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A B S T R A C T

In this paper, we investigate a new reflected forward–backward splitting algorithm with self-
adaptive step sizes to solve monotone inclusion problems. The implementation of our algorithm
does not require the knowledge of the Lipschitz constant for the Lipschitz continuous monotone
operator, unlike existing reflected forward–backward splitting algorithms, which necessitate this
information during implementation. The weak convergence theorem of the proposed algorithm
is given under standard conditions. We compare numerically our algorithm with other related
ones in the literature through its applications in signal processing and image deblurring.

. Introduction

Let  be a real Hilbert space with inner product ⟨⋅ , ⋅⟩ and induced norm ‖ ⋅ ‖. We study the following monotone inclusion
roblem:

Find 𝑥∗ ∈  such that 𝟎 ∈ 𝐴𝑥∗ + 𝐵 𝑥∗, (IP)

here 𝐴∶ → 2 is a set-valued maximal monotone operator, and 𝐵∶ →  is a single-valued monotone and Lipschitz continuous
perator. Inclusion problem (IP) is closely related to variational inequalities and split feasibility problems. It is widely applied in
ignal processing, image restoration, and machine learning problems (see, e.g., [1–3]).

Numerous splitting algorithms have been proposed in the literature to solve monotone inclusion problem (IP) recently. One of
he celebrated splitting algorithms for solving the monotone inclusion problem (IP) with the condition that 𝐵 is 𝛽-cocoercive (also
alled 𝛽-inverse-strongly monotone), is the forward–backward splitting algorithm, devised by Lions and Mercier [4], which features
ne forward evaluation of 𝐵 and a backward evaluation of 𝐴 at each iteration:

𝑥𝑛+1 = 𝐽𝜆𝑛𝐴(𝑥𝑛 − 𝜆𝑛𝐵 𝑥𝑛), (1)

here 𝐽𝜆𝑛𝐴 ∶= (𝐼+𝜆𝑛𝐴)−1 is the resolvent operator (see [5]) and 𝜆𝑛 is a positive constant. This method is known to converge weakly
o a point in (𝐴+𝐵)−1(𝟎) provided that 𝜆𝑛 ∈ (0, 2𝛽). Other than the cocoercivity property of 𝐵, strong monotonicity of 𝐴+𝐵 (see [6])
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also guarantees the convergence of Algorithm (1). We observe that monotonicity and Lipschitz continuity conditions are weaker
onditions on 𝐵 than cocoercivity and strong monotonicity.

If the cocoercivity condition on 𝐵 in monotone inclusion problem (IP) is relaxed such that 𝐵 is monotone and Lipschitz
ontinuous, then the forward–backward–forward splitting algorithm (also called Tseng splitting algorithm), proposed by Tseng [7],

is as:
{

𝑦𝑛 = 𝐽𝜆𝑛𝐴(𝑥𝑛 − 𝜆𝑛𝐵 𝑥𝑛),
𝑥𝑛+1 = 𝑦𝑛 − 𝜆𝑛(𝐵 𝑦𝑛 − 𝐵 𝑥𝑛).

(2)

Although forward–backward–forward splitting algorithm (2) requires an additional forward evaluation of 𝐵, the weak convergence
result can be obtained when 𝐵 is monotone and 𝐿-Lipschitz continuous. To achieve the strong convergence of Algorithm (2), Gibali
and Thong [8] proposed two strongly convergent forward–backward–forward algorithms for solving monotone inclusion problems
in real Hilbert spaces by utilizing the Mann-type method and the viscosity method. Their algorithms are stated as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑦𝑛 = 𝐽𝜆𝑛𝐴(𝑥𝑛 − 𝜆𝑛𝐵 𝑥𝑛),
𝑧𝑛 = 𝑦𝑛 − 𝜆𝑛(𝐵 𝑦𝑛 − 𝐵 𝑥𝑛),
𝑥𝑛+1 = (1 − 𝛼𝑛 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑧𝑛,

𝜆𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min
{ 𝜇 ‖

‖

𝑥𝑛 − 𝑦𝑛‖‖
‖

‖

𝐵 𝑥𝑛 − 𝐵 𝑦𝑛‖‖
, 𝜆𝑛

}

, if 𝐵 𝑥𝑛 − 𝐵 𝑦𝑛 ≠ 0,

𝜆𝑛, otherwise,

(3)

where 𝜆0 > 0, 𝜇 ∈ (0, 1), {𝛼𝑛
}

and
{

𝛽𝑛
}

are two real sequences in (0, 1) such that
{

𝛽𝑛
}

⊂ (𝑎, 𝑏) ⊂ (

0, 1 − 𝛼𝑛
)

for some 𝑎 > 0, 𝑏 > 0 and
lim𝑛→∞ 𝛼𝑛 = 0,∑∞

𝑛=1 𝛼𝑛 = ∞.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑦𝑛 = 𝐽𝜆𝑛𝐴(𝑥𝑛 − 𝜆𝑛𝐵 𝑥𝑛),
𝑧𝑛 = 𝑦𝑛 − 𝜆𝑛(𝐵 𝑦𝑛 − 𝐵 𝑥𝑛),
𝑥𝑛+1 = 𝛼𝑛𝑓 (𝑥𝑛) + (1 − 𝛼𝑛)𝑧𝑛,

𝜆𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min
{ 𝜇 ‖

‖

𝑥𝑛 − 𝑦𝑛‖‖
‖

‖

𝐵 𝑥𝑛 − 𝐵 𝑦𝑛‖‖
, 𝜆𝑛

}

, if 𝐵 𝑥𝑛 − 𝐵 𝑦𝑛 ≠ 0,

𝜆𝑛, otherwise,

(4)

where 𝜆0 > 0, 𝜇 ∈ (0, 1), {𝛼𝑛
}

is a real sequences in (0, 1) such that lim𝑛→∞ 𝛼𝑛 = 0,∑∞
𝑛=1 𝛼𝑛 = ∞, and 𝑓 ∶ →  is a contraction

mapping with constant 𝜌 ∈ (0, 1). Under the conditions that operator 𝐴 is maximally monotone and operator 𝐵 is monotone and
Lipschitz continuous, they established strong convergence theorems for the proposed Algorithm (3) and Algorithm (4). It is noted
hat Algorithms (3) and (4) employ an adaptive step size rule, allowing them to operate without prior knowledge of the Lipschitz
onstant. To accelerate the convergence speed of the algorithm, Polyak [9] introduced a method known as the inertial technique,

which is derived from a second-order dissipative dynamical system. Recently, Alakoya et al. [10] suggested an inertial version of
Algorithm (4), as described below:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜃𝑛 =

⎧

⎪

⎨

⎪

⎩

min
{

𝜖𝑛
‖

‖

𝑥𝑛 − 𝑥𝑛−1‖‖
, 𝜃
}

, if 𝑥𝑛 ≠ 𝑥𝑛−1,

𝜃 , otherwise,

𝑤𝑛 = 𝑥𝑛 + 𝜃𝑛
(

𝑥𝑛 − 𝑥𝑛−1
)

,
𝑦𝑛 = 𝐽𝜆𝑛𝐴(𝑤𝑛 − 𝜆𝑛𝐵 𝑤𝑛),
𝑧𝑛 = 𝑦𝑛 − 𝜆𝑛(𝐵 𝑦𝑛 − 𝐵 𝑤𝑛),
𝑥𝑛+1 = 𝛼𝑛𝑓 (𝑤𝑛) + (1 − 𝛼𝑛)𝑧𝑛,

𝜆𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min
{ 𝜇 ‖

‖

𝑤𝑛 − 𝑦𝑛‖‖
‖

‖

𝐵 𝑤𝑛 − 𝐵 𝑦𝑛‖‖
, 𝜆𝑛 + 𝜉𝑛

}

, if 𝐵 𝑤𝑛 − 𝐵 𝑦𝑛 ≠ 0,

𝜆𝑛 + 𝜉𝑛, otherwise,

(5)

where 𝜃 > 0, 𝜆0 > 0, 𝜇 ∈ (0, 1), {𝛼𝑛
}

⊂ (0, 1), lim𝑛→∞ 𝛼𝑛 = 0, ∑∞
𝑛=1 𝛼𝑛 = +∞,

{

𝜖𝑛
}

is a positive sequence satisfying lim𝑛→∞(𝜖𝑛∕𝛼𝑛) = 0,
𝜉𝑛
}

is a nonnegative sequence such that ∑∞
𝑛=1 𝜉𝑛 < +∞, 𝑓 ∶ →  is a contraction mapping with coefficient 𝜌 ∈ (0, 1), operator

is monotone and uniformly continuous, and operator 𝐴 is maximal monotone. It should be pointed out that Algorithm (5) uses
a non-monotonic step size rule, which is computationally superior to the non-increasing step size rule of Algorithms (3) and (4).
Alakoya et al. [10] demonstrated the strong convergence of the iterative sequence generated by the proposed Algorithm (5) and
provided several numerical examples to showcase its computational advantages over some known adaptive algorithms.
2 
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It is noted that the algorithms in [7,8,10] use the same step size in each iteration. In 2020, Gibali et al. [11] introduced a
modified inertial projection and contraction algorithm to address monotone inclusion problem (IP), which uses different step sizes
in each iteration to compute the values of the sequence. Their iterative procedure is as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑤𝑛 = 𝑥𝑛 + 𝜃𝑛
(

𝑥𝑛 − 𝑥𝑛−1
)

,
𝑦𝑛 = 𝐽𝜆𝑛𝐴(𝑤𝑛 − 𝜆𝑛𝐵 𝑤𝑛),
𝑑𝑛 = 𝑤𝑛 − 𝑦𝑛 − 𝜆𝑛

(

𝐵 𝑤𝑛 − 𝐵 𝑦𝑛
)

,
𝛽𝑛 = ⟨𝑤𝑛 − 𝑦𝑛, 𝑑𝑛⟩∕‖‖𝑑𝑛‖‖2,
𝑥𝑛+1 = 𝑤𝑛 − 𝛾 𝛽𝑛𝑑𝑛.

(6)

The weak convergence of Algorithm (6) was obtained under the conditions that operator 𝐴 satisfies maximal monotonicity, operator
𝐵 satisfies monotonicity and 𝐿-Lipschitz continuity, and the parameters meet the conditions of 𝛾 ∈ (1, 2), {

𝜃𝑛
}

⊂ [0, 1), and
{

𝜆𝑛
}

⊂ (0, 1∕𝐿). Note that Algorithm (6) also requires two forward evaluations of 𝐵 and one backward evaluation of 𝐴 in each
iteration. Thus, its computational complexity is the same as that of Algorithms (2), (3), (4), and (5). Other related splitting algorithms
to solve monotone inclusion problem (IP) can be found in [12,13], which also only needs two forward evaluation of 𝐵 and one
backward evaluation of set-valued maximal monotone operator 𝐴 per iteration. To reduce the number of evaluations of the operator
𝐵 in each iteration, Malitsky and Tam [14] proposed a novel fixed-step algorithm for finding solutions of monotone inclusion
problems, now known as the forward-reflected-backward splitting algorithm. Their algorithm requires only one forward evaluation
nd one backward evaluation per iteration, whereas Algorithm (2) needs two forward evaluations. Moreover, they proved the weak

convergence theorem of the algorithm under the condition that operator 𝐵 is monotone and Lipschitz continuous, which is the same
ondition as in Algorithm (2). Therefore, the computational complexity of Malitsky and Tam’s algorithm is the same as Algorithm
1), but the former guarantees convergence under weaker conditions. On the other hand, Malitsky and Tam also introduced a
orward-reflected-backward splitting algorithm with a linesearch technique, as described below:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Having 𝑥𝑛, 𝜆𝑛−1, and 𝐵 𝑥𝑛−1, choose 𝜌 ∈
{

1, 𝜎−1} and compute
𝑥𝑛+1 = 𝐽𝜆𝑛𝐴

(

𝑥𝑛 − 𝜆𝑛𝐵 𝑥𝑛 − 𝜆𝑛−1(𝐵 𝑥𝑛 − 𝐵 𝑥𝑛−1)
)

,
where 𝜆𝑛 = 𝜌𝜆𝑛−1𝜎𝑖 with 𝑖 being the smallest nonnegative integer
satisfying 𝜆𝑛 ‖‖𝐵 𝑥𝑛+1 − 𝐵 𝑥𝑛‖‖ ≤ 𝜇∕2 ⋅ ‖

‖

𝑥𝑛+1 − 𝑥𝑛‖‖ ,

(7)

where 𝜆0, 𝜆−1 > 0, 𝜇 ∈ (0, 1), and 𝜎 ∈ (0, 1). Under the conditions that operator 𝐵 is monotone and locally Lipschitz continuous,
hey proved a weak convergence theorem for Algorithm (7). It is worth noting that Algorithm (7) requires at least two forward

evaluations per iteration due to its use of the Armijo linesearch criterion to determine an appropriate step size, which increases the
computational burden when 𝐵 is complex.

Recently, Cevher and Vũ [15] proposed and studied the reflected forward–backward splitting algorithm for monotone inclusion
roblem (IP) when 𝐵 is 𝐿-Lipschitz continuous and monotone operator:

{

𝑦𝑛 = 2𝑥𝑛 − 𝑥𝑛−1,
𝑥𝑛+1 = 𝐽𝜆𝑛𝐴(𝑥𝑛 − 𝜆𝑛𝐵 𝑦𝑛),

(8)

and obtained weak convergence results when 𝜆𝑛 ∈ (0, (
√

2 − 1)∕𝐿). Reflected forward–backward splitting algorithm (8) features one
forward evaluation of 𝐵 and one backward evaluation of set-valued maximal monotone operator 𝐴 per iteration. This property can
educe computational complexity encountered in Algorithms (2)–(7). Furthermore, reflected forward–backward splitting algorithm

(8) extends the results of [16] from monotone variational inequalities to monotone inclusion problem (IP). However, it is required
to know the Lipschitz constant 𝐿 of monotone operator 𝐵 during its implementation. This is a drawback.

The requirement of the knowledge of the Lipschitz constant of 𝐵 in implementing reflected forward–backward splitting algorithm
(8) makes us to ask this question: Can one devise a new version of reflected forward–backward splitting algorithm such that step sizes are
implemented self-adaptively without the knowledge of the Lipschitz constant 𝐿 of 𝐵?

In this paper, we answer the question above affirmatively. To be more precise, we propose a modified version of reflected
forward–backward splitting algorithm (8) such that the step sizes 𝜆𝑛 are implemented adaptive without the knowledge of the
Lipschitz constant of 𝐵. In this case, our algorithm would be more applicable to solve monotone inclusion problem (IP). Specifically,
our contributions manifest in the following three aspects:

(i) we modify the reflected forward–backward splitting algorithm (8) such that step sizes {𝜆𝑛} are self-adaptively generated;
(ii) we establish a weak convergence result of our algorithm;

(iii) we apply our results to signal processing and image deblurring problems, and we compare our algorithm with Algorithms
(2)–(8).

The remainder of the paper is organized as follows. In Section 2, we provide some relevant definitions and useful lemmas for
he convergence analysis. The proposed splitting algorithm and its weak convergence result are stated in Section 3. Section 4 gives

numerical experiments on signal processing and image deblurring, where we demonstrate the superiority of the proposed algorithm
over related existing splitting algorithms in [7,8,10,11,14,15]. The paper is finalized with some concluding remarks in Section 5.
3 
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2. Preliminaries

The graph of 𝐴∶ → 2 , denoted by gph(𝐴), is defined by

gph(𝐴) ∶= {(𝑥, 𝑢) ∈  × ∶ 𝑥 ∈ dom(𝐴), 𝑢 ∈ 𝐴(𝑥)}.

We say that the operator 𝐴 is

(i) monotone if ⟨𝑢 − 𝑣, 𝑥 − 𝑦⟩ ≥ 0 for all (𝑥, 𝑢), (𝑦, 𝑣) ∈ gph(𝐴);
(ii) maximal monotone if it is monotone and gph(𝐴) ⊃ gph(𝐵), where 𝐵 is any other monotone operator;

(iii) 𝜂-strongly monotone if there exists 𝜂 > 0 such that ⟨𝑢 − 𝑣, 𝑥 − 𝑦⟩ ≥ 𝜂‖𝑥 − 𝑦‖2 for all (𝑥, 𝑢), (𝑦, 𝑣) ∈ gph(𝐴).

Observe that the maximal monotonicity of 𝐴 is equivalent to: it is monotone and if, for any (𝑥, 𝑢) ∈  ×, ⟨𝑢 − 𝑣, 𝑥 − 𝑦⟩ ≥ 0 for
all (𝑦, 𝑣) ∈ gph(𝐴), then it follows that 𝑢 ∈ 𝐴(𝑥). For a given maximal monotone operator 𝐴, the resolvent 𝐽𝜆𝐴(𝑥) ∶= (𝐼 + 𝜆𝐴)−1(𝑥)
or 𝑥 ∈  and 𝜆 > 0 is a single-valued mapping, where 𝐼 is the identity operator on . Furthermore, ‖𝐽𝜆𝐴(𝑥) − 𝐽𝜆𝐴(𝑦)‖ ≤ ‖𝑥 − 𝑦‖
or all 𝑥, 𝑦 ∈ .

An operator 𝐵∶ →  is called:

(i) 𝐿-Lipschitz continuous if there exists a number 𝐿 > 0 such that ‖𝐵 𝑥 − 𝐵 𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ ;
(ii) Uniformly continuous if, for every 𝜖 > 0, there exists 𝛿 = 𝛿(𝜖) > 0, such that ‖𝐵 𝑥−𝐵 𝑦‖ < 𝜖 for all 𝑥, 𝑦 ∈  whenever ‖𝑥−𝑦‖ < 𝛿;

(iii) 𝛽-cocoercive or 𝛽-inverse-strongly monotone, if there exists 𝛽 > 0 such that ⟨𝐵 𝑥 − 𝐵 𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽‖𝐵 𝑥 − 𝐵 𝑦‖2 for all 𝑥, 𝑦 ∈ .

Note that cocoercivity and strong monotonicity are dual: 𝐵 is 𝛽-cocoercive ⇔ 𝐵−1 is 𝛽-strongly monotone. The following result
gives the maximal monotonicity of the sum of two monotone operators.

Lemma 2.1 ([17]). Let 𝐴∶ → 2 be a maximal monotone operator, and let 𝐵∶ →  be a Lipschitz continuous and monotone operator.
Then 𝐴 + 𝐵 is a maximal monotone operator.

We use the following trivial identities in our convergence analysis.

Lemma 2.2. Let 𝑥, 𝑦, 𝑧 ∈  and 𝛼 ∈ R. Then

(i) 2⟨𝑥, 𝑦⟩ = ‖𝑥‖2 + ‖𝑦‖2 − ‖𝑥 − 𝑦‖2 = ‖𝑥 + 𝑦‖2 − ‖𝑥‖2 − ‖𝑦‖2.
(ii) ‖𝛼 𝑥 + (1 − 𝛼)𝑦‖2 = 𝛼‖𝑥‖2 + (1 − 𝛼)‖𝑦‖2 − 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2.

The lemma below plays an important role in proving weak convergence of sequences in a Hilbert space.

Lemma 2.3 ([18]). Let 𝐶 be a nonempty subset of a Hilbert space , and let {𝑥𝑛} be a bounded sequence in . Assume that the following
wo conditions are satisfied:

(i) lim𝑛→∞ ‖𝑥𝑛 − 𝑥‖ exists for each 𝑥 ∈ 𝐶,
(ii) every weak cluster point of {𝑥𝑛} belongs to 𝐶.

Then {𝑥𝑛} converges weakly to a point in 𝐶.

3. Main results

In this section, we propose an adaptive reflected forward–backward splitting algorithm to solve monotone inclusion problem
(IP) and analyze its weak convergence. The advantage of the proposed algorithm lies in its ability to adaptively operate without
requiring prior knowledge of the Lipschitz constant of the operator 𝐵. Moreover, we apply our results to variational inequality
roblems.

3.1. Weak convergence analysis

We now introduce our adaptive splitting algorithm for the inclusion problem (IP) with self-adaptive step sizes.

Remark 3.1. We have the following comments on the suggested Algorithm 1.

(i) Unlike Algorithms (2), (6), and (8), the proposed Algorithm 1 does not require the Lipschitz constant estimate of Lipschitz
continuous monotone operator 𝐵 as an input parameter. Moreover, our algorithm employs a non-monotonic step size rule,
which generates a non-monotonic sequence of step sizes. This is superior to the non-increasing step size criteria used in [11]
and the Armijo-type linesearch step size rule applied in [14].

(ii) Note that Algorithm (1) and Algorithm (8) each require one evaluation of operators 𝐴 and 𝐵 per iteration, Algorithm (2) to
Algorithm (6) need two evaluations of operator 𝐵 and one evaluation of operator 𝐴, while Algorithm (7) performs at least
two evaluations of operator 𝐵 in each iteration. It should be point out that the terms 𝐵 𝑥𝑛+1 and 𝐵 𝑦𝑛 computed in the current
iteration are the same as 𝐵 𝑥𝑛 and 𝐵 𝑦𝑛−1 used in the next iteration. Therefore, our Algorithm calls two forward evaluations and
one backward evaluation at each iteration, which means its computational complexity is the same as the Tseng’s algorithm [7].
4 
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Algorithm 1 The perturbed reflected forward-backward with adaptive step sizes

Initialization: Pick 𝜆−1 = 𝜆0 > 0 and 𝑥−2 = 𝑥−1 = 𝑥0 ∈ . Select 𝜇 ∈ (0, 1∕5). Let
{

𝜉𝑛
}

be a nonnegative real numbers sequence
such that ∑∞

𝑛=0 𝜉𝑛 < +∞. Set 𝑛 = 0.
Iteration: With 𝑥𝑛−1, 𝑥𝑛, 𝜆𝑛−1, 𝜆𝑛, 𝐵 𝑥𝑛, and 𝐵 𝑦𝑛−1, compute

{

𝑦𝑛 = 2𝑥𝑛 − 𝑥𝑛−1,
𝑥𝑛+1 = 𝐽𝜆𝑛𝐴

(

𝑥𝑛 − 𝜆𝑛𝐵 𝑦𝑛 − 𝜆𝑛−1(𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1)
)

,

where

𝜆𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min
{

𝜇‖𝑦𝑛 − 𝑥𝑛+1‖
‖𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1‖

, 𝜆𝑛 + 𝜉𝑛

}

, if 𝐵 𝑥𝑛 ≠ 𝐵 𝑥𝑛+1,
𝜆𝑛 + 𝜉𝑛, otherwise.

(9)

To analyze the convergence of Algorithm 1, we need the following assumption.

Assumption 3.2.
(i) 𝐴∶ → 2 is set-valued maximal monotone;

(ii) 𝐵∶ →  is a single-valued monotone and uniformly continuous;
(iii) The solution set (𝐴 + 𝐵)−1(𝟎) of inclusion problem (IP) is nonempty.

We mention here that there are a lot of examples which satisfies the (ii) in Assumption 3.2 but is not Lipschitz continuous, such
as 𝑓 (𝑥) ∶= 𝑒𝑥𝑝(𝑥) for all 𝑥 ∈ [0,∞). Then 𝑓 is uniformly continuous and monotone. However, 𝑓 is not Lipschitz continuous. In
addition, 𝑓 (𝑥) ∶= √

𝑥 for all 𝑥 ∈ [0,∞). Then 𝑓 is also uniformly continuous and monotone. However, 𝑓 is not Lipschitz continuous.
ndeed, there are a lot of examples, which satisfy Assumption 3.2 (ii) but are not Lipschitz continuous. The following two lemmas

are crucial for the convergence analysis of Algorithm 1.

Lemma 3.3 ([10, Lemma 4.1]). Let
{

𝜆𝑛
}

be the sequence generated by (9). Then
{

𝜆𝑛
}

is well-defined and lim𝑛→∞ 𝜆𝑛 = 𝜆 ∈
[

min
{

𝜆0, 𝜇∕𝑄
}

, 𝜆0 +
∑∞

𝑛=0 𝜉𝑛
]

for some 𝑄 > 0.

Lemma 3.4. The sequences {𝑥𝑛} generated by Algorithm 1 are bounded when Assumption 3.2 is satisfied.

Proof. By using the definition of 𝑥𝑛+1, one obtains

𝑥𝑛 − 𝑥𝑛+1 − 𝜆𝑛𝐵 𝑦𝑛 − 𝜆𝑛−1(𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1) ∈ 𝜆𝑛𝐴𝑥𝑛+1.

Pick 𝑥∗ ∈ (𝐴 + 𝐵)−1(𝟎). It follows that −𝜆𝑛𝐵 𝑥∗ ∈ 𝜆𝑛𝐴𝑥∗. From the monotonicity of 𝐴, one has

⟨𝑥𝑛 − 𝑥𝑛+1 − 𝜆𝑛𝐵 𝑦𝑛 − 𝜆𝑛−1(𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1) + 𝜆𝑛𝐵 𝑥∗, 𝑥𝑛+1 − 𝑥∗⟩ ≥ 0.

Thus
0 ≤ 2⟨𝑥𝑛 − 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩ − 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥∗, 𝑥𝑛+1 − 𝑥∗⟩

+ 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛+1 − 𝑥∗⟩

= 2⟨𝑥𝑛 − 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩ − 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩

− 2𝜆𝑛⟨𝐵 𝑥𝑛+1 − 𝐵 𝑥∗, 𝑥𝑛+1 − 𝑥∗⟩ + 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛+1 − 𝑥𝑛⟩

+ 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛 − 𝑥∗⟩,

which together with the monotonicity of 𝐵 implies that
0 ≤ 2⟨𝑥𝑛 − 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩ − 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩

+ 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛 − 𝑥∗⟩ + 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛+1 − 𝑥𝑛⟩.

On account of Lemma 2.2 (i), we obtain
0 ≤ ‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑥𝑛+1‖

2 − ‖𝑥𝑛+1 − 𝑥∗‖2

− 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩ + 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛 − 𝑥∗⟩ (10)

+ 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛+1 − 𝑥𝑛⟩.
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By using the Cauchy–Schwarz inequality and (9), we see that
2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛+1 − 𝑥𝑛⟩

≤ 2𝜆𝑛−1‖𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛‖‖𝑥𝑛+1 − 𝑥𝑛‖

≤ 2𝜆𝑛−1
𝜇‖𝑦𝑛−1 − 𝑥𝑛‖

𝜆𝑛
‖𝑥𝑛+1 − 𝑥𝑛‖

≤
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑦𝑛−1 − 𝑥𝑛‖
2 +

𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛+1 − 𝑥𝑛‖
2.

(11)

Plugging (11) into (10), we arrive at
‖𝑥𝑛+1 − 𝑥∗‖2 + 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩

≤ ‖𝑥𝑛 − 𝑥∗‖2 − ‖𝑥𝑛 − 𝑥𝑛+1‖
2 + 2𝜆𝑛−1⟨𝐵 𝑦𝑛−1 − 𝐵 𝑥𝑛, 𝑥𝑛 − 𝑥∗⟩

+
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑦𝑛−1 − 𝑥𝑛‖
2 +

𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛+1 − 𝑥𝑛‖
2.

Consequently,
‖𝑥𝑛+1 − 𝑥∗‖2 + 2𝜆𝑛⟨𝐵 𝑦𝑛 − 𝐵 𝑥𝑛+1, 𝑥𝑛+1 − 𝑥∗⟩ +

𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛+1 − 𝑦𝑛‖
2

≤ ‖𝑥𝑛 − 𝑥∗‖2 + 2𝜆𝑛−1⟨𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1, 𝑥∗ − 𝑥𝑛⟩ +
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2

−
(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

)

‖𝑥𝑛+1 − 𝑥𝑛‖
2 +

𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛+1 − 𝑦𝑛‖
2.

Let us define
𝑡𝑛 ∶= ‖𝑥𝑛 − 𝑥∗‖2 + 2𝜆𝑛−1⟨𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1, 𝑥∗ − 𝑥𝑛⟩ +

𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2.

Hence
𝑡𝑛+1 ≤ 𝑡𝑛 −

(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

)

‖𝑥𝑛+1 − 𝑥𝑛‖
2 +

𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛+1 − 𝑦𝑛‖
2. (12)

Note that
‖𝑥𝑛+1 − 𝑦𝑛‖

2 = ‖(𝑥𝑛+1 − 𝑥𝑛) − (𝑥𝑛 − 𝑥𝑛−1)‖2

≤ 2‖𝑥𝑛+1 − 𝑥𝑛‖
2 + 2‖𝑥𝑛−1 − 𝑥𝑛‖

2.
(13)

Plugging (13) into (12), we include that

𝑡𝑛+1 ≤ 𝑡𝑛 −
(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

)

‖𝑥𝑛+1 − 𝑥𝑛‖
2

+
2𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛+1 − 𝑥𝑛‖
2 +

2𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛 − 𝑥𝑛−1‖
2.

Therefore,
𝑡𝑛+1 +

2𝜇 𝜆𝑛+1
𝜆𝑛+2

‖𝑥𝑛+1 − 𝑥𝑛‖
2

≤ 𝑡𝑛 +
2𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛 − 𝑥𝑛−1‖
2 −

(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

−
2𝜇 𝜆𝑛
𝜆𝑛+1

−
2𝜇 𝜆𝑛+1
𝜆𝑛+2

)

‖𝑥𝑛+1 − 𝑥𝑛‖
2.

(14)

From the definition of 𝑡𝑛, the Cauchy–Schwarz inequality, and (9), we deduce that

𝑡𝑛 = ‖𝑥𝑛 − 𝑥∗‖2 + 2𝜆𝑛−1⟨𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1, 𝑥∗ − 𝑥𝑛⟩ +
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2

≥ ‖𝑥𝑛 − 𝑥∗‖2 − 2𝜆𝑛−1‖𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1‖‖𝑥∗ − 𝑥𝑛‖ +
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2

≥ ‖𝑥𝑛 − 𝑥∗‖2 −
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2 −

𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑥∗‖2 +
𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2

=
(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

)

‖𝑥𝑛 − 𝑥∗‖2.

Since lim
(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

)

= 1 − 𝜇 > 0, we see that there exists 𝑛1 ∈ N such that 1 − 𝜇 𝜆𝑛−1
𝜆𝑛

> 0 for all 𝑛 ≥ 𝑛1. Consequently, 𝑡𝑛 ≥ 0 for all
𝑛 ≥ 𝑛1. Let

𝑠𝑛 ∶= 𝑡𝑛 +
2𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛 − 𝑥𝑛−1‖
2.
6 



B. Tan et al.

l

m

l
t

M

Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108565 
Note that 𝑠𝑛 ≥ 0 for all 𝑛 ≥ 𝑛1. It follows from (14) that

𝑠𝑛+1 ≤ 𝑠𝑛 −
(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

−
2𝜇 𝜆𝑛
𝜆𝑛+1

−
2𝜇 𝜆𝑛+1
𝜆𝑛+2

)

‖𝑥𝑛+1 − 𝑥𝑛‖
2. (15)

Since lim𝑛→∞

(

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

− 2𝜇 𝜆𝑛
𝜆𝑛+1

− 2𝜇 𝜆𝑛+1
𝜆𝑛+2

)

= 1 − 5𝜇 > 0, then there exists 𝑛2 ∈ N, where 𝑛2 ≥ 𝑛1 such that

1 − 𝜇 𝜆𝑛−1
𝜆𝑛

−
2𝜇 𝜆𝑛
𝜆𝑛+1

−
2𝜇 𝜆𝑛+1
𝜆𝑛+2

> 0, ∀𝑛 ≥ 𝑛2.

Then {𝑠𝑛} is non-increasing, lim𝑛→∞ 𝑠𝑛 exists, and {𝑠𝑛} is bounded. We can then easily obtain that {𝑥𝑛} is bounded. □

Next, we give our weak convergence result.

Theorem 3.5. The sequence {𝑥𝑛} generated by Algorithm 1 converge weakly to a point in (𝐴 + 𝐵)−1(𝟎) provided that Assumption 3.2 is
satisfied.

Proof. We obtain from (15) that lim𝑛→∞ ‖𝑥𝑛+1 − 𝑥𝑛‖ = 0. Consequently, lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛‖ = 0. The two limits imply that
im𝑛→∞ ‖𝑥𝑛+1 − 𝑦𝑛‖ = 0. From the fact that {𝑥𝑛} is bounded, one deduces that {𝑥𝑛} has a weakly convergent subsequence {𝑥𝑛𝑚}
such that {𝑥𝑛𝑚} converges weakly to 𝑥̄ ∈ . It follows from the definition of 𝑥𝑛+1 that

𝑥𝑛𝑚 − 𝜆𝑛𝑚𝐵 𝑦𝑛𝑚 − 𝜆𝑛𝑚−1(𝐵 𝑥𝑛𝑚 − 𝐵 𝑦𝑛𝑚−1) ∈ (𝐼 + 𝜆𝑛𝑚𝐴)𝑥𝑛𝑚+1.

Therefore,
𝑥𝑛𝑚 − 𝑥𝑛𝑚+1

𝜆𝑛𝑚
+ 𝐵 𝑥𝑛𝑚+1 − 𝐵 𝑦𝑛𝑚 −

𝜆𝑛𝑚−1
𝜆𝑛𝑚

(𝐵 𝑥𝑛𝑚 − 𝐵 𝑦𝑛𝑚−1) ∈ (𝐴 + 𝐵)𝑥𝑛𝑚+1. (16)

Since 𝐵 is uniformly continuous, we have ‖𝐵 𝑥𝑛𝑚+1 − 𝐵 𝑦𝑛𝑚‖ → 0 as 𝑚 → ∞. By Lemma 2.1, one obtains that 𝐴 + 𝐵 is maximal
onotone. Therefore, the graph of 𝐴+𝐵 is demiclosed. Passing to the limit in (16) (noting that 𝜆𝑛𝑚 → 𝜆 as 𝑚 → ∞), one arrives at

𝑥̄ ∈ (𝐴 + 𝐵)−1(𝟎). Now, one defines

𝑑𝑛 ∶= −𝜇 𝜆𝑛−1
𝜆𝑛

‖𝑥𝑛 − 𝑦𝑛−1‖
2 −

2𝜇 𝜆𝑛
𝜆𝑛+1

‖𝑥𝑛 − 𝑥𝑛−1‖
2 − 2𝜆𝑛−1⟨𝐵 𝑥𝑛 − 𝐵 𝑦𝑛−1, 𝑥∗ − 𝑥𝑛⟩.

From the fact that 𝐵 is uniformly continuous and {𝑥𝑛} is bounded, lim𝑛→∞ ‖𝑥𝑛 − 𝑥𝑛−1‖ = 0, and lim𝑛→∞ ‖𝑥𝑛 − 𝑦𝑛−1‖ = 0, one has
im𝑛→∞ 𝑑𝑛 = 0. From the definitions of 𝑠𝑛 and 𝑑𝑛, one has ‖𝑥𝑛 −𝑥∗‖2 = 𝑠𝑛 +𝑑𝑛. By using the existence of the limit of {𝑠𝑛}, one asserts
hat lim𝑛→∞ ‖𝑥𝑛 − 𝑥∗‖ exists. Therefore, {𝑥𝑛} converges weakly to a point in (𝐴 + 𝐵)−1(𝟎) by means of Lemma 2.3. □

3.2. Application to variational inequalities

In this subsection, we apply the proposed Algorithm 1 to the variational inequality problem. Let 𝐶 be a nonempty, closed, and
convex subset of a real Hilbert space , and let 𝑀 ∶ →  be an operator. The variational inequality problem is described as:

Find 𝑥∗ ∈ 𝐶 such that ⟨𝑀 𝑥∗, 𝑥 − 𝑥∗⟩ ≥ 0, ∀𝑥 ∈ 𝐶 . (VI)

The solution set of problem (VI) is denoted by VI(𝑀 , 𝐶).
Let 𝑓 ∶ → (−∞,+∞] be a proper, lower semicontinuous, and convex function. The subdifferential of 𝑓 at 𝑥 ∈ dom 𝑓 is defined

by 𝜕 𝑓 (𝑥) ∶= {𝑧 ∈  ∶ 𝑓 (𝑦) − 𝑓 (𝑥) ≥ ⟨𝑧, 𝑦 − 𝑥⟩}. The normal cone of 𝐶 at 𝑣 ∈ 𝐶 is given as 𝑁𝐶 (𝑣) ∶= {𝑑 ∈  ∶ ⟨𝑑 , 𝑦 − 𝑣⟩ ≤ 0,∀𝑦 ∈ 𝐶}.
Let 𝛿𝐶 (𝑥) be the indicator function of 𝐶 at 𝑥, that is,

𝛿𝐶 (𝑥) ∶=
{

0, if 𝑥 ∈ 𝐶 ,
∞, if 𝑥 ∉ 𝐶 .

We can frame variational inequality problem (VI) within the context of monotone inclusion problem (IP) by setting 𝐴 = 𝜕 𝛿𝐶 and
𝐵 = 𝑀 . That is, the solution to problem (VI) is equivalent to the solution of the monotone inclusion problem: find 𝑥∗ ∈  such
that 𝟎 ∈ (𝜕 𝛿𝐶 + 𝑀)(𝑥∗). Indeed, it can be seen that 𝛿𝐶 ∶ → (−∞,+∞] is a proper, lower semicontinuous, and convex function.

oreover, one knows that 𝜕 𝑓 is maximal monotone and 𝜕 𝛿𝐶 (𝑥) = 𝑁𝐶 (𝑥). Let 𝐴 = 𝜕 𝛿𝐶 . Then

𝑣 = 𝐽𝜆𝑛𝐴(𝑥) ⟺ 𝑥 ∈ 𝑣 + 𝜆𝑛𝑁𝐶 (𝑣)

⟺ ⟨𝑥 − 𝑣, 𝑦 − 𝑣⟩ ≤ 0, ∀𝑦 ∈ 𝐶 ⟺ 𝑣 = 𝑃𝐶 (𝑥),

where 𝑃𝐶 is the projection operator from  into 𝐶, which is defined by 𝑃𝐶 (𝑥) = min{𝑦 ∈ 𝐶 ∶ ‖𝑥 − 𝑦‖} for a fixed 𝑥 ∈ .
Now, we consider (VI) as an application of Theorem 3.5.
7 
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Theorem 3.6. Let 𝑀 be a monotone and uniformly continuous operator, and let VI(𝑀 , 𝐶) ≠ ∅. Pick 𝜆−1 = 𝜆0 > 0 and 𝑥−2 = 𝑥−1 = 𝑥0 ∈ .
Select 𝜇 ∈ (0, 1∕5). Let

{

𝜉𝑛
}

be a nonnegative real numbers sequence such that ∑∞
𝑛=0 𝜉𝑛 < +∞. Let {𝑥𝑛} be the sequence generated by the

ollowing iterative procedure:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑦𝑛 = 2𝑥𝑛 − 𝑥𝑛−1,
𝑥𝑛+1 = 𝑃𝐶

(

𝑥𝑛 − 𝜆𝑛𝑀 𝑦𝑛 − 𝜆𝑛−1(𝑀 𝑥𝑛 −𝑀 𝑦𝑛−1)
)

,

𝜆𝑛+1 =

⎧

⎪

⎨

⎪

⎩

min
{

𝜇‖𝑦𝑛 − 𝑥𝑛+1‖
‖𝑀 𝑦𝑛 −𝑀 𝑥𝑛+1‖

, 𝜆𝑛 + 𝜉𝑛

}

, if 𝑀 𝑥𝑛 ≠ 𝑀 𝑥𝑛+1,
𝜆𝑛 + 𝜉𝑛, otherwise.

(17)

Then the sequence {𝑥𝑛} generated by Algorithm (17) converges weakly to a solution of problem (VI).

4. Numerical experiments

In this section, we explore the problems related to signal processing and image deblurring, which have generated considerable
nterest in the field of contemporary science and technology. The primary goal is to recover a signal/an image from the available
ata. A task that can be conceptualized as the subsequent inverse problem described by the equation:

𝐲 = 𝐀𝐱 + 𝐳, (18)

where 𝐲 represents the observed data, 𝐱 corresponds to the true (original) underlying data, 𝐳 ∈ R𝑚 accounts for the measurement
error, and 𝐀 is an operator that can be either linear or nonlinear. This operator can take the form of a convolution operator in the
context of deblurring, a Radon transform in X-ray computer tomography (CT), or a sampling mask applied in the Fourier domain for
magnetic resonance imaging (MRI), as detailed in [19–21]. To solve Eq. (18), we can address the following constrained minimization
roblem:

min 1
2
‖𝐀𝐱 − 𝑃𝑄𝐀𝐱‖2 subject to 𝐱 ∈ 𝐶 , (19)

where 𝑄 ∶= {𝐲} in the signal processing problem, and 𝑄 ∶= {𝐰 ∶ ‖𝐰− 𝐲+ 𝐳‖2 ≤ 𝜖} for a small 𝜖 in the image deblurring problem. In
act, solving problem (19) is equivalent to addressing the split feasibility problem: find 𝐱 ∈ 𝐶 such that 𝐀𝐱 ∈ 𝑄. We can transform

problem (19) into monotone inclusion problem (IP) by setting 𝐴 = 𝜕 𝛿𝐶 and 𝐵 = 𝐀⊤(𝐀𝐱−𝑃𝑄𝐀𝐱). Next, we consider the application of
the proposed Algorithm 1 in signal processing and image deblurring, and compare its computational performance with some known
fixed-step and adaptive algorithms. All programs were written and implemented on a MacBook Air 2023 with 8 GB of memory.

Example 4.1.
Consider recovering the original signal from a degraded signal. Our setup is as follows: the original signal 𝐱 ∈ R𝑛 is randomly

generated, with its values being {−1, 0, 1} and the number of non-zero elements being 𝑘. The matrix 𝐀 ∈ R𝑛×𝑚 is first randomly
generated from a normal distribution and then orthogonalized row-wise. The noise vector 𝐳 ∈ R𝑚 is randomly generated from a
normal distribution with a mean of 0 and a standard deviation of 0.01. The obtained degraded signal 𝐲 ∈ R𝑚 is generated by Eq. (18).
We compare the performance of the proposed Algorithm 1 (shortly, Our Alg.) with other fixed-step and adaptive methods in the
literature, including Algorithm (2) (shortly, Tseng Alg.), Algorithm (3) (shortly, GT Alg. 1), Algorithm (4) (shortly, GT Alg. 2),
Algorithm (5) (shortly, AOM Alg.), Algorithm (6) (shortly, GTV Alg.), Algorithm (7) (shortly, MT Alg.), and Algorithm (8) (shortly,

V Alg.). In all experiments, we test the algorithms by using the following parameters:

• For Our Alg., we take 𝜆−1 = 𝜆0 = 0.2, 𝜉𝑛 = 1000∕(𝑛 + 1)1.05, and 𝜇 = 0.19.
• For Tseng Alg. [7], we select 𝜆 = 0.15∕𝐿.
• For GTV Alg. [11], we pick 𝛼𝑛 = 0.2, 𝜆𝑛 = 0.15∕𝐿, and 𝛾 = 1.2.
• For CV Alg. [15], we choose 𝜆𝑛 = 0.2∕𝐿.
• For GT Alg. 1 [8], we take 𝛼𝑛 = 0.1∕(𝑛 + 1), 𝛽𝑛 = 0.8(1 − 𝛼𝑛), 𝜆0 = 0.2, and 𝜇 = 0.19.
• For GT Alg. 2 [8], we choose 𝛼𝑛 = 0.1∕(𝑛 + 1), 𝑓 (𝑥) = 0.9𝑥, 𝜆0 = 0.2, and 𝜇 = 0.19.
• For AOM Alg. 1 [10], we pick 𝛼𝑛 = 1∕(𝑛+ 1), 𝜃 = 0.4, 𝜖𝑛 = 100∕(𝑛+ 1)2, 𝑓 (𝑥) = 0.9𝑥, 𝜉𝑛 = 1000∕(𝑛+ 1)1.05, 𝜆0 = 0.2, and 𝜇 = 0.19.
• For MT Alg. [14], we select 𝜎 = 0.15, 𝜌 = 𝜎−1, 𝜆−1 = 0.2, and 𝜇 = 0.19.

We use the mean square error MSE = ‖𝑥̂−𝑥‖2∕𝑛 (where 𝑥̂ is the recovered signal generated by the algorithm at the 𝑛th iteration)
s the iteration error of the algorithm at the 𝑛th step. The stopping criterion for all algorithms is a maximum of 300 iterations.
onsidering four different dimensions and sparsity levels, the recovery results of all algorithms are shown in Figs. 1, 2, 3, and 4.

The trends of their MSE with respect to the number of iterations are shown in Fig. 5. Additionally, Table 1 presents the execution
time (in seconds) and the MSE values for all algorithms.
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Fig. 1. The comparison of the original signal and the recovered signal for all algorithms when 𝑚 = 256, 𝑛 = 512, and 𝑘 = 40.

Fig. 2. The comparison of the original signal and the recovered signal for all algorithms when 𝑚 = 256, 𝑛 = 512, and 𝑘 = 50.

Table 1
Numerical results of all algorithms under different cases for Example 4.1.
Algorithms 𝑚 = 256, 𝑛 = 512 𝑚 = 256, 𝑛 = 512 𝑚 = 512, 𝑛 = 1024 𝑚 = 512, 𝑛 = 1024

𝑘 = 40 𝑘 = 50 𝑘 = 60 𝑘 = 80
Time (s) MSE Time (s) MSE Time (s) MSE Time (s) MSE

Our Alg. 0.066 8.583E−05 0.042 1.221E−04 0.162 7.456E−05 0.158 8.198E−05
CV Alg. 0.094 1.275E−04 0.023 2.864E−04 0.099 8.529E−05 0.097 1.323E−04
GTV Alg. 0.056 1.010E−04 0.049 1.960E−04 0.136 7.827E−05 0.140 1.012E−04
Tseng Alg. 0.058 3.017E−04 0.059 7.438E−04 0.202 1.395E−04 0.194 3.316E−04
GT Alg. 1 0.128 6.253E−04 0.068 1.351E−03 0.320 2.917E−04 0.315 6.610E−04
GT Alg. 2 0.115 1.577E−04 0.071 3.712E−04 0.414 9.562E−05 0.315 1.659E−04
AOM Alg. 0.158 1.256E−04 0.072 1.956E−04 0.328 1.018E−04 0.322 1.191E−04
MT Alg. 0.079 4.283E−04 0.044 9.567E−04 0.146 1.761E−04 0.151 4.995E−04
9 
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Fig. 3. The comparison of the original signal and the recovered signal for all algorithms when 𝑚 = 512, 𝑛 = 1024, and 𝑘 = 60.

Fig. 4. The comparison of the original signal and the recovered signal for all algorithms when 𝑚 = 512, 𝑛 = 1024, and 𝑘 = 80.

Example 4.2.
Let 𝐀 be a convolution matrix and adopt the following settings: the convolution matrix 𝐀 ∈ R𝑛×𝑛 is generated by using a 9 × 9

Gaussian blur kernel with a standard deviation of 4. The noise vector 𝐳 ∈ R𝑛×𝑛 is generated from a normal distribution with a mean
of 0 and a standard deviation of 10−4. We test four original images 𝐱 of size 512 × 512. The pixel intensity of all original images
is scaled into the range between 0 and 1. The degraded image 𝐲 is generated using Eq. (18). We use signal-to-noise ratio (SNR in
dB), peak signal-to-noise ratio (PSNR in dB), and structural similarity index (SSIM) to evaluate the performance of the algorithms
in image recovery. The SNR is calculated as follows:

SNR = 20 log ‖𝐱‖2
‖𝐱 − 𝐱̂‖2

,

where 𝐱̂ the restored image and 𝐱 is the original image. The PSNR and SSIM are calculated using the functions defined in MATLAB.
e also select the same algorithms and parameter settings as in Example 4.1 for this example. Typically, higher values of SNR,

PSNR, and SSIM indicate better recovery performance.
The recovery results of all algorithms for four different original images are shown in Figs. 6, 7, 8, and 9. The trends of their

SNR, PSNR, and SSIM values with the number of iterations are presented in Figs. 10, 11, and 12. Finally, Table 2 summarizes the
values of all metrics for all algorithms upon reaching the stopping condition.
10 
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Fig. 5. The variation of MSE for all algorithms under different cases (Example 4.1).

Fig. 6. The recovery results of all algorithms for the image ‘‘Cameraman’’.

Remark 4.3. For the experimental results in Examples 4.1 and 4.2, we have the following observations:

(i) From Figs. 1, 2, 3, 4, 6, 7, 8, and 9, it can be seen that our algorithm can be used to solve signal processing and image
deblurring problems.

(ii) From Fig. 5 and Table 1, it is clear that our algorithm outperforms the fixed-step algorithms in [7,11,15] and the adaptive
methods in [8,10,14] in terms of MSE. Moreover, Figs. 10, 11, 12, and Table 2 demonstrate that our algorithm also outperforms
these fixed-step and adaptive methods in SNR, PSNR, and SSIM.

(iii) It is important to note that the algorithms in [7,11,15] require the prior knowledge of the Lipschitz constant of operator 𝐵 to
perform iterations, while our algorithm and the methods in [8,10,14] can run adaptively without this prior information.
11 
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Fig. 7. The recovery results of all algorithms for the image ‘‘Peppers’’.

Fig. 8. The recovery results of all algorithms for the image ‘‘Pirate’’.

Fig. 9. The recovery results of all algorithms for the image ‘‘Mandril’’.

(iv) As shown in Table 2, Algorithm (8) requires the least amount of time, which is related to the fact that it only requires
one forward evaluation and one backward evaluation. Moreover, it can be observed from Tables 1 and 2 that the proposed
algorithm has a similar computation time compared to the methods in [7,8,10,11]. These methods require only two evaluations
of 𝐵 and one evaluation of 𝐴 per iteration, which is consistent with the computational complexity of our algorithm.
12 
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Fig. 10. The variations in SNR with the number of iterations for all algorithms (Example 4.2).

Fig. 11. The variations in PSNR with the number of iterations for all algorithms (Example 4.2).
13 
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Fig. 12. The variations in SSIM with the number of iterations for all algorithms (Example 4.2).

Table 2
The numerical results of all algorithms with different images in Example 4.2.
Algorithms Cameraman Peppers

Time (s) SNR PSNR SSIM Time (s) SNR PSNR SSIM

Our Alg. 16.1596 25.3075 30.9239 0.8992 14.3681 24.4764 31.0982 0.8427
CV Alg. 10.7919 23.8137 29.4302 0.8758 8.6311 23.2562 29.8780 0.8248
GTV Alg. 15.7152 24.0255 29.6419 0.8796 13.6604 23.4182 30.0400 0.8272
Tseng Alg. 14.2786 23.3572 28.9736 0.8673 13.1219 22.9071 29.5288 0.8192
GT Alg. 1 14.4274 23.2247 28.8411 0.8657 13.5009 22.8178 29.4396 0.8184
GT Alg. 2 12.8622 23.7929 29.4094 0.8756 13.8175 23.2410 29.8628 0.8246
AOM Alg. 31.8661 24.1572 29.7736 0.8830 30.9717 23.4874 30.1092 0.8291
MT Alg. 14.5816 24.8490 30.4655 0.8927 14.0328 23.9284 30.5501 0.8348

Pirate Mandril

Time(s) SNR PSNR SSIM Time(s) SNR PSNR SSIM

Our Alg. 15.7683 22.4587 28.9067 0.8032 14.9817 20.1633 25.7171 0.7476
CV Alg. 8.8194 21.4901 27.9381 0.7656 8.9056 18.9968 24.5506 0.6636
GTV Alg. 14.1027 21.6163 28.0643 0.7708 14.2182 19.1304 24.6842 0.6745
Tseng Alg. 13.3691 21.2172 27.6652 0.7537 13.9963 18.7083 24.2621 0.6392
GT Alg. 1 13.7963 21.1501 27.5981 0.7513 14.0294 18.6563 24.2101 0.6343
GT Alg. 2 14.7656 21.4791 27.9271 0.7651 14.0032 18.9872 24.5410 0.6628
AOM Alg. 31.1726 21.7679 28.2159 0.7777 32.0870 19.2838 24.8376 0.6861
MT Alg. 14.1984 22.1812 28.6292 0.7930 14.2638 19.8354 25.3892 0.7264

5. Conclusion

In this paper, we introduced a perturbed reflected forward–backward splitting algorithm to solve a monotone inclusion problem
uch that its step sizes are generated self-adaptively unlike existing reflected forward–backward splitting algorithms where the

Lipschitz constant of one of the operators must be known. We obtained weak convergence results, and also demonstrated that our
14 
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algorithm is more efficient numerically than some existing splitting algorithms in the literature through experimental results in
ignal processing and image deblurring. In our future work, we would further explore ways to relax the monotonicity assumption
f the single-valued operator.
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