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ABSTRACT
In order to discover the minimum-norm solution of the pseudomonotone
variational inequality problem in a real Hilbert space, we provide two vari-
ants of the inertial extragradient approach with a novel generalized adap-
tive step size. Two of the suggested algorithms make use of the projection
and contraction methods. We demonstrate several strong convergence
findings without requiring the prior knowledge of the Lipschitz constant of
the mapping. Finally, we give a number of numerical examples that high-
light the benefits and effectiveness of the suggested algorithms and how
they may be used to solve the optimal control problem.
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1. Introduction

The primary goal of this study is to construct several accelerated iterative methods with adaptive
step sizes for finding the solutions of variational inequality problems in infinite-dimensional Hilbert
spaces. Let A : H → H be an operator and letH be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖. Take C ⊂ H is a nonempty, closed, and convex subset of H. The variational inequality
problem (shortly, VIP) is find x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0, ∀ x ∈ C. (VIP)

Variational inequality theory provides a fundamental model for many areas; for example engineer-
ing, economics, trafficmanagement, operations optimization, andmathematical programming, and it
constructs a unified framework for many optimization problems (see, e.g. [1,6,22,28,42]). Therefore,
the theory and solution methods of variational inequalities have received more and more attention
from scholars.
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A vast variety of numerical approaches for solving variational inequality problems have been pre-
sented throughout the last few decades. Next, we review some known methods in the literature for
solving variational inequalities in finite- and infinite-dimensional spaces, which motivate us to pro-
pose new iterative algorithms. TheKorpelevich extragradientmethod [15], which calls for computing
the projection on the feasible set twice in each iteration, is the oldest and simplest method for dealing
with the variational inequality problem. It is well known that computing projections may be chal-
lenging, particularly when the structure of the feasible set is intricate. Some approaches that only
need computing the projection on the feasible set once per iteration have been developed to solve
this problem; see, e.g. [3,11,40]. The main idea of these methods is to replace the iterative process of
the second step in the extragradient method with a display calculation. Numerous variations based
on these techniques [3,11,40] have recently been presented (see, e.g. [14,24,29,30,34,36,39,43]). Their
numerical tests demonstrate the computational effectiveness and benefits of the suggested algorithms.

Recently, inspired by the work of Dong, Jiang and Gibali [8], Thong and Gibali [32] proposed
the following Algorithm 1.1 to solve VIP in Hilbert spaces. On the other hand, Gibali, Thong and
Tuan [10] also proposed the following Algorithm 1.2 for solving the monotone variational inequality
problem based on the projection and contraction method [11].

Algorithm 1.1
Initialization: Given λ > 0, l ∈ (0, 1), μ ∈ (0, 1), and γ ∈ (0, 2).
Iterative Steps: Let x0 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Compute vn = PC(xn − λnAxn), where λn is chosen to be the largest κ ∈ {λ, λl, λl2, . . .}
satisfying

κ ‖Axn − Avn‖ ≤ μ ‖xn − vn‖ (1)

If xn = vn then stop and vn is a solution of (VIP). Otherwise, go to Step 2.
Step 2.Compute zn = PTn(xn − γ λnρnAvn), whereTn := {x ∈ H : 〈xn − λnAxn − vn, x − vn〉 ≤ 0},
and

ρn := (1 − μ)
‖xn − vn‖2∥∥gn∥∥2 , gn := xn − vn − λn (Axn − Avn) . (2)

Step 3. Compute xn+1 = (1 − αn − βn)xn + βnzn.
Set n := n + 1 go to Step 1.

Algorithm 1.2
Initialization: Given λ > 0, l ∈ (0, 1), μ ∈ (0, 1), and γ ∈ (0, 2).
Iterative Steps: Let x0 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Compute vn = PC(xn − λnAxn), where λn is generated by (1).
Step 2. Compute zn = xn − γρngn, where ρn and gn are defined in (2).
Step 3. Compute xn+1 = (1 − αn − βn)xn + βnzn.
Set n := n + 1 go to Step 1.

The strong convergence theorems for the suggested iterative techniques in infinite-dimensional
Hilbert spaces were obtained by Thong andGibali [32] andGibali et al. [10], respectively, under some
reasonable restrictions imposed on the mapping and parameters. It is important to keep in mind that
the Algorithms 1.1 and 1.2 only need to perform the projection on the feasible set once throughout
each iteration. Their numerical tests demonstrate that the suggested algorithms outperform the exist-
ing approaches [3,8,24] in terms of computational efficiency and accuracy. Furthermore, we note that
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the Algorithms 1.1 and 1.2 employ an Armijo-type line search step size criterion enabling them to
operate without requiring prior knowledge of the Lipschitz constant of the mapping. However, using
Armijo-type step sizes may require the proposed algorithm to calculate the projection values on the
feasible set multiple times per iteration. To overcome this drawback, Yang and Liu [46] introduced a
new adaptive step size criterion which only needs to use some previously known information to com-
plete the calculation of the step size. Recently, many scholars have used the idea of this criterion to
construct numerous algorithms for finding the solutions of variational inequalities and equilibrium
problems; see, e.g. [9,16,31,33,36,45,47].

Many scholars have focussed a lot of their attention and study on the concept of inertial as one
of the ways of acceleration. The primary characteristic of inertial-type approaches is that the combi-
nation of the previous two (or more) iterations determines the outcome of the subsequent iteration.
It has been observed that this minor adjustment might accelerate the convergence of inertial-free
algorithms. Numerous inertial-type methods have been developed to handle variational inequalities,
equilibrium problems, split feasibility problems, fixed point problems, inclusion problems, and oth-
ers (see, e.g. [4,7,12,23,25,26,29,31,35,36,43]). Numerous numerical simulations show the benefits
and effectiveness of their inertial methods compared to the version without inertial terms.

In this paper, we suggest two adaptive algorithmswith inertial terms to handle variational inequal-
ity problems in real Hilbert spaces, inspired andmotivated by the aforementioned findings.Wemade
the following contributions to this research.

• Our two algorithms use a new step size without any line search procedure, which generalizes the
step size suggested by Liu and Yang [16]. In addition, our two adaptive algorithms are preferable
to the fixed-step algorithms suggested in [4,35]. Numerical experimental results show that our
step size is useful and efficient, and that our two algorithms require less execution time than the
algorithms in [10,32] that use the Armijo step size.

• Our two algorithms are designed to solve pseudo-monotone variational inequality problems,
which improves the results used in [8,10,24,32,45,46] for finding the solutions of monotone
variational inequalities.

• To accelerate the convergence speed of the proposed algorithms, the inertial term is also embed-
ded in our algorithms. Numerical experimental results demonstrate that the proposed algorithms
converge faster than the methods without inertial in [10,32].

• The strong convergence theorems of the proposed algorithms are proved under some suitable
conditions. This improves the weak convergence results obtained in [3,8,16,25].

• To demonstrate the benefits and computational effectiveness of the suggested methods in com-
parison to those that were previously known in [10,32], several numerical experiments and
applications in optimal control problems are provided.

The rest of this paper is structured as follows. Basic definitions and lemmas that should be utilized
are gathered in Section 2. In Section 3, we describe two new non-monotonic inertial extragradient
algorithms and examine their convergence. In Section 4, a few numerical tests are provided to demon-
strate the benefits and effectiveness of the suggested algorithms. In Section 5, we solve the optimal
control problem utilizing the suggested methods. Finally, Section 6 provides a succinct review of the
research.

2. Preliminaries

The following equality and inequality are useful for our proofs.

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, ∀ x, y ∈ H, (3)
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and

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀ x, y ∈ H. (4)

Let C ⊂ H be a nonempty, closed, and convex. Recall that themetric projection ofH onto C, denoted
by PC, which is defined as for any x ∈ H, there exists a unique nearest point in C, given as PC(x) such
that

‖x − PC(x)‖ ≤ ‖x − y‖, ∀ y ∈ C.

Note that PC has following properties:

〈x − PC(x), y − PC(x)〉 ≤ 0, ∀ x ∈ H, y ∈ C, (5)

and

‖x − y‖2 ≥ ‖x − PC(x)‖2 + ‖y − PC(x)‖2, ∀ x ∈ H, y ∈ C. (6)

Let VIP(C,A) denote the solution set of the variational inequality problem (VIP). It is easy to check
the following relation according to (5).

z ∈ VI(C,A) ⇔ z = PC(z − λAz), ∀ λ > 0. (7)

Definition 2.1: A mapping A : C → H is said to be:

(1) monotone if 〈Ax − Ay, x − y〉 ≥ 0 for all x, y ∈ C;
(2) pseudomonotone if 〈Ax, y − x〉 ≥ 0, we have 〈Ay, y − x〉 ≥ 0 for all x, y ∈ C;
(3) L-Lipschitz continuous if there exists a constant L> 0 such that ‖Ax − Ay‖ ≤ L‖x − y‖ for all

x, y ∈ C;
(4) sequentially weakly continuous on C if, for each sequence {xn} ⊂ C such that xn ⇀ x, we have

Axn ⇀ Ax.

Remark 2.1: From the above definitions, we see that (1)⇒ (2), but the converse is not true in general
(see, e.g. [27, Example 4.2]).

Lemma 2.1 ([5]): Let C ⊂ H be a nonempty closed and convex set and A : C → H be a pseudomono-
tone and continuous mapping. Then z is a solution of the problem (VIP) if and only if

〈Ax, x − z〉 ≥ 0, ∀ x ∈ C.

Lemma 2.2 ([17]): Let {an} and {cn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 − δn)an + bn + cn, ∀ n ≥ 1,

where {δn} is a sequence in (0,1) and {bn} is a real sequence. Assume that
∑∞

n=0 cn < ∞. Then the
following results hold:

(1) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.
(2) If

∑∞
n=0 δn = ∞ and lim supn→∞

bn
δn

≤ 0, then limn→∞ an = 0.

Lemma 2.3 ([18]): Let {
n} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {
ni} of {
n} which satisfies 
ni < 
ni+1 for each i ∈ N. Define
the sequence {κ(n)}n≥n0 of integers as follows:

κ(n) := max{k ≤ n : 
k < 
k+1},
where n0 ∈ N such that {k ≤ n0 : 
k < 
k+1} �= ∅. Then the following results hold:
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(1) κ(n0) ≤ κ(n0 + 1) ≤ · · · and κ(n) → ∞.
(2) 
κ(n) ≤ 
κ(n)+1 and 
n ≤ 
κ(n)+1 for each n ≥ n0.

3. Main results

Wemake the following assumptions about our algorithms in order to prove some strong convergence
theorems for them:

(A1) The feasible set C is a closed and convex subset of a real Hilbert spaceH;
(A2) The mapping A : H → H is L-Lipschitz continuous and pseudomonotone onH;
(A3) ThemappingA : H → H satisfies the following condition: for each {tn} ⊂ C such that tn ⇀ x,

‖Ax‖ ≤ lim inf
n→∞ ‖Atn‖; (8)

(A4) The solution set of the problem (VIP) is nonempty, that is, � := VIP(C,A) �= ∅, where
VIP(C,A) denotes the solution set of the problem (VIP);

(A5) The positive sequence {ξn} satisfies limn→∞ ξn
αn

= 0, where {αn} ⊂ (0, 1) such that
limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Remark 3.1: (1) For Assumption (A2), it suffices to assume that themappingA is continuous pseu-
domonotone if H is a finite-dimensional Hilbert space and it is not necessary to assume A
satisfies (8).

(2) Note that Assumption (A3) is weaker than the sequential weak continuity of the mapping A,
which often assumed in many recent works related to the pseudomonotone problem (VIP) (see,
for example, [4,14,29,34,36,39,43]). Indeed, let A : H → H be a mapping define by Ax = x‖x‖
for all x ∈ H. It can be shown that A satisfies Assumption (A3), but not sequentially weakly
continuous (see [21,38]). However, if A is monotone, then Assumption (A3) can be removed.

Now, we are in a position to describe the proposed Algorithm 3.1.
The following lemma is crucial for proving the convergence results.

Lemma 3.1: Let {λn} be a sequence generated by (11). Then there exists λ ∈ [min{μ
L , λ0}, λ0 +∑∞

n=1 pn] such that λ = limn→∞ λn.

Proof: The proof of this lemma follows as that of Lemma 3.1 in [44], so we omit it here. �

Remark 3.2: The adaptive step size in this work is different from the studied adaptive step size as in
many works. In particular, if pn = 0 and qn = 1 for all n ≥ 0, then the step size reduces to the step
size of many methods (see, e.g. [9,33,36,45–47]). In addition, if pn �= 0 and qn = 1 for all n ≥ 0, then
the step size becomes the step size in [16].

Lemma 3.2: Let {rn}, {vn} and {gn} be the sequences generated by Algorithm 3.1. If rn = vn or gn = 0,
then vn ∈ �.

Proof: By the definition of gn, we have

‖gn‖ = ‖rn − vn − λn(Arn − Avn)‖
≥ ‖rn − vn‖ − λn‖Arn − Avn‖

≥ ‖rn − vn‖ − qnμ
λn

λn+1
‖rn − vn‖

=
(
1 − qnμ

λn

λn+1

)
‖rn − vn‖.
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Algorithm 3.1Modified inertial subgradient extragradient method
Initialization: Given λ0 > 0, φ > 0, σ > 1, γ ∈ (0, 2

σ
) and μ ∈ (0, 1). Choose {pn} ⊂ [0,∞) such

that
∑∞

n=0 pn < ∞ and {qn} ⊂ [1,∞) such that limn→∞ qn = 1.
Iterative Steps: Let x−1, x0 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 0). Set

rn = (1 − αn)(xn + φn(xn − xn−1)),

where

φn =

⎧⎪⎨
⎪⎩
min

{
ξn

‖xn − xn−1‖,φ
}
, if xn �= xn−1,

φ, otherwise.
(9)

Step 2. Compute

vn = PC(rn − λnArn).

If rn = vn or Avn = 0, then stop and vn is a solution of the problem (VIP). Otherwise, go to Step 3.
Step 3. Compute

xn+1 = PTn(rn − γ λnρnAvn),

where Tn := {x ∈ H : 〈rn − λnArn − vn, x − vn〉 ≤ 0} and ρn is defined as follows:

ρn := (1 − μ)
‖rn − vn‖2

‖gn‖2 , gn := rn − vn − λn(Arn − Avn), (10)

and update the step size by

λn+1 = min

{
λn + pn,

qnμ‖rn − vn‖
‖Arn − Avn‖

}
. (11)

Set n := n + 1 go to Step 1.

We can also show that

‖gn‖ ≤
(
1 + qnμ

λn

λn+1

)
‖rn − vn‖.

Therefore, we conclude that(
1 − qnμ

λn

λn+1

)
‖rn − vn‖ ≤ ‖gn‖ ≤

(
1 + qnμ

λn

λn+1

)
‖rn − vn‖. (12)

By Lemma 3.1, one sees that limn→∞ λn exists, which together with limn→∞ qn = 1 gives

lim
n→∞

qnλn
λn+1

= 1.

Therefore, there exists a constant n0 such that 1 − qnμλn
λn+1

> 0 for all n ≥ n0. Hence we have that rn =
vn if and only if gn = 0 by means of (12). If rn = vn, then vn = PC(vn − λnAvn). This means that
vn ∈ � by means of (5). �
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Lemma 3.3: Suppose that Assumptions (A1)–(A4) hold. Let {xn} be formed by Algorithm 3.1. Then,
for each p ∈ � and n ≥ n0, we have

‖xn+1 − p‖2 ≤ ‖rn − p‖2 − ‖rn − xn+1 − γρngn‖2 − γ

(
2
σ

− γ

)
χn‖rn − vn‖2,

where χn := (
1 − μ

1 + qnμ λn
λn+1

)2.

Proof: Let p ∈ �. Then it follows from (6) that

‖xn+1 − p‖2 ≤ ‖rn − γ λnρnAvn − p‖2 − ‖rn − γ λnρnAvn − xn+1‖2

= ‖rn − p‖2 − 2γ λnρn〈rn − p,Avn〉 + γ 2λ2nρ
2
n‖Avn‖2 − ‖rn − xn+1‖2

+ 2γ λnρn〈rn − xn+1,Avn〉 − γ 2λ2nρ
2
n‖Avn‖2

= ‖rn − p‖2 − ‖rn − xn+1‖2 − 2γ λnρn〈Avn, xn+1 − p〉
= ‖rn − p‖2 − ‖rn − xn+1‖2 − 2γ λnρn〈Avn, xn+1 − vn〉 − 2γ λnρn〈Avn, vn − p〉.

Since p ∈ � and vn ∈ C, one has 〈Ap, vn − p〉 ≥ 0. Then, by the pseudomonotonicity of A, we have
〈Avn, vn − p〉 ≥ 0. Hence we have

‖xn+1 − p‖2 ≤ ‖rn − p‖2 − ‖rn − xn+1‖2 − 2γ λnρn〈Avn, xn+1 − vn〉. (13)

It is clear that xn+1 ∈ Tn and hence

− 2γ λnρn〈Avn, xn+1 − vn〉
= 2γρn 〈rn − λnArn − vn, xn+1 − vn〉︸ ︷︷ ︸

≤0

−2γρn〈rn − vn − λn(Arn − Avn), xn+1 − vn〉

≤ −2γρn〈rn − vn − λn(Arn − Avn), xn+1 − vn〉
= −2γρn〈gn, xn+1 − vn〉
= −2γρn〈gn, rn − vn〉 + 2γρn〈gn, rn − xn+1〉. (14)

Now, we estimate −2γρn〈gn, rn − vn〉 and 2γρn〈gn, rn − xn+1〉. By the definition of gn and (11), we
have

〈gn, rn − vn〉 = 〈rn − vn − λn(Arn − Avn), rn − vn〉
≥ ‖rn − vn‖2 − λn‖(Arn − Avn)‖‖rn − vn‖

≥
(
1 − qnμ

λn

λn+1

)
‖rn − vn‖2.

Since limn→∞(1 − qnμ λn
λn+1

) = 1 − μ >
1−μ
σ

> 0, there exists n0 ∈ N such that

1 − qnμ
λn

λn+1
>

1 − μ

σ
> 0, ∀ n ≥ n0.

Thus we deduce

〈gn, rn − vn〉 ≥ 1 − μ

σ
‖rn − vn‖2, ∀ n ≥ n0.
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Since ρn = (1 − μ)
‖rn−vn‖2

‖gn‖2 , we have ρn‖gn‖2 = (1 − μ)‖rn − vn‖2. Therefore we obtain

− 2γρn〈gn, rn − vn〉 ≤ −2γρ2
n

σ
‖gn‖2, ∀ n ≥ n0. (15)

On the other hand, it follows from the equality 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a − b‖2 that

2γρn〈gn, rn − xn+1〉 = ‖rn − xn+1‖2 + γ 2ρ2
n‖gn‖2 − ‖rn − xn+1 − γρngn‖2. (16)

Substituting (15) and (16) into (14), we obtain

− 2γ λnρn〈Avn, xn+1 − vn〉 ≤ ‖rn − xn+1‖2 − ‖rn − xn+1 − γρngn‖2 − γ

(
2
σ

− γ

)
ρ2
n‖gn‖2.

(17)
By the definition of gn, we see that

‖gn‖ ≤ ‖rn − vn‖ + λn‖Arn − Avn‖

≤ ‖rn − vn‖ + qnμ
λn

λn+1
‖rn − vn‖

=
(
1 + qnμ

λn

λn+1

)
‖rn − vn‖.

This implies that

1
‖gn‖2 ≥ 1

(1 + qnμ λn
λn+1

)2‖rn − vn‖2
.

Hence we have

ρ2
n‖gn‖2 = (1 − μ)2

‖rn − vn‖4
‖gn‖2 ≥ (1 − μ)2

(1 + qnμ λn
λn+1

)2
‖rn − vn‖2. (18)

Combining (13), (17), and (18), we obtain

‖xn+1 − p‖2 ≤ ‖rn − p‖2 − ‖rn − xn+1 − γρngn‖2 − γ

(
2
σ

− γ

)
χn‖rn − vn‖2, ∀ n ≥ n0,

(19)

where χn :=
(

1 − μ

1 + qnμ λn
λn+1

)2

. �

Lemma 3.4 ([37]): Suppose that Assumptions (A1)–(A4) hold. Let {rn} be generated by Algorithm 3.1.
If there exists a subsequence {rnk} ⊂ {rn} such that {rnk} converges weakly to v ∈ H and limk→∞ ‖rnk −
vnk‖ = 0, then v ∈ �.

Now, we prove the strong convergence of Algorithm 3.1.

Theorem 3.1: Suppose that Assumptions (A1)–(A5) hold. Then the sequence {xn} generated by
Algorithm 3.1 converges strongly to x∗ = P�(0), where ‖x∗‖ = min{‖x‖ : x ∈ �}.
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Proof: First, we show that {xn} is bounded. From Lemma 3.3 and γ ∈ (0, 2
σ
), one has

‖xn+1 − p‖ ≤ ‖rn − p‖
= ‖(1 − αn)(xn − p + φn(xn − xn−1)) − αnp‖
≤ (1 − αn)‖xn − p + φn(xn − xn−1)‖ + αn‖ − p‖
≤ (1 − αn)‖xn − p‖ + (1 − αn)φn‖xn − xn−1‖ + αn‖p‖, ∀ n ≥ n0.

Putting ιn := (1 − αn)
φn
αn

‖xn − xn−1‖ + ‖p‖ for all n ≥ n0. It is easy to see that limn→∞ ιn exists,
which implies that {ιn} is bounded. Then by Lemma 2.2, one has {‖xn − p‖} is bounded. Note that

‖xn‖ ≤ ‖xn − p + p‖ ≤ ‖xn − p‖ + ‖p‖.

Hence {xn} is bounded and consequently so are {rn} and {vn}. Let x∗ be the minimum-norm solution
of �, that is, x∗ = P�(0). From (4), we have

‖rn − x∗‖2 = ‖(1 − αn)(xn − x∗ + φn(xn − xn−1)) − αnx∗‖2

≤ (1 − αn)
2‖xn − x∗ + φn(xn − xn−1)‖2 + 2αn〈x∗, x∗ − rn〉

≤ (1 − αn)
2 (‖xn − x∗‖2 + 2φn〈xn − xn−1, xn − x∗ + φn(xn − xn−1)〉

)
+ 2αn〈x∗, x∗ − rn〉

≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1 + 2αn〈x∗, x∗ − rn〉, (20)

where K1 := supn≥0{‖xn − x∗ + φn(xn − xn−1)‖}. Putting (20) into (19), we obtain

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1 + 2αn〈x∗, x∗ − rn〉

− ‖rn − xn+1 − γρngn‖2 − γ

(
2
σ

− γ

)
χn‖rn − vn‖2, (21)

which implies that

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1 + 2αn〈x∗, xn+1 − rn〉
+ 2αn〈x∗, x∗ − xn+1〉 (22)

for all n ≥ n0. From (21), we have

‖rn − xn+1 − γρngn‖2 + γ

(
2
σ

− γ

)
χn‖rn − vn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2αnK2 (23)

for all n ≥ n0, where K2 := supn≥n0{(1 − αn)
φn
αn

‖xn − xn−1‖K1, ‖x∗‖‖rn − x∗‖}.
Now, we prove the strong convergence of {‖xn − x∗‖2} converges to zero by consider the following

two cases.
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Case 1. Suppose there exists N ∈ N such that {‖xn − x∗‖2} is monotonically nonincreasing for
n ≥ N. Since {‖xn − x∗‖2} is bounded, we have {‖xn − x∗‖2} converges and hence

‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0.

Since γ ∈ (0, 2
σ
) and limn→∞ χn > 0, it follows from (23) that

lim
n→∞ ‖rn − xn+1 − γρngn‖ = 0 and lim

n→∞ ‖rn − vn‖ = 0. (24)

For all n ≥ n0, we note that ‖gn‖ ≥ 1−μ
σ

‖rn − vn‖, which gives 1
‖gn‖ ≤ σ

(1−μ)‖rn−vn‖ . Hence we have

‖rn − xn+1‖ ≤ ‖rn − xn+1 − γρngn‖ + γρn‖gn‖

= ‖rn − xn+1 − γρngn‖ + γ (1 − μ)
‖rn − vn‖2

‖gn‖
≤ ‖rn − xn+1 − γρngn‖ + γ σ‖rn − vn‖.

Then it follows from (24) that

lim
n→∞ ‖rn − xn+1‖ = 0. (25)

Moreover, we see that

‖xn − rn‖ = ‖(1 − αn)φn(xn − xn−1) − αnxn‖
≤ (1 − αn)φn‖xn − xn−1‖ + αn‖xn‖

= αn

(
(1 − αn)

φn

αn
‖xn − xn−1‖ + ‖xn‖

)
.

Thus we have

lim
n→∞ ‖xn − rn‖ = 0. (26)

It follows from (25) and (26) that

‖xn+1 − xn‖ ≤ ‖xn+1 − rn‖ + ‖rn − xn‖ → 0 as n → ∞. (27)

Since {xn} is bounded, we can choose a subsequence {xnk} of {xn} which converges weakly to some
point v ∈ H such that

lim sup
n→∞

〈x∗, x∗ − xn〉 = lim
k→∞

〈x∗, x∗ − xnk〉 = 〈x∗, x∗ − v〉.

From (26), we also get {rnk} converges weakly to v ∈ H, which together with Lemma 3.4 and (24)
implies that v ∈ � := VIP(C,A). From (5), we obtain

lim sup
n→∞

〈x∗, x∗ − xn〉 = 〈x∗, x∗ − v〉 ≤ 0. (28)

Moreover, from (27) and (28), we also get

lim sup
n→∞

〈x∗, x∗ − xn+1〉 = lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0. (29)

This together with (22) and Lemma 2.2 yields that limn→∞ ‖xn − x∗‖2 → 0, that is, xn → x∗.
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Case 2. Suppose that there exists a subsequence {
ni} of {
n} such that 
ni < 
ni+1 for all i ∈ N.
In this case, we define an integer sequence κ(n) by κ(n) := max{k ≤ n : 
k < 
k+1} for all n ≥ n0
(for some n0 large enough). By Lemma 2.3, {κ(n)} is a nondecreasing sequence such that κ(n) → ∞
as n → ∞ and 
κ(n) ≤ 
κ(n)+1 for all n ≥ n0. Put 
n := ‖xn − x∗‖2 for all n ∈ N. By (23), one has

‖rκ(n) − xκ(n)+1 − γρκ(n)gκ(n)‖2 + γ

(
2
σ

− γ

)
χκ(n)‖rκ(n) − vκ(n)‖2

≤ ‖xκ(n) − x∗‖2 − ‖xκ(n)+1 − x∗‖2 + 2ακ(n)K2

≤ 2ακ(n)K2,

where K2 > 0. Following similar argument as in Case 1, one has

lim
n→∞ ‖rκ(n) − xκ(n)+1 − γρκ(n)gκ(n)‖ = 0 and lim

n→∞ ‖rκ(n) − vκ(n)‖ = 0.

Moreover, we have

lim
n→∞ ‖xκ(n)+1 − rκ(n)‖ = 0 (30)

and

lim sup
n→∞

〈x∗, x∗ − xκ(n)+1〉 ≤ 0. (31)

From (22) and 
κ(n) ≤ 
κ(n)+1, one gets

‖xκ(n)+1 − x∗‖2 ≤ (1 − ακ(n))‖xκ(n) − x∗‖2 + 2(1 − ακ(n))φκ(n)‖xκ(n) − xκ(n)−1‖K1

+ 2ακ(n)〈x∗, xκ(n)+1 − rn〉 + 2ακ(n)〈x∗, x∗ − xκ(n)+1〉
≤ (1 − ακ(n))‖xκ(n)+1 − x∗‖2 + 2(1 − ακ(n))φκ(n)‖xκ(n) − xκ(n)−1‖K1

+ 2ακ(n)〈x∗, xκ(n)+1 − rκ(n)〉 + 2ακ(n)〈x∗, x∗ − xκ(n)+1〉,
which implies that

‖xκ(n)+1 − x∗‖2 ≤ 2(1 − ακ(n))
φκ(n)

ακ(n)
‖xκ(n) − xκ(n)−1‖K1

+ 2‖xκ(n)+1 − rκ(n)‖‖x∗‖ + 2〈x∗, x∗ − xκ(n)+1〉,
where K1 > 0. Combining (30) and (31), we obtain

lim
n→∞ ‖xκ(n)+1 − x∗‖2 = 0.

By Lemma 2.3, we have

‖xn − x∗‖2 ≤ ‖xκ(n)+1 − x∗‖2 → 0 as n → ∞.

Hence xn → x∗. Therefore we can conclude that {xn} converges strongly to the minimum-norm
solution of (VIP) from the above two cases. �

Next, we introduce the second modification of inertial extragradient method (see Algorithm 3.2
below) for solving pseudomonotone VIPs. This method motivated by the projection and contraction
method [11] with a generalized adaptive step size.

Lemma 3.5: Suppose that Assumptions (A1)–(A4) hold. Let {xn} be created by Algorithm 3.2. We
have
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Algorithm 3.2Modified inertial projection and contraction method
Initialization: Given λ0 > 0, φ > 0, σ > 1, γ ∈ (0, 2

σ
) and μ ∈ (0, 1). Choose {pn} ⊂ [0,∞) such

that
∑∞

n=0 pn < ∞ and {qn} ⊂ [1,∞) such that limn→∞ qn = 1.
Iterative Steps: Let x−1, x0 ∈ H be arbitrary and calculate xn+1 as follows:
Step 1. Given the iterates xn−1 and xn (n ≥ 0). Set

rn = (1 − αn)(xn + φn(xn − xn−1)),

where φn is defined in (9).
Step 2. Compute

vn = PC(rn − λnArn).

If rn = vn or Avn = 0, then stop and vn is a solution of (VIP). Otherwise, go to Step 3.
Step 3. Compute

xn+1 = rn − γρngn,

where ρn and gn are defined in (10), and update the step size by (11).
Set n := n + 1 go to Step 1.

(1) ‖xn+1 − p‖2 ≤ ‖rn − p‖2 − 1
γ
( 2
σ

− γ )‖xn+1 − rn‖2 for each n ≥ n0 and p ∈ �;

(2) ‖rn − vn‖2 ≤ χ ′
n‖xn+1 − rn‖2, where χ ′

n :=
(

1+qnμ λn
λn+1

γ (1−μ)

)2

.

Proof: (1) Let p ∈ �, one sees that

‖xn+1 − p‖2 = ‖rn − γρngn − p‖2

= ‖rn − p‖2 − 2γρn〈rn − p, gn〉 + γ 2ρ2
n‖gn‖2. (32)

From the definition of gn, we see that

〈rn − p, gn〉 = ‖rn − vn‖2 − λn〈rn − vn,Arn − Avn〉 + 〈vn − p, rn − vn − λn(Arn − Avn)〉
≥ ‖rn − vn‖2 − λn‖rn − vn‖‖Arn − Avn‖ + 〈vn − p, rn − vn − λn(Arn − Avn)〉

≥
(
1 − qnμ

λn

λn+1

)
‖rn − vn‖2 + 〈vn − p, rn − vn − λn(Arn − Avn)〉.

According to limn→∞(1 − qnμ λn
λn+1

) = 1 − μ >
1−μ
σ

> 0, there exists n0 ∈ N such that

1 − qnμ
λn

λn+1
>

1 − μ

σ
> 0, ∀ n ≥ n0.

Thus we have

〈rn − p, gn〉 ≥ 1 − μ

σ
‖rn − vn‖2 + 〈rn − vn − λn(Arn − Avn), vn − p〉, ∀ n ≥ n0. (33)

Since vn = PC(rn − λnArn) and from (5), one has

〈rn − λnArn − vn, vn − p〉 ≥ 0.

Moreover, using 〈Ap, vn − p〉 ≥ 0 and the pseudomonotonicity of A, one gets

〈Avn, vn − p〉 ≥ 0.
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Hence

〈rn − vn − λn(Arn − Avn), vn − p〉 = 〈rn − λnArn − vn, vn − p〉︸ ︷︷ ︸
≥0

+λn 〈Avn, vn − p〉︸ ︷︷ ︸
≥0

≥ 0. (34)

Combining (33) and (34), we obtain

〈rn − p, gn〉 ≥ 1 − μ

σ
‖rn − vn‖2, ∀ n ≥ n0.

It follows from the definition of ρn that

〈rn − p, gn〉 ≥ 1
σ

ρn‖gn‖2, ∀ n ≥ n0. (35)

By using (33) and (36), one has

‖xn+1 − p‖2 ≤ ‖rn − p‖2 − γ

(
2
σ

− γ

)
ρ2
n‖gn‖2, ∀ n ≥ n0.

Since xn+1 = rn − γρngn, we have ρ2
n‖gn‖2 = 1

γ 2 ‖xn+1 − rn‖2. Hence we have

‖xn+1 − p‖2 ≤ ‖rn − p‖2 − 1
γ

(
2
σ

− γ

)
‖xn+1 − rn‖2, ∀ n ≥ n0. (36)

(2) By the definition of ρn, we have

‖rn − vn‖2 = 1
1 − μ

· ρn‖gn‖2 = 1
1 − μ

· 1
γ 2ρn

(γ 2ρ2
n‖gn‖2)

= 1
1 − μ

· 1
γ 2ρn

‖xn+1 − rn‖2. (37)

From ‖gn‖ ≤ (1 + qnμ λn
λn+1

)‖rn − vn‖, we have 1
‖gn‖2 ≥ 1

(1+qnμ λn
λn+1

)2‖rn−vn‖2
. So

ρn = (1 − μ)
‖rn − vn‖2

‖gn‖2 ≥ 1 − μ

(1 + qnμ λn
λn+1

)2
. (38)

Combining (37) and (38), one has

‖rn − vn‖2 ≤ χ ′
n‖xn+1 − rn‖2, (39)

where χ ′
n :=

(
1+qnμ λn

λn+1
γ (1−μ)

)2

. �

Theorem 3.2: Suppose that Assumptions (A1)–(A5) hold. Then the sequence {xn} created by
Algorithm 3.2 converges strongly to x∗ = P�(0), where ‖x∗‖ = min{‖x‖ : x ∈ �}.
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Proof: From Lemma 3.5 and γ ∈ (0, 2
σ
), by using the same argument as in Theorem 3.1, we have that

{xn} is bounded. Moreover, we can show that

‖rn − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1 + 2αn〈x∗, x∗ − rn〉, (40)

where x∗ = P�(0) and K1 > 0. Putting (40) into (36), we obtain

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1

+ 2αn〈x∗, x∗ − rn〉 − 1
γ

(
2
σ

− γ

)
‖xn+1 − rn‖2

≤ (1 − αn)‖xn − x∗‖2 + 2(1 − αn)φn‖xn − xn−1‖K1

+ 2αn〈x∗, xn+1 − rn〉 + 2αn〈x∗, x∗ − xn+1〉 (41)

for all n ≥ n0. From (41), we have

1
γ

(
2
σ

− γ

)
‖xn+1 − rn‖2 ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2αnK2, ∀ n ≥ n0, (42)

where K2 > 0. Finally, we prove the strong convergence of {xn} converges to x∗ = P�(0) by consider
the two cases, which are the same as in Theorem 3.1. Thus it follows from (42) that limn→∞ ‖xn+1 −
rn‖ = 0. This together with (39) gives that limn→∞ ‖rn − vn‖ = 0. The rest of the proof can be easily
proved by similar arguments to that of Theorem 3.1 and so we omit it. �

4. Numerical experiments

The purpose of this part is to illustrate the benefits and computing effectiveness of the suggested algo-
rithms in comparison to several strongly convergent schemes in the literature [10,32]. The numerical
examples take place in both finite- and infinite-dimensional spaces. The programmes are all executed
in MATLAB 2018a using a PC with an Intel(R) Core(TM) i5-8250U CPU running at 1.60GHz and
8.00GB of RAM.

Example 4.1: Let A : R
m → R

m be given as Ax: = Gx+ g, where g ∈ R
m and G := BBT + S + E,

matrix B ∈ R
m×m, matrix S ∈ R

m×m is skew-symmetric, and matrix E ∈ R
m×m is diagonal matrix

whose diagonal terms are nonnegative (hence G is positive symmetric definite). The feasible set C
is given by C := {x ∈ R

m : −2 ≤ xi ≤ 5, i = 1, 2, . . . ,m}. It is easy to see that A is monotone (hence
it is pseudomonotone) L-Lipschitz continuous with L = ‖G‖. In this example, all entries of B,E are
produced randomly in [0, 2] and S is produced randomly in [−2, 2]. Let g = 0. Then the solution set
is x∗ = {0}.

We compare the proposed algorithms with the following.

• Algorithm 3.1 in Thong and Gibali [32] (shortly, TG Alg. 3.1).
• Algorithm 3.1 in Gibali et al. [10] (shortly, GTT Alg. 3.1).

The parameters of our algorithms and the compared ones are set as follows.

• Taking λ0 = 0.5, μ = 0.4, γ = 1.5, αn = 1/(n + 1), pn = 1/(n + 1)1.1, qn = (n + 1)/n, φ = 0.4
and ξn = 100/(n + 1)2 for our Algorithms 3.1 and 3.2.

• Choosing λ = 0.5, l = 0.5, μ = 0.4, γ = 1.5, αn = 1/(n + 1) and βn = 0.5(1 − αn) for
TG Alg. 3.1 and GTT Alg. 3.1.

The starting values x0 = x1 are produced at random using 5rand(m, 1) inMATLAB, and the max-
imum number of iterations 200 serves as a common stopping condition for all methods. At the nth
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Figure 1. The behaviour of our Algorithm 3.1 for different pn and qn in Example 4.1. (a)m = 20. (b)m = 50. (c)m = 100 and (d)
m = 200.

Table 1. Numerical results for all algorithms under different dimensions in Example 4.1.

m = 20 m = 50 m = 100 m = 200

Algorithms Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 2.09E−05 0.0349 4.42E−05 0.0273 3.74E−04 0.0337 1.09E−03 0.0419
Our Alg. 3.2 2.34E−05 0.0239 4.58E−05 0.0228 3.78E−04 0.0267 1.08E−03 0.0370
TG Alg. 3.1 1.11E−02 0.0430 3.49E−02 0.0412 5.77E−02 0.1538 8.88E−02 0.1683
GTT Alg. 3.1 1.11E−02 0.0370 3.49E−02 0.0364 5.77E−02 0.0709 8.88E−02 0.1286

step, we utilize Dn := ‖xn − x∗‖ to calculate the iteration error. First, we test the effect of different
parameters pn and qn on the proposed algorithms with different dimensions, as shown in Figures 1
and 2. Next, Table 1 shows the results of the proposed methods compared to some known ones in
different dimensions, where ‘CPU’ denotes the execution time in seconds.

Example 4.2: We consider an example in the Hilbert spaceH := L2([0, 1]) associated with the inner
product

〈p, q〉 :=
∫ 1

0
p(t)q(t) dt, ∀ p, q ∈ H,

and the induced norm

‖p‖ :=
(∫ 1

0
|p(t)|2 dt

)1/2

, ∀ p ∈ H.
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Figure 2. The behaviour of our Algorithm 3.2 for different pn and qn in Example 4.1. (a)m = 20. (b)m = 50. (c)m = 100 and (d)
m = 200.

The feasible set is given by C := {x ∈ H : ‖x‖ ≤ 1}. Let A : C → H be as follows.

(Ax)(t) :=
∫ 1

0

(
x(t) − Q(t, v)g(x(v))

)
dv + h(t), ∀ t ∈ [0, 1], x ∈ C,

where

Q(t, v) := 2tv et+v

e
√
e2 − 1

, g(x) := cos x, h(t) := 2t et

e
√
e2 − 1

.

Note that A is monotone (hence it is pseudomonotone) and L-Lipschitz continuous with L = 2
(see [13] for more details) and x∗(t) = {0} is the solution of the (VIP).

The parameters of all algorithms are maintained the same as in Example 4.1. We utilize Dn :=
‖xn(t) − x∗(t)‖ to calculate the iteration error of the nth step and set the maximum number of iter-
ations for all algorithms to 50. The numerical behaviours of all algorithms with four starting points
x0(t) = x1(t) are reported in Table 2.

From Examples 4.1 and 4.2, we have the following observations.

(1) It can be seen from Figures 1 and 2 that the suggested methods have different impacts with
different parameters pn and qn. Note that whenm = 50, 100, the proposed algorithms on qn �= 1
has a higher accuracy than qn = 1 when the values of pn are the same. In addition, the proposed
algorithms on pn �= 0 has a better performance than pn = 0 when the values of qn are the same.
Thus, the iteration step sizes of the proposed algorithms are useful and efficient.
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Table 2. Numerical results for all algorithms at different initial values in Example 4.2.

x1 = 5t3 x1 = 4 sin(2t) x1 = 8 log(t) x1 = 3 exp(t)

Algorithms Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 3.1 8.44E−21 28.0391 8.80E−21 28.6204 1.83E−21 29.3688 3.27E−17 33.3884
Our Alg. 3.2 3.95E−21 26.4142 5.39E−22 27.1204 6.45E−18 27.3436 2.94E−13 34.7676
TG Alg. 3.1 7.47E−06 35.4475 1.02E−05 35.3399 2.68E−05 37.8135 1.50E−05 44.1810
GTT Alg. 3.1 6.70E−06 34.3776 8.30E−06 34.3631 2.05E−05 36.7857 1.25E−05 43.5128

(2) FromTables 1 and 2, we can obtain that our two algorithms have a better accuracy and less execu-
tion time than the algorithms presented in the literature [10,32]. These findings are independent
of the size of the dimension and the choice of starting values. On the other hand, it is worth not-
ing that the algorithms presented in [10,32] use an Armijo-type step size, which may lead them
to require more execution time than our suggested adaptive algorithms.

5. Applications to optimal control problems

In this section, we use the proposed algorithms to solve the optimal control problem (see [20,29,41]
for a description of this problem). Next, we run two tests in optimal control problems to illustrate the
performance of our algorithms and compare them with the ones in [10,32]. The parameters of the
algorithms are set as follows.

• Taking λ0 = 0.5, μ = 0.4, γ = 1.5, αn = 10−4/(n + 1), pn = 10−1/(n + 1)1.1, qn = (n + 1)/n,
φ = 0.01 and ξn = 10−4/(n + 1)2 for our Algorithms 3.1 and 3.2.

• Choosing λ = 1, l = 0.5, μ = 0.4, γ = 1.5, αn = 10−4/(n + 1) and βn = 0.5(1 − αn) for
TG Alg. 3.1 and GTT Alg. 3.1.

Example 5.1 (See [19]): Consider the following problem:

minimize x2(3π)

subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t), ∀ t ∈ [0, 3π],

x(0) = 0,

u(t) ∈ [−1, 1].

The exact optimal control of Example 5.1 is known:

u∗(t) =
{
1, if t ∈ [0,π/2) ∪ (3π/2, 5π/2);
−1, if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

The initial controls u0(t) = u1(t) are randomly generated in [−1, 1] and the stopping crite-
rion is either Dn := ‖un+1 − un‖ ≤ 10−4 or the maximum number of iterations is reached 1000.
Figure 3 gives the approximate optimal control and the corresponding trajectories of the proposed
Algorithm 3.1.

We now consider an example in which the terminal function is not linear.
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Figure 3. Numerical results of the proposed Algorithm 3.1 for Example 5.1. (a) Initial and optimal controls and (b) Optimal
trajectories.

Figure 4. Numerical results of the proposed Algorithm 3.2 for Example 5.2. (a) Initial and optimal controls and (b) Optimal
trajectories.

Example 5.2 (See [2]): Consider the following problem:

minimize − x1(2) + (x2(2))2 ,

subject to ẋ1(t) = x2(t),

ẋ2(t) = u(t), ∀ t ∈ [0, 2],

x1(0) = 0, x2(0) = 0,

u(t) ∈ [−1, 1].

The exact optimal control of Example 5.2 is known:

u∗(t) =
{
1, if t ∈ [0, 1.2);
−1, if t ∈ (1.2, 2].

The approximate optimal control and the corresponding trajectories of the proposed Algorithm 3.2
are shown in Figure 4.

The results of our methods as well as the compared algorithms in Examples 5.1 and 5.2 are given
in Table 3, where ‘Iter.’ represent the number of iterations.
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Table 3. Numerical results for all algorithms in Examples 5.1 and 5.2.

Example 5.1 Example 5.2

Algorithms Iter. CPU Dn Iter. CPU Dn

Our Alg. 3.1 100 0.0468 9.9010E−05 175 0.0680 6.4170E−05
Our Alg. 3.2 111 0.0507 9.9305E−05 273 0.0823 8.7029E−05
TG Alg. 3.1 202 0.1245 9.9507E−05 417 0.1623 9.9175E−05
GTT Alg. 3.1 224 0.0856 9.9756E−05 1000 0.6143 2.4875E−04

From Figures 3, 4 and Table 3, it is clear that whether the terminal function is linear or nonlinear,
the suggested techniques for solving optimal control problems can still produce satisfactory results.
Additionally, compared to the algorithms described in the literature [10,32], they take fewer iterations
and less time.

6. Conclusions

In this paper, two iterative approaches with a novel adaptive step size rule are suggested for locating
the minimum-norm solution of a pseudomonotone variational inequality problem in a real Hilbert
space.Without previous knowledge of the operator’s Lipschitz constant, the strong convergence of the
sequences produced by these methods has been demonstrated. To confirm the effectiveness and ben-
efits of the suggested algorithms and to compare them with some related approaches in the literature,
several numerical experiments have been carried out. Additionally, the optimum control problem has
been investigated as an application of our main results.
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