2n+1 − p, z〉| ≤ |〈x2n − p, z〉| + |〈x2n+1 − x2n, z〉|
≤ |〈x2n − p, z〉| + ‖x2n+1 − x2n‖ ‖z‖ → 0.

By virtue of limn→∞ 〈x2n − p, z〉 = 0 and limn→∞ ‖x2n+1 − x2n‖ = 0 in
Lemma 3.3, we deduce that limn→∞ |〈x2n+1 − p, z〉| = 0. This together with the
arbitrariness of z further implies that {x2n+1} converges weakly to p. Consequently
the whole sequence {xn} converges weakly to a point p ∈ �. This completes the proof
of Theorem 3.1. ��

Next,we provide amodified version ofAlgorithm3.1. This newversion is computed
differently fromAlgorithm 3.1 in Steps 2 and 3.We shall need the following condition
for Algorithm 3.2.

(C4) Let α ∈ (0, 1], β ∈ (1/(2 − μ), 1/μ), and 0 ≤ θn ≤ θ <
β†+2(1−α)

2α , where
β† = 2− 1

β
−μwhen β ∈ (1/(2−μ), 1] and β† = 1

β
−μwhen β ∈ (1, 1/μ).

Now we are ready to present the proposed Algorithm 3.2 as shown below.

Algorithm 3.2
Initialization: Take λ1, μ, α, β, {ξn}, {ρn}, and {θn} satisfies Conditions (C2) and (C4). Choose initial
points x0, x1 ∈ H. Set n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Compute wn by (3.3).
Step 2. Compute yn = PCn (wn − βλn∇ fn (wn)). If yn = wn then the iteration stops and yn is the
solution of SFP; otherwise, turn to Step 3.
Step 3. Compute zn = PCn (wn − λn∇ fn (yn)).
Step 4. Compute xn+1 = (1 − α) wn + αzn , and update the next step size λn+1 by (3.4).

Set n := n + 1 and go to Step 1.

We first prove the following Lemma 3.5 for analyzing the convergence of Algo-
rithm 3.2.

Lemma 3.5 Suppose that {wn}, {yn}, and {zn} are three sequences generated by Algo-
rithm 3.2. Let p ∈ �. Then

‖zn − p‖2 ≤ ‖wn − p‖2 − 2μ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥2

− β†
n

(

‖wn − yn‖2 + ‖zn − yn‖2
)

,
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where

β†
n :=

{

2 − 1
β

− μλn
λn+1

, if β ∈ (1/(2 − μ), 1],
1
β

− μλn
λn+1

, if β ∈ (1, 1/μ).

Proof Similar to (3.5), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2λn 〈∇ fn (yn) , zn − yn〉
− 2λn 〈∇ fn (yn) , yn − p〉 .

(3.30)

From (3.6) and λn ≥ μ

‖A‖2 , one obtains

2λn 〈∇ fn (yn) , yn − p〉 ≥ 2μ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥2 . (3.31)

Note that

− ‖wn − zn‖2 = −‖wn − yn‖2 − ‖yn − zn‖2 + 2 〈wn − yn, zn − yn〉 , (3.32)

and

2 〈wn − yn, zn − yn〉
= 2 〈wn − βλn∇ fn (wn) − yn, zn − yn〉 + 2 〈βλn∇ fn (yn) , zn − yn〉

+ 2βλn 〈∇ fn (wn) − ∇ fn (yn) , zn − yn〉 .

(3.33)

By the definition of yn , (2.9), and the fact that zn ∈ Cn , we have

〈wn − βλn∇ fn (wn) − yn, zn − yn〉 ≤ 0. (3.34)

Using the definition of λn+1 in (3.4), we obtain

2βλn 〈∇ fn (wn) − ∇ fn (yn) , zn − yn〉 ≤ βμλn

λn+1

(

‖wn − yn‖2 + ‖zn − yn‖2
)

.

(3.35)
Substituting (3.33), (3.34), and (3.35) into (3.32), we have

−‖wn − zn‖2 ≤ −
(

1 − βμλn

λn+1

) (

‖wn − yn‖2 + ‖zn − yn‖2
)

+ 2β 〈λn∇ fn (yn) , zn − yn〉 ,

which yields

−2 〈λn∇ fn (yn) , zn − yn〉 ≤ −
(
1

β
− μλn

λn+1

) (

‖wn − yn‖2 + ‖zn − yn‖2
)

+ 1

β
‖wn − zn‖2 , ∀β > 0.

(3.36)
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Combining (3.30), (3.31), and (3.36), we obtain

‖zn − p‖2 ≤‖wn − p‖2 − 2μ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥2 −

(

1 − 1

β

)

‖wn − zn‖2

−
(
1

β
− μλn

λn+1

)(

‖wn − yn‖2 + ‖zn − yn‖2
)

, ∀β > 0.

This together with (3.14) implies that

‖zn − p‖2 ≤ ‖wn − p‖2 − 2μ

‖A‖2
∥
∥
(

Id − PQn

)

Ayn
∥
∥2

− β†
n

(

‖wn − yn‖2 + ‖zn − yn‖2
)

,

where β
†
n is defined by

β†
n :=

{

2 − 1
β

− μλn
λn+1

, if β ∈ (1/(2 − μ), 1],
1
β

− μλn
λn+1

, if β ∈ (1, 1/μ).

This completes the proof. ��
Remark 3.4 Since limn→∞ λn exists by means of Lemma 3.1, we have

β† := lim
n→∞ β†

n =
{

2 − 1
β

− μ, if β ∈ (1/(2 − μ), 1],
1
β

− μ, if β ∈ (1, 1/μ).

Hence, limn→∞ β
†
n > 0 for all β ∈ (1/(2−μ), 1/μ). There exists a positive constant

N1 such that β†
n > 0 holds for all n ≥ N1.

Theorem 3.2 Let Assumptions (A1), (A2), (C1), (C2), and (C4) hold and the sequence
{xn} be created by Algorithm 3.2. Then {xn} converges weakly to a point in �.

Proof Fix p ∈ �. With the help of the proof of Lemma 3.3, we can easily obtain

‖x2n+2 − p‖2 ≤ ‖x2n − p‖2 − α

(
1

2
β
†
2n+1 + (1 − α)

)

‖w2n+1 − z2n+1‖2

− α (1 + θ2n+1)

(
1

2
β
†
2n + (1 − α) − θ2n+1α

)

‖x2n − z2n‖2

− (1 + θ2n+1)
2αμ

‖A‖2
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥
2
.

(3.37)

Since α ∈ (0, 1], 0 ≤ θ2n+1 ≤ θ <
β†+2(1−α)

2α , and β
†
2n, β

†
2n+1 > 0,∀n ≥ N1, we

conclude from (3.37) that

‖x2n+2 − p‖ ≤ ‖x2n − p‖ , ∀n ≥ N1.
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This implies that the sequence {x2n} is Fejér monotone with respect to�. Furthermore,
we obtain that {x2n} is bounded and limn→∞ ‖x2n − p‖ exists. Thus one can show
from (3.37) that

lim
n→∞ ‖x2n − z2n‖ = 0 and lim

n→∞
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥ = 0.

In the light of Lemma 3.3, we have

lim
n→∞ ‖x2n+1 − x2n‖ = 0 and lim

n→∞ ‖x2n − y2n‖ = 0.

According to Lemma 3.4, we can also obtain that the weak limit of the subsequence
{x2n j } of {x2n} is in �, which is the solution set of SFP (1.1). The remaining part of
the proof is similar to Theorem 3.1 and thus we omit it. The proof is completed. ��

3.2 Twomodified adaptive projection and contraction algorithms

In this subsection, we propose two alternated inertial projection and contraction algo-
rithms with non-monotonic step size and relaxation effects to find the solution of the
split feasibility problem in real Hilbert spaces. To begin with, we assume the following
condition for Algorithm 3.3.

(C5) Let α ∈ (0, 1], β ∈ (0, 1/μ), τ ∈ (0, 2), and 0 ≤ θn ≤ θ < 2
τα

− 1.

Algorithm 3.3 is stated as follows.

Algorithm 3.3
Initialization: Take λ1, μ, α, β, τ , {ξn}, {ρn}, and {θn} satisfies Conditions (C2) and (C5). Choose initial
points x0, x1 ∈ H. Set n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Compute wn via (3.3).
Step 2. Compute yn = PCn (wn − βλn∇ fn (wn)). If yn = wn then the iteration stops and yn is the
solution of SFP; otherwise, go to Step 3.
Step 3. Compute zn = wn − τϕndn , where dn and ϕn are defined by

dn = wn − yn − βλn (∇ fn (wn) − ∇ fn (yn)) ,

ϕn = 〈wn − yn , dn〉 + βλn
∥
∥
(

Id − PQn

)

Ayn
∥
∥2

‖dn‖2 .
(3.38)

Step 4. Compute xn+1 = (1 − α) wn + αzn , and update the next step size λn+1 by (3.4).
Set n := n + 1 and go to Step 1.

Remark 3.5 We show that yn = wn if and only if dn = 0. In this case, the iterations
of Algorithm 3.3 stop and yn is the solution of the SFP. Indeed, it follows from the
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definition of dn in (3.38) and (3.4) that

‖dn‖ ≥ ‖wn − yn‖ − βλn ‖∇ fn (wn) − ∇ fn (yn)‖
≥ ‖wn − yn‖ − βμλn

λn+1
‖wn − yn‖

=
(

1 − βμλn

λn+1

)

‖wn − yn‖ .

(3.39)

On the other hand, one can show that

‖dn‖ ≤
(

1 + βμλn

λn+1

)

‖wn − yn‖ . (3.40)

In view of Lemma 3.1 and β ∈ (0, 1/μ) in Condition (C5), one obtains

lim
n→∞

(

1 − βμλn

λn+1

)

= 1 − βμ > 0.

Thus we conclude from (3.39) and (3.40) that wn = yn if and only if dn = 0. By
Remark 3.1, we know that the iterations of Algorithm 3.3 terminate when wn = yn or
dn = 0.

The following two lemmas are keys to the convergence analysis of Algorithm 3.3.

Lemma 3.6 Let {wn}, {yn}, and {zn} be three sequences generated by Algorithm 3.3.
Then,

‖zn − p‖2 ≤ ‖wn − p‖2 − 2 − τ

τ
‖wn − zn‖2, ∀p ∈ �,

and

‖wn − yn‖2 ≤
(

1 + βμλn
λn+1

)2

τ 2
(

1 − βμλn
λn+1

)2 ‖wn − zn‖2.

Proof Let p ∈ �. It follows from the definition of zn that

‖zn − p‖2 = ‖wn − p‖2 − 2τϕn〈wn − p, dn〉 + τ 2ϕ2
n‖dn‖2. (3.41)

Combining the definition of yn and the projection property (2.9), we deduce that

〈wn − βλn∇ fn (wn) − yn, yn − p〉 ≥ 0. (3.42)

Using the definition of dn and (3.42), one obtains

〈yn − p, dn〉 = 〈yn − p, wn − βλn∇ fn (wn) − yn〉 + 〈yn − p, βλn∇ fn (yn)〉
≥ 〈yn − p, βλn∇ fn (yn)〉 .
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This together with (3.6) yields

〈wn − p, dn〉 = 〈wn − yn, dn〉 + 〈yn − p, dn〉
≥ 〈wn − yn, dn〉 + βλn

∥
∥
(

Id − PQn

)

Ayn
∥
∥2

= ϕn ‖dn‖2 .

(3.43)

Note that ‖wn − zn‖ = τϕndn . Combining (3.41) and (3.43), we arrive at the first
conclusion

‖zn − p‖2 ≤ ‖wn − p‖2 − 2τϕ2
n‖dn‖2 + τ 2ϕ2

n‖dn‖2

= ‖wn − p‖2 − 2 − τ

τ
‖wn − zn‖2.

According to the definition of ϕn and (3.4), one has

ϕn ‖dn‖2 ≥ 〈wn − yn, dn〉
≥ ‖wn − yn‖2 − βλn ‖∇ fn (wn) − ∇ fn (yn)‖ ‖wn − yn‖
≥

(

1 − βμλn

λn+1

)

‖wn − yn‖2 .

(3.44)

Combining (3.40) and (3.44), we obtain

ϕn ≥ 〈wn − yn, dn〉
‖dn‖2

≥
1 − βμλn

λn+1
(

1 + βμλn
λn+1

)2 . (3.45)

Using (3.44) and (3.45), we have

ϕ2
n ‖dn‖2 ≥

(

1 − βμλn
λn+1

)2

(

1 + βμλn
λn+1

)2
‖wn − yn‖2 , (3.46)

By the definition of zn and (3.46), we deduce that

‖zn − wn‖2 = τ 2ϕ2
n ‖dn‖2 ≥ τ 2

(

1 − βμλn
λn+1

)2

(

1 + βμλn
λn+1

)2
‖wn − yn‖2 ,

which is equivalent to the second conclusion as required. ��
Lemma 3.7 Let the sequence {xn} be formed by Algorithm 3.3. Then the even subse-
quence {x2n} is bounded and it is Fejér monotone with respect to the solution set �.
Let p ∈ �. Then limn→∞ ‖x2n − p‖ exists and limn→∞ ‖x2n − y2n‖ = 0.
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Proof Combining (3.15) and Lemma 3.6, we obtain

‖xn+1 − p‖2 ≤ (1 − α) ‖wn − p‖2 + α ‖wn − p‖2 − α(1 − α) ‖wn − zn‖2

− α
2 − τ

τ
‖wn − zn‖2

= ‖wn − p‖2 − α

(
2

τ
− α

)

‖wn − zn‖2 .

(3.47)
Letting n + 1 := 2n + 2 in (3.47), we have

‖x2n+2 − p‖2 ≤ ‖w2n+1 − p‖2 − α

(
2

τ
− α

)

‖w2n+1 − z2n+1‖2 . (3.48)

Letting n + 1 := 2n + 1 in (3.47) (noting that w2n = x2n), we obtain

‖x2n+1 − p‖2 ≤ ‖x2n − p‖2 − α

(
2

τ
− α

)

‖x2n − z2n‖2 . (3.49)

Substituting (3.20) and (3.49) into (3.19), one sees that

‖w2n+1 − p‖2

≤ (1 + θ2n+1)

[

‖x2n − p‖2 − α

(
2

τ
− α

)

‖x2n − z2n‖2
]

− θ2n+1 ‖x2n − p‖2 + θ2n+1 (1 + θ2n+1) ‖x2n+1 − x2n‖2

= ‖x2n − p‖2 − α (1 + θ2n+1)

(
2

τ
− α − θ2n+1α

)

‖x2n − z2n‖2 .

(3.50)

Combining (3.48) and (3.50), we have

‖x2n+2− p‖2 ≤ ‖x2n− p‖2−α (1 + θ2n+1)

(
2

τ
−α − θ2n+1α

)

‖x2n − z2n‖2 .

(3.51)
Since α ∈ (0, 1] and 0 ≤ θ2n+1 ≤ θ < 2

τα
− 1, we observe that

α (1 + θ2n+1)

(
2

τ
− α − θ2n+1α

)

> 0.

It follows from (3.51) that

‖x2n+2 − p‖ ≤ ‖x2n − p‖ , ∀n ≥ 1. (3.52)

This shows that {‖x2n − p‖} and {x2n} are bounded. So limn→∞ ‖x2n − p‖ exists,
which together with (3.51) implies that

lim
n→∞ ‖x2n − z2n‖ = 0. (3.53)
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This, combined with the definition of z2n , yields

lim
n→∞ ϕ2

2n ‖d2n‖2 = lim
n→∞ ‖x2n − z2n‖ = 0. (3.54)

By virtue of (3.20), one sees that limn→∞ ‖x2n+1 − x2n‖ = 0. Combining (3.53) and
Lemma 3.6, one obtains

lim
n→∞ ‖x2n − y2n‖ = 0. (3.55)

It follows from (3.45) that ϕ2n > 0 for some n ≥ N0. In view of the definition of ϕ2n
and (3.44), we have

ϕ2
2n ‖d2n‖2 = ϕ2n

[

〈w2n − y2n, d2n〉 + βλ2n‖
(

Id − PQ2n

)

Ay2n‖2
]

≥ ϕ2n

[(

1 − βμλn

λn+1

)

‖x2n − y2n‖2 + βλ2n
∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥2

]

.

(3.56)
Using (3.54), (3.55), and (3.56), we arrive at the conclusion

lim
n→∞

∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥ = 0. (3.57)

This completes the proof. ��
Now we are in a position to prove the weak convergence of Algorithm 3.3.

Theorem 3.3 Let Assumptions (A1), (A2), (C1), (C2), and (C5) hold and the sequence
{xn} be formed by Algorithm 3.3. Then {xn} converges weakly to a point in �.

Proof Combining (3.55) and (3.57) in Lemma 3.7, and Lemma 3.3, one can show
that the weak limit point of the subsequence {x2n j } of {x2n} is in �. It follows from
the analysis of Theorem 3.1 that the entire sequence {xn} formed by Algorithm 3.3
converges weakly to a point in �. This is the desired conclusion. ��

Next, we give another version of an adaptive alternated inertial projection and
contraction algorithm to solve the SFP, which is different from the suggested Algo-
rithm 3.3 that computes zn in Step 3. We shall assume the following condition for
Algorithm 3.4.

(C6) Let α ∈ (0, 1], β ∈ (τ/2, 1/μ), τ ∈ (0, 2/μ), and −1 ≤ θn ≤ θ < 0.

Algorithm 3.4, the last iterative scheme in this paper, is given below.

Algorithm 3.4
Initialization: Take λ1, μ, α, β, τ , {ξn}, {ρn}, and {θn} satisfies Conditions (C2) and (C6). Choose initial
points x0, x1 ∈ H. Set n := 1.
Iterative Steps: Calculate the next iteration point xn+1 as follows:
Step 1. Compute wn by (3.3).
Step 2. Compute yn = PCn (wn − βλn∇ fn (wn)).
Step 3. Compute zn = PCn (wn − τϕnλn∇ fn (yn)), where ϕn is defined in (3.38).
Step 4. Compute xn+1 = (1 − α) wn + αzn , and update the next step size λn+1 by (3.4).

Set n := n + 1 and go to Step 1.
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In a similar way as the convergence analysis of Algorithm 3.3, we perform the
convergence analysis of Algorithm 3.4 via the following two lemmas.

Lemma 3.8 Assume that sequences {wn}, {yn}, and {zn}are designed byAlgorithm3.4.
Then

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − zn − τ

β
ϕndn‖2

− τ

β2 (2β − τ)ϕ2
n‖dn‖2, p ∈ �.

Proof Similar to (3.5), one sees that

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2τϕnλn〈zn − yn,∇ fn (yn)〉
− 2τϕnλn〈yn − p,∇ fn (yn)〉.

(3.58)

By the definition of ϕn and (3.44), one finds ϕn > 0. From (3.6), one obtains

− 2τϕnλn 〈∇ fn (yn) , yn − p〉 ≤ −2τϕnλn
∥
∥
(

Id − PQn

)

Ayn
∥
∥2 . (3.59)

Using zn ∈ Cn and the definition of yn , one has

〈wn − βλn∇ fn (wn) − yn, zn − yn〉 ≤ 0.

This shows that

〈wn − yn −βλn(∇ fn (wn)−∇ fn (yn)), zn − yn〉 ≤ βλn〈∇ fn (yn) , zn − yn〉. (3.60)

It follows from (3.60) that

−2τϕnλn〈∇ fn (yn) , zn − yn〉 ≤ −2
τ

β
ϕn〈dn, zn − yn〉

= −2
τ

β
ϕn〈dn, wn − yn〉 + 2

τ

β
ϕn〈dn, wn − zn〉.

(3.61)
According to the formula 2ab = a2 + b2 − (a − b)2, we have

2
τ

β
ϕn〈dn, wn − zn〉 = ‖wn − zn‖2 + τ 2

β2 ϕ2
n‖dn‖2 − ‖wn − zn − τ

β
ϕndn‖2.

(3.62)
Combining (3.58), (3.59), and (3.61), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 + 2
τ

β
ϕn〈dn, wn − zn〉

− 2
τ

β
ϕn

(

〈dn, wn − yn〉 + βλn
∥
∥
(

Id − PQn

)

Ayn
∥
∥
2
)

.
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This together with (3.62) yields

‖zn − p‖2 ≤ ‖wn − p‖2 + τ 2

β2 ϕ2
n‖dn‖2 − ‖wn − zn − τ

β
ϕndn‖2 − 2

τ

β
ϕ2
n‖dn‖2.

= ‖wn − p‖2 − ‖wn − zn − τ

β
ϕndn‖2 − τ

β2 (2β − τ)ϕ2
n‖dn‖2.

This completes the proof. ��
Lemma 3.9 Let sequence {xn} be generated by Algorithm 3.4. Then the even subse-
quence {x2n} is bounded and it is Fejér monotone with respect to �. Let p ∈ �. Then
limn→∞ ‖x2n − p‖ exists and limn→∞ ‖x2n − y2n‖ = 0.

Proof From (3.15) and Lemma 3.8, we obtain

‖xn+1 − p‖2 ≤ ‖wn − p‖2−α‖wn−zn− τ

β
ϕndn‖2− ατ

β2 (2β−τ)ϕ2
n‖dn‖2. (3.63)

Letting n + 1 := 2n + 1 in (3.63) (noting that w2n = x2n), we have

‖x2n+1 − p‖2 ≤ ‖x2n − p‖2 − α‖x2n − z2n − τ

β
ϕ2nd2n‖2

− ατ

β2 (2β − τ)ϕ2
2n‖d2n‖2.

(3.64)

Note that ατ
β2 (2β − τ) > 0 due to Condition (C6). Combining (3.19), (3.63), and

(3.64), we deduce

‖x2n+2 − p‖2
≤ ‖w2n+1 − p‖2
≤ ‖x2n − p‖2 + θ2n+1 (1 + θ2n+1) ‖x2n+1 − x2n‖2

− α (1 + θ2n+1)

[

‖x2n − z2n − τ

β
ϕ2nd2n‖2 + τ

β2 (2β − τ)ϕ2
2n‖d2n‖2

]

.

(3.65)

Since α ∈ (0, 1], −1 ≤ θ2n+1 ≤ θ < 0, and β > τ/2, we infer from (3.65) that

‖x2n+2 − p‖ ≤ ‖x2n − p‖ , ∀n ≥ 1. (3.66)

This implies that {‖x2n − p‖} and {x2n} are bounded. Thus limn→∞ ‖x2n − p‖ exists,
which together with (3.65) yields

lim
n→∞ ‖x2n+1 − x2n‖ = 0,

and
lim
n→∞ ϕ2

2n ‖d2n‖2 = 0 and lim
n→∞ ‖x2n − z2n − τ

β
ϕ2nd2n‖ = 0. (3.67)
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It follows from (3.67) that limn→∞ ‖x2n − z2n‖ = 0. Combining (3.46) and (3.67),
we obtain limn→∞ ‖x2n − y2n‖ = 0, which together with (3.56) and (3.67) yields

lim
n→∞

∥
∥
(

Id − PQ2n

)

Ay2n
∥
∥ = 0.

This completes the proof of the lemma. ��
Theorem 3.4 Let Assumptions (A1), (A2), (C1), (C2), and (C6) hold and the sequence
{xn} be created by Algorithm 3.4. Then {xn} converges weakly to a point in �.

Proof The proof is similar to the analysis of Theorem 3.3 and therefore we omit it. ��
Remark 3.6 We have the following comments for Algorithms 3.1–3.4.

• The results obtained in this paper generalize the alternated inertial methods for
solving the SFP recently introduced in the literature [9–11] fromfinite-dimensional
Euclidean spaces to infinite-dimensional Hilbert spaces.

• Notice that the proposed Algorithms 3.1 and 3.2 allow the inertial parameter θn
defined in (3.3) to be greater than or equal to 1, which is not permitted in Algo-
rithm 1 introduced by Shehu and Gibali [9].

• The four convergence theorems obtained in this paper also hold if we replace the
step size criterion (3.4) in the suggested algorithms to the Armijo-type step rule
used in Algorithm 2.1. The conclusion is easily verified by a similar convergence
analysis as in this paper.

• The difference between Algorithm 3.1 and Algorithm 3.2 is that the step sizes used
to calculate yn and zn are different, which results in a different range of values for
the parameter β. Algorithm 3.3 and Algorithm 3.4 are two different projection and
contraction type algorithms. They use the same step size and different directions
for the calculation of zn . Preliminary numerical results provided by Cai et al.
[38] show that the projection and contraction methods converge twice as fast as
the extragradient method [39]. Our numerical experiments in this paper also verify
that the projection and contraction typeAlgorithms 3.3 and 3.4 also converge faster
than the extragradient type Algorithms 3.1 and 3.2; see the numerical results in
Section 4 for more details.

4 Numerical experiments

In this section, we provide some numerical examples and applications to demonstrate
the advantages and efficiency of the proposed fourmethods compared to the algorithms
in [9–11]. All codes were written in MATLAB 2018a and run on a PC with an Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz and 8.00 GB of running memory.
It should be emphasized that the MATLAB toolbox11 for computing projections on
special polyhedra written by Beck and Guttman-Beck [40] turned out to be very
useful in our experiments. Next, we apply the proposed four algorithms to treat two
real problems, one of which is a signal processing problem and the other is an image
restoration problem.

1 Available on the website https://www.tau.ac.il/~becka/home
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Example 4.1 The first problem is concerned with recovering a sparse signal, and it is
described as follows:

b = Ax + e, (4.1)

where A is an observation matrix of size m × k (m < k), x ∈ R
k is the original clean

signal, e ∈ R
m is the noise vector, and b ∈ R

m is the captured noise signal. In this
example, we want to recover the sparse signal x with K (K � m) non-zero elements
from problem (4.1). Let us state the well-known basis pursuit denoising model (also
known in statistics as the LASSO model) to find the sparse solution of problem (4.1),
which is modeled as shown in the following unconstrained optimization problem

min
x

(
1

2
‖b − Ax‖22 + ι‖x‖1

)

, (4.2)

where ι is a regularization parameter used to control the reconstruction fidelity and
sparsity. One can find that the problem (4.2) can be converted to the following con-
strained optimization problem

min
x

1

2
‖b − Ax‖22 subject to ‖x‖1 ≤ r , (4.3)

which the variable r is related to the regularization parameter ι in unconstrained
problem (4.2).Nowwe can transform the constrainedmodel (4.3) to the split feasibility
problem (1.1) by setting C = {x ∈ R

k | ‖x‖1 ≤ r} and Q = {b}.
For the experiments, the real clean sparse signal x ∈ R

k has non-zero elements at
K random positions whose elements are randomly generated in {−1, 1} and maintains
the elements at the remaining positions as zero. The matrix A is a random standard
normal distribution of sizem×k. A corrupted noise signal b is known to be generated
by b = Ax (assuming no noise). Next we use the proposed algorithms as well as
some known methods in the literature [9–11] to locate the sparse solution of problem
(4.1) due to the l1 constraint in the set C , and set the following parameters for these
algorithms.

• In Algorithms 3.1–3.4, we set λ1 = 0.3,μ = 0.1, α = 1, ξn = 1+10−1/(n+1)2,
and ρn = 10−1/(n + 1)2. Set θn = 0.2 for Algorithms 3.1–3.3 and select θ =
−0.2 for Algorithm 3.4. Choose β = 1.3 and β = 0.9 in Algorithm 3.1 and
Algorithm 3.2, respectively. Set β = 2.0 and τ = 1.2 in Algorithm 3.3. Choose
β = 0.9 and τ = 1.2 for Algorithm 3.4.

• In Algorithm 2.1 of Shehu and Gibali [9] (abbreviated as SG Alg. 1), we select
γ = 1, � = 0.5, μ = 0.1, and θ = 0.2.

• In Algorithm 2.2 of Shehu et al. [10] (abbreviated as SDLAlg. 2), we pick θ = 0.2
and χn = 2.

• The Algorithm 2.3 proposed by Dong et al. [11] actually contains two algorithms,
and we abbreviate them as DLY Alg. 4.1-I and DLY Alg. 4.1-II, respectively.
In DLY Alg. 4.1-I, we choose θ = 0.2, μ = 0.1, λ1 = 0.3, and τ = 0.2. In
DLY Alg. 4.1-II, we set θ = −0.2, μ = 0.1, λ1 = 0.3, and τ = 0.2.
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The choice of parameters for the above algorithms is arbitrary and satisfies the
prerequisites for their use. Indeed, an in-depth analysis of the parameters should be
performed for their optimal performance in practical applications. However, our pur-
pose here is just to demonstrate the numerical performance of these algorithms. Notice
that the projection PCn (x) in these relaxed CQ algorithms can be calculated by a closed
formula (see, e.g., [9, Example 4.1] and [21, Section 4]). Now, we can use the proposed
algorithms as well as some known methods in the literature [9–11] to solve the sig-
nal processing problem (4.1). Without loss of any generality, the Mean Square Error
(MSE := ‖x̃ − x‖2/k) of the original signal x ∈ R

k and the recovered signal x̃ ∈ R
k

less than 10−4 is used as their common stopping condition. The iterative process starts
with the initial signals x0 = x1 = rand(k, 1) and ends with MSE < 10−4. We use the
execution time in seconds (denoted by “Time”) and the number of iterations (denoted
by “Iter.”) to evaluate the computational performance of all schemes. Figure1 shows
the numerical behavior of the proposed algorithms with different parameters β. The
numerical results for all methods with m = 256 and k = 512 and with different
sparsity K (K = 10, 20, 30, 40) are shown in Table 1. Moreover, we draw their MSE
trends with the number of iterations under different sparsity K in Fig. 2 (we do not
report SDL Alg. 2 because it converges very slowly). In the case of K = 40, the
original clean signal and the contaminated noise signal are displayed in Fig. 3, and
the recovery results of all algorithms are illustrated in Fig. 4.

(a) Our Alg. 3.1 (b) Our Alg. 3.2

(c) Our Alg. 3.3 (d) Our Alg. 3.4

Fig. 1 Compare MSE of our Algorithms 3.1–3.4 under different β (m = 256, k = 512, K = 30)
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Table 1 Numerical results of all algorithms under different sparsity in Example 4.1

Algorithms K = 10 K = 20 K = 30 K = 40
Iter. Time Iter. Time Iter. Time Iter. Time

Our Alg. 3.1 166 0.11 344 0.22 785 0.52 1116 0.74

Our Alg. 3.2 214 0.14 454 0.30 1038 0.66 1525 1.02

Our Alg. 3.3 96 0.07 174 0.14 315 0.24 361 0.33

Our Alg. 3.4 170 0.13 318 0.25 590 0.48 753 0.61

SG Alg. 1 261 0.59 518 1.25 1227 2.89 1813 4.30

DLY Alg. 4.1-I 184 0.14 271 0.20 421 0.33 473 0.34

DLY Alg. 4.1-II 180 0.15 367 0.29 803 0.63 935 0.71

SDL Alg. 2 7517 6.94 10008 9.06 17853 11.88 29200 25.16

To compare the numerical performance of the algorithms, we use the performance
profiles introduced by Dolan and Moré [41]. Let S = {s | s = 1, 2, 3, · · · , ns} denote
the set of solvers and P = {p | p = 1, 2, 3, · · · , np} the set of problems. Assume
there is a set of benchmark tests for ns algorithms solving n p problems. Recall that the

(a) K 10 (b) K 20

(c) K 30 (d) K 40

Fig. 2 Compare MSE of all algorithms under different sparsity K in Example 4.1
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(a) Original signal (b) Noise signal

Fig. 3 Original signal and noise signal (K = 40)

scaled performance profile of the solver s on the problem set P is defined as follows

ρs(ω) = 1

n p
size

{

p ∈ P | log2(rp,s) ≤ ω
}

,

where
rp,s = tp,s

min
{

tp,s | s ∈ S
} ,

and

tp,s = computation time (or number of iterations) required by solver s

∈ S to solve problem p ∈ P.

If algorithm s fails to solve problem p, we define tp,s = +∞. Thus, ρs(ω) is the
percentage of problems solved by solver s within a factor of 2ω of the best solvers.
It is easy to know from the definition of ρs(ω) that ρs(0) denotes the percentage of
problems solved by solver s with maximum efficiency. Furthermore, a larger ρs(ω)

whenω is fixed indicates that the solver s can solvemore problems, that is, s is “robust”

(a) Our Alg. 3.1 (b) Our Alg. 3.2 (c) Our Alg. 3.3 (d) Our Alg. 3.4

(e) SG Alg. 1 (f) DLY Alg. 4.1-I (g) DLY Alg. 4.1-II (h) SDL Alg. 2

Fig. 4 Comparison of the recovered signal with the original signal for all algorithms (K = 40)
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if ρs(ω) is large for ω fixed. Next, we fix m = 512 and sparsity K = 30, and choose
k = {1024, 1094, 1164, 1234, · · · , 4034}. The performance profiles of the proposed
algorithms 3.1–3.4 and the compared methods with respect to computation time and
number of iterations are demonstrated in Figs. 5 and 6, respectively.

We have the following observations for the numerical results of Example 4.1.
• It can be visualized from Fig. 1 that the proposed four algorithms have differ-
ent numerical performances on different parameters β. Specifically, the proposed
Algorithms 3.1 and 3.3 have better results when the parameter β is greater than
1, while the proposed Algorithms 3.2 and 3.4 have better performance with the
parameter β less than 1.

• The algorithms proposed in this paper for solving the split feasibility problem can
tackle the signal denoising problem (as shown in Figs. 3 and 4). On the other hand,
the preliminary results presented in Table 1 and Fig. 2 demonstrate the advan-
tages and computational efficiency of the proposed methods over some known
schemes. Specifically, the suggested Algorithms 3.1 and 3.2 require fewer itera-
tions and execution time than SG Alg. 1 in reaching the same stopping criterion;
the offered Algorithm 3.3 and Algorithm 3.4 perform better than DLY Alg. 4.1-I
and DLY Alg. 4.1-II, respectively. Furthermore, it is also noted from Table 1 that
SDL Alg. 2 requires more iterations and CPU time than the other algorithms in
these experiments when the sparsity K keeps increasing.

• The information in Fig. 5 points out that (1) our Algorithm 3.3 can win 80% in
computational time; (2) when ω = 1.5, our Algorithms 3.1–3.4 can solve all
problems, DLY Alg. 4.1-I can solve over 95% of problems, DLY Alg. 4.1-II can
solve about 85% of problems, while SG Alg. 1 cannot solve any problems; (3)
SG Alg. 1 with Armijo line search type step sizes takes more time to reach the
stopping criterion than the other algorithms.

• According to Fig. 6, it can be seen that our Algorithm 3.3 can solve all the problems
in this test with aminimum number of iterations. Secondly, our Algorithms 3.1 and

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our Alg. 3.1
Our Alg. 3.2
Our Alg. 3.3
Our Alg. 3.4
SG Alg. 1
DLY Alg. 4.1-I
DLY Alg. 4.1-II

Fig. 5 Performance profiles of all algorithms based on computation time for Example 4.1
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Fig. 6 Performance profiles of all algorithms based on number of iterations for Example 4.1

3.4 perform better than the other ones in terms of the number of iterations (see the
value of ρs(ω)when ω = 0.8). Notice that our Algorithm 3.2 and DLYAlg. 4.1-II
overtake DLY Alg. 4.1-I in terms of the stability of the number of iterations when
ω ≥ 1.1. Furthermore, SG Alg. 1 requires more iterations to achieve the required
error accuracy.

Example 4.2 In this example we consider the following image restoration problem:

Ax = b + v, (4.4)

where A ∈ R
m×k , x ∈ R

k , b ∈ R
m , and v ∈ R

m represent the convolution matrix, the
original image, the degraded image, and the noise vector, respectively. The problem
(4.4) can be converted into the following constrained optimization model

min
x∈C f (x) := ‖Ax − b‖2 .

We can put the problem (4.4) into the model of SFP (1.1) by setting C is a box area
in Rk and Q = {y ∈ R

m | ‖y − (b + v)‖ ≤ "} for small enough " > 0. In the special
case where no noise is added to the degraded image (i.e., v = 0) we set Q = {b} in
the SFP (1.1).

In this example we first test two different images12 of size 512×512 whose element
values were scaled to between 0 and 1 (i.e., C := [0, 1]m). The tested images are first
contaminated by a 9 × 9 Gaussian random blur23 with a standard deviation of 2 and
additionally corrupted by a randomGaussian white noise with zero-mean and standard

2 Download from the website http://www.imageprocessingplace.com/downloads_V3/root_downloads/
image_databases/standard_test_images.zip
3 Access via the website http://www.imm.dtu.dk/~pcha/HNO/HNO.zip
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deviation of 10−4. The two tested clean images and their degraded images are shown
in Fig. 7.

We use the proposed four algorithms and some known ones in the literature [9–11]
to solve problem (4.4) and keep the parameters of all algorithms the same as those
set in Example 4.1. Three metrics, the signal-to-noise ratio (SNR), the peak-signal-
to-noise ratio (PSNR), and the structural similarity index measure (SSIM), are used
to objectively describe the reconstruction quality of the recovered image x̃ ∈ R

m×k

compared to the original image x ∈ R
m×k , which are defined as follows.

• The SNR in decibel (dB) is calculated by

SNR := 20 log10
‖x‖

‖x̃ − x‖ .

From the definition of SNR, it can be seen that a larger value of SNR indicates a
better reconstruction quality.

• The PSNR in decibel (dB) is defined by

PSNR := 10 log10
MAX2

x
1
mk

∑m
i=0

∑k
j=0[x(i, j) − x̃(i, j)]2 ,

where MAXx means the maximum possible pixel value of image x ∈ R
m×k . A

larger PSNR shows a better quality of recovery.
• The SSIM is a metric proposed byWang et al. [42] to measure the similarity of two
images, and its definition can be found in [42]. The value of SSIM lies between 0
and 1, and its larger value indicates that the two images are more similar.

The iterative procedure of the algorithms presented in this paper and the alternated
inertial schemes in the literature [9–11] all begin from the degraded image b (i.e.,
initial points x0 = x1 = b). Without loss of generality, we set the maximum number
of iterations 100 as the stopping criterion for all algorithms in this experiment. The
recovery results of all algorithms under image “lena” and image “pirate” are shown in
Figs. 8 and 9, respectively. In addition, the numerical performance of all algorithms
in terms of running time in seconds (denoted by “Time”), SNR, PSNR, and SSIM
under two images is shown in Table 2. Furthermore, we plot the PSNR and the SSIM
variation curves of all algorithms under two test images in Figs. 10 and 11, respectively.

(a) Original “lena” (b) Degraded “lena” (c) Original “pirate” (d) Degraded “pirate”

Fig. 7 The original and degraded images in Example 4.2
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(a) Our Alg. 3.1 (b) Our Alg. 3.2 (c) Our Alg. 3.3 (d) Our Alg. 3.4

(e) SG Alg. 1 (f) DLY Alg. 4.1-I (g) DLY Alg. 4.1-II (h) SDL Alg. 2

Fig. 8 Recovery results for all algorithms in the image “lena”

It can be seen from Figs. 7, 8, and 9 that the four algorithms proposed in this paper
can be used to solve the image restoration problem (4.4). According to Table 2, our
Algorithm 3.3 has the largest SNR, PSNR, and SSIM in the recovered results of both
images. However, our Algorithms 3.1 and 3.2 do not perform very well. On the other
hand, SDL Alg. 2 takes the least computation time to reach the stopping criterion
than the other algorithms. Furthermore, the difference in computation time required
by our Algorithms 3.1–3.4 and SG Alg. 1, DLY Alg. 4.1-I, and DLY Alg. 4.1-II is

(a) Our Alg. 3.1 (b) Our Alg. 3.2 (c) Our Alg. 3.3 (d) Our Alg. 3.4

(e) SG Alg. 1 (f) DLY Alg. 4.1-I (g) DLY Alg. 4.1-II (h) SDL Alg. 2

Fig. 9 Recovery results for all algorithms in the image “pirate”
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Table 2 Numerical results for all algorithms under different images

Algorithms Image “lena” Image “pirate”
Time SNR PSNR SSIM Time SNR PSNR SSIM

Our Alg. 3.1 22.93 25.84 31.15 0.8762 22.68 22.49 28.45 0.8131

Our Alg. 3.2 22.61 25.96 31.27 0.8784 22.40 22.58 28.54 0.8164

Our Alg. 3.3 22.90 29.13 34.50 0.9221 23.03 24.80 30.76 0.8843

Our Alg. 3.4 23.03 28.54 33.88 0.9163 23.08 24.20 30.15 0.8691

SG Alg. 1 22.34 26.72 32.05 0.8910 22.41 23.11 29.07 0.8357

DLY Alg. 4.1-I 22.74 27.34 32.71 0.9006 22.93 23.58 29.53 0.8511

DLY Alg. 4.1-II 23.04 28.46 33.81 0.9157 23.12 24.35 30.31 0.8735

SDL Alg. 2 14.10 27.60 32.97 0.9045 14.13 23.79 29.74 0.8576

not significant. From the results in Figs. 10 and 11, it appears that the convergence of
our Algorithms 3.3 and 3.4 is not monotonic, which may be related to the choice of
inertial and step size.

To further test the computational efficiency and stability of our Algorithms 3.1–3.4,
we choose 49 standard 512× 512 greyscale test images from website https://ccia.ugr.
es/cvg/CG/base.htm; see Fig. 12. The numerical results for our Algorithms 3.1–3.4
and the comparison methods are shown in Table 3.

The “Num. of wins” in Table 3 represents the number of wins that the algorithm
achieved for the best recovery out of the 49 test images. It can be seen from Table 3
that the number of wins for our Algorithms 3.3 and 3.4 is almost equal to the number
of wins for DLY Alg. 4.1-I and DLY Alg. 4.1-II. This illustrates the competitive
advantage of our Algorithms 3.3 and 3.4 in some tests. Furthermore, our Algorithm
3.4 performs better than our Algorithm 3.3 because Algorithm 3.4 achieves the best
recovery more times; our Algorithm 3.4 also outperforms our Algorithm 3.2, which
shows that projection and contraction type algorithmsperformbetter than extragradient
type algorithms. In conclusion, the four algorithms introduced in this paper provide
some viable solutions to image restoration problems and they have some competitive
advantages over the algorithms in [9–11] to a certain extent.

(a) Image “lena” (b) Image “pirate”

Fig. 10 The PSNR of all algorithms under different images in Example 4.2
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(a) Image “lena” (b) Image “pirate”

Fig. 11 The SSIM of all algorithms under different images in Example 4.2

Fig. 12 Dataset of standard 512 × 512 grayscale test images
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Table 3 The numerical results of all algorithms under 49 standard test images

Algorithms SNR PSNR SSIM
Num. of wins Percent Num. of wins Percent Num. of wins Percent

Our Alg. 3.1 0 0.00% 0 0.00% 0 0.00%

Our Alg. 3.2 0 0.00% 0 0.00% 0 0.00%

Our Alg. 3.3 7 14.29% 6 12.24% 8 16.33%

Our Alg. 3.4 18 36.73% 17 34.69% 18 36.73%

SG Alg. 1 0 0.00% 0 0.00% 0 0.00%

DLY Alg. 4.1-I 0 0.00% 2 4.08% 0 0.00%

DLY Alg. 4.1-II 24 48.98% 24 48.98% 23 46.94%

SDL Alg. 2 0 0.00% 0 0.00% 0 0.00%

5 Conclusions

In this paper, based on the relaxed CQ method, alternating inertial method, extragra-
dient method, and projection contraction method, we proposed four new adaptive
iterative algorithms to discover solutions of split feasibility problems in infinite-
dimensional Hilbert spaces. The step sizes of the proposed algorithms are automati-
cally updated by using some previously known information. Thus they can work well
without the prior knowledge of the operator norm of the involved operator. Moreover,
the proposed algorithms employ two different step sizes in each iteration, which per-
forms better than the algorithms that use the same step size in each iteration as verified
by the preliminary example provided in this paper. Under some suitable conditions, we
established the weak convergence theorems of the suggested algorithms and obtain the
Fejér monotonicity of the even subsequence with respect to the solution set. Finally,
the advantages of the proposed algorithms are confirmed by two numerical applica-
tions which include signal denoising and image deblurring. The algorithms obtained
in this paper improve and generalizemany known ones in the literature. It is interesting
to extend the results obtained in this paper to Banach spaces or Hadamard manifolds.
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