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In this paper, we introduce three adaptive extragradient-based algorithms for solving equilibrium 
problems in Hadamard manifolds. The proposed algorithms can work adaptively without 
requiring the prior information about the Lipschitz constants of the bifunctions involved. 
Moreover, the iterative sequences generated by the suggested algorithms converge to the solutions 
of the equilibrium problems when the bifunctions are pseudomonotone and Lipschitz continuous. 
We also establish the global error bounds and 𝑅-linear convergence rates of the proposed 
algorithms in the case that the bifunctions involved are strongly pseudomonotone. Finally, a 
fundamental numerical example is given to illustrate the theoretical findings.

1. Introduction

The goal of this paper is to introduce several adaptive extragradient type algorithms for solving an equilibrium problem in the 
setting of Hadamard manifolds. The equilibrium problem, which is known as a unified framework for solving many problems, has 
been applied to various fields, such as operations research, economics, transportation regulation, optimal control problems and so 
on; see, e.g., [1–3]. In the last few decades, variational inequality problems and their algorithms in finite- and infinite-dimensional 
spaces were investigated extensively (see [4–9] and the extensive references therein). However, numerous problems in applied 
sciences are considered in nonlinear rather than linear spaces, for example, image processing and medical imaging problems on 
Riemannian manifolds (see, e.g., [10–13]). In addition, the extension of numerical optimization algorithms from Euclidean spaces to 
Riemannian manifolds also has significant advantages (see [13, Section 1] for more details). For example, it is possible to convert 
a non-convex (resp., non-monotone) optimization problem to a convex (resp., monotone) optimization problem by introducing a 
suitable Riemannian metric on a Riemannian manifold; see [14, Section 4] for examples and more information. Therefore, it is 
necessary to construct equilibrium problems and their algorithms in the context of manifolds.

A complete simply connected Riemannian manifold with nonpositive sectional curvature is called a Hadamard manifold, which 
has some remarkable properties (see Section 2 for more details) and therefore attracted the interest of scholars. Some examples 
on Hadamard manifolds associated with optimization problems can be found in [15, Section 1]. In recent decades, many authors 
paid considerable interest and studied the optimization problems and solution methods on Hadamard manifolds. They constructed 
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a number of algorithms for solving variational inequalities [16–20], equilibrium problems [21–27], inclusion problems [28–30], 
fixed point problems [31–34], and others. Our focus in this paper is on numerical optimization algorithms for solving equilibrium 
problems on Hadamard manifolds. Throughout this paper, we consider the equilibrium problem (shortly, EP) in Hadamard manifolds 
introduced by Colao et al. [21]. Let us state the mathematical form of the problem. Assume that  denotes a Hadamard manifold 
and 𝐶 is a nonempty, closed, and convex subset of . Let 𝑓 ∶ 𝐶 × 𝐶 → ℝ be a real-valued bifunction such that 𝑓 (𝑥, 𝑥) = 0 for all 
𝑥 ∈ 𝐶 . The EP associated with the bifunction 𝑓 and the feasible set 𝐶 is stated as follows

find 𝑠∗ ∈ 𝐶 such that 𝑓 (𝑠∗, 𝑦) ≥ 0 (∀𝑦 ∈ 𝐶). (1.1)

In the whole paper, we always suppose that the solution set of EP (1.1) is nonempty. It should be noted that the EP (1.1) is a 
generalization of the classical equilibrium problem on linear Euclidean spaces. Recently, extragradient-based algorithms as explicit 
iterative schemes have attracted research interest from scholars. Next, we recall some useful results on extragradient-based algorithms 
in linear spaces, which help us to develop new algorithms on Hadamard manifolds. The projection-based extragradient algorithm, 
introduced by Korpelevich [35], is now known as an effective tool for solving variational inequalities, equilibrium problems, and 
other optimization problems in the setting of linear and nonlinear spaces. In 2008, Quoc et al. [36] extended the extragradient 
algorithm to solve equilibrium problems in Euclidean spaces. However, the fixed step size of Algorithm 1 proposed by Quoc et 
al. [36] needs to satisfy a Lipschitz-type condition, which may limit the applicability of this fixed step size algorithm in practical 
applications. To overcome this difficulty, they used an Armijo-type line search step size criterion for their algorithm. It is worth noting 
that the use of Armijo-type step size criterion allows the algorithm to work adaptively while greatly increasing the computational 
burden of the algorithm. Recently, Hieu et al. [37] introduced two extragradient algorithms to solve equilibrium problems in Hilbert 
spaces, which use an adaptive step size criterion that does not involve any line search process to speed up the computational efficiency 
of the algorithms. Note that the algorithms in [36,37] need to compute the strongly convex optimization problem on the feasible set 
twice in each iteration. In order to reduce the number of computations of the strongly convex optimization problem in each iteration 
and improve the computational performance of the algorithm, Hoai et al. [38] extended the golden ratio algorithm introduced by 
Malitsky [39] for solving variational inequality problems to equilibrium problems. The Algorithms 3.1 and 4.1 proposed by Hoai 
et al. [38] require computing the strongly convex optimization problem only once in each iteration. However, the step size of their 
proposed Algorithm 3.1 is related to the prior knowledge of the Lipschitz constant of the bifunction 𝑓 , and the proposed Algorithm 
4.1 uses a non-summable sequence of step sizes. The use of both types of step sizes affects the applicability and computational 
efficiency of their algorithms. Recently, Yin et al. [40] presented a modified golden ratio algorithm with adaptive step sizes for 
solving equilibrium problems in Hilbert spaces. Their algorithm uses a non-monotonic step size criterion that can be updated with a 
simple calculation using some previous information.

It should be mentioned that Hadamard manifolds generally do not have a linear structure, which indicates that properties, 
techniques as well as algorithms in linear spaces are not available in Hadamard manifolds. Therefore, it is valuable and interesting 
to generalize algorithms for equilibrium problems from linear spaces to Hadamard manifolds. In recent years, researchers proposed 
some variant forms of extragradient-based methods to solve equilibrium problems in Hadamard manifolds. Next, we state some of 
the related results. In [21], Colao et al. proved the existence of solutions to equilibrium problems on Hadamard manifolds when the 
bifunction satisfies some suitable conditions. Subsequently, Cruz Neto et al. [22] developed an extragradient algorithm with a fixed 
step size for finding the solutions of the equilibrium problem (1.1) on Hadamard manifolds and proved the global convergence of 
the algorithm. Inspired by the works of Cruz Neto et al. [22] and Hieu [4,5], Khammahawong et al. [23] provided two extragradient 
methods with non-increasing and non-summable step sizes to solve equilibrium problems in the framework of Hadamard manifolds. 
Their algorithms directly extend the results obtained by Hieu [4,5] in Hilbert spaces to Hadamard manifolds. In the case that the 
bifunction involved is strongly pseudomonotone, they proved that the sequences generated by their proposed algorithms converge 
to the solution of EP (1.1) under some mild conditions. Motivated by the extragradient algorithms for solving equilibrium problems 
in Hilbert spaces presented by Hieu et al. [37], Ansari et al. [24] introduced two adaptive explicit extragradient algorithms to 
find the solutions of EP (1.1) in Hadamard manifolds. Their proposed algorithms apply a simple adaptive step size criterion that 
can be updated by using known information from previous iterations. This allows these algorithms to perform without the prior 
knowledge of the Lipschitz constant of the bifunctions involved. Moreover, they demonstrated that the iterative sequences generated 
by the suggested algorithms converge to the solution of EP (1.1) under the condition that the bifunctions are pseudomonotone, and 
obtained the linear convergence of the proposed algorithms in the case that the bifunctions are strongly pseudomonotone. Notice 
that the algorithms in [22–24] involve the computation of the strongly convex optimization problem twice in each iteration. Chen 
et al. [25] presented a modified golden ratio algorithm that requires the computation of the strongly convex optimization problem 
only once in each iteration for solving equilibrium problems in Hadamard manifolds. Furthermore, the computational advantage and 
efficiency of the algorithms proposed by Chen et al. [25] compared with the ones in [22,23] were demonstrated by some numerical 
experiments. Quite recently, Iusem and Mohebbi [26] and Babu et al. [27] suggested several extragradient algorithms with an 
Armijo-type step size criterion to discover the solutions of equilibrium problems in Hadamard manifolds. However, their methods 
are computationally expensive because the strongly convex optimization problem may require to be computed many times in each 
iteration.

In this paper, inspired and motivated by the above results (in particular [22,24,37,40]), we investigate two adaptive extragradient 
algorithms and a modified golden ratio algorithm for solving equilibrium problems in Hadamard manifolds. The suggested algorithms 
use a non-monotonic adaptive step size criterion that does not involve any line search procedure allowing them to solve EPs consisting 
of pseudomonotone and Lipschitz continuous bifunctions. The sequences generated by the proposed algorithms converge to the 
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solutions of the EP under some mild conditions. In addition, the global error bounds and linear convergence results of the proposed 
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algorithms are established under the condition that the bifunctions involved are strongly pseudomonotone. Finally, we also provide 
a fundamental numerical example in Nash-Cournot oligopolistic equilibrium model to illustrate the theoretical results of this paper. 
The algorithms developed in this paper improve the results previously obtained in [22–27] for dealing with EPs on Hadamard 
manifolds.

The remainder of this paper is organized as follows. In Section 2, we recall some important notations, definitions, properties, 
and lemmas in Riemannian geometry for subsequent use. In Section 3, we present three adaptive explicit algorithms for solving 
EPs incorporating pseudomonotone and Lipschitz continuous bifunctions on Hadamard manifolds and analyze their convergence. In 
Section 4, we show the global error bounds and 𝑅-linear convergence of the proposed algorithms when the bifunctions involved are 
strongly pseudomonotone. A basic computational test occurring on Hadamard manifolds is provided in Section 5 to demonstrate the 
convergence efficiency of our algorithms. In the last section, we conclude the paper and give an outlook on future work.

2. Theoretical framework

The goal of this section is to state some classical representations and results in Hadamard manifolds, which are necessary to 
understand the content of this paper. Therefore, we shall introduce some important concepts, definitions, properties, and lemmas in 
Riemannian manifolds and Hadamard manifolds, which can be found in any book and article related to Riemannian geometry; see, 
e.g., [18,28,41–44].

2.1. Riemannian manifolds

Let  be a connected 𝑚-dimensional manifold and 𝑝 be an element on manifold . We denote 𝑇𝑝 as the tangent space of 
 at 𝑝 and represent the tangent bundle of  by 𝑇, i.e., 𝑇 = ∪𝑝∈𝑇𝑝. Note that 𝑇 is a manifold and 𝑇𝑝 is a vector 
space of the same dimension as . An inner product ⟨⋅ , ⋅⟩𝑝 ∶ 𝑇𝑝 ×𝑇𝑝 →ℝ≥0 associated with a norm ‖ ⋅‖𝑝 (i.e., ‖𝑢‖𝑝 = ⟨𝑢, 𝑢⟩1∕2𝑝 ) 
is said to be a Riemannian metric of 𝑇𝑝.

Definition 2.1. If the tensor ⟨⋅ , ⋅⟩𝑝 is a Riemannian metric on 𝑇𝑝 for all 𝑝 ∈, then the tensor field ⟨⋅ , ⋅⟩ is called a Riemannian 
metric on . A differentiable manifold  endowed with a Riemannian metric ⟨⋅ , ⋅⟩𝑝 is called a Riemannian manifold.

For simplicity, in the subsequent content, we replace inner product ⟨⋅ , ⋅⟩𝑝 and norm ‖ ⋅‖𝑝 on 𝑇𝑝 with ⟨⋅ , ⋅⟩ and ‖ ⋅‖, respectively. 
That is, we omit the subscript 𝑝 if there is no confusion.

Definition 2.2. The length of a piecewise smooth curve 𝛾 ∶ [𝑎, 𝑏] → connecting 𝑥 to 𝑦 (i.e., 𝛾(𝑎) = 𝑥 and 𝛾(𝑏) = 𝑦) is defined as

𝐿(𝛾) ∶=

𝑏

∫
𝑎

‖‖𝛾 ′(𝑡)‖‖d𝑡,
where 𝛾 ′(𝑡) = d

d𝑡 (𝛾(𝑡)) is a tangent vector in 𝑇𝛾(𝑡). The minimal length of the set of all such curves connecting 𝑥 to 𝑦 is called the
Riemannian distance from 𝑥 to 𝑦, denoted by 𝑑(𝑥, 𝑦). That is

𝑑(𝑥, 𝑦) ∶= inf{𝐿(𝛾) ∶ 𝛾 joining 𝑥 to 𝑦}.

Note that the topology induced by 𝑑 on  coincides with the original topology on  (see [41, p. 146, Proposition 2.6]).

Definition 2.3. Let ∇ be the Levi-Civita connection associated with the Riemannian metric ⟨⋅ , ⋅⟩, and let 𝛾 be a smooth curve in . 
A vector field 𝑋 is called parallel along 𝛾 if ∇𝛾′𝑋 = 𝟎, where 𝟎 is the zero tangent vector. We say that 𝛾 is a geodesic if 𝛾 ′ itself 
is parallel along 𝛾 , and in this case ‖‖𝛾 ′‖‖ is constant. If ‖‖𝛾 ′‖‖ = 1 then 𝛾 is said to be normalized. A geodesic joining 𝑥 to 𝑦 in  is 
said to be minimal if its length equals 𝑑(𝑥, 𝑦).

Definition 2.4. The parallel transport P𝛾,𝛾(𝑏),𝛾(𝑎) ∶ 𝑇𝛾(𝑎) → 𝑇𝛾(𝑏) on the tangent bundle 𝑇 along 𝛾 : [𝑎, 𝑏] → ℝ with 
respect to ∇ is defined by

P𝛾,𝛾(𝑏),𝛾(𝑎)(𝑣) =𝐴(𝛾(𝑏)) (∀𝑎, 𝑏 ∈ℝ)(∀𝑣 ∈ 𝑇𝛾(𝑎)),

where 𝐴 is the unique vector field such that ∇𝛾′(𝑡)𝐴 = 𝟎 for all 𝑡 ∈ [𝑎, 𝑏] and 𝐴(𝛾(𝑎)) = 𝑣.

If 𝛾 is a minimal geodesic joining 𝛾(𝑎) to 𝛾(𝑏), then we write P𝛾(𝑏),𝛾(𝑎) instead of P𝛾,𝛾(𝑏),𝛾(𝑎). For any 𝑎, 𝑏, 𝑏1, 𝑏2 ∈ℝ, we have

P𝛾
(
𝑏2
)
,𝛾
(
𝑏1
)◦P𝛾

(
𝑏1
)
,𝛾(𝑎) = P𝛾

(
𝑏2
)
,𝛾(𝑎) and P−1

𝛾(𝑏),𝛾(𝑎) = P𝛾(𝑎),𝛾(𝑏).
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Note that P𝛾(𝑏),𝛾(𝑎) is an isometry from 𝑇𝛾(𝑎) to 𝑇𝛾(𝑏). That is, the parallel transport preserves the inner product
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P𝛾(𝑏),𝛾(𝑎)(𝑢),P𝛾(𝑏),𝛾(𝑎)(𝑣)

⟩
𝛾(𝑏) = ⟨𝑢, 𝑣⟩𝛾(𝑎) (∀𝑢 ∈ 𝑇𝛾(𝑎))(∀𝑣 ∈ 𝑇𝛾(𝑎)).

Definition 2.5. A Riemannian manifold is said to be complete if, for any 𝑥 ∈, all geodesics emanating from 𝑥 are defined for all 
−∞ < 𝑡 < +∞.

With the Riemannian distance 𝑑 ∶ × →ℝ, the Riemannian manifold  is a metric space (, 𝑑) (see [41, p. 146, Proposition 
2.5]). We may investigate the global behavior of a Riemannian manifold  by using the idea of completeness to observe how 
geodesics operate on .

Definition 2.6. Assume that  is a complete Riemannian manifold, the exponential map exp𝑥 ∶ 𝑇𝑥 → at 𝑥 is defined by

exp𝑥 𝑣 ∶= 𝛾𝑣(1, 𝑥) (∀𝑣 ∈ 𝑇𝑥),

where 𝛾(⋅) = 𝛾𝑣(⋅, 𝑥) is the geodesic starting at 𝑥 with velocity 𝑣 (i.e., 𝛾𝑣(0, 𝑥) = 𝑥 and 𝛾 ′
𝑣
(0, 𝑥) = 𝑣). Then exp𝑥 𝑡𝑣 = 𝛾𝑣(𝑡, 𝑥) for 𝑡 ∈ℝ.

It follows that exp𝑥 𝟎 = 𝛾𝑣(0, 𝑥) = 𝑥. Note that the mapping exp𝑥 is differentiable on 𝑇𝑥 for any 𝑥 ∈. The exponential map 
has inverse exp−1

𝑥
∶  → 𝑇𝑥. Furthermore, the inverse of the exponential mapping exp and the distance 𝑑 have the following 

relationship.‖‖‖exp−1𝑥
𝑦
‖‖‖ = ‖‖‖exp−1𝑦

𝑥
‖‖‖ = 𝑑(𝑥, 𝑦) = 𝑑(𝑦,𝑥) (∀𝑥 ∈)(∀𝑦 ∈),

which can be seen in, e.g., [41, p. 146, Proposition 2.5] and [43, p. 39, Corollary 2.8]).
The following property is well known and can be found in [41, p. 146, Theorem 2.8].

Proposition 2.1. (Hopf-Rinow Theorem) Let  be a Riemannian manifold and let 𝑝 ∈. The following assertions are equivalent:

(i) exp𝑝 is defined on all of 𝑇𝑝.

(ii) The closed and bounded sets of  are compact.

(iii)  is complete as a metric space.

(iv)  is geodesically complete.

Furthermore, any of the statements above imply that any pair of points in  can be connected by a minimal geodesic. That is, for any 𝑞 ∈, 
there exists a geodesic 𝛾 connecting 𝑝 to 𝑞 with 𝐿(𝛾) = 𝑑(𝑝, 𝑞).

2.2. Hadamard manifolds

The concept of sectional curvature in Riemannian manifolds in some sense measures the amount by which a Riemannian manifold 
deviates from Euclidean. In this paper, we are interested in Riemannian manifolds with nonpositive sectional curvature, whose 
fundamental properties and geometrical features are collected in the following Propositions 2.2 and 2.3, and Lemmas 2.1 and 2.2. 
We do not include the technical definition of sectional curvature in this paper; see, e.g., [45, p. 259, Section 1], [42, p. 8, Definition 
2.3], and [43, p. 43, Section 3.2] for more information.

Definition 2.7. A Hadamard manifold is a complete, simply connected Riemannian manifold with nonpositive sectional curvature.

It is known that the Euclidean space ℝ𝑚 with its usual metric is a Hadamard manifold with constant sectional curvature equal to 
0, and the standard 𝑚-dimensional hyperbolic space ℍ𝑚 is a Hadamard manifold with constant sectional curvature equal to −1. If 
is a Hadamard manifold, then it has two important properties. The first one is that it exists a unique minimal geodesic connecting a 
pair of points on  (see Proposition 2.1). The other fact is that it is diffeomorphic to the Euclidean space ℝ𝑚 (see Proposition 2.2). 
In the rest of the paper, we use  to represent an 𝑚-dimensional Hadamard manifold and 𝐶 to denote a nonempty, closed, and 
convex set in , unless otherwise stated.

The following result is well-known (see, e.g., [43, p. 221, Theorem 4.1]).

Proposition 2.2. (Hadamard-Cartan Theorem) Let  be a Hadamard manifold and 𝑝 ∈. Then exp𝑝 ∶ 𝑇𝑝 → is a diffeomorphism, 
and for any two points 𝑝, 𝑞 ∈, there exists a unique normalized geodesic joining 𝑝 to 𝑞, which is in fact a minimal geodesic and can be 
expressed by 𝛾(𝑡) = exp𝑝(𝑡 exp−1𝑝

𝑞), ∀𝑡 ∈ [0, 1].

From Proposition 2.2, it follows that  has the same topology and differential structure as ℝ𝑚. Next, we state some geometric 
properties in Hadamard manifolds, which are similar to those in Euclidean spaces.

Let 𝑝1, 𝑝2, and 𝑝3 be points on a Riemannian manifold. Let Δ 
(
𝑝1, 𝑝2, 𝑝3

)
denote a geodesic triangle on a Riemannian manifold 
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which consists of three minimal geodesics 𝛾𝑖 connecting 𝑝𝑖 to 𝑝𝑖+1, where 𝑖 = 1, 2, 3 (mod 3). The following Proposition 2.3 is known 
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as the comparison theorem for triangles (see [43, p. 223, Proposition 4.5] and [45, Theorem 2.2]), which is essential for our main 
results.

Proposition 2.3. Let Δ 
(
𝑝1, 𝑝2, 𝑝3

)
be a geodesic triangle on a Hadamard manifold . We use 𝛾𝑖 ∶

[
0, 𝑙𝑖
]
→ to represent the geodesic 

connecting 𝑝𝑖 to 𝑝𝑖+1 for each 𝑖 = 1, 2, 3 (mod 3). Set 𝑙𝑖 ∶=𝐿 
(
𝛾𝑖
)

and 𝛼𝑖 ∶= ∠ 
(
𝛾 ′
𝑖
(0),−𝛾 ′

𝑖−1
(
𝑙𝑖−1
))

. Then

(i) 𝛼1 + 𝛼2 + 𝛼3 ≤ 𝜋.

(ii) 𝑙2
𝑖
+ 𝑙2

𝑖+1 − 2𝑙𝑖𝑙𝑖+1 cos𝛼𝑖+1 ≤ 𝑙2
𝑖−1.

(iii) 𝑙𝑖+1 cos𝛼𝑖+2 + 𝑙𝑖 cos𝛼𝑖 ≥ 𝑙𝑖+2.

Remark 2.1. By using exponential mapping and distance on , we have the following findings.

• Since ⟨
exp−1

𝑝𝑖+1
𝑝𝑖, exp−1𝑝𝑖+1

𝑝𝑖+2

⟩
= 𝑑
(
𝑝𝑖, 𝑝𝑖+1

)
𝑑
(
𝑝𝑖+1, 𝑝𝑖+2

)
cos𝛼𝑖+1, (2.1)

then the inequality (ii) of Proposition 2.3 can be rewritten as (cf. [28, Eq. (2.3)])

𝑑2 (𝑝𝑖, 𝑝𝑖+1)+ 𝑑2 (𝑝𝑖+1, 𝑝𝑖+2)− 2
⟨
exp−1

𝑝𝑖+1
𝑝𝑖, exp−1𝑝𝑖+1

𝑝𝑖+2

⟩ ≤ 𝑑2 (𝑝𝑖+2, 𝑝𝑖) . (2.2)

• From the inequality (iii) of Proposition 2.3, we have

𝑙2
𝑖+2 ≤ 𝑙𝑖+2𝑙𝑖+1 cos𝛼𝑖+2 + 𝑙𝑖+2𝑙𝑖 cos𝛼𝑖,

which together with (2.1) deduces that

𝑑2 (𝑝𝑖, 𝑝𝑖+2) ≤ 𝑑2 (𝑝𝑖, 𝑝𝑖+2)𝑑2 (𝑝𝑖+1, 𝑝𝑖+2) cos𝛼𝑖+2 + 𝑑2 (𝑝𝑖, 𝑝𝑖+2)𝑑2 (𝑝𝑖, 𝑝𝑖+1) cos𝛼𝑖
=
⟨
exp−1

𝑝𝑖+2
𝑝𝑖, exp−1𝑝𝑖+2

𝑝𝑖+1

⟩
+
⟨
exp−1

𝑝𝑖
𝑝𝑖+1, exp−1𝑝𝑖

𝑝𝑖+2

⟩
. (2.3)

Note that inequality (2.3) can also be derived from the well-known “law of cosines” in ℝ2 and inequality (2.2) (see, e.g., [29, Eq. 
(9)] and [32, p. 280, Proposition 14.16]).

• By letting 𝑝𝑖+2 = 𝑝𝑖 in (2.1), one obtains⟨
exp−1

𝑝𝑖+1
𝑝𝑖, exp−1𝑝𝑖+1

𝑝𝑖

⟩
= 𝑑2 (𝑝𝑖+1, 𝑝𝑖) = ‖‖‖exp−1𝑝𝑖+1

𝑝𝑖
‖‖‖2 = ‖‖‖exp−1𝑝𝑖

𝑝𝑖+1
‖‖‖2 .

Let the triangle Δ 
(
𝑝′, 𝑞′, 𝑟′

)
denote the comparison triangle of the geodesic triangle Δ(𝑝, 𝑞, 𝑟). Notice that the comparison triangle 

is unique within isometry of . The following two results demonstrate some interesting findings of comparison triangles. The first 
one is the existence of comparison triangles in ℝ2, and the second one shows the angular relationship of points between a geodesic 
triangle and its comparison triangle.

Lemma 2.1. ([46, p. 24, Lemma 2.14]) Let Δ(𝑝, 𝑞, 𝑟) be a geodesic triangle in a Hadamard manifold . Then, there exists 𝑝′, 𝑞′, 𝑟′ ∈ℝ2

such that

𝑑(𝑝, 𝑞) = ‖‖𝑝′ − 𝑞′‖‖ , 𝑑(𝑞, 𝑟) = ‖‖𝑞′ − 𝑟′‖‖ , 𝑑(𝑟, 𝑝) = ‖‖𝑟′ − 𝑝′‖‖ .
Lemma 2.2. ([31, Lemma 3.5]) Let Δ(𝑝, 𝑞, 𝑟) be a geodesic triangle in a Hadamard manifold  and Δ

(
𝑝′, 𝑞′, 𝑟′

)
be its comparison 

triangle.

(i) Let 𝛼, 𝛽, 𝛾 (resp., 𝛼′, 𝛽′, 𝛾 ′) be the angles of Δ(𝑝, 𝑞, 𝑟) (resp., Δ(𝑝′, 𝑞′, 𝑟′)) at the vertices 𝑝, 𝑞, 𝑟 (resp., 𝑝′, 𝑞′, 𝑟′). Then, the following 
inequalities hold

𝛼′ ≥ 𝛼, 𝛽′ ≥ 𝛽, 𝛾 ′ ≥ 𝛾.

(ii) Let 𝑧 be a point in the geodesic joining 𝑝 to 𝑞, and 𝑧′ ∈
[
𝑝′, 𝑞′
]

is the comparison point, if 𝑑 (𝑧, 𝑝) = ‖‖𝑧′ − 𝑝′‖‖ , 𝑑 (𝑧, 𝑞) = ‖‖𝑧′ − 𝑞′‖‖, then

𝑑 (𝑧, 𝑟) ≤ ‖‖𝑧′ − 𝑟′‖‖ .
2.3. Convex analysis
191

In this subsection, we recall some concepts about convexity and monotonicity in Hadamard manifolds.
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Definition 2.8. ([42, p. 59, Definition 1.3]) Let  be a Hadamard manifold. A subset 𝐶 ⊂ is said to be (geodesic) convex if for 
any two points 𝑝, 𝑞 ∈ 𝐶 , the geodesic joining 𝑝 to 𝑞 is contained in 𝐶 . That is, if 𝛾 ∶ [𝑎, 𝑏] → is a geodesic such that 𝑝 = 𝛾(𝑎) and 
𝑞 = 𝛾(𝑏), then 𝛾((1 − 𝑡)𝑎 + 𝑡𝑏) ∈ 𝐶 for all 𝑡 ∈ [0, 1].

Definition 2.9. ([43, p. 172, Definition 5.9]) A real-valued function 𝑓 ∶ →ℝ is said to be convex if the composition 𝑓◦𝛾 ∶ℝ →ℝ
is convex for any geodesic 𝛾 of , which implies that 𝑓◦𝛾(𝑡𝑎 +(1 − 𝑡)𝑏) ≤ 𝑡𝑓 (𝛾(𝑎)) +(1 − 𝑡)𝑓 (𝛾(𝑏)) holds for any 𝑎, 𝑏 ∈ℝ and 𝑡 ∈ [0, 1].

Definition 2.10. ([16, Definition 7], [47, Definition 2.3]) Let 𝐶 be a nonempty geodesic convex subset of a Hadamard manifold . 
A function 𝑓 ∶ 𝐶 →ℝ is said to be (geodesic) hemicontinuous if for any geodesic 𝛾 ∶ [0, 1] → 𝐶 , the function 𝑡 ↦ 𝑓 (𝛾(𝑡)) defined 
on [0, 1] is continuous. That is, 𝑓 (𝛾(𝑡)) → 𝑓 (𝛾(0)) as 𝑡 → 0.

Definition 2.11. ([45]) Let 𝑓 ∶ → ℝ be a convex function and 𝑥 ∈. The vector 𝑠 ∈ 𝑇𝑥 is said to be subgradient of 𝑓 at 
𝑥 ∈ if

𝑓 (𝑦) ≥ 𝑓 (𝑥) +
⟨
𝑠, exp−1

𝑥
𝑦
⟩

(∀𝑦 ∈).

The set of all subgradients of 𝑓 at 𝑥 is called the subdifferential of 𝑓 at 𝑥 and is denoted by 𝜕𝑓 (𝑥).

The following lemma shows that the subdifferential of a convex function is nonempty.

Lemma 2.3. ([45, Theorem 3.3]) Let 𝑓 ∶ →ℝ be a convex function. Then, for any 𝑥 ∈, there is 𝑠 ∈ 𝑇𝑥 such that

𝑓 (𝑦) ≥ 𝑓 (𝑥) +
⟨
𝑠, exp−1

𝑥
𝑦
⟩

(∀𝑦 ∈).

That is, the subdifferential 𝜕𝑓 (𝑥) of 𝑓 at 𝑥 ∈ is nonempty.

Definition 2.12. Let 𝐶 be a nonempty, closed, and convex subset of a Hadamard manifold , 𝑓 ∶ 𝐶 → ℝ be a convex function. 
Take 𝛼 > 0. The proximal mapping of 𝑓 is defined by

prox𝛼𝑓 (𝑥) ∶= argmin
𝑦∈𝐶

{
𝛼𝑓 (𝑦) + 1

2
𝑑2(𝑥, 𝑦)

}
(∀𝑥 ∈).

Lemma 2.4. ([45, Theorem 5.1]) Let 𝑓 ∶ →ℝ be a convex function. The sequence 
{
𝑠𝑛
}

generated by the proximal point algorithm

𝑠𝑛+1 = argmin
𝑦∈

{
𝑓 (𝑦) + 1

2𝜏𝑛
𝑑2 (𝑠𝑛, 𝑦)} , where starting point 𝑠0 ∈, 𝜏𝑛 ∈ (0,∞),

is well defined, and characterized by 1
𝜏𝑛
exp−1

𝑠𝑛+1
𝑠𝑛 ∈ 𝜕𝑓

(
𝑠𝑛+1
)
.

Remark 2.2. From [45, Lemma 4.2], it is known that prox𝛼𝑓 (𝑥) is a single-valued. By the definition of 𝜕𝑓
(
𝑠𝑛+1
)

and Lemma 2.4, 
we have

1
𝜏𝑛

⟨
exp−1

𝑠𝑛+1
𝑠𝑛, exp−1𝑠𝑛+1

𝑥

⟩ ≤ 𝑓 (𝑥) − 𝑓
(
𝑠𝑛+1
)

(∀𝑥 ∈).

The following definition is modified from [48, p. 294, Theorem 3.1(v)] and [36, p. 754, Theorem 3.2(ii)].

Definition 2.13. Let 𝐶 be a nonempty, closed, and convex subset of a Hadamard manifold . A bifunction 𝑓 ∶ 𝐶 × 𝐶 → ℝ is said 
to satisfy a Lipschitz-type condition on 𝐶 if there exists a positive constant 𝐿 such that

𝑓 (𝑥, 𝑧) − 𝑓 (𝑥, 𝑦) − 𝑓 (𝑦, 𝑧) ≤𝐿𝑑(𝑥, 𝑦)𝑑(𝑦, 𝑧) (∀𝑥, 𝑦, 𝑧 ∈ 𝐶). (2.4)

Remark 2.3. Note that (2.4) implies that

𝑓 (𝑥, 𝑧) − 𝑓 (𝑥, 𝑦) − 𝑓 (𝑦, 𝑧) ≤ 𝛾1𝑑
2(𝑥, 𝑦) + 𝛾2𝑑

2(𝑦, 𝑧) (∀𝑥, 𝑦, 𝑧 ∈ 𝐶), (2.5)

where 𝛾1 = 𝛾2 =
𝐿

2 . The Lipschitz-type condition (2.5) is used by many papers solving equilibrium problems on Hadamard manifolds; 
see, e.g., [22–25].
192
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Definition 2.14. A bifunction 𝑓 ∶ 𝐶 ×𝐶 →ℝ is said to be

(1) strongly monotone if, for all 𝑥, 𝑦 ∈ 𝐶 , there exists a positive constant 𝛾 such that

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦,𝑥) ≤ −𝛾𝑑2(𝑥, 𝑦).

(2) monotone if, for all 𝑥, 𝑦 ∈ 𝐶 ,

𝑓 (𝑥, 𝑦) + 𝑓 (𝑦,𝑥) ≤ 0.

(3) strongly pseudomonotone if, for all 𝑥, 𝑦 ∈ 𝐶 , there exists a constant 𝜎 such that

𝑓 (𝑥, 𝑦) ≥ 0 ⟹ 𝑓 (𝑦,𝑥) ≤ −𝜎𝑑2(𝑥, 𝑦).

(4) pseudomonotone if, for all 𝑥, 𝑦 ∈ 𝐶 ,

𝑓 (𝑥, 𝑦) ≥ 0 ⟹ 𝑓 (𝑦,𝑥) ≤ 0.

According to Definition 2.14 it is easy to check the following relations: (1) ⇒ (2) ⇒ (4) and (1) ⇒ (3) ⇒ (4).

Definition 2.15. ([45, p. 268, Eq. (25)]) Let 𝐶 be a nonempty set on a complete metric space 𝑋. A sequence 
{
𝑠𝑛
}
⊂ 𝑋 is called 

Fejér convergent with respect to 𝐶 if

𝑑
(
𝑠𝑛+1, 𝑦

) ≤ 𝑑
(
𝑠𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶)(∀𝑛 ≥ 0).

Lemma 2.5. ([45, Lemma 6.1], [17, Lemma 7.2]) Let 𝐶 be a nonempty set on a complete metric space 𝑋. If 
{
𝑠𝑛
}
⊂𝑋 is Fejér convergent 

to 𝐶 , then 
{
𝑠𝑛
}

is bounded. In addition, if any cluster point of 
{
𝑠𝑛
}

belongs to 𝐶 , then 
{
𝑠𝑛
}

converges to a point of 𝐶 .

3. Main results

In this section, we present two modified extragradient type algorithms and a modified golden ratio algorithm for solving the 
equilibrium problem (1.1) in Hadamard manifolds. The three proposed algorithms can work without the prior knowledge of the 
Lipschitz constant of the bifunction 𝑓 involved. The first two extragradient-based algorithms proposed in this paper are motivated 
by the work of Hieu et al. [37] for solving equilibrium problems in Hilbert spaces. Now, we are in a position to introduce our 
Algorithm 3.1.

Algorithm 3.1

Initialization: Take 𝜏0 > 0, 𝛿 ∈ (0, 1), and 𝜒 ∈ (0, 2∕(1 + 𝛿)). Let {𝜉𝑛} and {𝜎𝑛} satisfy the following Condition (C3). Let 𝑠0 ∈ 𝐶 be an initial point and set 𝑛 = 0.
Iterative Steps: Assume that 𝑠𝑛 ∈ 𝐶 is known, calculate 𝑠𝑛+1 as follows:
Step 1. Compute

𝑡𝑛 = argmin
𝑦∈𝐶

{
𝑓
(
𝑠𝑛, 𝑦
)
+ 1

2𝜏𝑛
𝑑2 (𝑠𝑛, 𝑦)} = prox𝜏𝑛𝑓

(
𝑠𝑛 ,⋅
) (𝑠𝑛) .

If 𝑠𝑛 = 𝑡𝑛 , then stop the iterative process and 𝑠𝑛 is a solution of EP (1.1); Otherwise, go to Step 2.
Step 2. Compute

𝑠𝑛+1 = argmin
𝑦∈𝐶

{
𝑓
(
𝑡𝑛, 𝑦
)
+ 1

2𝜒𝜏𝑛
𝑑2 (𝑠𝑛, 𝑦)} = prox𝜒𝜏𝑛𝑓

(
𝑡𝑛 ,⋅
) (𝑠𝑛) .

Update the next step size by

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿𝑑
(
𝑠𝑛, 𝑡𝑛
)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise,

(3.1)

where Δ𝑛 ∶= 𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)
.

Set 𝑛 ∶= 𝑛 + 1 and go to Step 1.

We assume that the bifunction 𝑓 satisfies the following four conditions.

(A1) 𝑓 ∶ 𝐶 ×𝐶 →ℝ is a pseudomonotone bifunction and 𝑓 (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶 ;
(A2) 𝑓 satisfies Lipschitz-type condition (2.4);
(A3) 𝑓 (𝑥, ⋅) is convex and subdifferentiable on 𝐶 for each 𝑥 ∈ 𝐶 ;
(A4) 𝑓 (⋅, 𝑦) is upper semicontinuous on 𝐶 for each 𝑦 ∈ 𝐶 , i.e., lim sup𝑛→∞ 𝑓

(
𝑠𝑛, 𝑦
) ≤ 𝑓 (𝑥, 𝑦) for each 𝑦 ∈ 𝐶 and each 

{
𝑠𝑛
}
⊂ 𝐶 with 
193
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Let the proposed Algorithm 3.1 satisfy the following three conditions in order to perform its convergence analysis.

(C1) The feasible set 𝐶 is a nonempty, closed, and convex subset of Hadamard manifold .
(C2) The solution set Ω of EP (1.1) is assumed to be nonempty, that is, Ω ≠ ∅.
(C3) Let {𝜉𝑛} ⊂ [1, ∞) and {𝜎𝑛} ⊂ [0, ∞) be two sequences such that 

∑∞
𝑛=1(𝜉𝑛 − 1) <∞ and 

∑∞
𝑛=1 𝜎𝑛 <∞.

Remark 3.1. From the definition of 𝑡𝑛 in Algorithm 3.1 and Remark 2.2, one has

𝜏𝑛
(
𝑓
(
𝑠𝑛, 𝑦
)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)) ≥ ⟨exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑦

⟩
(∀𝑦 ∈ 𝐶).

If 𝑠𝑛 = 𝑡𝑛 for some 𝑛 ∈ ℕ, then we obtain that 𝑓
(
𝑠𝑛, 𝑦
) ≥ 0 for all 𝑦 ∈ 𝐶 since 𝜏𝑛 > 0. This implies that 𝑠𝑛 ∈Ω, i.e., 𝑠𝑛 is a solution of 

EP (1.1). Therefore the iterations of Algorithm 3.1 terminate when 𝑠𝑛 = 𝑡𝑛.

We begin the convergence analysis of Algorithm 3.1 by showing that the step size 𝜏𝑛 generated by (3.1) is well defined.

Lemma 3.1. Let step size {𝜏𝑛} be a sequence formed by (3.1) and Conditions (A2) and (C3) hold. Then {𝜏𝑛} is well defined and lim𝑛→∞ 𝜏𝑛
exists.

Proof. Since 𝑓 satisfies the Lipschitz-type condition (2.4), in the case of Δ𝑛 > 0, one obtains

𝛿𝑑
(
𝑠𝑛, 𝑡𝑛
)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

) ≥ 𝛿𝑑
(
𝑠𝑛, 𝑡𝑛
)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
𝐿𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑠𝑛+1, 𝑡𝑛)

= 𝛿

𝐿
.

This combining with (3.1) yields 𝜏𝑛+1 ≥min{𝜏𝑛, 
𝛿

𝐿
}. By induction, one finds that 𝜏𝑛 ≥min{𝜏0, 

𝛿

𝐿
}. On the other hand, it can be seen 

from (3.1) that 𝜏𝑛+1 ≤ 𝜉𝑛𝜏𝑛 + 𝜎𝑛 for any 𝑛 ≥ 0. In view of Condition (C3) and [49, Lemma 1], it can be concluded that lim𝑛→∞ 𝜏𝑛

exists. Since {𝜏𝑛} has a lower bound min{𝜏0, 
𝛿

𝐿
}, we have lim𝑛→∞ 𝜏𝑛 ∶= 𝜏 > 0. □

Lemma 3.2. Assume that Conditions (A1)–(A4) and (C1)–(C3) hold. Let {𝑠𝑛} and {𝑡𝑛} be generated by Algorithm 3.1. Fix 𝑝 ∈Ω. Then

𝑑2 (𝑠𝑛+1, 𝑝) ≤ 𝑑2 (𝑠𝑛, 𝑝)− 𝜒∗
𝑛

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) , (3.2)

where

𝜒∗
𝑛
∶=
⎧⎪⎨⎪⎩
2 − 𝜒 − 𝜒𝛿𝜏𝑛

𝜏𝑛+1
, if 𝜒 ∈ [1,2∕(1 + 𝛿));

𝜒(1 − 𝛿𝜏𝑛

𝜏𝑛+1
), if 𝜒 ∈ (0,1).

Furthermore, {𝑠𝑛} is Fejér monotone with respect to the solution set Ω. Both {𝑠𝑛} and {𝑡𝑛} are bounded.

Proof. According to Lemma 2.4 and the definition of 𝑠𝑛+1 in Algorithm 3.1, we obtain

𝜒𝜏𝑛
(
𝑓
(
𝑡𝑛, 𝑦
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)) ≥ ⟨exp−1
𝑠𝑛+1

𝑠𝑛, exp−1𝑠𝑛+1
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.3)

Similarly, by means of Lemma 2.4 and the definition of 𝑡𝑛 in Algorithm 3.1, we have

𝜏𝑛
(
𝑓
(
𝑠𝑛, 𝑦
)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)) ≥ ⟨exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.4)

Using 𝑦 = 𝑠𝑛+1 ∈ 𝐶 in (3.4) yields

𝜏𝑛
(
𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)) ≥ ⟨exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠𝑛+1

⟩
. (3.5)

Let Δ 
(
𝑠𝑛, 𝑠𝑛+1, 𝑦

)
be a geodesic triangle. From (2.2), one sees that

2
⟨
exp−1

𝑠𝑛+1
𝑠𝑛, exp−1𝑠𝑛+1

𝑦

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦) (∀𝑦 ∈ 𝐶). (3.6)

Similarly, let Δ 
(
𝑠𝑛, 𝑡𝑛, 𝑠𝑛+1

)
be a geodesic triangle. It follows from (2.2) that

2
⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠𝑛+1

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 𝑑2 (𝑠𝑛, 𝑠𝑛+1) . (3.7)
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2𝜒𝜏𝑛
(
𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

))
≥ 2𝜒
⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠𝑛+1

⟩
+ 2
⟨
exp−1

𝑠𝑛+1
𝑠𝑛, exp−1𝑠𝑛+1

𝑦

⟩
− 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

≥ 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+ 𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)− 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).

That is,

𝑑2 (𝑠𝑛+1, 𝑦) ≤ 𝑑2 (𝑠𝑛, 𝑦)− 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+ 2𝜒𝜏𝑛

(
𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

))
+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).

(3.8)

By the definition of 𝜏𝑛+1 in (3.1), one sees that

𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

) ≤ 𝛿

𝜏𝑛+1

(
𝑑
(
𝑠𝑛, 𝑡𝑛
)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

))
≤ 𝛿

2𝜏𝑛+1

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) . (3.9)

Combining (3.8) and (3.9), we deduce that

𝑑2 (𝑠𝑛+1, 𝑦) ≤ 𝑑2 (𝑠𝑛, 𝑦)− 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+

𝜒𝛿𝜏𝑛

𝜏𝑛+1

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).
(3.10)

Letting 𝑦 = 𝑝 in (3.10). Since 𝑝 ∈Ω and 𝑡𝑛 ∈ 𝐶 , one obtains 𝑓
(
𝑝, 𝑡𝑛
) ≥ 0. This together with the pseudomonotonicity of 𝑓 yields that 

𝑓
(
𝑡𝑛, 𝑝
) ≤ 0. Then from (3.10) we obtain

𝑑2 (𝑠𝑛+1, 𝑝) ≤ 𝑑2 (𝑠𝑛, 𝑝)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) . (3.11)

By the triangle inequality and the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), ∀𝑎, 𝑏 ∈ℝ, we have

𝑑2 (𝑠𝑛, 𝑠𝑛+1) ≤ (𝑑 (𝑠𝑛, 𝑡𝑛)+ 𝑑
(
𝑠𝑛+1, 𝑡𝑛

))2 ≤ 2
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) . (3.12)

Combining (3.11) and (3.12), and considering two cases of 𝜒 , we obtain that the inequality (3.2) required in Lemma 3.2.
From Lemma 3.1, one has

lim
𝑛→∞

𝜒∗
𝑛
=

{
2 − 𝜒 − 𝜒𝛿, if 𝜒 ∈ [1,2∕(1 + 𝛿));
𝜒 − 𝜒𝛿, if 𝜒 ∈ (0,1).

Since 𝛿 ∈ (0, 1), we conclude that lim𝑛→∞ 𝜒∗
𝑛
> 0 for all 𝜒 ∈ (0, 2∕(1 + 𝛿)). Therefore, there exists 𝑛0 > 0 such that 𝜒∗

𝑛
> 0 for all 

𝑛 ≥ 𝑛0. Consequently,

𝑑
(
𝑠𝑛+1, 𝑝

) ≤ 𝑑
(
𝑠𝑛, 𝑝
)

(∀𝑝 ∈Ω)(∀𝑛 ≥ 𝑛0).

This means that {𝑠𝑛} is Fejér monotone with respect to the solution set Ω of EP (1.1). Thus 
{
𝑠𝑛
}

is bounded and lim𝑛→∞ 𝑑
(
𝑠𝑛, 𝑝
)

exists. By letting the limit 𝑛 →∞ in (3.2), one arrives at

lim
𝑛→∞

𝑑
(
𝑠𝑛, 𝑡𝑛
)
= 0 and lim

𝑛→∞
𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
= 0. (3.13)

As a result, {𝑡𝑛} is also bounded. It follows from (3.12) and (3.13) that

lim
𝑛→∞

𝑑
(
𝑠𝑛, 𝑠𝑛+1

)
= 0. (3.14)

This completes the proof. □

Theorem 3.1. Let {𝑠𝑛} be generated by Algorithm 3.1 and satisfy Conditions (A1)–(A4) and (C1)–(C3). Then {𝑠𝑛} converges to a solution 
of EP (1.1).

Proof. From Lemma 3.2, one knows that {𝑠𝑛} is Fejér monotone with respect to the solution set Ω. To show that {𝑠𝑛} converges to a 
solution of EP (1.1), it is left to prove that any cluster point of {𝑠𝑛} belongs to Ω by means of Lemma 2.5. Let 𝑠∗ be a cluster point of 
{𝑠𝑛}. According to {𝑠𝑛} is bounded, there exists a subsequence 

{
𝑠𝑛𝑘

}
of {𝑠𝑛} satisfies lim𝑘→∞ 𝑠𝑛𝑘

= 𝑠∗. We also have lim𝑘→∞ 𝑡𝑛𝑘
= 𝑠∗( )
195

and 𝑠∗ ∈ 𝐶 due to lim𝑛→∞ 𝑑 𝑠𝑛, 𝑡𝑛 = 0. In view of (3.10), one sees that
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2𝜒𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
) ≥ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)+ (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)

− 𝜒

(
𝛿𝜏𝑛

𝜏𝑛+1
− 1
)(

𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) (∀𝑦 ∈ 𝐶).
(3.15)

From the triangle inequality, we have|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| ≤ 𝑑
(
𝑠𝑛+1, 𝑠𝑛

)(
𝑑
(
𝑠𝑛+1, 𝑦

)
+ 𝑑
(
𝑠𝑛, 𝑦
))

(∀𝑦 ∈ 𝐶),

which combining with (3.14) and the boundedness of 
{
𝑠𝑛
}

implies that

lim
𝑛→∞
|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| = 0 (∀𝑦 ∈ 𝐶). (3.16)

Replacing 𝑛 in (3.15) with 𝑛𝑘 and letting 𝑘 → +∞, we obtain that the right-hand side of inequality (3.15) tends to 0 according to 
(3.13), (3.14), (3.16), and lim𝑘→∞ 𝜏𝑛𝑘

= 𝜏 > 0. From Condition (A4), we have

𝑓
(
𝑠∗, 𝑦
) ≥ lim sup

𝑘→∞
𝑓

(
𝑡𝑛𝑘

, 𝑦

) ≥ 0 (∀𝑦 ∈ 𝐶).

This follows that 𝑠∗ ∈ Ω, as required. □

Remark 3.2. The step size (3.1) defined in the proposed Algorithm 3.1 can be replaced by the following expression

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

2Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise,

(3.17)

where Δ𝑛 is defined in (3.1). To see this, it is sufficient to verify that

𝛿
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

2
(
𝑓
(
𝑠𝑛, 𝑠𝑛+1

)
− 𝑓
(
𝑠𝑛, 𝑡𝑛
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)) ≥ 𝛿
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))
2𝐿𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑠𝑛+1, 𝑡𝑛)

≥ 𝛿
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

𝐿
(
𝑑2
(
𝑠𝑛, 𝑡𝑛
)
+ 𝑑2
(
𝑠𝑛+1, 𝑡𝑛

)) = 𝛿

𝐿
.

Obviously, the inequality (3.9) still holds. Therefore, the result of Theorem 4.1 can also be obtained by Algorithm 3.1 incorporating 
the step size criterion (3.17).

Notice that the suggested Algorithm 3.1 requires that the values of the bifunction 𝑓 at 𝑠𝑛 and 𝑡𝑛 be computed in each iteration. 
To improve the computational efficiency of the algorithm, we propose a method that only needs to compute the value of 𝑓 at 𝑡𝑛 in 
each iteration. The second iterative scheme proposed in this paper is shown in Algorithm 3.2 below.

Algorithm 3.2

Initialization: Take 𝜏0 > 0, 𝛿 ∈ (0, 1∕3), and 𝜒 ∈ (0, 2∕(1 + 3𝛿)). Let {𝜉𝑛} and {𝜎𝑛} satisfy Condition (C3). Let 𝑡−1, 𝑡0, 𝑠0 ∈ 𝐶 be three initial points and set 𝑛 = 0.
Iterative Steps: Assume that 𝑡𝑛−1, 𝑡𝑛, 𝑠𝑛 ∈ 𝐶 are known. Calculate 𝑠𝑛+1 and 𝑡𝑛+1 as follows.
Step 1. Compute

𝑠𝑛+1 = argmin
𝑦∈𝐶

{
𝑓
(
𝑡𝑛, 𝑦
)
+ 1

2𝜒𝜏𝑛
𝑑2 (𝑠𝑛, 𝑦)} = prox𝜒𝜏𝑛𝑓

(
𝑡𝑛 ,⋅
) (𝑠𝑛) .

If 𝑠𝑛+1 = 𝑠𝑛 = 𝑡𝑛 , then stop the iterative process and 𝑠𝑛 is a solution of EP (1.1); Otherwise, go to Step 2.
Step 2. Compute

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise,

(3.18)

where Δ𝑛 ∶= 𝑓
(
𝑡𝑛−1, 𝑠𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)
. Update 𝑡𝑛+1 via

𝑡𝑛+1 = argmin
𝑦∈𝐶

{
𝑓
(
𝑡𝑛, 𝑦
)
+ 1

2𝜏𝑛+1
𝑑2 (𝑠𝑛+1, 𝑦)} = prox𝜏𝑛+1𝑓

(
𝑡𝑛 ,⋅
) (𝑠𝑛+1) .

Set 𝑛 ∶= 𝑛 + 1 and go to Step 1.

Remark 3.3. According to Remark 2.2 and the definition of 𝑠𝑛+1 in Algorithm 3.2, one sees that( ( ) ( )) ⟨ ⟩

196

𝜒𝜏𝑛 𝑓 𝑡𝑛, 𝑦 − 𝑓 𝑡𝑛, 𝑠𝑛+1 ≥ exp−1
𝑠𝑛+1

𝑠𝑛, exp−1𝑠𝑛+1
𝑦 (∀𝑦 ∈ 𝐶).
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If 𝑠𝑛+1 = 𝑠𝑛 = 𝑡𝑛 for some 𝑛 ∈ ℕ, then we obtain that 𝑓
(
𝑡𝑛, 𝑦
) ≥ 0 for all 𝑦 ∈ 𝐶 since 𝜒𝜏𝑛 > 0. This means that 𝑡𝑛 solves EP (1.1). 

Consequently the iterations of Algorithm 3.2 terminate when 𝑠𝑛+1 = 𝑠𝑛 = 𝑡𝑛.

Lemma 3.3. Let step size {𝜏𝑛} be a sequence created by (3.18) and Conditions (A2) and (C3) hold. Then {𝜏𝑛} is well defined and lim𝑛→∞ 𝜏𝑛
exists.

Proof. This proof is similar to the one of Lemma 3.1 and therefore is omitted. □

Lemma 3.4. Let {𝑠𝑛+1} and {𝑡𝑛+1} be generated by Algorithm 3.2. Fix 𝑝 ∈ Ω. Then {𝑠𝑛} and {𝑡𝑛} are bounded and lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑝)
exists.

Proof. From the definition of 𝑠𝑛+1 in Algorithm 3.2 and Lemma 2.4, we have

𝜒𝜏𝑛
(
𝑓
(
𝑡𝑛, 𝑦
)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)) ≥ ⟨exp−1
𝑠𝑛+1

𝑠𝑛, exp−1𝑠𝑛+1
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.19)

Similarly, by the definition of 𝑡𝑛+1 in Algorithm 3.2 and Lemma 2.4, we obtain

𝜏𝑛+1
(
𝑓
(
𝑡𝑛, 𝑦
)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

)) ≥ ⟨exp−1
𝑡𝑛+1

𝑠𝑛+1, exp−1𝑡𝑛+1
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.20)

Replacing 𝑛 + 1 with 𝑛 in (3.20), one finds that

𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑦

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)) ≥ ⟨exp−1
𝑡𝑛

𝑠𝑛, exp−1𝑡𝑛
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.21)

Using 𝑦 = 𝑠𝑛+1 ∈ 𝐶 in (3.21) yields

𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑠𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)) ≥ ⟨exp−1
𝑡𝑛

𝑠𝑛, exp−1𝑡𝑛
𝑠𝑛+1

⟩
. (3.22)

Let Δ 
(
𝑠𝑛, 𝑠𝑛+1, 𝑦

)
be a geodesic triangle. Then from (2.2) we have

2
⟨
exp−1

𝑠𝑛+1
𝑠𝑛, exp−1𝑠𝑛+1

𝑦

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦) (∀𝑦 ∈ 𝐶). (3.23)

Similarly, let Δ 
(
𝑠𝑛, 𝑡𝑛, 𝑠𝑛+1

)
be a geodesic triangle. It follows from (2.2) that

2
⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠𝑛+1

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 𝑑2 (𝑠𝑛, 𝑠𝑛+1) . (3.24)

From (3.19), (3.22), (3.23), and (3.24), we conclude that

2𝜒𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑠𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

))
≥ 2𝜒
⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠𝑛+1

⟩
+ 2
⟨
exp−1

𝑠𝑛+1
𝑠𝑛, exp−1𝑠𝑛+1

𝑦

⟩
− 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

≥ 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+ 𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)− 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶),

which is equivalent to

𝑑2 (𝑠𝑛+1, 𝑦) ≤ 𝑑2 (𝑠𝑛, 𝑦)− 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+ 2𝜒𝜏𝑛

(
𝑓
(
𝑡𝑛−1, 𝑠𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

))
+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).

(3.25)

By the definition of 𝜏𝑛+1 in (3.18), we have

𝑓
(
𝑡𝑛−1, 𝑠𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑠𝑛+1

)
≤ 𝛿

𝜏𝑛+1

(
𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑠𝑛+1, 𝑡𝑛

))
≤ 𝛿

2𝜏𝑛+1

(
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) .

(3.26)

Using (3.25) and (3.26), we deduce that

𝑑2 (𝑠𝑛+1, 𝑦) ≤ 𝑑2 (𝑠𝑛, 𝑦)− 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+

𝜒𝛿𝜏𝑛

𝜏𝑛+1

(
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).
(3.27)
197

By the triangle inequality and the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2), ∀𝑎, 𝑏 ∈ℝ, one can show that
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𝑑2 (𝑡𝑛−1, 𝑡𝑛) ≤ (𝑑 (𝑡𝑛−1, 𝑠𝑛)+ 𝑑
(
𝑠𝑛, 𝑡𝑛
))2 ≤ 2𝑑2 (𝑡𝑛−1, 𝑠𝑛)+ 2𝑑2 (𝑠𝑛, 𝑡𝑛) . (3.28)

From (3.27) and (3.28), we have

𝑑2 (𝑠𝑛+1, 𝑦) ≤ 𝑑2 (𝑠𝑛, 𝑦)− 𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)
+

2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑠𝑛, 𝑡𝑛)

+
𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑠𝑛+1, 𝑡𝑛)+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

= 𝑑2 (𝑠𝑛, 𝑦)− 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)

+
2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 2𝜒𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)
.

(3.29)

Adding the term 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛) to both sides of the last inequality in (3.29), we obtain

𝑑2 (𝑠𝑛+1, 𝑦)+ 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑦)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)

− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜏𝑛+1
𝜏𝑛+2

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)

− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 2𝜒𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶).

(3.30)

Fix 𝑝 ∈Ω. We obtain 𝑓
(
𝑡𝑛, 𝑝
) ≤ 0 by means of 𝑓

(
𝑝, 𝑡𝑛
) ≥ 0 and the pseudomonotonicity of 𝑓 . Letting 𝑦 = 𝑝 in (3.30). Then we have

𝑑2 (𝑠𝑛+1, 𝑝)+ 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑝)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)

− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜏𝑛+1
𝜏𝑛+2

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1) .

(3.31)

Next we consider two cases of 𝜒 in (3.31).
Case 1. First, we consider 𝜒 ∈ (0, 1]. Then the term (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1) ≥ 0 for all 𝑛 ≥ 0. Let 𝜙1 ∈ (0, 1 − 3𝛿) be a fixed number. 

By using Lemma 3.3, we have

lim
𝑛→∞

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
= 1 − 2𝛿 > 1 − 3𝛿 > 𝜙1 > 0

and

lim
𝑛→∞

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜏𝑛+1
𝜏𝑛+2

)
= 1 − 3𝛿 > 𝜙1 > 0.

Therefore, there exists a positive constant 𝑛1 ∈ℕ such that(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
> 𝜙1 > 0 (∀𝑛 ≥ 𝑛1)

and (
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜏𝑛+1
𝜏𝑛+2

)
> 𝜙1 > 0 (∀𝑛 ≥ 𝑛1).

Now, it follows from (3.31) that

𝑑2 (𝑠𝑛+1, 𝑝)+ 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑝)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 𝜒𝜙1

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) (∀𝑛 ≥ 𝑛1).

Setting

2 ( ) 2𝜒𝛿𝜏𝑛 2 ( )

198

𝑎𝑛 ∶= 𝑑 𝑠𝑛, 𝑝 +
𝜏𝑛+1

𝑑 𝑡𝑛−1, 𝑠𝑛



Applied Numerical Mathematics 201 (2024) 187–216B. Tan, X. Qin and J.-C. Yao

and

𝑏𝑛 ∶= 𝜒𝜙1
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) .

Then we obtain that 𝑎𝑛+1 ≤ 𝑎𝑛 − 𝑏𝑛 for all 𝑛 ≥ 𝑛1. Note that 𝑏𝑛 ≥ 0 for all 𝑛 ≥ 𝑛1. Thus we have 𝑎𝑛+1 ≤ 𝑎𝑛, ∀𝑛 ≥ 𝑛1. Then the limit of {
𝑎𝑛
}

exists and hence lim𝑛→∞ 𝑏𝑛 = 0. That is

lim
𝑛→∞

𝑑2 (𝑠𝑛, 𝑡𝑛) = 0 and lim
𝑛→∞

𝑑2 (𝑠𝑛+1, 𝑡𝑛) = 0. (3.32)

Combining the definition of 𝑎𝑛, lim𝑛→∞ 𝑎𝑛 exists, and (3.32), we deduce that lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑝) exists for all 𝑝 ∈ Ω. Consequently, {
𝑠𝑛
}

is bounded. It follows from the boundedness of {𝑠𝑛} and (3.32) that {𝑡𝑛} is also bounded. According to the triangle inequality 
and (3.32), we have

lim
𝑛→∞

𝑑2 (𝑠𝑛, 𝑠𝑛+1) = 0. (3.33)

Case 2. We consider 𝜒 ∈ (1, 2∕(1 + 3𝛿)). Note that (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1) < 0 for all 𝑛 ≥ 0. From the triangle inequality, one has

𝑑2 (𝑠𝑛, 𝑠𝑛+1) ≤ (𝑑 (𝑠𝑛, 𝑡𝑛)+ 𝑑
(
𝑠𝑛+1, 𝑡𝑛

))2 ≤ 2
(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) . (3.34)

Combining (3.31) and (3.34), we have

𝑑2 (𝑠𝑛+1, 𝑝)+ 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑝)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)−(2 − 𝜒 −

2𝜒𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)

−
(
2 − 𝜒 −

𝜒𝛿𝜏𝑛

𝜏𝑛+1
−

2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛) .

Let 𝜙2 ∈ (0, 2 − 𝜒 − 3𝜒𝛿) be a fixed number. Then

lim
𝑛→∞

(
2 − 𝜒 −

2𝜒𝛿𝜏𝑛

𝜏𝑛+1

)
= 2 − 𝜒 − 2𝜒𝛿 > 𝜙2 > 0

and

lim
𝑛→∞

(
2 − 𝜒 −

𝜒𝛿𝜏𝑛

𝜏𝑛+1
−

2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

)
= 2 − 𝜒 − 3𝜒𝛿 > 𝜙2 > 0.

Therefore, there exists a positive number 𝑛2 ∈ℕ such that

2 − 𝜒 −
2𝜒𝛿𝜏𝑛

𝜏𝑛+1
> 𝜙2 > 0 (∀𝑛 ≥ 𝑛2)

and

2 − 𝜒 −
𝜒𝛿𝜏𝑛

𝜏𝑛+1
−

2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

> 𝜙2 > 0 (∀𝑛 ≥ 𝑛2).

Consequently, we have

𝑑2 (𝑠𝑛+1, 𝑝)+ 2𝜒𝛿𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑝)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)−𝜙2

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛)) (∀𝑛 ≥ 𝑛2).

Based on the statements in Case 1, we can obtain that lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑝) exists for all 𝑝 ∈ Ω, {𝑠𝑛} and {𝑡𝑛} are bounded, and (3.32)
and (3.33) hold. This completes the proof. □

Theorem 3.2. Let {𝑠𝑛} be generated by Algorithm 3.2 and satisfy Conditions (A1)–(A4) and (C1)–(C3). Then {𝑠𝑛} converges to a solution 
of EP (1.1).

Proof. In view of Lemma 3.4, we have that lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑝) exists for all 𝑝 ∈Ω and {𝑠𝑛} is bounded. Next, we show that any cluster 
point of {𝑠𝑛} belongs to Ω. Let 𝑠∗ ∈ 𝐶 be a cluster point of {𝑠𝑛}. Since {𝑠𝑛} is bounded, there exists a subsequence 

{
𝑠𝑛𝑘

}
of {𝑠𝑛}
199

such that lim𝑘→∞ 𝑠𝑛𝑘
= 𝑠∗. By virtue of (3.32), one sees that lim𝑘→∞ 𝑡𝑛𝑘

= 𝑠∗. From (3.30), we have
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2𝜒𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
) ≥ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)− 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)

+ 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)

+ (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1) (∀𝑦 ∈ 𝐶).

(3.35)

From the triangle inequality, one obtains|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| ≤ 𝑑
(
𝑠𝑛+1, 𝑠𝑛

)(
𝑑
(
𝑠𝑛+1, 𝑦

)
+ 𝑑
(
𝑠𝑛, 𝑦
))

(∀𝑦 ∈ 𝐶),

which together with (3.33) and the boundedness of 
{
𝑠𝑛
}

yields that

lim
𝑛→∞
|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| = 0 (∀𝑦 ∈ 𝐶). (3.36)

Replacing 𝑛 in (3.35) with 𝑛𝑘 and letting 𝑘 → +∞, we obtain that the right-hand side of inequality (3.35) tends to 0 by means of 
(3.32), (3.33), (3.36), and lim𝑘→∞ 𝜏𝑛𝑘

= 𝜏 > 0. Thus we have lim sup𝑘→∞ 2𝜒𝜏𝑓

(
𝑡𝑛𝑘

, 𝑦

) ≥ 0 for all 𝑦 ∈ 𝐶 . From Condition (A4), we 
have

𝑓
(
𝑠∗, 𝑦
) ≥ lim sup

𝑘→∞
𝑓

(
𝑡𝑛𝑘

, 𝑦

) ≥ 0 (∀𝑦 ∈ 𝐶).

It follows that 𝑠∗ ∈ Ω. Then lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑠∗) exists. Thus the sequence of positive numbers 
{
𝑑2 (𝑠𝑛, 𝑠∗)} is convergent and 

bounded, and it has a subsequence, namely 
{
𝑑2
(
𝑠𝑛𝑘

, 𝑠∗
)}

, which converges to 0. Then the whole sequence converges to 0, i.e., 
0 = lim𝑛→∞ 𝑑

(
𝑠𝑛, 𝑠

∗) implying 𝑠∗ = lim𝑛→∞ 𝑠𝑛. Therefore we conclude that {𝑠𝑛} converges to a solution of EP (1.1). □

Remark 3.4. As similarly stated in Remark 3.2, it is easy to check that the step size criterion (3.18) used in the suggested Algo-
rithm 3.2 can be replaced by the following (3.37)

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿
(
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

2Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise,

(3.37)

where Δ𝑛 is defined in (3.18).

To conclude this section, we introduce a modified golden ratio algorithm that requires the computation of the strongly convex 
optimization problem on the feasible set only once in each iteration. The proposed method is inspired by the work of Yin et al. [40]
and extends the algorithm of Yin et al. [40] from Hilbert spaces to Hadamard manifolds. Now, the last iterative scheme proposed in 
this paper is shown in Algorithm 3.3.

Algorithm 3.3

Initialization: Choose 𝜏−1 = 𝜏0 > 0, 𝛿 ∈ (0, 1), and 𝜇 ∈ (1∕(2 − 𝛿), 1). Let {𝜉𝑛} and {𝜎𝑛} satisfy Condition (C3). Let 𝑡−1, 𝑡0, 𝑠−1 ∈ 𝐶 be initial points and set 𝑛 = 0.
Iterative Steps: Given the current iterates 𝑠𝑛−1, 𝑡𝑛−1, 𝑡𝑛 , calculate 𝑠𝑛 and 𝑡𝑛+1 as follows.
Step 1. Compute

𝑠𝑛 = exp𝑡𝑛
(
𝜒𝑛 exp−1𝑡𝑛

𝑠𝑛−1

)
,

where

𝜒𝑛 =min
{

1
2

√
1 + 4𝜇

𝜏𝑛

𝜏𝑛−1
− 1

2
,1
}

.

Step 2. Compute

𝑡𝑛+1 = argmin
𝑦∈𝐶

{
𝑓
(
𝑡𝑛, 𝑦
)
+ 1

2𝜏𝑛
𝑑2 (𝑠𝑛, 𝑦)} = prox𝜏𝑛𝑓

(
𝑡𝑛 ,⋅
) (𝑠𝑛) .

If 𝑠𝑛 = 𝑡𝑛 = 𝑡𝑛+1 , then stop the iterative process and 𝑠𝑛 is a solution of EP (1.1); Otherwise, go to Step 3.
Step 3. Compute the next step size by

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
2𝜒𝑛Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise.

(3.38)

where Δ𝑛 ∶= 𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

)
.

Set 𝑛 ∶= 𝑛 + 1 and go to Step 1.
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Remark 3.5. From the definition of 𝑡𝑛+1 in Algorithm 3.3 and Remark 2.2, we have

𝜏𝑛
(
𝑓
(
𝑡𝑛, 𝑦
)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

)) ≥ ⟨exp−1
𝑡𝑛+1

𝑠𝑛, exp−1𝑡𝑛+1
𝑦

⟩
(∀𝑦 ∈ 𝐶).

If 𝑡𝑛+1 = 𝑠𝑛 = 𝑡𝑛 for some 𝑛 ∈ ℕ, then we obtain that 𝑓
(
𝑡𝑛, 𝑦
) ≥ 0 for all 𝑦 ∈ 𝐶 since 𝜏𝑛 > 0. That is, 𝑡𝑛 ∈ Ω. Thus the iterations of 

Algorithm 3.3 terminate when 𝑡𝑛+1 = 𝑠𝑛 = 𝑡𝑛.

Lemma 3.5. Let step size {𝜏𝑛} be a sequence generated by (3.38) and Conditions (A2) and (C3) hold. Then {𝜏𝑛} is well defined and 
lim𝑛→∞ 𝜏𝑛 exists.

Proof. By the definition of 𝜒𝑛, it follows that 𝜒𝑛 ≤ 1 for all 𝑛 ≥ 0. This combining the fact that 𝑓 satisfies the Lipschitz-type condition 
(2.4), in the case of Δ𝑛 > 0, one obtains

𝛿𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
2𝜒𝑛

(
𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

)) ≥ 𝛿𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
2𝜒𝑛𝐿𝑑

(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
≥ 𝛿

2𝐿
.

The rest of the proof is the same as Lemma 3.1 and is therefore omitted. □

Remark 3.6. From Lemma 3.5, one sees that the limit of 𝜒𝑛 exists, denoted as 𝜒 . That is, lim𝑛→∞ 𝜒𝑛 = 𝜒 . From 𝛿 ∈ (0, 1) and 
𝜇 ∈ (1∕(2 − 𝛿), 1), it follows that 0 < 𝜒𝑛 ≤ 1 for all 𝑛 ≥ 0.

Lemma 3.6. Let {𝑠𝑛} and {𝑡𝑛+1} be created by Algorithm 3.3. Take 𝑝 ∈Ω. Then {𝑠𝑛} and {𝑡𝑛} are bounded and lim𝑛→∞ 𝑑2 (𝑠𝑛, 𝑝) exists.

Proof. From the definition of 𝑡𝑛+1 in Algorithm 3.3 and Lemma 2.4, one has

𝜏𝑛
(
𝑓
(
𝑡𝑛, 𝑦
)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

)) ≥ ⟨exp−1
𝑡𝑛+1

𝑠𝑛, exp−1𝑡𝑛+1
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.39)

Letting 𝑛 = 𝑛 − 1 in (3.39), one sees that

𝜏𝑛−1
(
𝑓
(
𝑡𝑛−1, 𝑦

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)) ≥ ⟨exp−1
𝑡𝑛

𝑠𝑛−1, exp−1𝑡𝑛
𝑦

⟩
(∀𝑦 ∈ 𝐶). (3.40)

Putting 𝑦 = 𝑡𝑛+1 ∈ 𝐶 in (3.40), we have

𝜏𝑛−1
(
𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)) ≥ ⟨exp−1
𝑡𝑛

𝑠𝑛−1, exp−1𝑡𝑛
𝑡𝑛+1

⟩
. (3.41)

By using 𝑠𝑛 = exp𝑡𝑛
(
𝜒𝑛 exp−1𝑡𝑛

𝑠𝑛−1

)
, one obtains

exp−1
𝑡𝑛

𝑠𝑛 = 𝜒𝑛 exp−1𝑡𝑛
𝑠𝑛−1. (3.42)

Combining (3.41), (3.42), and 𝜏𝑛 > 0, we deduce that

𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)) ≥ 1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1

⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑡𝑛+1

⟩
. (3.43)

Let Δ 
(
𝑠𝑛, 𝑡𝑛+1, 𝑦

)
be a geodesic triangle. From (2.2), one sees that

2
⟨
exp−1

𝑡𝑛+1
𝑠𝑛, exp−1𝑡𝑛+1

𝑦

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑡𝑛+1)+ 𝑑2 (𝑡𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦) (∀𝑦 ∈ 𝐶). (3.44)

Similarly, let Δ 
(
𝑠𝑛, 𝑡𝑛, 𝑡𝑛+1

)
be a geodesic triangle. Then by (2.2) we obtain

2
⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑡𝑛+1

⟩ ≥ 𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑡𝑛+1, 𝑡𝑛)− 𝑑2 (𝑠𝑛, 𝑡𝑛+1) . (3.45)

From (3.39), (3.43), (3.44), and (3.45), we have

2𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

))
+ 2𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

≥ 2 1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1

⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑡𝑛+1

⟩
+ 2
⟨
exp−1

𝑡𝑛+1
𝑠𝑛, exp−1𝑡𝑛+1

𝑦

⟩
≥ 1

𝜒𝑛

𝜏𝑛

𝜏𝑛−1

(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑡𝑛+1, 𝑡𝑛)− 𝑑2 (𝑠𝑛, 𝑡𝑛+1))

+ 𝑑2 (𝑠𝑛, 𝑡𝑛+1)+ 𝑑2 (𝑡𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦) (∀𝑦 ∈ 𝐶).

(3.46)
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2𝜏𝑛
(
𝑓
(
𝑡𝑛−1, 𝑡𝑛+1

)
− 𝑓
(
𝑡𝑛−1, 𝑡𝑛

)
− 𝑓
(
𝑡𝑛, 𝑡𝑛+1

))
≤ 1

𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1
𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
≤ 1

2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1

(
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝑑2 (𝑡𝑛+1, 𝑡𝑛)) .

(3.47)

Combining (3.46) and (3.47), we arrive at

𝑑2(𝑡𝑛+1, 𝑦) +
(

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1

2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2(𝑡𝑛+1, 𝑡𝑛)

≤ 𝑑2(𝑠𝑛, 𝑦) +
1

2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1
𝑑2(𝑡𝑛−1, 𝑡𝑛) + 2𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

+
(

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1
)

𝑑2(𝑠𝑛, 𝑡𝑛+1) −
1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
𝑑2(𝑠𝑛, 𝑡𝑛).

(3.48)

Now, we estimate the term 𝑑2 (𝑡𝑛+1, 𝑦) in (3.48). Recall from Algorithm 3.3 that 𝑠𝑛+1 = exp𝑡𝑛+1
(
𝜒𝑛+1 exp−1𝑡𝑛+1

𝑠𝑛

)
. Then 𝑠𝑛+1 in the 

geodesic joining 𝑡𝑛+1 to 𝑠𝑛. The comparison point of 𝑠𝑛+1 is 𝑠′
𝑛+1 = (1 − 𝜒𝑛+1)𝑡′𝑛+1 + 𝜒𝑛+1𝑠

′
𝑛
, which together with Remark 3.6 implies 

that 𝑠′
𝑛+1 ∈

[
𝑡′
𝑛+1, 𝑠

′
𝑛

]
. Let Δ(𝑠𝑛+1, 𝑡𝑛+1, 𝑠𝑛) be a geodesic triangle and Δ

(
𝑠′
𝑛+1, 𝑡

′
𝑛+1, 𝑠

′
𝑛

)
be its comparison triangle. By Lemma 2.1 we 

have

𝑑
(
𝑡𝑛+1, 𝑠𝑛+1

)
= ‖‖‖𝑡′𝑛+1 − 𝑠′

𝑛+1
‖‖‖ , 𝑑

(
𝑠𝑛, 𝑠𝑛+1

)
= ‖‖‖𝑠′𝑛 − 𝑠′

𝑛+1
‖‖‖ .

Let Δ(𝑦, 𝑡𝑛+1, 𝑠𝑛) be a geodesic triangle and Δ
(
𝑦′, 𝑡′

𝑛+1, 𝑠
′
𝑛

)
be its comparison triangle. From Lemma 2.1, one has

𝑑
(
𝑡𝑛+1, 𝑦

)
= ‖‖‖𝑡′𝑛+1 − 𝑦′

‖‖‖ , 𝑑
(
𝑠𝑛, 𝑦
)
= ‖‖𝑠′𝑛 − 𝑦′‖‖ , 𝑑

(
𝑠𝑛, 𝑡𝑛+1

)
= ‖‖‖𝑠′𝑛 − 𝑡′

𝑛+1
‖‖‖ . (3.49)

Let 𝛼 ∈ℝ and 𝑥, 𝑦 ∈ℝ. Then

‖𝛼𝑥+ (1 − 𝛼)𝑦‖2 = 𝛼‖𝑥‖2 + (1 − 𝛼)‖𝑦‖2 − 𝛼(1 − 𝛼)‖𝑥− 𝑦‖2.
It follows from Lemma 2.2(ii) and (3.49) that

𝑑2 (𝑠𝑛+1, 𝑦) ≤ ‖‖‖(1 − 𝜒𝑛+1)𝑡′𝑛+1 + 𝜒𝑛+1𝑠
′
𝑛
− 𝑦′
‖‖‖2

= ‖‖‖(1 − 𝜒𝑛+1)
(
𝑡′
𝑛+1 − 𝑦′

)
+ 𝜒𝑛+1

(
𝑠′
𝑛
− 𝑦′
)‖‖‖2

= (1 − 𝜒𝑛+1)
(
𝑡′
𝑛+1 − 𝑦′

)2 + 𝜒𝑛+1
(
𝑠′
𝑛
− 𝑦′
)2

− 𝜒𝑛+1(1 − 𝜒𝑛+1)
‖‖‖𝑡′𝑛+1 − 𝑠′

𝑛

‖‖‖2
= (1 − 𝜒𝑛+1)𝑑2 (𝑡𝑛+1, 𝑦)+ 𝜒𝑛+1𝑑

2 (𝑠𝑛, 𝑦)
− 𝜒𝑛+1(1 − 𝜒𝑛+1)𝑑2 (𝑡𝑛+1, 𝑠𝑛) .

(3.50)

That is

𝑑2 (𝑡𝑛+1, 𝑦) ≥ −
𝜒𝑛+1

1 − 𝜒𝑛+1
𝑑2 (𝑠𝑛, 𝑦)+ 1

1 − 𝜒𝑛+1
𝑑2 (𝑠𝑛+1, 𝑦)+ 𝜒𝑛+1𝑑

2 (𝑡𝑛+1, 𝑠𝑛) . (3.51)

Combining (3.48) and (3.51), we deduce that

1
1 − 𝜒𝑛+1

𝑑2 (𝑠𝑛+1, 𝑦)+( 1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1

2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑡𝑛+1, 𝑡𝑛)

≤ 1
1 − 𝜒𝑛+1

𝑑2 (𝑠𝑛, 𝑦)+ 1
2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 2𝜏𝑛𝑓

(
𝑡𝑛, 𝑦
)

+
(

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1 − 𝜒𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛+1)− 1

𝜒𝑛

𝜏𝑛

𝜏𝑛−1
𝑑2 (𝑠𝑛, 𝑡𝑛) .

(3.52)

From the definition of 𝜒𝑛, we obtain that there exists 𝑛0 ≥ 0 such that

𝜒𝑛 =
1
2

√
1 + 4𝜇

𝜏𝑛

𝜏𝑛−1
− 1

2
(∀𝑛 ≥ 𝑛0).
202
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1 + 𝜒𝑛 −
1
𝜒𝑛

𝜇𝜏𝑛

𝜏𝑛−1
= 0 (∀𝑛 ≥ 𝑛0). (3.53)

By using 𝜇 ∈ (1∕(2 − 𝛿), 1) and Remark 3.6, one sees that

lim
𝑛→∞

(
1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1

𝜒𝑛+1

𝜇𝜏𝑛+1
𝜏𝑛

)
= 1

𝜒
(1 − 𝜇) > 0. (3.54)

From (3.53) and (3.54), there exists 𝑛1
(≥ 𝑛0

)
such that

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1 − 𝜒𝑛+1 =

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1

𝜒𝑛+1

𝜇𝜏𝑛+1
𝜏𝑛

> 0 (∀𝑛 ≥ 𝑛1). (3.55)

Note that

𝑑2 (𝑠𝑛, 𝑡𝑛+1) ≤ (𝑑 (𝑠𝑛, 𝑡𝑛)+ 𝑑
(
𝑡𝑛, 𝑡𝑛+1

))2
≤
(
1 + 1

𝜂

)
𝑑2 (𝑠𝑛, 𝑡𝑛)+ (1 + 𝜂)𝑑2 (𝑡𝑛, 𝑡𝑛+1) , (3.56)

where 𝜂 = 1 − 𝛿 > 0. Combining (3.52), (3.55), and (3.56), we have

𝑑2 (𝑠𝑛+1, 𝑦)+ 𝛼𝑛𝑑
2 (𝑡𝑛+1, 𝑡𝑛) ≤ 𝑑2 (𝑠𝑛, 𝑦)+ 𝛽𝑛𝑑

2 (𝑡𝑛−1, 𝑡𝑛)− 𝛾𝑛𝑑
2 (𝑠𝑛, 𝑡𝑛)

+ 2
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
)

(∀𝑛 ≥ 𝑛1),
(3.57)

where

𝛼𝑛 ∶=
(
1 − 𝜒𝑛+1

)(
(1 + 𝜂) 1

𝜒𝑛+1

𝜇𝜏𝑛+1
𝜏𝑛

− 𝜂

𝜒𝑛

𝜏𝑛

𝜏𝑛−1
− 1

2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1

)
,

𝛽𝑛 ∶=
(
1 − 𝜒𝑛+1

) 1
2𝜒𝑛

𝛿𝜏𝑛

𝜏𝑛+1
,

𝛾𝑛 ∶=
(
1 − 𝜒𝑛+1

)((
1 + 1

𝜂

)
1

𝜒𝑛+1

𝜇𝜏𝑛+1
𝜏𝑛

− 1
𝜂

1
𝜒𝑛

𝜏𝑛

𝜏𝑛−1

)
.

From the facts that lim𝑛→∞ 𝜏𝑛 = 𝜏 > 0, lim𝑛→∞ 𝜒𝑛 = 𝜒 ∈ (0, 1), 𝛿 ∈ (0, 1), 𝜇 ∈ (1∕(2 − 𝛿), 1), and 𝜂 = 1 − 𝛿, we obtain

lim
𝑛→∞

𝛼𝑛 = (1 − 𝜒) 1
𝜒

(
(1 + 𝜂)𝜇 − 𝜂 − 𝛿

2

)
> 0,

lim
𝑛→∞

𝛽𝑛 = (1 − 𝜒) 𝛿

2𝜒
> 0,

lim
𝑛→∞

𝛾𝑛 = (1 − 𝜒) 1
𝜒

((
1 + 1

𝜂

)
𝜇 − 1

𝜂

)
> 0,

and

(1 − 𝜒) 1
𝜒

(
(1 + 𝜂)𝜇 − 𝜂 − 𝛿

2

)
− (1 − 𝜒) 𝛿

2𝜒
> 0.

According to the denseness of rational numbers, there exists 𝜌 > 0 such that

(1 − 𝜒) 1
𝜒

(
(1 + 𝜂)𝜇 − 𝜂 − 𝛿

2

)
> 𝜌 > (1 − 𝜒) 𝛿

2𝜒
.

That is, there exists 𝑛2
(≥ 𝑛1

)
such that

𝛼𝑛 > 𝜌 > 𝛽𝑛 > 0 and 𝛾𝑛 > 0 (∀𝑛 ≥ 𝑛2). (3.58)

By means of (3.57) and (3.58), we infer that

𝑑2 (𝑠𝑛+1, 𝑦)+ 𝜌𝑑2 (𝑡𝑛+1, 𝑡𝑛) ≤ 𝑑2 (𝑠𝑛, 𝑦)+ 𝜌𝑑2 (𝑡𝑛−1, 𝑡𝑛)− 𝛾𝑛𝑑
2 (𝑠𝑛, 𝑡𝑛)

+ 2
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
)

(∀𝑦 ∈ 𝐶)(∀𝑛 ≥ 𝑛2).
(3.59)

In view of 𝑝 ∈ Ω and 𝑡𝑛 ∈ 𝐶 , one sees that 𝑓
(
𝑝, 𝑡𝑛
) ≥ 0. This together with the pseudomonotonicity of 𝑓 yields that 𝑓

(
𝑡𝑛, 𝑝
) ≤ 0. 

Letting 𝑦 = 𝑝 ∈ 𝐶 in (3.59) and setting

𝑎𝑛 = 𝑑2 (𝑠𝑛, 𝑝)+ 𝜌𝑑2 (𝑡𝑛−1, 𝑡𝑛) and 𝑏𝑛 = 𝛾𝑛𝑑
2 (𝑠𝑛, 𝑡𝑛) ,

we deduce that 𝑎𝑛+1 ≤ 𝑎𝑛 − 𝑏𝑛 for all 𝑛 ≥ 𝑛2. This implies that 
{
𝑎𝑛
}

is bounded and the limit of 
{
𝑎𝑛
}

exists. Thus lim𝑛→∞ 𝑏𝑛 = 0. By 
the definition of 𝑏𝑛 and lim𝑛→∞ 𝛾𝑛 > 0, one has
203

lim
𝑛→∞

𝑑(𝑠𝑛, 𝑡𝑛) = 0. (3.60)
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From (3.42), we have 𝑑(𝑠𝑛, 𝑡𝑛) = 𝜒𝑛𝑑(𝑠𝑛−1, 𝑡𝑛). This together with (3.60) yields that

lim
𝑛→∞

𝑑(𝑠𝑛, 𝑡𝑛+1) = 0.

Since

𝑑
(
𝑠𝑛, 𝑠𝑛+1

) ≤ 𝑑
(
𝑠𝑛, 𝑡𝑛+1

)
+ 𝑑
(
𝑡𝑛+1, 𝑠𝑛+1

)
,

and

𝑑
(
𝑡𝑛−1, 𝑡𝑛

) ≤ 𝑑
(
𝑡𝑛−1, 𝑠𝑛−1

)
+ 𝑑
(
𝑠𝑛−1, 𝑡𝑛

)
,

we see that

lim
𝑛→∞

𝑑
(
𝑠𝑛, 𝑠𝑛+1

)
= lim

𝑛→∞
𝑑
(
𝑡𝑛−1, 𝑡𝑛

)
= 0. (3.61)

From the existence of lim𝑛→∞ 𝑎𝑛 and (3.61), we obtain

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑑2 (𝑠𝑛, 𝑝) .
This implies that the sequence {𝑑2 (𝑠𝑛, 𝑝)} is bounded for all 𝑝 ∈ Ω and thus 

{
𝑠𝑛
}

is bounded. So 
{
𝑡𝑛
}

is bounded by means of 
(3.60). □

Theorem 3.3. Let {𝑠𝑛} be formed by Algorithm 3.3 and satisfy Conditions (A1)–(A4) and (C1)–(C3). Then {𝑠𝑛} converges to a solution of 
EP (1.1).

Proof. It follows from Lemma 3.6 that {𝑠𝑛} is bounded. Hence there exists a subsequence 
{
𝑠𝑛𝑘

}
of 
{
𝑠𝑛
}

that converges to some 
𝑠∗ ∈. Consequently, lim𝑛→∞ 𝑡𝑛𝑘

= 𝑠∗ and 𝑠∗ ∈ 𝐶 by means of (3.60) and the definition of 𝑡𝑛+1. Now we prove that 𝑠∗ ∈ Ω. Indeed, 
it follows from relation (3.59) that

2
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝑓
(
𝑡𝑛, 𝑦
) ≥ 𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)+ 𝜌𝑑2 (𝑡𝑛+1, 𝑡𝑛)

− 𝜌𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝛾𝑛𝑑
2 (𝑠𝑛, 𝑡𝑛) (∀𝑦 ∈ 𝐶)(∀𝑛 ≥ 𝑛2).

(3.62)

From the triangle inequality, one obtains

|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| ≤ 𝑑
(
𝑠𝑛+1, 𝑠𝑛

)(
𝑑
(
𝑠𝑛+1, 𝑦

)
+ 𝑑
(
𝑠𝑛, 𝑦
))

(∀𝑦 ∈ 𝐶),

which together with (3.61) and the boundedness of 
{
𝑠𝑛
}

yields that

lim
𝑛→∞
|||𝑑2 (𝑠𝑛+1, 𝑦)− 𝑑2 (𝑠𝑛, 𝑦)||| = 0 (∀𝑦 ∈ 𝐶). (3.63)

Replacing 𝑛 in (3.62) with 𝑛𝑘 and letting 𝑘 → +∞, we obtain that the right-hand side of inequality (3.62) tends to 0 by means of 
(3.60), (3.61), (3.63), and lim𝑘→∞ 𝜏𝑛𝑘

= 𝜏 > 0. Thus we have

lim sup
𝑘→∞

2
(
1 − 𝜒𝑛𝑘+1

)
𝜏𝑛𝑘

𝑓

(
𝑡𝑛𝑘

, 𝑦

)
= 2(1 − 𝜒)𝜏𝑓

(
𝑡𝑛𝑘

, 𝑦

) ≥ 0 (∀𝑦 ∈ 𝐶).

From Condition (A4), we have

𝑓
(
𝑠∗, 𝑦
) ≥ lim sup

𝑘→∞
𝑓

(
𝑡𝑛𝑘

, 𝑦

) ≥ 0 (∀𝑦 ∈ 𝐶).

It follows that 𝑠∗ ∈ Ω. The remainder of the proof is identical to Theorem 4.2. □

Remark 3.7. It is simple to verify that the step size (3.38) used in the proposed Algorithm 3.3 may be substituted by the following 
(3.64), as stated identically in Remark 3.2.

𝜏𝑛+1 =
⎧⎪⎨⎪⎩
min

{
𝛿
(
𝑑2 (𝑡𝑛−1, 𝑡𝑛)+ 𝑑2 (𝑡𝑛+1, 𝑡𝑛))

4𝜒𝑛Δ𝑛

, 𝜉𝑛𝜏𝑛 + 𝜎𝑛

}
, if Δ𝑛 > 0;

𝜉𝑛𝜏𝑛 + 𝜎𝑛, otherwise,

(3.64)
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where Δ𝑛 is defined in (3.38).
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4. Error bounds and linear convergence for strongly pseudomonotone EPs

4.1. Solution existence for strongly pseudomonotone EPs

In this subsection, we show that the EP (1.1) has a unique solution when the bifunction involved satisfies strong pseudomono-
tonicity and other conditions. Recall that Colao et al. [21] first introduced the equilibrium problem on Hadamard manifolds and 
proved the existence of its solution (see Lemma 4.1 below). Recently, Al-Homidan et al. [50] also studied the existence of EP under 
weaker conditions than [21, Theorem 3.2].

Lemma 4.1. ([21, Theorem 3.2][50, Theorem 3.4]) Let 𝐶 be a nonempty, closed, and convex subset of a Hadamard manifold  and 
𝑓 ∶ 𝐶 ×𝐶 →ℝ be a bifunction such that 𝑓 (⋅, 𝑦) is upper semicontinuous for each 𝑦 ∈ 𝐶 and 𝑓 (𝑥, ⋅) is lower semicontinuous and convex for 
each 𝑥 ∈ 𝐶 . Suppose that the following coercivity condition holds

∃ compact set 𝑊 ∶ (∀𝑥 ∈ 𝐶∖𝑊 , ∃𝑦 ∈ 𝐶 ∩𝑊 ∶ 𝑓 (𝑥, 𝑦) < 0).

Then, the equilibrium problem EP (1.1) has a solution.

We can easily obtain the following consequence by using Proposition 1 obtained from Muu and Quy [51].

Theorem 4.1. Assume that Conditions (A3), (A4), and (C1) hold. Let 𝑓 ∶ 𝐶 × 𝐶 → ℝ be a 𝛽-strongly pseudomonotone on 𝐶 . Then 
equilibrium problem (1.1) has a unique solution.

Proof. Let us start by assuming that 𝐶 is unbounded. According to Lemma 4.1, it suffices to demonstrate the following coercivity 
condition:

∃ closed ball 𝐵 ∶ (∀𝑥 ∈ 𝐶∖𝐵, ∃𝑦 ∈ 𝐶 ∩𝐵 ∶ 𝑓 (𝑥, 𝑦) < 0). (4.1)

In fact, if not, for every closed ball 𝐵𝑟 around 0 with radius 𝑟, there is 𝑠𝑟 ∈ 𝐶∖𝐵𝑟 such that 𝑓 (𝑠𝑟, 𝑦) ≥ 0 for all 𝑦 ∈ 𝐶 ∩ 𝐵𝑟. Take 
𝑟0 > 0, then for every 𝑟 > 𝑟0, there exists 𝑠𝑟 ∈ 𝐶∖𝐵𝑟 such that 𝑓

(
𝑠𝑟, 𝑦0
) ≥ 0 with 𝑦0 ∈ 𝐶 ∩𝐵𝑟0

. By using the fact that 𝑓 is 𝛽-strongly 
pseudomonotone, one has

𝑓
(
𝑦0, 𝑠𝑟
)
+ 𝛽𝑑2 (𝑠𝑟, 𝑦0) ≤ 0 (∀𝑟 ≥ 𝑟0). (4.2)

Because of 𝐶 is convex and 𝑓
(
𝑦0, ⋅
)

is convex on 𝐶 , it follows from Lemma 2.3 that there exists 𝑠0 ∈ 𝐶 such that 𝜕2𝑓
(
𝑦0, 𝑠0
) ≠ ∅, 

where 𝜕2𝑓
(
𝑦0, 𝑠0
)

stands for the subdifferential of the convex function 𝑓
(
𝑦0, ⋅
)

at 𝑠0. Take 𝑤∗ ∈ 𝜕2𝑓
(
𝑦0, 𝑠0
)
∈ 𝑇𝑠0. Using the 

definition of subgradient, we have⟨
𝑤∗, exp−1

𝑠0
𝑥

⟩
+ 𝑓
(
𝑦0, 𝑠0
) ≤ 𝑓

(
𝑦0, 𝑥
)

(∀𝑥 ∈).

Putting 𝑥 = 𝑠𝑟 in the above inequality, one has

𝑓
(
𝑦0, 𝑠𝑟
)
+ 𝛽𝑑2 (𝑠𝑟, 𝑦0) ≥ 𝑓

(
𝑦0, 𝑠0
)
+
⟨
𝑤∗, exp−1

𝑠0
𝑠𝑟
⟩
+ 𝛽𝑑2 (𝑠𝑟, 𝑦0)

≥ 𝑓
(
𝑦0, 𝑠0
)
− ‖‖𝑤∗‖‖𝑑 (𝑠𝑟, 𝑠0)+ 𝛽𝑑2 (𝑠𝑟, 𝑦0) .

Letting 𝑟 → +∞, since ‖𝑠𝑟‖→ +∞, we have that 𝑓
(
𝑦0, 𝑠𝑟
)
+ 𝛽𝑑2 (𝑠𝑟, 𝑦0)→ +∞ which contradicts (4.2). As a result, the coercivity 

criterion (4.1) must be satisfied. Then the equilibrium problem (1.1) has a solution due to Lemma 4.1.
The assertion follows from Ky Fan’s theorem [52] when 𝐶 is bounded.
Now assume that EP (1.1) has two solutions 𝑠∗ and 𝑦∗. Then

𝑓
(
𝑠∗, 𝑦∗
) ≥ 0 (4.3)

and

𝑓
(
𝑦∗, 𝑠∗
) ≥ 0. (4.4)

By using the strong pseudomonotonicity of 𝑓 and (4.4), one sees that

𝑓
(
𝑠∗, 𝑦∗
) ≤ −𝛽𝑑2 (𝑠∗, 𝑦∗) . (4.5)

From (4.3) and (4.5), we have

𝛽𝑑2 (𝑠∗, 𝑦∗) ≤ −𝑓
(
𝑠∗, 𝑦∗
) ≤ 0,
205

which leads to 𝑠∗ = 𝑦∗. That is, the equilibrium problem (1.1) has a unique solution. □
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4.2. Global error bound for strongly pseudomonotone EPs

Theorem 4.2. Assume that Conditions (A2)–(A4), (C1), and (C3) hold. Let 𝑓 ∶ 𝐶 × 𝐶 → ℝ be a 𝛽-strongly pseudomonotone bifunction 
and 𝑠∗ be the unique solution of EP (1.1). Let {𝑠𝑛} be generated by Algorithm 3.1. Then we have

1 − 𝛿𝜏𝑛

𝜏𝑛+1

1 + 𝛿𝜏𝑛

𝜏𝑛+1

𝑑
(
𝑡𝑛, 𝑠𝑛
) ≤ 𝑑

(
𝑠𝑛, 𝑠

∗) ≤ ⎛⎜⎜⎝1 +
1 + 𝛿𝜏𝑛

𝜏𝑛+1

𝜏𝑛𝛽

⎞⎟⎟⎠𝑑
(
𝑡𝑛, 𝑠𝑛
)
.

Proof. From Lemma 2.4 and the definition of Algorithm 3.1, one obtains⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑧

⟩ ≤ 𝜏𝑛
(
𝑓 (𝑠𝑛, 𝑧) − 𝑓

(
𝑠𝑛, 𝑡𝑛
))

(∀𝑧 ∈ 𝐶). (4.6)

From 𝑠𝑛+1 → 𝑠∗ and 𝑠𝑛+1 satisfies the step size criterion (3.1), one obtains

𝑓 (𝑠𝑛, 𝑠∗) − 𝑓 (𝑠𝑛, 𝑡𝑛) ≤ 𝑓 (𝑡𝑛, 𝑠∗) +
𝛿

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗). (4.7)

In view of 𝑠∗ ∈ Ω and 𝑡𝑛 ∈ 𝐶 , one obtains 𝑓
(
𝑠∗, 𝑡𝑛
) ≥ 0, which together with the strong pseudomonotonicity of 𝑓 yields that

𝑓
(
𝑡𝑛, 𝑠

∗) ≤ −𝛽𝑑2(𝑡𝑛, 𝑠∗). (4.8)

Combining (4.6), (4.7), and (4.8), we have⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠∗
⟩ ≤ 𝜏𝑛

(
𝑓
(
𝑡𝑛, 𝑠

∗)+ 𝛿

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗)

)
≤ 𝜏𝑛

(
−𝛽𝑑2(𝑡𝑛, 𝑠∗) +

𝛿

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗)

)
.

(4.9)

Thus

𝜏𝑛𝛽𝑑
2(𝑡𝑛, 𝑠∗) ≤ 𝛿𝜏𝑛

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗) +

⟨
−exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠∗
⟩

≤ 𝛿𝜏𝑛

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗) + 𝑑

(
𝑠𝑛, 𝑡𝑛
)
𝑑
(
𝑡𝑛, 𝑠

∗) .
That is

𝜏𝑛𝛽𝑑(𝑡𝑛, 𝑠∗) ≤
(
1 +

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑(𝑠𝑛, 𝑡𝑛).

Then we have

𝑑(𝑠𝑛, 𝑠∗) ≤ 𝑑(𝑠𝑛, 𝑡𝑛) + 𝑑(𝑡𝑛, 𝑠∗) ≤
⎛⎜⎜⎝1 +

1 + 𝛿𝜏𝑛

𝜏𝑛+1

𝜏𝑛𝛽

⎞⎟⎟⎠𝑑(𝑠𝑛, 𝑡𝑛).
The upper error bound is established.

Let Δ 
(
𝑠𝑛, 𝑡𝑛, 𝑠

∗) be a geodesic triangle. Using (2.3), we have⟨
exp−1

𝑡𝑛
𝑠𝑛, exp−1𝑡𝑛

𝑠∗
⟩ ≥ 𝑑2 (𝑡𝑛, 𝑠𝑛)− ⟨exp−1𝑠𝑛

𝑡𝑛, exp−1𝑠𝑛
𝑠∗
⟩

≥ 𝑑2 (𝑡𝑛, 𝑠𝑛)− 𝑑
(
𝑡𝑛, 𝑠𝑛
)
𝑑
(
𝑠𝑛, 𝑠

∗) . (4.10)

Combining (4.9) and (4.10), we have

𝑑2 (𝑡𝑛, 𝑠𝑛)− 𝑑
(
𝑡𝑛, 𝑠𝑛
)
𝑑
(
𝑠𝑛, 𝑠

∗) ≤ 𝛿𝜏𝑛

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)𝑑(𝑡𝑛, 𝑠∗)

≤ 𝛿𝜏𝑛

𝜏𝑛+1
𝑑(𝑠𝑛, 𝑡𝑛)

(
𝑑(𝑡𝑛, 𝑠𝑛) + 𝑑

(
𝑠𝑛, 𝑠

∗)) .
That is

𝑑
(
𝑡𝑛, 𝑠𝑛
)
− 𝑑
(
𝑠𝑛, 𝑠

∗) ≤ 𝛿𝜏𝑛

𝜏𝑛+1

(
𝑑(𝑡𝑛, 𝑠𝑛) + 𝑑

(
𝑠𝑛, 𝑠

∗)) ,
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which implies that
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𝑑
(
𝑠𝑛, 𝑠

∗) ≥ 1 − 𝛿𝜏𝑛

𝜏𝑛+1

1 + 𝛿𝜏𝑛

𝜏𝑛+1

𝑑
(
𝑡𝑛, 𝑠𝑛
)
.

This completes the proof. □

4.3. Linear convergence for the proposed algorithms

In this subsection we establish the 𝑅-linear convergence rates of the proposed Algorithms 3.1–3.3 when the involved bifunction 
𝑓 is strongly pseudomonotone. We start by reviewing the definition of 𝑅-linear convergence.

Definition 4.1. A sequence 
{
𝑠𝑛
}

in Hadamard manifold  is said to be converge 𝑅-linearly to 𝑠∗ with rate 𝜂 ∈ [0, 1) if there exists 
a constant 𝑐 > 0 such that 𝑑(𝑠𝑛, 𝑠∗) ≤ 𝑐𝜂𝑛, ∀𝑛 ∈ ℕ.

Now we prove the 𝑅-linear convergence of the proposed Algorithm 3.1.

Theorem 4.3. Suppose that Conditions (A1)′, (A2)–(A4), (C1), and (C3) hold. Then the sequence 
{
𝑠𝑛
}

generated by Algorithm 3.1

converges 𝑅-linearly to the unique solution 𝑠∗ of EP (1.1).

(A1)′ 𝑓 ∶ 𝐶 ×𝐶 →ℝ is a 𝛽-strongly pseudomonotone bifunction and 𝑓 (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶 .

Proof. Under the above assumptions, the EP (1.1) has a unique solution (see Theorem 4.1), denoted by 𝑠∗. Since 𝑠∗ ∈ Ω and 𝑡𝑛 ∈ 𝐶 , 
one obtains 𝑓

(
𝑠∗, 𝑡𝑛
) ≥ 0, which together with the 𝛽-strong pseudomonotonicity of 𝑓 implies that 𝑓

(
𝑡𝑛, 𝑠

∗) ≤ −𝛽𝑑2(𝑡𝑛, 𝑠∗). Letting 
𝑦 = 𝑠∗ in (3.10), one has

𝑑2 (𝑠𝑛+1, 𝑠∗) ≤ 𝑑2 (𝑠𝑛, 𝑠∗)− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)+ 2𝜒𝜏𝑛𝑓
(
𝑡𝑛, 𝑠

∗)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)− 2𝛽𝜒𝜏𝑛𝑑
2(𝑡𝑛, 𝑠∗).

(4.11)

We complete the proof by considering two cases of 𝜒 .

Case 1. When 𝜒 ∈ (0, 1]. Let 𝛼 ∈
(
0, 1−𝛿

2

)
be a fixed number. Since 𝛿 ∈ (0, 1), one obtains

lim
𝑛→∞

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)
= 1 − 𝛿 > 2𝛼 > 0.

Therefore, there exists 𝑛0 ∈ℕ such that

1 −
𝛿𝜏𝑛

𝜏𝑛+1
> 2𝛼 > 0 (∀𝑛 ≥ 𝑛0). (4.12)

By (4.11) and (4.12), we have for all 𝑛 ≥ 𝑛0,

𝑑2 (𝑠𝑛+1, 𝑠∗) ≤ 𝑑2 (𝑠𝑛, 𝑠∗)− 2𝜒𝛼𝑑2 (𝑠𝑛, 𝑡𝑛)− 2𝛽𝜒𝜏𝑛𝑑
2(𝑡𝑛, 𝑠∗)

≤ 𝑑2 (𝑠𝑛, 𝑠∗)−min{𝜒𝛼, 𝛽𝜒𝜏𝑛}
(
2𝑑2 (𝑠𝑛, 𝑡𝑛)+ 2𝑑2 (𝑡𝑛, 𝑠∗))

≤ 𝑑2 (𝑠𝑛, 𝑠∗)−min{𝜒𝛼, 𝛽𝜒𝜏𝑛}𝑑2 (𝑠𝑛, 𝑠∗)
= 𝑟2𝑑2 (𝑠𝑛, 𝑠∗) ,

where 𝑟 =
√
1 −min{𝜒𝛼, 𝛽𝜒𝜏𝑛} ∈ (0, 1). Thus we have

𝑑
(
𝑠𝑛+1, 𝑠

∗) ≤ 𝑟𝑑
(
𝑠𝑛, 𝑠

∗) (∀𝑛 ≥ 𝑛0). (4.13)

By induction of (4.13) we obtain

𝑑
(
𝑠𝑛+1, 𝑠

∗) ≤ 𝑟𝑛−𝑛0+1𝑑
(
𝑠𝑛0

, 𝑠∗
)

(∀𝑛 ≥ 𝑛0).

That is

𝑑
(
𝑠𝑛+1, 𝑠

∗) ≤𝑁𝑟𝑛 (∀𝑛 ≥ 𝑛0),( )
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Case 2. When 𝜒 ∈ (1, 2∕(1 + 𝛿)). From (3.12) and (4.11), we have

𝑑2 (𝑠𝑛+1, 𝑠∗) ≤ 𝑑2 (𝑠𝑛, 𝑠∗)−(2 − 𝜒 −
𝜒𝛿𝜏𝑛

𝜏𝑛+1

)(
𝑑2 (𝑠𝑛, 𝑡𝑛)+ 𝑑2 (𝑠𝑛+1, 𝑡𝑛))

− 2𝛽𝜒𝜏𝑛𝑑
2(𝑡𝑛, 𝑠∗).

Let 𝛼 ∈
(
0, 2−𝜒−𝜒𝛿

2

)
be a fixed number. Then

lim
𝑛→∞

(
2 − 𝜒 −

𝜒𝛿𝜏𝑛

𝜏𝑛+1

)
= 2 − 𝜒 − 𝜒𝛿 > 2𝛼 > 0.

Therefore, there exists 𝑛1 ∈ℕ such that

2 − 𝜒 −
𝜒𝛿𝜏𝑛

𝜏𝑛+1
> 2𝛼 > 0 (∀𝑛 ≥ 𝑛1).

Using a proof similar to that of Case 1, we can obtain that {𝑠𝑛} is 𝑅-linearly convergent when 𝜒 ∈ [1, 2∕(1 + 𝛿)). Thus we prove that 
the sequence generated {𝑠𝑛} by Algorithm 3.1 is 𝑅-linearly convergent when 𝜒 ∈ (0, 2∕(1 + 𝛿)). □

Theorem 4.4. Let Conditions (A1)′, (A2)–(A4), (C1), and (C3) hold. Then the sequence 
{
𝑠𝑛
}

created by Algorithm 3.2 converges 𝑅-

linearly to the unique solution 𝑠∗ of EP (1.1).

Proof. Using (3.29) with 𝑦 = 𝑠∗ and noting that 𝑓
(
𝑡𝑛, 𝑠

∗) ≤ −𝛽𝑑2 (𝑡𝑛, 𝑠∗), one has

𝑑2 (𝑠𝑛+1, 𝑠∗)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)− 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)

+
2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1)− 2𝛽𝜒𝜏𝑛𝑑

2 (𝑡𝑛, 𝑠∗) .
(4.14)

We also consider two possible cases of 𝜒 .
Case 1. When 𝜒 ∈ (0, 1]. Note that (1 − 𝜒)𝑑2 (𝑠𝑛, 𝑠𝑛+1) ≥ 0 for all 𝑛 ≥ 0. Let 𝜇 and 𝜌 be two real numbers such that

𝜇 ∈
(
0, 1 − 2𝛿

2

)
and 1 < 𝜌 <

1
2

(1
𝛿
− 1
)
.

Adding the term 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛) to both sides of (4.14), we obtain

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 𝜒

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)

− 𝜒

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 2𝛽𝜒𝜏𝑛𝑑

2 (𝑡𝑛, 𝑠∗) .
(4.15)

From 𝛿 ∈ (0, 13 ), we have

lim
𝑛→∞

(
1 −

2𝛿𝜏𝑛
𝜏𝑛+1

)
= 1 − 2𝛿 > 2𝜇 > 0

and

lim
𝑛→∞

(
1 −

𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

)
= 1 − (1 + 2𝜌)𝛿 > 0.

It follows that there exists 𝑛1 ∈ℕ satisfying

1 −
2𝛿𝜏𝑛
𝜏𝑛+1

> 2𝜇 > 0, (∀𝑛 ≥ 𝑛1)

and

1 −
𝛿𝜏𝑛

𝜏𝑛+1
−

2𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

> 0, (∀𝑛 ≥ 𝑛1).
208
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𝑑2 (𝑠𝑛+1, 𝑠∗)+ 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 2𝜇𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)− 2𝛽𝜒𝜏𝑛𝑑

2 (𝑡𝑛, 𝑠∗) . (4.16)

Note that

2𝜇𝜒𝑑2 (𝑠𝑛, 𝑡𝑛)+ 2𝛽𝜒𝜏𝑛𝑑
2 (𝑡𝑛, 𝑠∗) ≥min{𝜇𝜒, 𝛽𝜒𝜏𝑛}

(
2𝑑2 (𝑠𝑛, 𝑡𝑛)+ 2𝑑2 (𝑡𝑛, 𝑠∗))

≥min{𝜇𝜒, 𝛽𝜒𝜏𝑛}𝑑2 (𝑠𝑛, 𝑠∗) . (4.17)

From (4.16) and (4.17), one obtains

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛) ≤ 𝜁𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛) , (4.18)

where 𝜁 = 1 −min{𝜇𝜒, 𝛽𝜒𝜏𝑛} ∈ (0, 1). Set

𝑎𝑛 = 𝑑2 (𝑠𝑛, 𝑠∗) , 𝑏𝑛 =
2𝜒𝛿𝜌𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛) .

Thus the inequality (4.18) becomes

𝑎𝑛+1 + 𝑏𝑛+1 ≤ 𝜁𝑎𝑛 +
𝑏𝑛

𝜌
≤ 𝑟
(
𝑎𝑛 + 𝑏𝑛

)
(∀𝑛 ≥ 𝑛1), (4.19)

where 𝑟 =max
{
𝜁,

1
𝜌

}
∈ (0, 1). By induction of (4.19), we have

𝑎𝑛+1 + 𝑏𝑛+1 ≤ 𝑟𝑛−𝑛1+1
(
𝑎𝑛1

+ 𝑏𝑛1

)
(∀𝑛 ≥ 𝑛1),

which can be reduced to

𝑑
(
𝑠𝑛+1, 𝑠

∗) ≤ 𝐶𝜂𝑛 (∀𝑛 ≥ 𝑛1),

where 𝐶 =
√

𝑟1−𝑛1
(
𝑎𝑛1

+ 𝑏𝑛1

)
and 𝜂 =

√
𝑟. This means that {𝑠𝑛} is 𝑅-linearly convergent when 𝜒 ∈ (0, 1].

Case 2. When 𝜒 ∈ (1, 2∕(1 + 3𝛿)). From (3.34) and (4.14), we have

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)−(2 − 𝜒 −

2𝜒𝛿𝜏𝑛

𝜏𝑛+1

)
𝑑2 (𝑠𝑛, 𝑡𝑛)

−
(
2 − 𝜒 −

𝜒𝛿𝜏𝑛

𝜏𝑛+1
−

2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

)
𝑑2 (𝑠𝑛+1, 𝑡𝑛)− 2𝛽𝜒𝜏𝑛𝑑

2 (𝑡𝑛, 𝑠∗) .
Let 𝜇 and 𝜌 be two real numbers such that

𝜇 ∈
(
0,

2 − 𝜒 − 2𝜒𝛿

2

)
and 1 < 𝜌 <

2 − 𝜒 − 𝜒𝛿

2𝜒𝛿
.

Note that

lim
𝑛→∞

(
2 − 𝜒 −

2𝜒𝛿𝜏𝑛

𝜏𝑛+1

)
= 2 − 𝜒 − 2𝜒𝛿 > 2𝜇 > 0

and

lim
𝑛→∞

(
2 − 𝜒 −

𝜒𝛿𝜏𝑛

𝜏𝑛+1
−

2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

)
= 2 − 𝜒 − 𝜒𝛿 − 2𝜒𝛿𝜌 > 0.

Thus, there exists 𝑛2 ≥ 1 such that

2 − 𝜒 −
2𝜒𝛿𝜏𝑛

𝜏𝑛+1
> 2𝜇 > 0, ∀𝑛 ≥ 𝑛2,

and

2 − 𝜒 −
𝜒𝛿𝜏𝑛

𝜏
−

2𝜒𝛿𝜌𝜏𝑛+1
𝜏

> 0 (∀𝑛 ≥ 𝑛2).
209
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Therefore we have

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 2𝜒𝛿𝜌𝜏𝑛+1
𝜏𝑛+2

𝑑2 (𝑠𝑛+1, 𝑡𝑛)
≤ 𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛)− 2𝜇𝑑2 (𝑠𝑛, 𝑡𝑛)− 2𝛽𝜒𝜏𝑛𝑑

2 (𝑡𝑛, 𝑠∗)
≤ 𝜁𝑑2 (𝑠𝑛, 𝑠∗)+ 2𝜒𝛿𝜏𝑛

𝜏𝑛+1
𝑑2 (𝑡𝑛−1, 𝑠𝑛) (∀𝑛 ≥ 𝑛2),

where 𝜁 = 1 −min{𝜇, 𝛽𝜒𝜏𝑛} ∈ (0, 1). The rest of the proof is similar to Case 1 and is therefore omitted. To this end, we proved that 
{𝑠𝑛} converges 𝑅-linearly to 𝑠∗ when 𝜒 ∈ (0, 2∕(1 + 3𝛿)). This completes the proof. □

Theorem 4.5. Assume that Conditions (A1)′, (A2)–(A4), (C1), and (C3) hold. Then the sequence 
{
𝑠𝑛
}

formed by Algorithm 3.3 converges 
𝑅-linearly to the unique solution 𝑠∗ of EP (1.1).

Proof. Combining 𝑠∗ ∈ Ω, 𝑡𝑛 ∈ 𝐶 , and the strong pseudomonotonicity of 𝑓 , we have 𝑓
(
𝑡𝑛, 𝑠

∗) ≤ −𝛽𝑑2(𝑡𝑛, 𝑠∗). Letting 𝑦 = 𝑠∗ ∈ 𝐶 in 
(3.57), one has

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 𝛼𝑛𝑑
2 (𝑡𝑛+1, 𝑡𝑛) ≤ 𝑑2 (𝑠𝑛, 𝑠∗)+ 𝛽𝑛𝑑

2 (𝑡𝑛−1, 𝑡𝑛)− 𝛾𝑛𝑑
2 (𝑠𝑛, 𝑡𝑛)

− 2
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝛽𝑑

2(𝑡𝑛, 𝑠∗) (∀𝑛 ≥ 𝑛1).
(4.20)

From 𝛿 ∈ (0, 1), 𝜇 ∈ (1∕(2 − 𝛿), 1), lim𝑛→∞ 𝜏𝑛 = 𝜏 > 0, we have

lim
𝑛→∞

𝜒𝑛 =
1
2
√
1 + 4𝜇 − 1

2
∈

(√
3 − 1
2

,

√
5 − 1
2

)
.

Then

𝛾 = lim
𝑛→∞

𝛾𝑛 = (1 − 𝜒) 1
𝜒

((
1 + 1

𝜂

)
𝜇 − 1

𝜂

)
∈ (0,
√
3).

Then there exists a constant 𝑛2(≥ 𝑛1) such that

𝛾𝑛 ≥ 𝛾 (∀𝑛 ≥ 𝑛3).

Note that

𝛾𝑑2 (𝑠𝑛, 𝑡𝑛)+ 2
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝛽𝑑

2 (𝑡𝑛, 𝑠∗)
≥min{𝛾∕2,

(
1 − 𝜒𝑛+1

)
𝜏𝑛𝛽}
(
2𝑑2 (𝑠𝑛, 𝑡𝑛)+ 2𝑑2 (𝑡𝑛, 𝑠∗))

≥min{𝛾∕2,
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝛽}𝑑2 (𝑠𝑛, 𝑠∗) .

(4.21)

From (4.20) and (4.21), one obtains

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 𝛼𝑛𝑑
2 (𝑡𝑛+1, 𝑡𝑛) ≤ 𝜁𝑑2 (𝑠𝑛, 𝑠∗)+ 𝛽𝑛𝑑

2 (𝑡𝑛−1, 𝑡𝑛) , (4.22)

where 𝜁 = 1 −min{𝛾∕2, 
(
1 − 𝜒𝑛+1

)
𝜏𝑛𝛽} ∈ (0, 1). From (3.58), there exists a constant 𝑛3(≥ 𝑛2) such that

𝛼𝑛 > 𝜌1 > 𝜌2 > 𝛽𝑛 > 0 (∀𝑛 ≥ 𝑛3). (4.23)

Combining (4.22) and (4.23), we have

𝑑2 (𝑠𝑛+1, 𝑠∗)+ 𝜌1𝑑
2 (𝑡𝑛+1, 𝑡𝑛) ≤ 𝜁𝑑2 (𝑠𝑛, 𝑠∗)+ 𝜌2𝑑

2 (𝑡𝑛−1, 𝑡𝑛) . (4.24)

Set

𝑎𝑛 = 𝑑2 (𝑠𝑛, 𝑠∗) , 𝑏𝑛 = 𝜌1𝑑
2 (𝑡𝑛−1, 𝑡𝑛) .

It follows from (4.24) that

𝑎𝑛+1 + 𝑏𝑛+1 ≤ 𝜁𝑎𝑛 +
𝜌2
𝜌1

𝑏𝑛 ≤ 𝑟
(
𝑎𝑛 + 𝑏𝑛

)
(∀𝑛 ≥ 𝑛3),

where 𝑟 =max
{
𝜁,

𝜌2
𝜌1

}
∈ (0, 1). Therefore by induction, we have

𝑎𝑛+1 + 𝑏𝑛+1 ≤ 𝑟𝑛−𝑛3+1
(
𝑎𝑛3

+ 𝑏𝑛3

)
(∀𝑛 ≥ 𝑛3),
210
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𝑑
(
𝑠𝑛+1, 𝑠

∗) ≤ 𝐶𝜂𝑛 (∀𝑛 ≥ 𝑛3),

where 𝐶 =
√

𝑟1−𝑛3
(
𝑎𝑛3

+ 𝑏𝑛3

)
and 𝜂 =

√
𝑟. We get the required result. □

5. Numerical experiments

In this section, we provide a fundamental numerical example to illustrate the computational performance of the algorithms 
proposed in this paper. All codes were written in MATLAB 2018a and run on a PC with an Intel(R) Core(TM) i5-8250U CPU @ 1.60 
GHz 1.80 GHz and 8.00 GB of running memory.

The following example is regarded by many literature on Hadamard manifolds; see, e.g., [23,30,53].

Example 5.1. Let ℝ++ = {𝑥 ∈ℝ ∣ 𝑥 > 0} and the Riemannian metric ⟨⋅ , ⋅⟩ be given by

⟨𝑢, 𝑣⟩ ∶= 1
𝑥2

𝑢𝑣 (∀𝑢, 𝑣 ∈ 𝑇𝑥)(∀𝑥 ∈).

Then  =
(
ℝ++, ⟨⋅ , ⋅⟩) becomes a Riemannian manifold. The Riemannian distance 𝑑 ∶ × → ℝ+ with respect to 𝑥 ∈ and 

𝑦 ∈ is defined as

𝑑(𝑥, 𝑦) = |ln(𝑥∕𝑦)| (∀𝑥, 𝑦 ∈),

see [53, Example 1] for more details. Thus  is a Hadamard manifold. For each 𝑥 ∈, the tangent space 𝑇𝑥 at 𝑥 equals to ℝ. 
The unique geodesic 𝛾 ∶ℝ →ℝ++ with initial conditions 𝛾(0) = 𝑥 and 𝛾 ′(0) = 𝑣 is given by

𝛾(𝑡) = 𝑥𝑒(𝑣∕𝑥)𝑡 (∀𝑡 ∈ℝ).

Thus exp𝑥 𝑡𝑣 = 𝑥𝑒(𝑣∕𝑥)𝑡 for all 𝑥 ∈, 𝑡 ∈ℝ, and 𝑣 ∈ 𝑇𝑥. In addition, for any 𝑥 ∈ and 𝑦 ∈, one can show that

𝑦 = exp𝑥

(
𝑑(𝑥, 𝑦)

exp−1
𝑥

𝑦

𝑑(𝑥, 𝑦)

)
= 𝑥𝑒

exp−1𝑥 𝑦

𝑥𝑑(𝑥,𝑦) 𝑑(𝑥,𝑦) = 𝑥𝑒
exp−1𝑥 𝑦

𝑥 .

Then the inverse of exponential map is denoted by

exp−1
𝑥

𝑦 = 𝑥 ln 𝑦

𝑥
(∀𝑥, 𝑦 ∈).

The Nash-Cournot oligopolistic equilibrium model (see [1, Sect. 1.4.3, p. 26]) which assumes that the price and tax-fee functions 
are affine, and provides the basis for the bifunction 𝑓 of the equilibrium problem. The following is a description of the test problem: 
consider that a commodity is produced by 𝑚 different businesses. Let 𝑥 represent the vector, in which the value of the element 𝑥𝑗

describes the quantity of the commodity created by business 𝑗. We use the following notations for the price, profit, and strategy 
involved in the problem.

• The price 𝑝𝑗 (𝑠) is a decreasing affine function of 𝑠 with 𝑠 =
∑𝑚

𝑗=1 𝑥𝑗 , i.e., 𝑝𝑗 (𝑠) = 𝛼𝑗 − 𝛽𝑗𝑠, where 𝛼𝑗 > 0, 𝛽𝑗 > 0.

• Use 𝑓𝑗 (𝑥) = 𝑝𝑗 (𝑠)𝑥𝑗 − 𝑐𝑗
(
𝑥𝑗

)
to calculate the profit produced by business 𝑗, where 𝑐𝑗

(
𝑥𝑗

)
is the tax and fee for producing 𝑥𝑗 .

• Let 𝐶𝑗 =
[
𝑥min
𝑗

, 𝑥max
𝑗

]
represent the strategy set of business 𝑗, where 𝑥min

𝑗
and 𝑥max

𝑗
denote the lower and upper bounds on the 

commodity that can be produced by business 𝑗, respectively. Then the strategy set of the equilibrium model is 𝐶 ∶= 𝐶1 ×𝐶2… ×
𝐶𝑚.

Under the assumption that the production of the other businesses is a parametric input, each company aims to maximize its profit 
by selecting the appropriate production level. A typical method for solving this problem is based on the well-known Nash equilibrium 
idea. Recall that if 𝑥∗ satisfies the model

𝑓𝑗

(
𝑥∗
) ≥ 𝑓𝑗

(
𝑥∗
[
𝑥𝑗

])
(∀𝑥𝑗 ∈ 𝐶𝑗 )(∀𝑗 = 1,2,… ,𝑚),

where 𝑥∗
[
𝑥𝑗

]
denotes the vector obtained from 𝑥∗ by replacing 𝑥∗

𝑗
with 𝑥𝑗 , then 𝑥∗ is said to be an equilibrium point of the model. 

Choose 𝑓 (𝑥, 𝑦) ∶= 𝜙(𝑥, 𝑦) − 𝜙(𝑥, 𝑥) with 𝜙(𝑥, 𝑦) ∶= − 
∑𝑚

𝑗=1 𝑓𝑗

(
𝑥
[
𝑦𝑗
])

. The problem of locating the Nash equilibrium point of the 
model can be stated as follows:

find 𝑥∗ ∈ 𝐶, such that 𝑓
(
𝑥∗, 𝑥
) ≥ 0 (∀𝑥 ∈ 𝐶).

Now assume that for each business 𝑗, the tax-fee function 𝑐𝑗
(
𝑥𝑗

)
is increasing and affine. According to this assumption, the tax 

and fee for generating a unit both increase as the number of production increases. The bifunction 𝑓 in such case can be written as 
follows:
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𝑓 (𝑥, 𝑦) = ⟨𝑃𝑥+𝑄𝑦+ 𝑟, 𝑦− 𝑥⟩,
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Table 1

Some parameter settings of the Nash-Cournot oligopolistic equilibrium model.

Company 𝑗 Price 𝑝𝑗 (𝑠) Tax-fee 𝑐𝑗
(
𝑥𝑗

)
Strategy set 𝐶𝑗

1 𝑝1(𝑠) = 100 − 0.01𝑠 𝑐1
(
𝑥1
)
= 20𝑥1 𝐶1 = [1000,2000]

2 𝑝2(𝑠) = 110 − 0.02𝑠 𝑐2
(
𝑥2
)
= 15𝑥2 + 100 𝐶2 = [500,2500]

3 𝑝3(𝑠) = 100 − 0.015𝑠 𝑐3
(
𝑥3
)
= 17𝑥3 𝐶3 = [800,1500]

4 𝑝4(𝑠) = 115 − 0.05𝑠 𝑐4
(
𝑥4
)
= 20𝑥4 + 75 𝐶4 = [500,3000]

Fig. 1. Numberical behavior of our algorithms with different 𝜒 in Example 5.1. (a) Our Algorithm 3.1 and (b) Our Algorithm 3.2.

where 𝑃 ∈ℝ𝑛×𝑛 and 𝑄 ∈ℝ𝑛×𝑛 are two symmetric matrices, and 𝑟 ∈ℝ𝑛 is a vector. If 𝑄 is positive semidefinite and 𝑄 −𝑃 is negative 
semidefinite, then 𝑓 has the following characteristics (see [36, p. 769]):

• 𝑓 is monotone (hence pseudomonotone), 𝑓 (𝑥, ⋅) is differentiable and convex on 𝐶 , and 𝑓 (⋅, 𝑦) is continuous on 𝐶 ;
• 𝑓 satisfies the Lipschitz-type condition (2.4) with constant 𝐿 = ‖𝑃 −𝑄‖.

Therefore, the Assumptions (A1)–(A4) all hold. That is, the proposed Algorithms 3.1–3.3 can be used to solve the mentioned problem. 
Next, we set the following parameters for the price, tax-fee, and strategy involved in the problem (see [23, Sect. 4]) (Table 1).

Now we use the proposed Algorithms 3.1–3.3 to solve Example 5.1 and compare them with the methods presented in [23,24]. 
Choose the following parameters for these algorithms.

(1) Select 𝛿 = 0.1, 𝜏0 = 0.01, 𝜉𝑛 = 0, and 𝜎𝑛 = 1∕(𝑛 + 1000)2 for the proposed Algorithms 3.1 and 3.2. Take 𝜏−1 = 𝜏0 = 0.01, 𝛿 = 0.1, 
𝜇 = 0.6, 𝜉𝑛 = 0, and 𝜎𝑛 = 1∕(𝑛 + 1000)2 for the suggested Algorithm 3.3.

(2) For the Algorithm 1 and Algorithm 2 suggested by Khammahawong et al. [23] (shortly KKCYWJ Alg. 1 and KKCYWJ Alg. 2), 
we set 𝜏𝑛 =

1
𝑛+1 .

(3) For the Algorithm 4.1 and Algorithm 4.3 proposed by Ansari and Islam [24] (shortly AI Alg. 4.1 and AI Alg. 4.3), we choose 
𝜏0 = 0.01 and 𝛿 = 0.1.

Since we do not know the exact solution of Example 5.1, we use 𝜀𝑛 = 𝑑
(
𝑠𝑛, 𝑡𝑛
)
, 𝜀𝑛 = max{𝑑

(
𝑠𝑛, 𝑡𝑛
)
, 𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
}, and 𝜀𝑛 =

max{𝑑
(
𝑠𝑛, 𝑡𝑛
)
, 𝑑
(
𝑡𝑛+1, 𝑡𝑛

)
} to measure the iteration error of the proposed Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3 at 

the 𝑛-th step, respectively. For KKCYWJ Alg. 2 and AI Alg. 4.1, we use 𝜀𝑛 = 𝑑
(
𝑠𝑛, 𝑡𝑛
)
. For KKCYWJ Alg. 1 and AI Alg. 4.3, we 

select 𝜀𝑛 = max{𝑑
(
𝑠𝑛, 𝑡𝑛
)
, 𝑑
(
𝑠𝑛+1, 𝑡𝑛

)
}. According to Remarks 3.1, 3.3, and 3.5, 𝑠𝑛 can be seen as an approximate solution of the 

problem when 𝜀𝑛 → 0. For convenience, we adopt the maximum number of iterations 50 as the common stopping condition of all 
algorithms. The initial values of all algorithms are randomly generated by MATLAB function round(500*rand(1,4))+500, and 
the optimization problems of all algorithms are solved by the function fmincon in the MATLAB optimization toolbox. First, we 
demonstrate in Fig. 1 the numerical results of the proposed Algorithms 3.1 and 3.2 with different parameters 𝜒 for a maximum 
number of iterations of 20. Next we set 𝜒 = 1.2 for the proposed Algorithms 3.1 and 3.2. Table 2 presents the termination iteration 
errors and execution times in seconds for all algorithms under four different initial values (Case I: 𝑠0 = [570, 948, 503, 812]; Case 
II: 𝑠0 = [620, 932, 511, 808]; Case III: 𝑠0 = [558, 786, 641, 956]; Case IV: 𝑠0 = [875, 859, 959, 816]). Figure 2 shows the convergence 
behavior of the iteration error 𝜀𝑛 of the proposed Algorithms 3.1–3.3 and the compared methods with respect to the number of 
iterations. As an example, the convergence behavior of each component of our algorithms under Case IV is depicted in Fig. 3. Finally, 
212

we display in Fig. 4 the trends of step size changes for all algorithms under Case I and Case IV.
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Fig. 2. Convergence behavior of our algorithms with the number of iterations in Example 5.1. (a) Case I, (b) Case II, (c) Case III and (d) Case IV.

Fig. 3. Convergence behavior of each component of our algorithms in Case IV.

The convergence behavior of Figs. 1 and 2 show that the algorithms suggested in this paper can be used to solve equilibrium 
problems on Hadamard manifolds since 𝜀𝑛 → 0. Furthermore, from Fig. 3, it can be observed that each component of the iterative 
values of our algorithms converges, indicating that the equilibrium solution for this problem is 𝑠∗ = [2000, 500, 1267, 500]. On the 
other hand, it can be seen from Fig. 1 that our Algorithms 3.1 and 3.2 have a better performance when the parameter 𝜒 is properly 
chosen. The results from Table 2 and Fig. 2 indicate that our algorithm converges faster than some known algorithms in the literature 
[23,24]. The advantage of our algorithms is that they use different adaptive non-monotonic step sizes in each iteration. Table 2 shows 
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that our Algorithm 3.3 takes the least time, while our Algorithms 3.1 and 3.2 and the compared methods speed more time. This is 



Applied Numerical Mathematics 201 (2024) 187–216B. Tan, X. Qin and J.-C. Yao

Table 2

Numerical results of all algorithms under four different initial values.

Algorithms
Case I Case II Case III Case IV

𝜀𝑛 Time (s) 𝜀𝑛 Time (s) 𝜀𝑛 Time (s) 𝜀𝑛 Time (s)

KKCYWJ Alg. 1 1.80E-08 3.32 5.41E-08 2.48 2.53E-08 3.41 1.06E-08 3.12
KKCYWJ Alg. 2 1.12E-08 2.43 3.59E-08 1.85 2.22E-09 2.30 2.28E-08 2.51
AI Alg. 4.1 2.88E-07 2.67 2.49E-07 2.41 9.25E-07 3.51 5.05E-07 2.71
AI Alg. 4.2 2.72E-07 2.36 2.85E-07 2.18 3.11E-07 2.26 5.06E-07 2.20
Our Algorithm 3.1 9.97E-09 2.36 1.22E-08 1.90 8.50E-09 2.33 4.79E-09 2.14
Our Algorithm 3.2 6.11E-08 2.43 2.93E-07 1.83 2.68E-08 2.04 5.32E-08 2.33
Our Algorithm 3.3 2.82E-09 1.65 1.05E-08 1.52 6.36E-09 1.67 1.63E-07 1.44

Fig. 4. The trend of step size changes for all algorithms under two cases. (a) Case I and (b) Case IV.

related to the number of optimization problems that need to be computed in the algorithms and also to the number of values of 
the bifunction 𝑓 that need to be evaluated. As the theoretical analysis in Section 3 demonstrates, the presented Algorithm 3.3 takes 
the shortest time as it needs to compute the optimization problem and the value of the bifunction 𝑓 only once in each iteration. 
In addition, it is evident from Fig. 2 that the proposed Algorithms 3.1–3.3 converge quickly in the first 20 iterations, and there is 
some oscillatory characteristic in the subsequent iterations. The primary cause of oscillation is attributed to changes in the step size, 
as the step size is very small in this example (cf. Fig. 4), and even minor variations can induce oscillations in the iteration process. 
Reducing this type of oscillation is a potential research direction for future consideration. Figure 4 also demonstrates the fact that the 
step size sequences generated by our algorithms are non-monotonic. Notice that the step size sequences of the algorithms suggested 
by Khammahawong et al. [23] are non-summable and the step size sequences of the methods proposed by Ansari and Islam [24] are 
non-increasing (see Fig. 4).

6. Conclusions

In this paper, we propose three adaptive numerical algorithms to discover solutions of equilibrium problems in Hadamard man-
ifolds. The presented algorithms are inspired by the extragradient method and the golden ratio algorithm. Our approaches employ 
a step size criterion that can be dynamically adjusted, enabling them to work adaptively. In the case where the bifunction is pseu-
domonotone and Lipschitz continuous, we proved that the sequences generated by the presented algorithms converge to the solution 
of the equilibrium problem when the solution exists. Furthermore, we established the global error bounds for our first algorithm and 
𝑅-linear convergence of the suggested algorithms in the case of the bifunctions governed by strongly pseudomonotone. Finally, a 
basic computational test demonstrates the efficiency of our algorithms. The results obtained in this paper extended and improved 
some existing algorithms in the literature for solving equilibrium problems in Hadamard manifolds. It is also interesting to explore 
the practical applications of the algorithms offered in this paper on Hadamard manifolds.
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