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ARTICLE INFO ABSTRACT
Keywords: In this paper, we introduce three adaptive extragradient-based algorithms for solving equilibrium
Equilibrium problem problems in Hadamard manifolds. The proposed algorithms can work adaptively without

Variational inequality
Hadamard manifolds
Pseudomonotone bifunction

requiring the prior information about the Lipschitz constants of the bifunctions involved.

Moreover, the iterative sequences generated by the suggested algorithms converge to the solutions
. of the equilibrium problems when the bifunctions are pseudomonotone and Lipschitz continuous.

Extragradient method . .

Error bound We also establish the global error bounds and R-linear convergence rates of the proposed

Linear convergence algorithms in the case that the bifunctions involved are strongly pseudomonotone. Finally, a

fundamental numerical example is given to illustrate the theoretical findings.

1. Introduction

The goal of this paper is to introduce several adaptive extragradient type algorithms for solving an equilibrium problem in the
setting of Hadamard manifolds. The equilibrium problem, which is known as a unified framework for solving many problems, has
been applied to various fields, such as operations research, economics, transportation regulation, optimal control problems and so
on; see, e.g., [1-3]. In the last few decades, variational inequality problems and their algorithms in finite- and infinite-dimensional
spaces were investigated extensively (see [4-9] and the extensive references therein). However, numerous problems in applied
sciences are considered in nonlinear rather than linear spaces, for example, image processing and medical imaging problems on
Riemannian manifolds (see, e.g., [10-13]). In addition, the extension of numerical optimization algorithms from Euclidean spaces to
Riemannian manifolds also has significant advantages (see [13, Section 1] for more details). For example, it is possible to convert
a non-convex (resp., non-monotone) optimization problem to a convex (resp., monotone) optimization problem by introducing a
suitable Riemannian metric on a Riemannian manifold; see [14, Section 4] for examples and more information. Therefore, it is
necessary to construct equilibrium problems and their algorithms in the context of manifolds.

A complete simply connected Riemannian manifold with nonpositive sectional curvature is called a Hadamard manifold, which
has some remarkable properties (see Section 2 for more details) and therefore attracted the interest of scholars. Some examples
on Hadamard manifolds associated with optimization problems can be found in [15, Section 1]. In recent decades, many authors
paid considerable interest and studied the optimization problems and solution methods on Hadamard manifolds. They constructed
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a number of algorithms for solving variational inequalities [16-20], equilibrium problems [21-27], inclusion problems [28-30],
fixed point problems [31-34], and others. Our focus in this paper is on numerical optimization algorithms for solving equilibrium
problems on Hadamard manifolds. Throughout this paper, we consider the equilibrium problem (shortly, EP) in Hadamard manifolds
introduced by Colao et al. [21]. Let us state the mathematical form of the problem. Assume that M denotes a Hadamard manifold
and C is a nonempty, closed, and convex subset of M. Let f : C X C — R be a real-valued bifunction such that f(x,x) =0 for all
x € C. The EP associated with the bifunction f and the feasible set C is stated as follows

find s* € C such that f(s*,y) >0 (Vye C). (1.1)

In the whole paper, we always suppose that the solution set of EP (1.1) is nonempty. It should be noted that the EP (1.1) is a
generalization of the classical equilibrium problem on linear Euclidean spaces. Recently, extragradient-based algorithms as explicit
iterative schemes have attracted research interest from scholars. Next, we recall some useful results on extragradient-based algorithms
in linear spaces, which help us to develop new algorithms on Hadamard manifolds. The projection-based extragradient algorithm,
introduced by Korpelevich [35], is now known as an effective tool for solving variational inequalities, equilibrium problems, and
other optimization problems in the setting of linear and nonlinear spaces. In 2008, Quoc et al. [36] extended the extragradient
algorithm to solve equilibrium problems in Euclidean spaces. However, the fixed step size of Algorithm 1 proposed by Quoc et
al. [36] needs to satisfy a Lipschitz-type condition, which may limit the applicability of this fixed step size algorithm in practical
applications. To overcome this difficulty, they used an Armijo-type line search step size criterion for their algorithm. It is worth noting
that the use of Armijo-type step size criterion allows the algorithm to work adaptively while greatly increasing the computational
burden of the algorithm. Recently, Hieu et al. [37] introduced two extragradient algorithms to solve equilibrium problems in Hilbert
spaces, which use an adaptive step size criterion that does not involve any line search process to speed up the computational efficiency
of the algorithms. Note that the algorithms in [36,37] need to compute the strongly convex optimization problem on the feasible set
twice in each iteration. In order to reduce the number of computations of the strongly convex optimization problem in each iteration
and improve the computational performance of the algorithm, Hoai et al. [38] extended the golden ratio algorithm introduced by
Malitsky [39] for solving variational inequality problems to equilibrium problems. The Algorithms 3.1 and 4.1 proposed by Hoai
et al. [38] require computing the strongly convex optimization problem only once in each iteration. However, the step size of their
proposed Algorithm 3.1 is related to the prior knowledge of the Lipschitz constant of the bifunction f, and the proposed Algorithm
4.1 uses a non-summable sequence of step sizes. The use of both types of step sizes affects the applicability and computational
efficiency of their algorithms. Recently, Yin et al. [40] presented a modified golden ratio algorithm with adaptive step sizes for
solving equilibrium problems in Hilbert spaces. Their algorithm uses a non-monotonic step size criterion that can be updated with a
simple calculation using some previous information.

It should be mentioned that Hadamard manifolds generally do not have a linear structure, which indicates that properties,
techniques as well as algorithms in linear spaces are not available in Hadamard manifolds. Therefore, it is valuable and interesting
to generalize algorithms for equilibrium problems from linear spaces to Hadamard manifolds. In recent years, researchers proposed
some variant forms of extragradient-based methods to solve equilibrium problems in Hadamard manifolds. Next, we state some of
the related results. In [21], Colao et al. proved the existence of solutions to equilibrium problems on Hadamard manifolds when the
bifunction satisfies some suitable conditions. Subsequently, Cruz Neto et al. [22] developed an extragradient algorithm with a fixed
step size for finding the solutions of the equilibrium problem (1.1) on Hadamard manifolds and proved the global convergence of
the algorithm. Inspired by the works of Cruz Neto et al. [22] and Hieu [4,5], Khammahawong et al. [23] provided two extragradient
methods with non-increasing and non-summable step sizes to solve equilibrium problems in the framework of Hadamard manifolds.
Their algorithms directly extend the results obtained by Hieu [4,5] in Hilbert spaces to Hadamard manifolds. In the case that the
bifunction involved is strongly pseudomonotone, they proved that the sequences generated by their proposed algorithms converge
to the solution of EP (1.1) under some mild conditions. Motivated by the extragradient algorithms for solving equilibrium problems
in Hilbert spaces presented by Hieu et al. [37], Ansari et al. [24] introduced two adaptive explicit extragradient algorithms to
find the solutions of EP (1.1) in Hadamard manifolds. Their proposed algorithms apply a simple adaptive step size criterion that
can be updated by using known information from previous iterations. This allows these algorithms to perform without the prior
knowledge of the Lipschitz constant of the bifunctions involved. Moreover, they demonstrated that the iterative sequences generated
by the suggested algorithms converge to the solution of EP (1.1) under the condition that the bifunctions are pseudomonotone, and
obtained the linear convergence of the proposed algorithms in the case that the bifunctions are strongly pseudomonotone. Notice
that the algorithms in [22-24] involve the computation of the strongly convex optimization problem twice in each iteration. Chen
et al. [25] presented a modified golden ratio algorithm that requires the computation of the strongly convex optimization problem
only once in each iteration for solving equilibrium problems in Hadamard manifolds. Furthermore, the computational advantage and
efficiency of the algorithms proposed by Chen et al. [25] compared with the ones in [22,23] were demonstrated by some numerical
experiments. Quite recently, Iusem and Mohebbi [26] and Babu et al. [27] suggested several extragradient algorithms with an
Armijo-type step size criterion to discover the solutions of equilibrium problems in Hadamard manifolds. However, their methods
are computationally expensive because the strongly convex optimization problem may require to be computed many times in each
iteration.

In this paper, inspired and motivated by the above results (in particular [22,24,37,40]), we investigate two adaptive extragradient
algorithms and a modified golden ratio algorithm for solving equilibrium problems in Hadamard manifolds. The suggested algorithms
use a non-monotonic adaptive step size criterion that does not involve any line search procedure allowing them to solve EPs consisting
of pseudomonotone and Lipschitz continuous bifunctions. The sequences generated by the proposed algorithms converge to the
solutions of the EP under some mild conditions. In addition, the global error bounds and linear convergence results of the proposed

188



B. Tan, X. Qin and J.-C. Yao Applied Numerical Mathematics 201 (2024) 187-216

algorithms are established under the condition that the bifunctions involved are strongly pseudomonotone. Finally, we also provide
a fundamental numerical example in Nash-Cournot oligopolistic equilibrium model to illustrate the theoretical results of this paper.
The algorithms developed in this paper improve the results previously obtained in [22-27] for dealing with EPs on Hadamard
manifolds.

The remainder of this paper is organized as follows. In Section 2, we recall some important notations, definitions, properties,
and lemmas in Riemannian geometry for subsequent use. In Section 3, we present three adaptive explicit algorithms for solving
EPs incorporating pseudomonotone and Lipschitz continuous bifunctions on Hadamard manifolds and analyze their convergence. In
Section 4, we show the global error bounds and R-linear convergence of the proposed algorithms when the bifunctions involved are
strongly pseudomonotone. A basic computational test occurring on Hadamard manifolds is provided in Section 5 to demonstrate the
convergence efficiency of our algorithms. In the last section, we conclude the paper and give an outlook on future work.

2. Theoretical framework

The goal of this section is to state some classical representations and results in Hadamard manifolds, which are necessary to
understand the content of this paper. Therefore, we shall introduce some important concepts, definitions, properties, and lemmas in
Riemannian manifolds and Hadamard manifolds, which can be found in any book and article related to Riemannian geometry; see,
e.g., [18,28,41-44].

2.1. Riemannian manifolds

Let M be a connected m-dimensional manifold and p be an element on manifold M. We denote T, M as the tangent space of

M at p and represent the tangent bundle of M by T M, ie,TM= Uper T, M. Note that T M is a manifold and T, M is a vector

space of the same dimension as M. An inner product (-, ), : T,M XT,M — Ry associated with a norm || - ||, Gi.e., [lull, = (u, u)},/z)

is said to be a Riemannian metric of T,M.

Definition 2.1. If the tensor (-, ), is a Riemannian metric on T,M for all p € M, then the tensor field (-, -) is called a Riemannian
metric on M. A differentiable manifold M endowed with a Riemannian metric (-, ), is called a Riemannian manifold.

For simplicity, in the subsequent content, we replace inner product (-, -), and norm || - ||, on 7, M with (-, -) and || - ||, respectively.
That is, we omit the subscript p if there is no confusion.

Definition 2.2. The length of a piecewise smooth curve y : [a,b] - M connecting x to y (i.e., y(a) = x and y(b) = y) is defined as

b
L= [ 7o)
a
where y/(t) = %(y(t)) is a tangent vector in 7, M. The minimal length of the set of all such curves connecting x to y is called the
Riemannian distance from x to y, denoted by d(x, y). That is

d(x,y) :=inf{L(y) : y joining x to y}.
Note that the topology induced by d on M coincides with the original topology on M (see [41, p. 146, Proposition 2.6]).

Definition 2.3. Let V be the Levi-Civita connection associated with the Riemannian metric (-, -), and let y be a smooth curve in M.
A vector field X is called parallel along y if V,, X =0, where 0 is the zero tangent vector. We say that y is a geodesic if y' itself
is parallel along y, and in this case ||y’|| is constant. If ||y’|| = 1 then y is said to be normalized. A geodesic joining x to y in M is
said to be minimal if its length equals d(x, y).

Definition 2.4. The parallel transport P, ;) .« * Ty@M — TypM on the tangent bundle TM along y: [a,b] - R with
respect to V is defined by

P, )y = Ay () (Va,b € R)(Vv €T,y M),

where A is the unique vector field such that VA= 0 for all t € [a, b] and A(y(a)) =v.
If y is a minimal geodesic joining y(a) to y(b), then we write P, ,,) instead of P, ;) ,(o)- For any a, b,b,,b, € R, we have

— —1 —
Py(bz),y(bl ) °P7(b| )o@ = Pr(bz)qy(a) and Py(b),y(a) =Py 0
Note that P, () is an isometry from T, M to T, M. That is, the parallel transport preserves the inner product
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(Py6)1@ - Pty @) 3y = (. 0y (Vi € Ty MOV € Ty M.

Definition 2.5. A Riemannian manifold is said to be complete if, for any x € M, all geodesics emanating from x are defined for all
—00 <t <+00.

With the Riemannian distance d : M XM — R, the Riemannian manifold M is a metric space (M, d) (see [41, p. 146, Proposition
2.5]). We may investigate the global behavior of a Riemannian manifold M by using the idea of completeness to observe how
geodesics operate on M.

Definition 2.6. Assume that M is a complete Riemannian manifold, the exponential map exp, : TyM — M at x is defined by

exp, v :=7,(1,x) Vv eT M),

where y(-) =y,(-, x) is the geodesic starting at x with velocity v (i.e., y,(0,x) = x and 72(0’ x) =v). Then exp, tv =y,(t,x) for t € R.

It follows that exp, 0 = 7,(0, x) = x. Note that the mapping exp, is differentiable on T, M for any x € M. The exponential map
has inverse exp;1 : M — T, M. Furthermore, the inverse of the exponential mapping exp and the distance d have the following
relationship.

“exp;‘ yH = Hexp;l x” =d(x,y) = d(y,x) (¥x € M)(¥y € M),

which can be seen in, e.g., [41, p. 146, Proposition 2.5] and [43, p. 39, Corollary 2.8]).
The following property is well known and can be found in [41, p. 146, Theorem 2.8].

Proposition 2.1. (Hopf-Rinow Theorem) Let M be a Riemannian manifold and let p € M. The following assertions are equivalent:

(D) exp, is defined on all of T, M.

(ii) The closed and bounded sets of M are compact.
(iii) M is complete as a metric space.
(iv) M is geodesically complete.

Furthermore, any of the statements above imply that any pair of points in M can be connected by a minimal geodesic. That is, for any q € M,
there exists a geodesic y connecting p to q with L(y) =d(p, q).

2.2. Hadamard manifolds

The concept of sectional curvature in Riemannian manifolds in some sense measures the amount by which a Riemannian manifold
deviates from Euclidean. In this paper, we are interested in Riemannian manifolds with nonpositive sectional curvature, whose
fundamental properties and geometrical features are collected in the following Propositions 2.2 and 2.3, and Lemmas 2.1 and 2.2.
We do not include the technical definition of sectional curvature in this paper; see, e.g., [45, p. 259, Section 1], [42, p. 8, Definition
2.3], and [43, p. 43, Section 3.2] for more information.

Definition 2.7. A Hadamard manifoldisa complete, simply connected Riemannian manifold with nonpositive sectional curvature.

It is known that the Euclidean space R™ with its usual metric is a Hadamard manifold with constant sectional curvature equal to
0, and the standard m-dimensional hyperbolic space H"” is a Hadamard manifold with constant sectional curvature equal to —1. If M
is a Hadamard manifold, then it has two important properties. The first one is that it exists a unique minimal geodesic connecting a
pair of points on M (see Proposition 2.1). The other fact is that it is diffeomorphic to the Euclidean space R™ (see Proposition 2.2).
In the rest of the paper, we use M to represent an m-dimensional Hadamard manifold and C to denote a nonempty, closed, and
convex set in M, unless otherwise stated.

The following result is well-known (see, e.g., [43, p. 221, Theorem 4.1]).

Proposition 2.2. (Hadamard-Cartan Theorem) Let M be a Hadamard manifold and p € M. Then exp p - TyM — Mis a diffeomorphism,
and for any two points p,q € M, there exists a unique normalized geodesic joining p to g, which is in fact a minimal geodesic and can be
expressed by y(t) = expp(texp;1 q), vVt €[0,1].

From Proposition 2.2, it follows that M has the same topology and differential structure as R™. Next, we state some geometric
properties in Hadamard manifolds, which are similar to those in Euclidean spaces.

Let py, p,, and p; be points on a Riemannian manifold. Let A ( Di-Pas p3) denote a geodesic triangle on a Riemannian manifold
which consists of three minimal geodesics y; connecting p; to p;,|, where i =1,2,3 (mod 3). The following Proposition 2.3 is known
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as the comparison theorem for triangles (see [43, p. 223, Proposition 4.5] and [45, Theorem 2.2]), which is essential for our main
results.

Proposition 2.3. Let A ( Di>Pas p3) be a geodesic triangle on a Hadamard manifold M. We use y; : [O, / ,-] — M to represent the geodesic
connecting p; to p;.y for each i =1,2,3 (mod 3). Set I; := L (y;) and a; := £(y/(0),=y]_, (Ii~1)). Then

@D oy +oy+az <.
() F+12,, =2l cosap SI2 .
(iii) l; cosa;p+1;cosa; >1; 5.

Remark 2.1. By using exponential mapping and distance on M, we have the following findings.
+ Since
exp,' pexps! pin)=d (pi.pis1) d (Pis1.Pisa) cOSQ 2.1
piy1 £ Dit1 i+2 Di>Piy1 Pi+1-Piy2 i+1> .
then the inequality (ii) of Proposition 2.3 can be rewritten as (cf. [28, Eq. (2.3)])
2 2 -1 -1 2
d (Pz»P;+1) +d (Pi+1»P;+2) -2 <e"pp[+l Pi>eXpy._ | Pi+2> <d (Pi+2’P;) . (2.2)

+ From the inequality (iii) of Proposition 2.3, we have

2
lig Slivaliv1 €08 @iyp + 1ol cOS

which together with (2.1) deduces that
d? (i Piy2) S d* (PioPiv2) A% (Pig1s Piga) COS @iy +d? (piaPiys) A% (Pispigy ) cOS;
PisPiv2) = Pi>Piy2 Pit1>Piy2 Ajyo Pi>Piy2 Pi>Pit1 a;
= <exp;l_i2 pi,exp;‘_iz p,.+1> + <exp;i1 pi+1,exp;il pi+2> . (2.3)

Note that inequality (2.3) can also be derived from the well-known “law of cosines” in R? and inequality (2.2) (see, e.g., [29, Eq.
(9)] and [32, p. 280, Proposition 14.16]).
* By letting p;,, = p; in (2.1), one obtains

-1

-1 -1 _2 _ 2 ot 2
exp, ! pnexpy! i) = (piaep) = exe,! pi]| = [lexe, o |

Let the triangle A ( p.q.r ) denote the comparison triangle of the geodesic triangle A(p, ¢, r). Notice that the comparison triangle
is unique within isometry of M. The following two results demonstrate some interesting findings of comparison triangles. The first
one is the existence of comparison triangles in R2, and the second one shows the angular relationship of points between a geodesic
triangle and its comparison triangle.

Lemma 2.1. ([46, p. 24, Lemma 2.14]) Let A(p, q,r) be a geodesic triangle in a Hadamard manifold M. Then, there exists p',q',r' € R2
such that

dp.9=|p' -4|. da.n=|d-|. dep=]|-p].

Lemma 2.2. ([31, Lemma 3.5]) Let A(p,q,r) be a geodesic triangle in a Hadamard manifold M and A (p’ q,r ) be its comparison
triangle.

(i) Let a, B,y (resp., «',B',y") be the angles of A(p,q.r) (resp., A(p',q',r")) at the vertices p,q,r (resp., p’,q’.r"). Then, the following
inequalities hold

e f2p 7V 2y.

(i) Let z be a point in the geodesic joining p to q, and z' € [p',q'] is the comparison point, if d (z,p) = ||z = p'||.d (z,q) = ||’ — ¢'||, then
d@zr |2 -+|.
2.3. Convex analysis

In this subsection, we recall some concepts about convexity and monotonicity in Hadamard manifolds.
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Definition 2.8. ([42, p. 59, Definition 1.3]) Let M be a Hadamard manifold. A subset C C M is said to be (geodesic) convex if for

any two points p, g € C, the geodesic joining p to g is contained in C. That is, if y : [a,b] - M is a geodesic such that p = y(a) and
q=1y(b), then y((1 —t)a+tb)e C for all t € [0, 1].

Definition 2.9. ([43, p. 172, Definition 5.9]) A real-valued function f : M — R is said to be convex if the composition foy : R - R
is convex for any geodesic y of M, which implies that foy(ta+ (1 —1)b) <tf(y(a))+(1—1)f(y(b)) holds for any a,b€ R and ¢ € [0, 1].

Definition 2.10. ([16, Definition 7], [47, Definition 2.3]) Let C be a nonempty geodesic convex subset of a Hadamard manifold M.
A function f : C — R is said to be (geodesic) hemicontinuous if for any geodesic y : [0, 1] — C, the function 7 — f(y(t)) defined
on [0, 1] is continuous. That is, f(y(¢)) — f(y(0)) ast — 0.

Definition 2.11. ([45]) Let f : M — R be a convex function and x € M. The vector s € T, M is said to be subgradient of f at
xeMif

FO 2 f )+ (s.expy'y) (FyeM).
The set of all subgradients of f at x is called the subdifferential of f at x and is denoted by 0 f (x).

The following lemma shows that the subdifferential of a convex function is nonempty.

Lemma 2.3. ([45, Theorem 3.3]) Let f : M — R be a convex function. Then, for any x € M, there is s € T, M such that

T2 f )+ (s.exply) (VyeM).
That is, the subdifferential d f (x) of f at x € M is nonempty.

Definition 2.12. Let C be a nonempty, closed, and convex subset of a Hadamard manifold M, f : C — R be a convex function.
Take a > 0. The proximal mapping of f is defined by

o : 1,
prox, r(x) ._ar;();erénn{af(y)+ 2d (x,y)} Vx eM).

Lemma 2.4. ([45, Theorem 5.1]) Let f : M — R be a convex function. The sequence {sn} generated by the proximal point algorithm

1
27,

n

Sp4q = argmin {f(y) +=—d*(s,.) } , where starting point s, € M, 7, € (0, ),
YEM

is well defined, and characterized by TL exp;l+  SnEOf (Spe1)-

Remark 2.2. From [45, Lemma 4.2], it is known that prox, r(x)is a single-valued. By the definition of o f (s,, +1) and Lemma 2.4,
we have

1 <6Xps_nl+1 s,,,exps_nirl x> <f)-f <sn+1) Vx e M).

TVl
The following definition is modified from [48, p. 294, Theorem 3.1(v)] and [36, p. 754, Theorem 3.2(ii)].

Definition 2.13. Let C be a nonempty, closed, and convex subset of a Hadamard manifold M. A bifunction f : C X C - R is said
to satisfy a Lipschitz-type condition on C if there exists a positive constant L such that

f(x,2) = f(x,y) = f(y,2) < Ld(x,)d(y,2) (Vx,y,z€C). 2.9
Remark 2.3. Note that (2.4) implies that

f2) = f(xy) = f(1.2) <7d*(x,9) + 1,d* (3, 2) (Vx,9.2€ C), (2.5)

wherey, =y, = % The Lipschitz-type condition (2.5) is used by many papers solving equilibrium problems on Hadamard manifolds;
see, e.g., [22-25].
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Definition 2.14. A bifunction f : C X C — R is said to be
(1) strongly monotone if, for all x,y € C, there exists a positive constant y such that

F) + f,x) < —yd?(x,).

(2) monotone if, forall x,y e C,

S+ f(y,x) <0.

(8) strongly pseudomonotone if, for all x,y € C, there exists a constant ¢ such that

fe»20 = f(y,x)<—0d*(x,y).

(4) pseudomonotone if, for all x,y € C,

f,»20 = f(yx)=<0.
According to Definition 2.14 it is easy to check the following relations: (1) = (2) = (4) and (1) = (3) = (4).

Definition 2.15. ([45, p. 268, Eq. (25)]) Let C be a nonempty set on a complete metric space X. A sequence {sn} C X is called
Fejér convergent with respect to C if

d(s,11,9) <d (s,,y) (Vy€C)Vn20).

Lemma 2.5. ([45, Lemma 6.1], [17, Lemma 7.2]) Let C be a nonempty set on a complete metric space X. If {sn} C X is Fejér convergent
to C, then {s,,} is bounded. In addition, if any cluster point of {s,,} belongs to C, then {sn} converges to a point of C.

3. Main results

In this section, we present two modified extragradient type algorithms and a modified golden ratio algorithm for solving the
equilibrium problem (1.1) in Hadamard manifolds. The three proposed algorithms can work without the prior knowledge of the
Lipschitz constant of the bifunction f involved. The first two extragradient-based algorithms proposed in this paper are motivated
by the work of Hieu et al. [37] for solving equilibrium problems in Hilbert spaces. Now, we are in a position to introduce our
Algorithm 3.1.

Algorithm 3.1

Initialization: Take 7, >0, 6 € (0, 1), and y € (0,2/(1 + 6)). Let {£,} and {o,,} satisfy the following Condition (C3). Let s, € C be an initial point and set n=0.
Iterative Steps: Assume that s, € C is known, calculate s,,, as follows:
Step 1. Compute

. 1
t, =argmin {f (5:9) + 3 (Swy)} =Prox, r(s,.) (S) -

yeC

If 5, =1,, then stop the iterative process and s, is a solution of EP (1.1); Otherwise, go to Step 2.
Step 2. Compute

. 1
Sne1 = argmin {f (1) + md (Snsy)} =prox,. 1, ) (s.)-
Update the next step size by

. { 8d (5,:1,) d (5:41.1,)
min{ — "~ """

A ,énf,,+6n}, if A, >0; (3.1)

&1, +0,, otherwise,

n

where A, = £ (5,.85,41) = f (Spotn) = (14 Spi1)-
Setn :=n+1 and go to Step 1.

We assume that the bifunction f satisfies the following four conditions.

(Al) f:CXxC — R isapseudomonotone bifunction and f(x,x) =0 for all x € C;

(A2) f satisfies Lipschitz-type condition (2.4);

(A3) f(x,-) is convex and subdifferentiable on C for each x € C;

(A4) f(,y) is upper semicontinuous on C for each y € C, i.e., limsup,_, f (sn,y) < f(x,y) for each y € C and each {sn} C C with

5, = X.
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Let the proposed Algorithm 3.1 satisfy the following three conditions in order to perform its convergence analysis.
(C1) The feasible set C is a nonempty, closed, and convex subset of Hadamard manifold M.

(C2) The solution set Q of EP (1.1) is assumed to be nonempty, that is, Q # @.
(C3) Let {&,} C[1,00) and {5,} C [0, o) be two sequences such that 3> (£, — 1)< oo and )7 0, < .

Remark 3.1. From the definition of 7, in Algorithm 3.1 and Remark 2.2, one has

7 (£ (5003) = £ (sw12)) = {exp " s,0ex0 y) (W €C).

If 5, =1, for some n € N, then we obtain that f (s,,y) > 0 for all y € C since 7, > 0. This implies that s, €Q, i.e., s, is a solution of
EP (1.1). Therefore the iterations of Algorithm 3.1 terminate when s, =1,.

We begin the convergence analysis of Algorithm 3.1 by showing that the step size 7, generated by (3.1) is well defined.

Lemma 3.1. Let step size {7, } be a sequence formed by (3.1) and Conditions (A2) and (C3) hold. Then {z,} is well defined and lim,,_, , 7,
exists.

Proof. Since f satisfies the Lipschitz-type condition (2.4), in the case of A, > 0, one obtains

od (Sn’tn>d(sn+1’tn) > od (Sn’tn)d(snﬂ’tn) — é
S ursws) =1 (urt) = £ (se) LG 1)dGprnty) L

This combining with (3.1) yields z,,; > min{z,, %}. By induction, one finds that 7, > min{z, % }. On the other hand, it can be seen
from (3.1) that 7, <§,7, + o, for any n > 0. In view of Condition (C3) and [49, Lemma 1], it can be concluded that lim

exists. Since {7, } has a lower bound min{z, % }, we have lim,_, 7, :=7>0. [

h—00 Ti’l

Lemma 3.2. Assume that Conditions (A1)-(A4) and (C1)—(C3) hold. Let {s,} and {t,} be generated by Algorithm 3.1. Fix p € Q. Then

d? (S,H_l,p) <d? (s,,,p) - )(: (af2 (sn,t,,) +d? (s,,+1,t,,)) s (3.2)

where

2— =L if ye[1,2/(1+6));

5
* . Tn+l

Xy = 0T, .
" )((1—“”1), if x€O,D).

Furthermore, {s,} is Fejér monotone with respect to the solution set Q. Both {s,} and {t,} are bounded.

Proof. According to Lemma 2.4 and the definition of s, in Algorithm 3.1, we obtain

X7, (f (tn,y) - f (t,,,sn+l)) > <exp;:rl sn,exp;nil y> VyeO). (3.3)

Similarly, by means of Lemma 2.4 and the definition of ¢, in Algorithm 3.1, we have

T (f (5009) = F (5001,)) 2 <expr_n] sn,exp;' y> Vye ). (3.4

Using y =s,,1 € C in (3.4) yields

o (F sesust) = £ (s0012)) = (ex07 5030 5,01 (35)

Let A (s,,, S, +1,y) be a geodesic triangle. From (2.2), one sees that

2 <exps’nl+] s,,,exps’ntrl y> >d? (sn,s,,+1) +d? (sn+1,y) —d? (sn,y) VyeO). (3.6)

Similarly, let A (s,,, th> Sy +1) be a geodesic triangle. It follows from (2.2) that

2<exp;ll s,,,expt_n1 sn+1> >d? (s,.1,) +d? (Spprotn) = d* (5,0 5,41) - (3.7)

Combining (3.3), (3.5), (3.6), and (3.7), we have
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227, (f (5 5041) = f (Sw01a) = £ (t25011))
>2y <exp;’1 s,,,expr_n1 s,,+1> +2<exp;ﬂl+1 sn,exps_n{rl y> -2y, f (t,,,y)
2 yd® (systy) + 2d* (spa1:1a) = 2% (5005011
+d? (s,,,s,,+l) +d? (s,H_l,y) —d? (sn,y) —2x7,f (t,,,y) (Vye ).
That is,
@ (sp4159) <d° (5,09) = 2d* (551) = 2d” (Spgrstn) = (L= 0 d” (5041
+ 205 (f (s Suit) = S (1) = (s $u41)) (3.8)
+2x7,f (tn,y) VyeO).

By the definition of 7, ; in (3.1), one sees that

é
f (Sn’sn+1) - f (sn’tn) - f (In’sn+]) < T (d (Sn’tn) d (Sn+]’tn))
”;‘ (3.9)
< (d? (s,01,) +d* (Spp121,)) -
2Tn+1
Combining (3.8) and (3.9), we deduce that
d2 (Sn+l’y) Sdz (Sn’y) _Xdz (sn’tn) - )(dz (Sn+l’tn) -1 ){)dz (sn’sn+1)
é (3.10)
+ g (d2 (s,,,t,,) +d? (s,,+1,t”)) +2x7,f (t,,,y) VyeO).
n+1

Letting y = p in (3.10). Since p € Q and ¢, € C, one obtains f ( D, t,,) > 0. This together with the pseudomonotonicity of f yields that
f (tn,p) <0. Then from (3.10) we obtain

d* (s5,41.9) <d* (5,.0) = (1 = 2)d* (5, 5,41)

(3.11)
—y (1 - i) (62 ($y012) +d (5011012 )
Tntl
By the triangle inequality and the inequality (a + b)* < 2(a® + b%), Va,b € R, we have
A (5s511) < (d (551) + (Spa1stn))” S2(d2 (5010) + % (Sp151)) - (3.12)

Combining (3.11) and (3.12), and considering two cases of y, we obtain that the inequality (3.2) required in Lemma 3.2.
From Lemma 3.1, one has

{2—;(—;(5, if y €[1,2/(1+6));

lim y* = .
x—x0, if y €(0,1).

n—co "1

Since 6 € (0, 1), we conclude that lim,,_, ,, x, > 0 for all y € (0,2/(1 + 5)). Therefore, there exists ny > 0 such that y,; > 0 for all
n > ngy. Consequently,

d (sn+1,p) <d (s,,,p) (Vp € Q)(Vn > ngp).

This means that {s,} is Fejér monotone with respect to the solution set Q of EP (1.1). Thus {sn} is bounded and lim,_, o, d (s,.p)
exists. By letting the limit n — oo in (3.2), one arrives at

lim d (s,.7,) =0 and ’}Lngod (Spe1:1,) =0. (3.13)

n—oco

As aresult, {z,} is also bounded. It follows from (3.12) and (3.13) that

lim d (s,,5,41) =0. (3.14)

n—oo

This completes the proof. []

Theorem 3.1. Let {s,} be generated by Algorithm 3.1 and satisfy Conditions (A1)-(A4) and (C1)-(C3). Then {s,} converges to a solution
of EP (1.1).

Proof. From Lemma 3.2, one knows that {s,} is Fejér monotone with respect to the solution set Q. To show that {s,} converges to a
solution of EP (1.1), it is left to prove that any cluster point of {s,} belongs to © by means of Lemma 2.5. Let s* be a cluster point of

{s,}. According to {s,} is bounded, there exists a subsequence {snk } of {s,} satisfies lim;_,, 5, = s*. We also have lim;_, 7, =s"

and s* € C due to lim,_,, d (s,,,7,) =0. In view of (3.10), one sees that
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2x7, f (Zn’y) Zdz (sn+l’y) -d? (sn’y) +d _){)d2 (sn’sn+l)

6 (3.15)
—x < fn_ 1) (d? (5,51,) +d* (s,4101,)) (VY EC).
Th+l
From the triangle inequality, we have
|42 (s11:3) = @ (5, 3) | S ($001:5,) (@ (8101.9) +4 (5,3)) (V¥ €O,
which combining with (3.14) and the boundedness of {s,,} implies that
1im [d (5,41,9) = 4% (5,,3)| =0 (Vy€ O). (3.16)

Replacing » in (3.15) with n; and letting kK — +o0, we obtain that the right-hand side of inequality (3.15) tends to 0 according to
(3.13), (3.14), (3.16), and lim, _, , Ty, =T > 0. From Condition (A4), we have

f (s*’y) > limsup f (tnk,y) >0 (Vye().
k— oo

This follows that s* € Q, as required. []

Remark 3.2. The step size (3.1) defined in the proposed Algorithm 3.1 can be replaced by the following expression

[ 8(d? (spty) +d% (s001010)) )
. mm{ ( )ZA (s "> Ty +o, p, ifA, >0

&ty 0, otherwise,

(3.17)

n

where A, is defined in (3.1). To see this, it is sufficient to verify that

8 (d* (syot,) +d* (su4101,)) o 8 (d? (syot,) +d* (Suy101))
2(f (sn7sn+l) _f (Sn’tn) _f (tn’sn+l)) - 2Ld(s”’t”)d(sn+1’t”)
5 (dz (Sn’tn) + d2 (S'l+l’t’l)) — 5

- L(d2 (sn’tn) +d? (Sn+1’tn)) L

Obviously, the inequality (3.9) still holds. Therefore, the result of Theorem 4.1 can also be obtained by Algorithm 3.1 incorporating
the step size criterion (3.17).

Notice that the suggested Algorithm 3.1 requires that the values of the bifunction f at s, and ¢, be computed in each iteration.
To improve the computational efficiency of the algorithm, we propose a method that only needs to compute the value of f at, in
each iteration. The second iterative scheme proposed in this paper is shown in Algorithm 3.2 below.

Algorithm 3.2

Initialization: Take 7, >0, 6 € (0,1/3), and y € (0,2/(1 + 36)). Let {&,} and {0, } satisfy Condition (C3). Let 7_,,,, s, € C be three initial points and set n =0.
Iterative Steps: Assume that z,_,,t,,s, € C are known. Calculate s, , and 7, as follows.
Step 1. Compute

. 1
Sue1 = argmin {f (tpy) + maﬂ (S,,,y)} =prox,; ;. () -

If 5,,, = s, =t,, then stop the iterative process and s, is a solution of EP (1.1); Otherwise, go to Step 2.
Step 2. Compute

. od (tn—l’tn)d(sn+l’tn) .
= mm{ A—,.f,,‘rn +o, 0, ifA,>0; (3.18)

n

&,7,+0,, otherwise,

where A, = f (t,_1.8,41) = f (tacisty) = f (145,41 )- Update 1, via

t,,] =argmin {f (t,,,y) + d? (s,H_l,y) } =ProX. . r(i,) (‘Yn+l )

yeC

27,

n+1

Set n :=n+ 1 and go to Step 1.

Remark 3.3. According to Remark 2.2 and the definition of s,,; in Algorithm 3.2, one sees that
ATy (f (tn,y) -f (t,,,sn+l)) > <exp;:rl sn,exp;nil y> VyeO).
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If 5,4, =s, =1, for some n € N, then we obtain that f (7,,y) >0 for all y € C since y, > 0. This means that 7, solves EP (1.1).

Consequently the iterations of Algorithm 3.2 terminate when s, =5, =1,.

Lemma 3.3. Let step size {7, } be a sequence created by (3.18) and Conditions (A2) and (C3) hold. Then {z,} is well defined and lim,,_, , 7,

exists.

Proof. This proof is similar to the one of Lemma 3.1 and therefore is omitted. []

Lemma 3.4. Let {s,,,} and {1,,,} be generated by Algorithm 3.2. Fix p € Q. Then {s,} and {1,} are bounded and lim,_, ., d° (s,.p)

exists.
Proof. From the definition of s, in Algorithm 3.2 and Lemma 2.4, we have

20 (F (109) = £ (t2o5040)) 2 (o307 s,expy] v) (vyec),

Similarly, by the definition of #,,; in Algorithm 3.2 and Lemma 2.4, we obtain

Tntl (f (tn’ y) - f (tn’tn+l )) > <CXp;l-]H Sn+]’exp;1_| y> (Vye C)

Replacing n + 1 with n in (3.20), one finds that

00 (f (t19) = 1 (tarot)) 2 (030, syexp) ! v) (WyEC).

Using y=s,,1 € C in (3.21) yields

Tn (f (tn—]’sn+1) - f (tn—l’tn)) > <exp;_nl Sn’exp;l Sn+l > .

Let A (s,,,5,41.¥) be a geodesic triangle. Then from (2.2) we have
2<exp;ﬂl+l Sn,exp;lﬂ y> 2 d2 <Sn’sn+1) + d2 (sn+l7y) - d2 (Sn’y) (Vye ).

Similarly, let A (s,,, Ly Spy 1) be a geodesic triangle. It follows from (2.2) that

2(expy speenpy spen )2 € (5000) 02 (s04108a) = 8 (55001)
From (3.19), (3.22), (3.23), and (3.24), we conclude that
207 (f (taetsSurt) = F (tactstn) = F (145 S041))
> 2 (expy spexpy s ) +2(expy! spexprl ) =22, (1,00)
2 A (spota) + 2@ (Su4110) = 142 (S0 501)
+d” (s35041) +d° (5001.9) =d* (5,09) =227, (1:9) (V¥ EC),
which is equivalent to
d? (Sns1:) <d’ (5n:9) - zd? (Snstn) = xd? (Snerstn) = (1 -nd (SusSns1)
+2x7, (f (tn—l’sn+l) -f (tn—l’ln) -f (tn’sn+l))
+2x7,f (tn,y) VyeO).
By the definition of 7, in (3.18), we have
F(taerssupr) = f <tn—l’tn) -f (In’sn+l)
<2 (A (tt)d (s001:1,))

Tnt1

4
< 2 (d2 (tn—l7tn)+d2 (Sn+1’tn))‘
n+l1

Using (3.25) and (3.26), we deduce that

e (Sn+1’y) Sdz (Sn’y) _1d2 (sn’tn) _)(dz (Sn+1’tn) - _)()d2 (sn’sn+1)

o
+ 250 (2 (1, ,1,) + 2 (5,011)) + 2270 ] (109) (VY EC).

T+l

By the triangle inequality and the inequality (a + b)* < 2(a® + b?), Ya,b € R, one can show that
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@ (ty_yoty) < (d (tpegs5,) +d (501))° 2% (1,1, 5,) +2d2 (5,1, - (3.28)

From (3.27) and (3.28), we have

dz(sn+1’y)<d2(sn’y)_xd2(sn )_Idz(n+1’ ) (1_){)‘1( n+1)

2;(51 2x61,
2 (tyo105,) + ——"d? (5,01,
Tn+1 Tntl

x0T,

o (Snersta) + 22701 (125) (3.29)
—d (s,.) - (1 _ 20 >d2 (5001) = 7 (1 - ‘i> @ (s311:12)
Tn+1 Tn+l

2x6
+ ﬁdz (Infl’sn) - _/Y)dz (Sn’sn+1) +2/¥Tnf (tn’y) .

Tnt+l

Adding the term 2175#‘12 (sn " l,z,,) to both sides of the last inequality in (3.29), we obtain
n+2

2yér,
d? (Sn+1»J’)+T—'2'+1d2 (sn+1,z,,)
n+
207, 267,
<d? (s, y) + =—Ld? (t,_1,5,) — (1— ">d2 .,
(o) 220 (o) =2 (12200 ) o) (3.30)
26
_1<1_ ot, Tn+l>d2(sn+l’tn)
T+l Tnt2

== )d* (s,28,41) + 227, f (1,,9) (VYEO).

Fix p € Q. We obtain f (1,,p) <0 by means of f (p,1,) >0 and the pseudomonotonicity of f. Letting y = p in (3.30). Then we have

2yor,
d2 (sn+]’P) + T—Hdz (sn+]’tn)
n+2
276 26
<d? (s,0) + X202 (1, 15,) — 1 (1 ] > a2 (s,01,) (3.31)
Th+l T+l

1] 267
—;(<1— T"——”“>d2(,,+1, ) = (L= ) d* (5,541 -

Tnt+l Tnt2
Next we consider two cases of y in (3.31).
Case 1. First, we consider y € (0,1]. Then the term (1 — y)d> (s,,s,4,) >0 for all n > 0. Let ¢; € (0,1 — 35) be a fixed number.
By using Lemma 3.3, we have

. 267,
lim (1— =1-26>1-36>¢; >0

n—oo Th+1
and
5t 26
lim (1— T _ T"“>=1—35>¢1>0.
n—oo

Tnt1 Tn+2

Therefore, there exists a positive constant n; € N such that

267,
(1— >>¢1>O(Vn2n1)

Tntl

and

5t 26
(1— Tn _ T"+I>>¢|>0(Vn2n1).

Th+l Tht2
Now, it follows from (3.31) that

2y6r,
dz (sn+17p) + T—VH-le (sn+lvtn)
n+2
2x6
<d (sn,p)+f—j"d2 (tats5n) = 201 (42 (5p01,) + @ (spg1oty)) (VA2 ).
n+

Setting

26
a, :=d*(s,.p) + 0T 2 (tht1>54)

Tntl
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and

bn = }(¢1 (d2 (snvzn) +d2 (S’l+1’t")) !

Then we obtain that a,,; <a, — b, for all n> n;. Note that b, > 0 for all n > n;. Thus we have a,.; <a,, Vn > n;. Then the limit of

{a,,} exists and hence lim,_, ,, b, =0. That is

lim d” (s,.t,) =0 and Jlim d? (s,41.1,) =0. (3.32)

n—oo

Combining the definition of a,, lim,_, a, exists, and (3.32), we deduce that lim,,_,, d* (s, p) exists for all p € Q. Consequently,
{s,,} is bounded. It follows from the boundedness of {s,} and (3.32) that {¢,} is also bounded. According to the triangle inequality
and (3.32), we have

lim d (s, 5,,1) =0. (3.33)

n—co

Case 2. We consider y € (1,2/(1 + 36)). Note that (1 — y) d? (s,,,s,,H) < 0 for all n > 0. From the triangle inequality, one has

A% (55 5ps1) < (d (501) +d (5,51510))° S2(d2 (5,01,) + 02 (5,51512) ) - (3.34)
Combining (3.31) and (3.34), we have

2yér,
dz (Sn+17p) + T—md2 (Sn+lvtn)
n+2
2 2
<d? (sn,p> + ﬂd2 (tn,l,sn) - (2—){ - ﬁ) d? (s,,,tn)
Tnt+1 Tntl
2x6
- (2_ X~ );51—” - M) d* (Sn+1’tn) .
n+1 )

Let ¢, € (0,2 — y — 3 y6) be a fixed number. Then

. 2x61,
lim (2—y— =2—y—=246>¢,>0
n—eo Tptl
and
T 2y6T
lim (2—;(—)( n —M)=2—1—3;{5>¢2>o.
n—eo Tntl Th2

Therefore, there exists a positive number n, € N such that

261,
2—y— > ¢, >0 (Vn>n,)
n+1
and
o 26
2_1_1 Tn_ 24 T"+l>¢2>0(VnZn2)‘

Tnt1 Tnt2

Consequently, we have

2567,
T2
2y67,

d2 (Sn+1’p)+ d2 (sn+1’tn)

<d*(s,.p) + A (ty_1.5,) = o (d* (s,uty) +d* (5,4101,)) (VR 2 1)),

T+l

Based on the statements in Case 1, we can obtain that lim,,_, d? (sn, p) exists for all pe Q, {s,} and {¢,} are bounded, and (3.32)
and (3.33) hold. This completes the proof. []

Theorem 3.2. Let {s,} be generated by Algorithm 3.2 and satisfy Conditions (A1)—(A4) and (C1)-(C3). Then {s,} converges to a solution
of EP (1.1).

Proof. Inview of Lemma 3.4, we have that lim,_, ., d* (s,,, p) exists for all p € Q and {s,,} is bounded. Next, we show that any cluster
point of {s,} belongs to Q. Let s* € C be a cluster point of {s,}. Since {s,} is bounded, there exists a subsequence {s,,k } of {s,}

such that lim;_, Sp, = s*. By virtue of (3.32), one sees that lim,_, #, = s*. From (3.30), we have

N

199



B. Tan, X. Qin and J.-C. Yao Applied Numerical Mathematics 201 (2024) 187-216

246
25,1 (1) 20 (3351.9) = (39) = 222 (101.5,)
n+l1
e (1-22) sy (1= 22) ) a9
Tn+1 Tn+l

+(L=)d* (5,.5,41) (VYEO).

From the triangle inequality, one obtains

|d2 (Sn-%—l’y) -d? (sn’y)| <d (Sn+1’5n) (d (Sn+1’}’) +d (SmJ’)) VyeO),

which together with (3.33) and the boundedness of { s,,} yields that

lim |4 (s,41.9) = (5,,3)| =0 (Vy € O). (3.36)
Replacing » in (3.35) with n;, and letting kK — +o0, we obtain that the right-hand side of inequality (3.35) tends to 0 by means of
(3.32), (3.33), (3.36), and limy_, ., Ty, =T > 0. Thus we have limsup,_, 2yt f (t,,k,y) >0 for all y € C. From Condition (A4), we
have

f (s*’y) > limsup f (tnk,y) >0 (Vye().

k—o0

It follows that s* € Q. Then lim,_ ., d” (s,,s*) exists. Thus the sequence of positive numbers {d2 (sn,s*)} is convergent and
bounded, and it has a subsequence, namely {d2 (s,,k, s*) }, which converges to 0. Then the whole sequence converges to 0, i.e.,
0=1im,_ o d (s,,s*) implying s* =1lim

n—oo Sp- Therefore we conclude that {s,} converges to a solution of EP (1.1). []

Remark 3.4. As similarly stated in Remark 3.2, it is easy to check that the step size criterion (3.18) used in the suggested Algo-
rithm 3.2 can be replaced by the following (3.37)

[ s
min

A ,énf,,+6n}, if A, >0;

&1, +0,, otherwise,

Tyl = . (3.37)

where A, is defined in (3.18).

To conclude this section, we introduce a modified golden ratio algorithm that requires the computation of the strongly convex
optimization problem on the feasible set only once in each iteration. The proposed method is inspired by the work of Yin et al. [40]
and extends the algorithm of Yin et al. [40] from Hilbert spaces to Hadamard manifolds. Now, the last iterative scheme proposed in
this paper is shown in Algorithm 3.3.

Algorithm 3.3

Initialization: Choose 7_; =7,>0, 6 €(0,1), and p € (1/(2 - 6),1). Let {£,} and {0, } satisfy Condition (C3). Let 7_,,?,,s_; € C be initial points and set n = 0.
Iterative Steps: Given the current iterates s,_;,7,_;,t,, calculate s, and 7, as follows.
Step 1. Compute

S, = €xp, (;(,l expr’”l Sy ) s

. 1 T, 1
1n=m1n{§‘/l+4y1_':] - 51}

Step 2. Compute

where

. 1
tra =argmin{ £ (1,:9) + 50 (5,0) | =pros, g, (5)-

n

If s, =t,=t,,,, then stop the iterative process and s, is a solution of EP (1.1); Otherwise, go to Step 3.
Step 3. Compute the next step size by

&d (1,_1t,) d (t,pst
min —(" ! n) ("H ”),;f,,r,,+6” , if A, >0
Tt = 25,8,

EnTu+ 0, otherwise.

(3.38)

where A, 1= f (t,_ystyer) = (tacisty) = f (tas )
Setn :=n+1 and go to Step 1.
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Remark 3.5. From the definition of #,,; in Algorithm 3.3 and Remark 2.2, we have

7 (£ (t09) =  (totu)) = (ex0; s,ex0]] ) (9y€0).

If 1,1 = 5, =1, for some n € N, then we obtain that f (7,,y) > 0 for all y € C since 7, > 0. That is, #, € Q. Thus the iterations of
Algorithm 3.3 terminate when ¢, ; =5, =1,.

Lemma 3.5. Let step size {7,} be a sequence generated by (3.38) and Conditions (A2) and (C3) hold. Then {z,} is well defined and
lim,,_, , 7, exists.

Proof. By the definition of y,, it follows that y, <1 for all n > 0. This combining the fact that f satisfies the Lipschitz-type condition
(2.4), in the case of A, > 0, one obtains

od (tn—l7tn)d(tn+l’tn) > od (tn—l’tn)d(tn+l’tn>
Q’Xn (f (tn—l’tn+1) - f (tn—]’tn) - f (tn’tn+1 )) - ZXnLd (tn—lvtn) d (tn+1’tn)
o
> —.
2L

The rest of the proof is the same as Lemma 3.1 and is therefore omitted. []

Remark 3.6. From Lemma 3.5, one sees that the limit of y, exists, denoted as y. That is, lim,_ ¥, = y. From 6 € (0,1) and
ue(l/2-5),1), it follows that 0 < y, <1 for all n>0.

Lemma 3.6. Let {s,} and {t,,} be created by Algorithm 3.3. Take p € Q. Then {s,} and {t,} are bounded and lim,,_, ,, d? (sn,p) exists.

Proof. From the definition of ¢, ; in Algorithm 3.3 and Lemma 2.4, one has

0 (f (1) = £ (ttan)) = (exp;nl+l Spexp; y> (VyeC). (3.39)

Letting n=n — 1 in (3.39), one sees that

Tt (f (tms) = £ (i) = {exp 1 s,p.ex0; ' y) (9 €C). (3.40)
Putting y=1,,; € C in (3.40), we have

Tt (7 taetstn) = (1o82)) 2 {307 5001007 1101 (3.41)
By using s, = exp; ( Xn©XP; LSt ), one obtains

expt_nl Sp=2Xn expt_nl Sp—1- (342)
Combining (3.41), (3.42), and 7,, > 0, we deduce that

1 7 _ _
Ty (f (tn—l’tn+l> -f (tn—l’tn)) 2 )(_ <6Xp,nl Sn,eXp,nl tn+l> . (3.43)

'n Tn—1

Let A (s,,,7,41. ) be a geodesic triangle. From (2.2), one sees that
2 <exp;'il s,,,expt_':rl y> >d? (Sprtugr) + d? (tar1:¥) = d? (s5p,¥) (Vy€C). (3.44)
Similarly, let A (s,,,1,.,,1) be a geodesic triangle. Then by (2.2) we obtain
2 <exp,—"‘ S0 exp; an) > d (5,0t,) + 02 (tar1otn) = @2 (S,0tusr ) - (3.45)
From (3.39), (3.43), (3.44), and (3.45), we have
22, (£ (taeotusr) = £ (tacista) = f (tatasr)) + 22 (1)

T,
22L = <expt_] S, €xp; ! tn+1>+2<eXP,_l| sn,expr_il y>
Xn Tn—l n n n n
3.46
> L I (42 (5,0 +d? (ty1.1,) = d (spatusn)) (340
2 n'tn n+l>tn n>fn+l
Xn Tn-1

+d? (sytyyr) +d* (tpg1.y) —d* (s,,y) (¥yeQ).

It follows from the definition of 7, that
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2'L—n (f (tn—l’tn-H) - f (tn—l’tn) _f (tn’tn+1))

1 o7,
<. (t1erota) d (ts1:12) (3.47)
<

1 67, , , 2
<oy (d® (tyoyot,) +d% (1,4101,)) -

Combining (3.46) and (3.47), we arrive at

Applied Numerical Mathematics 201 (2024) 187-216

T, 1 or,

1
d*(t,41.9) + (—— - ——) d*(ty4101,)

n Tn-1 Zln Tnt1
1 61,

24, T

n “n+l

+<i In —1>d2(sn,zn+1)—i I g2s,1).
T

Xn Th-1 n “n—-1

<d* (s, )+

d*(tyyot,) + 27, f (1,09) (3.48)

Now, we estimate the term d> (t,,+1,y> in (3.48). Recall from Algorithm 3.3 that s,,; =exp, | (J(n+1 expt‘n}rl s,,). Then s,,; in the
geodesic joining ,, to s5,. The comparison point of 5,1 is 57 | = (1 = %410, | + Zu415,,, Which together with Remark 3.6 implies

! / / 3 : ! / / 3 3 :
that s | € [th,sn]. Let A(S,41,t,41,5,) be a geodesic triangle and A (an,th,sn) be its comparison triangle. By Lemma 2.1 we
have

!/ /
sy =5

d (tn+l’sn+1) = t:x+1 - S:t+1 H . d (S"’S”‘H) =5 T Suwt

Let A(y,t,,1,5,) be a geodesic triangle and A ( vl ) be its comparison triangle. From Lemma 2.1, one has

n+l’"n
d (te19) = [ =¥ @ (snd) =Ny =3 d (sueti) =[5 =10 | (3.49)
Let « € R and x,y € R. Then
llax + (1 = )yll* = allx|* + (1 = )IylI* = a(l = @)llx = yII*.
It follows from Lemma 2.2(ii) and (3.49) that
2 / ! ’ 2
d (Sn+1’y) < ||(] - In+l)tn+1 +)(n+15n -y H
2
= ”(1 ~ ZnsD) (1 = V') + 2uir (5, = YI)H
=0 =) (1 =)+ 2 (5, =¥ )° (3.50)
2
- }(n+1(1 - ){n+l) t:,+1 - S;
= (1 - /'t/n+1)d2 (tn+1’y) + /%,n+ld2 (Sn’y)
— X1 (= )(n+l)d2 (tn+]’sn) .
That is
Ve 1
d? (t,,+1,y) > — Al g2 (s,,,y) + ———d? (s,H_l,y) + )(n+1d2 (tn+l,sn) . (3.51)
1- Xn+1 1- Xn+1
Combining (3.48) and (3.51), we deduce that
—1 dz(s y)+<if_"_L6i>d2(t [)
1 — Xn+1 " Xn Tn—1 2Zn Tnt+1 i
_1 p L %%
< 1_}(Md (5,.9) + o Tan (tpoiotn) +27,f (t,.) (3.52)
1 Tn 2 1 7‘-n 2
+(— 1=y, )d Sprtpyr) — ———d" (s, 1,) -
(/Yn Tp-1 + ( +]> Xn Tn—-1 ( )

From the definition of y,, we obtain that there exists 1, > 0 such that

Tn

1+4u

An =

% (Vn > ny).

N =

Th—1

That is
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T,
T4y, L2 0 (Wnzny). (3.53)
Xn Tn-1
By using 4 € (1/(2 — 6),1) and Remark 3.6, one sees that
T T,
lim (l—"—LM>=i(1—ﬂ)>o. (3.54)
=00\ Xn Tn-1 Ankl T V4

From (3.53) and (3.54), there exists n; (> ny) such that
T T, T,
LN RS R L R ) (3.55)
Xn Tn—-1 Xn Th—1 Xn+1 Ty

Note that

d? (s,,,t,H_l) < (d (s,,,t,,) +d (tn»tn+1))

2

1Y » 2 (3.56)
<14 =)d* (st,) + A +md? (1 te1) -
n
where # =1 -6 > 0. Combining (3.52), (3.55), and (3.56), we have
a’ (Sn+1aY) + and2 (tn+l’tn) <d? (s,,,y) +ﬁﬂd2 (t"—l’t’l) - ynd2 (S"’t") (3.57)
+2(1= 1) 7S (1y,y) (W 2ny),
where
1 HTpqr n 7y 1 5Tn
a, = (1= y <(1+'1)————————>,
" ( " ) Xn+1 T Xn Tn-1 2){,, Tntl
1 o1,
=(1- s
ﬂn ( ){n+1) 21" Tyil
1 1 HTyr 11 7,
(S B E.
! ( ”+l) n) Xn+1  Tn N Xn Th-1
From the facts that lim,_, 7, =7>0, lim,_, v, =1 €(0,1),5 € (0,1), u€e(1/(2—-6),1), and =1 — §, we obtain
. 1 8
lim @, = (1= )~ ((L+mu=n=5)>0,
n—00 X 2
. )
1 =(1-y)—>0,
lim f, =( ;()2)(
lim )/,,=(1—)()l <<1+l>y—l> >0,
n—oo X }’I }’I
and
1 ) 8
(=~ (A+nu=n=-3)-1-p5=>0.
X 2 2y
According to the denseness of rational numbers, there exists p > 0 such that
1 ) 3
== ((1+n)ﬂ—n— —) >p>0 =5
x 2 2y
That is, there exists n, (> n; ) such that
a,>p>p,>0 and y,>0 (Vn>n,). (3.58)
By means of (3.57) and (3.58), we infer that
d2 (sn+1’y) + ,Od2 (tn+1’tn) < d2 (Sn’y> + pdz (tn—l’tn) - yndz <Sn’tn) (3 59)

+2(1= 1) 7S (1,,¥) (V¥ EC)Vn2ny).

In view of p € Q and 1, € C, one sees that f (p,t,) > 0. This together with the pseudomonotonicity of f yields that f (1,,p) <0.
Letting y = p € C in (3.59) and setting

a,=d? (s,,,p)+pd2 (tp_1.t,) and b, =7,d* (spot0)

we deduce that a,, | <a, — b, for all n> n,. This implies that {an} is bounded and the limit of {an} exists. Thus lim,_, b, =0. By
the definition of b, and lim,_, , 7, > 0, one has

lim d(s,.1,) = 0. (3.60)
n—oo
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From (3.42), we have d(s,,t,) = x,d(s,_;,t,). This together with (3.60) yields that

lim d t =0.

nl)r{.lo (Sn’ n+1)
Since

d (Sn’sn+1) Sd (Sn’ n+]) +d (¢ ( n+]’Sn+1) ’

and

d (tn—l’tn) Sd (tn—l’sn—l) +d (sn—l’tn) ’
we see that
lim d (s, 8,41) = Jlim d( aetstn) =0. (3.61)

From the existence of lim,_,  a, and (3.61), we obtain
. T 2
i an = i & (5.2

This implies that the sequence {d? (s,,, p)} is bounded for all p € Q and thus {s,,} is bounded. So {t”} is bounded by means of
(3.60).

Theorem 3.3. Let {s,} be formed by Algorithm 3.3 and satisfy Conditions (A1)-(A4) and (C1)-(C3). Then {s,} converges to a solution of
EP (1.1).

Proof. It follows from Lemma 3.6 that {s,} is bounded. Hence there exists a subsequence {s,, " } of {s,,} that converges to some

5* € M. Consequently, lim,_,, 7, =s* and s* € C by means of (3.60) and the definition of 7, ;. Now we prove that s* € Q. Indeed,
it follows from relation (3.59) that

2(1 _}(n+l) nf( n’y) (sn+1’y) _d2 (Sn’y) +pd2 (tn+l’tn)

(3.62)
= pd® (t,_1.ty) +7,d” (5,01,) (VY€ C)(Vn 2 ny).
From the triangle inequality, one obtains
|d2 (sn+17y> - d? (s,,,y)| <d (sn+1’sn) (d (Sn+1’Y) +d (san>) (Vye ),
which together with (3.61) and the boundedness of {sn} yields that
hrn |d ,H_l,y) d? (s,,,y)|=0 VyeO). (3.63)

Replacing » in (3.62) with n; and letting kK — +oc0, we obtain that the right-hand side of inequality (3.62) tends to 0 by means of
(3.60), (3.61), (3.63), and lim,_, , Ty =T> 0. Thus we have

timsup2 (1= 2,01) 7, f (107) =20 = 2027 (1,.7) 20 (W€ ).

k—o0

From Condition (A4), we have

f(s y) >11km§upf< ,,k,y)>0 VyeO).

It follows that s* € Q. The remainder of the proof is identical to Theorem 4.2. []

Remark 3.7. It is simple to verify that the step size (3.38) used in the proposed Algorithm 3.3 may be substituted by the following
(3.64), as stated identically in Remark 3.2.

. 5(d2 ([n—l’tn)+d2 <I"+1’t”))
min
nt+l =

P ,f,,'rn+0'n}, ifA,>0;
n

&1+ 0y, otherwise,

(3.64)

n

where A, is defined in (3.38).
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4. Error bounds and linear convergence for strongly pseudomonotone EPs
4.1. Solution existence for strongly pseudomonotone EPs

In this subsection, we show that the EP (1.1) has a unique solution when the bifunction involved satisfies strong pseudomono-
tonicity and other conditions. Recall that Colao et al. [21] first introduced the equilibrium problem on Hadamard manifolds and
proved the existence of its solution (see Lemma 4.1 below). Recently, Al-Homidan et al. [50] also studied the existence of EP under
weaker conditions than [21, Theorem 3.2].

Lemma 4.1. ([21, Theorem 3.2][50, Theorem 3.4]) Let C be a nonempty, closed, and convex subset of a Hadamard manifold M and
f 1 C X C — R be a bifunction such that f(-,y) is upper semicontinuous for each y € C and f(x,-) is lower semicontinuous and convex for
each x € C. Suppose that the following coercivity condition holds

3 compactset W : (Vxe C\W, IyeCnW : f(x,y) <0).

Then, the equilibrium problem EP (1.1) has a solution.
We can easily obtain the following consequence by using Proposition 1 obtained from Muu and Quy [51].

Theorem 4.1. Assume that Conditions (A3), (A4), and (C1) hold. Let f : C X C - R be a f-strongly pseudomonotone on C. Then
equilibrium problem (1.1) has a unique solution.

Proof. Let us start by assuming that C is unbounded. According to Lemma 4.1, it suffices to demonstrate the following coercivity
condition:

J closed ball B : (Vxe C\B, 3yeCnB: f(x,y)<0). 4.1)

In fact, if not, for every closed ball B, around O with radius r, there is s € C\B, such that f(s",y) >0 for all y € C n B,. Take
ro > 0, then for every r > r, there exists s” € C\ B, such that f (s’, yO) >0with y’eCn B, . By using the fact that f is f-strongly
pseudomonotone, one has

£ OO s +pd? (s7,)°) <0 (V> 7). (4.2)

Because of C is convex and f (°,-) is convex on C, it follows from Lemma 2.3 that there exists s° € C such that 0, f (3°,s°) # 6,
where 9, f (3,5°) stands for the subdifferential of the convex function f (3°,-) at s. Take w* € 9, f (°,s°) € T,o.M. Using the
definition of subgradient, we have

<w*,exp;01x> +f (yo,so) <f (yo,x) Vx e M).
Putting x = 5" in the above inequality, one has
f (yo,s’) + pd? (s’,yo) >f (yo,so) + <w*,exp5_01 sr> + pd? (s’,yo)
2 f (") = wld (s",5%) + pd? (5", ") .

Letting r — +o0, since ||s"|| = +o0, we have that f ( 30, s" ) + pd? (sr s yo) — +oo which contradicts (4.2). As a result, the coercivity
criterion (4.1) must be satisfied. Then the equilibrium problem (1.1) has a solution due to Lemma 4.1.

The assertion follows from Ky Fan’s theorem [52] when C is bounded.

Now assume that EP (1.1) has two solutions s* and y*. Then

f(s%y") 20 (4.3)

and

£y s*) =0. (4.4

By using the strong pseudomonotonicity of f and (4.4), one sees that

[ (s*,y*) <—pd* (s, y"). (4.5)
From (4.3) and (4.5), we have

pa* (s*,y*) <—f (s*.»*) <0,

which leads to s* = y*. That is, the equilibrium problem (1.1) has a unique solution. []
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4.2. Global error bound for strongly pseudomonotone EPs

Theorem 4.2. Assume that Conditions (A2)-(A4), (C1), and (C3) hold. Let f : C X C — R be a f-strongly pseudomonotone bifunction
and s* be the unique solution of EP (1.1). Let {s,} be generated by Algorithm 3.1. Then we have

- 1+ 2

& * Tntl

1+fid(t"’sn)sd(5n,s )S 1+ 7,0 d(tmsn)'
n+1

Proof. From Lemma 2.4 and the definition of Algorithm 3.1, one obtains

<exp;n1 Sprexp;! z> <1, (fGsp2) = (sm1,)) (VzEC). (4.6)
From s,,; — s* and s, satisfies the step size criterion (3.1), one obtains

6

n+l

F(sp,8") = f(s,t,) < f(2,,8") + d(s,,t,)d(t,,s*). (4.7)

In view of s* € Q and ¢, € C, one obtains f (s*, 1,,) > 0, which together with the strong pseudomonotonicity of f yields that
[ (ty,5%) < =Bd*(t,.5%). (4.8)
Combining (4.6), (4.7), and (4.8), we have

[

n+l

<expt_1 sn,exp;' s*> <7, <f (1,,5%) + d(s,,,t,,)d(t,,,s*))

(4.9
0

n+l

<1, <—ﬁd2(t,,,S*)+ d(S,,,t,,)d(tn,s*)> )
Thus

5
0, fd2(1,,s*) < 1

d(s,,t,)d(t,,s*) + <—expt_1 s,,,exp,‘1 s*>
Tntl " "

< ot,

d(s,, 1,)d(t,,s*) +d (s,.1,) d (t,,5%) .
n+l

That is

ot,

7,fd(t,,5*) < <1 + >d(s,,,t,,).

Tntl

Then we have
1+ T‘i
d(s,,8%) <d(sp,t,) +d(t,,s*) <1+ —ﬂ“ d(sp. 1)
T,

n

The upper error bound is established.
Let A (s,,, th, s*) be a geodesic triangle. Using (2.3), we have

<expt_1 sn,expt_l s*) > d? (tps5,) — <exp;1 tn,expx_l s*>
>d? (tprsp) = d (tpr50) d (5,5%).
Combining (4.9) and (4.10), we have

(4.10)

ot,

d* (t,.5,) —d (ty5,)d (5,,5%) < —d(s,.1,)d(t,, )

Tnt1

o7,
S n

d(s,.1,) (At s,) +d (s5,,5%)).

n+1
That is

d(ty,s,) —d (s,.5%) < &%
Tn+1

(dtys)+d (s,.5%)),
which implies that
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_ Sw

n

d(s,,s*) > il g (tyr8,) -

- 0T,

Tn+l

This completes the proof. []

4.3. Linear convergence for the proposed algorithms

In this subsection we establish the R-linear convergence rates of the proposed Algorithms 3.1-3.3 when the involved bifunction
f is strongly pseudomonotone. We start by reviewing the definition of R-linear convergence.

Definition 4.1. A sequence {s,,} in Hadamard manifold M is said to be converge R-linearly to s* with rate # € [0, 1) if there exists
a constant ¢ > 0 such that d(s,, s*) <cy",Vn eN.

Now we prove the R-linear convergence of the proposed Algorithm 3.1.

Theorem 4.3. Suppose that Conditions (A1), (A2)-(A4), (C1), and (C3) hold. Then the sequence {s,,} generated by Algorithm 3.1
converges R-linearly to the unique solution s* of EP (1.1).

(A1)’ f:CxC - Risa p-strongly pseudomonotone bifunction and f(x,x)=0 for all x € C.

Proof. Under the above assumptions, the EP (1.1) has a unique solution (see Theorem 4.1), denoted by s*. Since s* € Q and 7, € C,
one obtains f (s*,1,) > 0, which together with the -strong pseudomonotonicity of f implies that f (t,,s*) < —pd*(t,, s*). Letting
y=s*in (3.10), one has

o > (% (5o1,) + % (S1-10))

Tntl

d? (S,H_l,s*) <d? (s,,,s*) 4 <1 -
¢! —;()d2 (s,,,s,,+1) +2y7,f (Zn,s*>
5
<d?(sp.5%) — 1 (1 _ o ) (6 (spaty) + @2 (5p01.1))
Tnt+1
—(L=)d* (8. Spp1) = 2Bx7,d%(t,, 5%).

We complete the proof by considering two cases of y.
Case 1. When y € (0,1]. Let a € (0, %) be a fixed number. Since § € (0, 1), one obtains

(4.11)

. 0T,
lim <1— >:1—6>2a>0.

n—oo Tn+l
Therefore, there exists ny € N such that

ot,

1-

>2a>0 (Vr>ngp). (4.12)
Tntl

By (4.11) and (4.12), we have for all n > n,
d? (Spp18%) < d? (sp,5%) = 2yad? (Spoty) — 2B y7,d>(t,, s%)
<d? (s,,5%) — min{ ya, B 7,} (Za’2 (sp.1,) + 24? (tp,5%))
<d*(s,,s*) —min{ ya, fx7,}d* (s,,5%)
=r2d? (sn,s*) s
where r = \/Wa,ﬂ;ﬂn} € (0,1). Thus we have
0 ($0a1057) 7 (5,05°) (2 ), (419
By induction of (4.13) we obtain
d(s,41.5%) <rrotlg (sno,s*> (Vn > ny).
That is
d (Sp41,5") NI (Vn > np),

where N =rl="0d ( Sy s*). This implies that {s,} is R-linearly convergent when y € (0, 1).
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Case 2. When y € (1,2/(1 + 6)). From (3.12) and (4.11), we have

6
@ (sy1105") <d? (5,.5°) — <2—1— *_’) (42 (spa1y) + 2 (5p01.1))

Tn+l
—2fy7,d*(t,.5).

Leta € (0, 27"—;”) be a fixed number. Then

5
lim (2—1—M>=2—;{—15>2a>0.

n—oo Tn+l
Therefore, there exists n; € N such that

ot,

2- 7= X 0050 (Ynzny).
Tnt1
Using a proof similar to that of Case 1, we can obtain that {s,} is R-linearly convergent when y € [1,2/(1 + §)). Thus we prove that

the sequence generated {s,} by Algorithm 3.1 is R-linearly convergent when y € (0,2/(1 +6)). [

Theorem 4.4. Let Conditions (A1), (A2)-(A4), (C1), and (C3) hold. Then the sequence {sn} created by Algorithm 3.2 converges R-
linearly to the unique solution s* of EP (1.1).

Proof. Using (3.29) with y = s* and noting that f (1,,s*) < —pd? (tp,5*), one has

d? (s,,H,s*)

267 67,
5 *\ _ n 2 _ __n 2
< d (Sn,S ) ¥ <1 Tn+l ) d (Sn,t") X <1 Tn+1 > ¢ (S"+1’tn) (414)
246
# R (1,108,) = (= 0@ (sy5,01) = 2025, (1,,5")

n+l

We also consider two possible cases of y.
Case 1. When y € (0, 1]. Note that (1 — y)d? (s, 5,4, ) >0 for all n > 0. Let 4 and p be two real numbers such that

1-26 1/1
S 0,—) d 1< <—(——1>.
K ( 2 an r=3\5

Adding the term %dz (s,,+1, t,,) to both sides of (4.14), we obtain
n+2

. 2y6prt,
d? (s,,H,s ) + T—"Hd2 (s,,H,tn)
n+2
<d*(s,.s*) + 2200 (thetsn) = X (1 - 25—’) d* (s,.1,) (4.15)
Tn+l T+l

- (1 _ 5Tn _ 2‘sln—n+l

Tnt1 Thy2

> d? (spp1oty) = 2Bx7,d* (t,.5%).

From 6 € (0, %), we have

. 267,
lim { 1- =1-26>2u>0

n—eo Th+l1
and
5r 26
lim (1— i —ﬂ>=1—(1+2p)5>0.
n—oco T

n+l Tnt2

It follows that there exists n; € N satisfying

267,

1-

>2u>0, (Vn>n;)
Tn+l

and

6t, 20p7,4

>0, (Yn>ny).
T+l Th2

Thus we have from (4.15) that
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2x6
d2 (er-]’S*) + Mdz (sn+1’tn)
T,
0s 2 (4.16)
T,
<d® (sp,5%) + #dz (tpe1s8n) — 2uyd? (Spoty) — 2B y7,d> (t,,5%).
n+1
Note that
2uyd? (sn,tn) +2pyt,d? (tp,5™) >min{py, rt,) (Zd2 (sn,l,,) +2d° (t”,s*)) ) )
4.17
>min{uy,fyz,}d> (sn,s*) .
From (4.16) and (4.17), one obtains
2 y6pr, 26
2 (5p01,5%) + %aﬂ (Sueitn) SEd* (5,05%) + 22002 (1,_1,5,) » (4.18)
n+2 Th+l
where { =1 —-min{uy,fy7,} €(0,1). Set
. 2yépt
a,= a? (sn,s ), b,= T—"d2 (tn_l,sn) .
n+1
Thus the inequality (4.18) becomes
b
Api1 + by SCa,,+7" <r(a,+b,) (Yn=n)), (4.19)

where r = max {C, % } € (0, 1). By induction of (4.19), we have
tor + by <P (anl +b,, ) Vn>n),
which can be reduced to
d (s,H_l,s*) <Ccy" (Ynzny),
where C = 4 [rl-m (a,,  t bn] ) and 5 = \/; This means that {s,} is R-linearly convergent when y € (0, 1].
Case 2. When y € (1,2/(1 + 38)). From (3.34) and (4.14), we have

. 2x6p7,
d2 (sn+]’5*) + u
Tht2

2x6
1).{ T,,dz <tn_1’sn) _ (2_){_
n+1

( x6t, 2x6pT,.
—(2-4- Sl o}

T+l Tht2

d2 (sn+1 7tn)

2x61,

<d? (sn,s*) +

)& (st

) d? (Spe1tn) — 26 y7,d* (tpr5%).

Tnt1

Let # and p be two real numbers such that

2—y—=2y6 2—y—y6
ME(O,A> and 1<p< 2 X458

2 2x6
Note that
. 2x61,
lim (2—y— =2—-y—=2x6>2u>0
n—eo Tn+1
and

. x6t, 2x6pT,44
lim(2—y—-~—~- ——

n—oo

) =2—y—y6—-2y6p>0.
T+l )

Thus, there exists n, > 1 such that
26t
2—1—L>2/t>0, Vn > n,,
Tn+l

and

x0t, 3 2x6pT,,

Tnt1 Tnt2

2—y— >0 (Vn>n,).
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Therefore we have

N 2xopT,
d2 (S,H,I,S') + T7Wd2 (sn+1’tn)
n+2
2
<d® (sp057) + @dz (tn1v50) = 20 (s3a1,) = 280> (1.5")
n+1

<¢d? (sp.5%) + %dz (the1s8n) (Vn2ny),
Tn+1

where { =1 —min{u, fyz,} €(0,1). The rest of the proof is similar to Case 1 and is therefore omitted. To this end, we proved that

{s,} converges R-linearly to s* when y € (0,2/(1 + 36)). This completes the proof. []

Theorem 4.5. Assume that Conditions (A1), (A2)-(A4), (C1), and (C3) hold. Then the sequence {s n} formed by Algorithm 3.3 converges

R-linearly to the unique solution s* of EP (1.1).

Proof. Combining s* € Q, 1, € C, and the strong pseudomonotonicity of f, we have f (t,,5*) < —pd*(t,,s*). Letting y = s* € C in

(3.57), one has
d? (5p1,5%) + 0,d* (typ1ot,) < d? (5,5%) + B,d* (tu_1.t,) = 14d? (5,01,)
=2(1= ppy1) 7,Bd*(t,.5%) (Yn2ny)).

From 6 € (0,1), u € (1/(2=6),1), lim,_, . 7, = 7 > 0, we have

n—oo0 "n
. 1 1 (V3-1+5-1
)Lf{;ln=zv”4”‘ze( 7 2 >

Then
. 1 1 1
y=limy,=0-x— <<1+ —)/4— —) €(0,V3).
n—oo x ]1 }1
Then there exists a constant n,(> ny) such that

Yp 2y (Yn>n3).
Note that
ydz (Snatn) +2 (1 - ln+l) Tnﬁdz (th*)
>min{y/2, (1= 1) 7,8} (2d% (s,.1,) +2d% (1,,5%))
>min{y/2, (1= t,41) 7,8}d* (5,.5%) .
From (4.20) and (4.21), one obtains
d? (5,415%) + a,d? (tpgt,) SCd? (5,05%) + Bud? (t,_1ut,)
where ¢ =1 —min{y /2, (1= z,4,) 7,8} € (0, 1). From (3.58), there exists a constant n3(> n,) such that
a,>p;>py> P, >0 (Vn>n3).
Combining (4.22) and (4.23), we have
d? (Spe158%) + p1d? (typrsty) SEA* (5,08%) + pod? (t,_y.1y) -
Set
a,=d> (s,,8%), b,= p1d? (tho1ty) -
It follows from (4.24) that

et + bppy <Cay+ b, <r(a,+b,) (Vn>ny),
P1
where r = max {4‘ , Z—z } € (0, 1). Therefore by induction, we have
1

Gyoy +byyy <P (an3 + b,,3) (V> ny),

which can be reduced to
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d (s,H_l,s*) <Cy" (Y= ny),

where C =4 /rl= (an3 + b,,3> and n = \/; We get the required result. []

5. Numerical experiments

In this section, we provide a fundamental numerical example to illustrate the computational performance of the algorithms
proposed in this paper. All codes were written in MATLAB 2018a and run on a PC with an Intel(R) Core(TM) i5-8250U CPU @ 1.60
GHz 1.80 GHz and 8.00 GB of running memory.

The following example is regarded by many literature on Hadamard manifolds; see, e.g., [23,30,53].

Example 5.1. Let R, , = {x € R| x> 0} and the Riemannian metric (-,-) be given by
(u,v) 1= Xl—zuv Vu,v € T, M)(Vx € M).

Then M = (R,,,(-,-)) becomes a Riemannian manifold. The Riemannian distance d : M X M — R, with respect to x € M and
y € M is defined as

d(x,y)=In(x/y)| (Vx,y € M),

see [53, Example 1] for more details. Thus M is a Hadamard manifold. For each x € M, the tangent space 7, M at x equals to R.
The unique geodesic y : R - R, with initial conditions y(0) = x and y’(0) = v is given by

y(@) = xe®/" (vt € R).

Thus exp, tv = xe® ) forall xe M, t€R, and v € T, M. In addition, for any x € M and y € M, one can show that

1 -1 -1
exp. "y SXby ¥ expy ¥
Yy =exp, (d(x, ¥) = > = xe xd(xy) dx.y) =xe x .

d(x,y)

Then the inverse of exponential map is denoted by
exp;l y=xIn Y Vx,y e M).
X

The Nash-Cournot oligopolistic equilibrium model (see [1, Sect. 1.4.3, p. 26]) which assumes that the price and tax-fee functions
are affine, and provides the basis for the bifunction f of the equilibrium problem. The following is a description of the test problem:
consider that a commodity is produced by m different businesses. Let x represent the vector, in which the value of the element x;
describes the quantity of the commodity created by business j. We use the following notations for the price, profit, and strategy
involved in the problem.

+ The price pj(s) is a decreasing affine function of s with s = 2;’;1 x;, L.e., pj(s) =a;—fs, where a; > 0, B> 0.
» Use f;(x)=p;(s)x; —¢; (x;) to calculate the profit produced by business j, where c; (x;) is the tax and fee for producing x;.

n

c LetC; = x;.“i",x;.“ax represent the strategy set of business j, where x;‘i and x;."a" denote the lower and upper bounds on the

commodity that can be produced by business j, respectively. Then the strategy set of the equilibrium model is C :=C; X C, ... X
C

me

Under the assumption that the production of the other businesses is a parametric input, each company aims to maximize its profit
by selecting the appropriate production level. A typical method for solving this problem is based on the well-known Nash equilibrium
idea. Recall that if x* satisfies the model

fi (x*) > 7 (x* [x;])  (¥x; €Cpvi=1.2,....m),

where x* [x j] denotes the vector obtained from x* by replacing x; with x;, then x* is said to be an equilibrium point of the model.

Choose f(x,y) := ¢(x,y) — ¢(x,x) with p(x,y) :=— Z;."zl f; (x[v])- The problem of locating the Nash equilibrium point of the
model can be stated as follows:

find x* €C, suchthat f (x*,x) >0 (Vx€C).

Now assume that for each business j, the tax-fee function c; (x j) is increasing and affine. According to this assumption, the tax

and fee for generating a unit both increase as the number of production increases. The bifunction f in such case can be written as
follows:

[, y)=(Px+Qy+r,y—x),
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Table 1

Some parameter settings of the Nash-Cournot oligopolistic equilibrium model.
Company j  Price p;(s) Tax-fee c; (x;) Strategy set C;
1 pi(s)=100—-0.01s ¢ (%) =20x, C; = [1000,2000]
2 po(s)=110-0.02s ¢, (x,) =15x,+100  C, =[500,2500]
3 p3(5)=100—-0.015s ¢35 (x3)=17x; C, =[800, 1500]
4 Pa(s)=115-0.05s ey (x4) =20x,+75 C, =[500,3000]

10° 10°
——x=0.5 ——x=0.5

100F

102 ¢
=
w

104k

10°F

10°® : 108 :

0 5 10 15 20 0 5 10 15 20
Number of iterations Number of iterations
(@) (b)

Fig. 1. Numberical behavior of our algorithms with different y in Example 5.1. (a) Our Algorithm 3.1 and (b) Our Algorithm 3.2.

where P € R™" and Q € R™" are two symmetric matrices, and r € R" is a vector. If Q is positive semidefinite and Q — P is negative
semidefinite, then f has the following characteristics (see [36, p. 769]):

+ f is monotone (hence pseudomonotone), f(x,-) is differentiable and convex on C, and f(:,y) is continuous on C;
« f satisfies the Lipschitz-type condition (2.4) with constant L = || P — Q]].

Therefore, the Assumptions (A1)-(A4) all hold. That is, the proposed Algorithms 3.1-3.3 can be used to solve the mentioned problem.
Next, we set the following parameters for the price, tax-fee, and strategy involved in the problem (see [23, Sect. 4]) (Table 1).

Now we use the proposed Algorithms 3.1-3.3 to solve Example 5.1 and compare them with the methods presented in [23,24].
Choose the following parameters for these algorithms.

(1) Select 6=0.1, 7, =0.01, £,=0,and 0, =1/(n+ 1000)? for the proposed Algorithms 3.1 and 3.2. Take T_; =1,=001,6=0.1,
u =06, &,=0,and o, = 1/(n+ 1000)? for the suggested Algorithm 3.3.

(2) For the Algorithm 1 and Algorithm 2 suggested by Khammahawong et al. [23] (shortly KKCYWJ Alg. 1 and KKCYWJ Alg. 2),
we set 7, = —.

(3) For the Algorithm 4.1 and Algorithm 4.3 proposed by Ansari and Islam [24] (shortly AI Alg. 4.1 and AI Alg. 4.3), we choose

7,=0.01 and 6 =0.1.

Since we do not know the exact solution of Example 5.1, we use ¢, =d (s,.1,), £, = max{d (s,.1,).d (s,41.1,)}, and ¢, =
max{d (s,,,t”) ,d (I,, +1,t,,)} to measure the iteration error of the proposed Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3 at
the n-th step, respectively. For KKCYWJ Alg. 2 and AI Alg. 4.1, we use ¢, =d (sn,t,,). For KKCYWJ Alg. 1 and AI Alg. 4.3, we
select €, = max{d (s,,, tn) ,d (s,, +1-1,)}. According to Remarks 3.1, 3.3, and 3.5, s, can be seen as an approximate solution of the
problem when ¢, — 0. For convenience, we adopt the maximum number of iterations 50 as the common stopping condition of all
algorithms. The initial values of all algorithms are randomly generated by MATLAB function round (500+rand (1,4) ) +500, and
the optimization problems of all algorithms are solved by the function fmincon in the MATLAB optimization toolbox. First, we
demonstrate in Fig. 1 the numerical results of the proposed Algorithms 3.1 and 3.2 with different parameters y for a maximum
number of iterations of 20. Next we set y = 1.2 for the proposed Algorithms 3.1 and 3.2. Table 2 presents the termination iteration
errors and execution times in seconds for all algorithms under four different initial values (Case I: s, = [570,948,503,812]; Case
II: sy =[620,932,511,808]; Case III: s, = [558,786,641,956]; Case IV: s, = [875,859,959,816]). Figure 2 shows the convergence
behavior of the iteration error ¢, of the proposed Algorithms 3.1-3.3 and the compared methods with respect to the number of
iterations. As an example, the convergence behavior of each component of our algorithms under Case IV is depicted in Fig. 3. Finally,
we display in Fig. 4 the trends of step size changes for all algorithms under Case I and Case IV.
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Fig. 2. Convergence behavior of our algorithms with the number of iterations in Example 5.1. (a) Case I, (b) Case II, (c) Case III and (d) Case IV.
Algorithm 3.1 Algorithm 3.2 Algorithm 3.3
2000 2000 2000
*—Sp[1] —O Sn[3 *—38p[1] O Sy *—Sp[1] —O Snf3]
5 Sp[2) Snl4] 5 Sp[2) Snl4] 5 8n[2) Sn4]
1500 1500 ¢ 1500

1000 & 1000 1000

500 L 5 500 & ; 500 - g
0 20 40 60 0 20 40 60 0 20 40 60

Number of iterations Number of iterations Number of iterations

Fig. 3. Convergence behavior of each component of our algorithms in Case IV.

The convergence behavior of Figs. 1 and 2 show that the algorithms suggested in this paper can be used to solve equilibrium
problems on Hadamard manifolds since €, — 0. Furthermore, from Fig. 3, it can be observed that each component of the iterative
values of our algorithms converges, indicating that the equilibrium solution for this problem is s* = [2000,500, 1267,500]. On the
other hand, it can be seen from Fig. 1 that our Algorithms 3.1 and 3.2 have a better performance when the parameter y is properly
chosen. The results from Table 2 and Fig. 2 indicate that our algorithm converges faster than some known algorithms in the literature
[23,24]. The advantage of our algorithms is that they use different adaptive non-monotonic step sizes in each iteration. Table 2 shows
that our Algorithm 3.3 takes the least time, while our Algorithms 3.1 and 3.2 and the compared methods speed more time. This is
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Table 2
Numerical results of all algorithms under four different initial values.

Case I Case II Case III Case IV
Algorithms £, Time (s) £, Time (s) £, Time (s) £, Time (s)
KKCYWJ Alg. 1 1.80E-08 3.32 5.41E-08 2.48 2.53E-08 3.41 1.06E-08 3.12
KKCYWJ Alg. 2 1.12E-08 2.43 3.59E-08 1.85 2.22E-09 2.30 2.28E-08 2.51
Al Alg. 4.1 2.88E-07 2.67 2.49E-07 2.41 9.25E-07 3.51 5.05E-07 2.71
Al Alg. 4.2 2.72E-07 2.36 2.85E-07 2.18 3.11E-07 2.26 5.06E-07 2.20
Our Algorithm 3.1 9.97E-09 2.36 1.22E-08 1.90 8.50E-09 2.33 4.79E-09 2.14
Our Algorithm 3.2 6.11E-08 2.43 2.93E-07 1.83 2.68E-08 2.04 5.32E-08 2.33
Our Algorithm 3.3 2.82E-09 1.65 1.05E-08 1.52 6.36E-09 1.67 1.63E-07 1.44
10° : : : : 10° : : : :
102 £ [—KKCYWI Alg. 1 —=—Our Alg. 3.1 T 5 T — -
KKCYWJ Alg. 2——Our Alg. 3.2 107 F7 3
--—-Al Alg. 4.1 Our Alg. 3.3
104 -------- AT Alg. 43 ]
a—p—t—0—8—8—B8"g-ri—1 N
& . A= v | Vj_a_\ﬁ & 10,4 [ ]
100 ¢ \\ e =S\ W Pt
s -
6L ]
108k ] 107 . KKCYWJ Alg. 1 —=—Our Alg. 3.1
KKCYWIJ Alg. 2 ——0Our Alg. 3.2
--—-Al Alg. 4.1 Our Alg. 3.3
e AT Alg. 4.3
10710 . . . . 1078 ; n . .
0 10 20 30 40 50 0 10 20 30 40 50
Number of iterations Number of iterations
(a) (b)

Fig. 4. The trend of step size changes for all algorithms under two cases. (a) Case I and (b) Case IV.

related to the number of optimization problems that need to be computed in the algorithms and also to the number of values of
the bifunction f that need to be evaluated. As the theoretical analysis in Section 3 demonstrates, the presented Algorithm 3.3 takes
the shortest time as it needs to compute the optimization problem and the value of the bifunction f only once in each iteration.
In addition, it is evident from Fig. 2 that the proposed Algorithms 3.1-3.3 converge quickly in the first 20 iterations, and there is
some oscillatory characteristic in the subsequent iterations. The primary cause of oscillation is attributed to changes in the step size,
as the step size is very small in this example (cf. Fig. 4), and even minor variations can induce oscillations in the iteration process.
Reducing this type of oscillation is a potential research direction for future consideration. Figure 4 also demonstrates the fact that the
step size sequences generated by our algorithms are non-monotonic. Notice that the step size sequences of the algorithms suggested
by Khammahawong et al. [23] are non-summable and the step size sequences of the methods proposed by Ansari and Islam [24] are
non-increasing (see Fig. 4).

6. Conclusions

In this paper, we propose three adaptive numerical algorithms to discover solutions of equilibrium problems in Hadamard man-
ifolds. The presented algorithms are inspired by the extragradient method and the golden ratio algorithm. Our approaches employ
a step size criterion that can be dynamically adjusted, enabling them to work adaptively. In the case where the bifunction is pseu-
domonotone and Lipschitz continuous, we proved that the sequences generated by the presented algorithms converge to the solution
of the equilibrium problem when the solution exists. Furthermore, we established the global error bounds for our first algorithm and
R-linear convergence of the suggested algorithms in the case of the bifunctions governed by strongly pseudomonotone. Finally, a
basic computational test demonstrates the efficiency of our algorithms. The results obtained in this paper extended and improved
some existing algorithms in the literature for solving equilibrium problems in Hadamard manifolds. It is also interesting to explore
the practical applications of the algorithms offered in this paper on Hadamard manifolds.
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