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image reconstruction, are in infinite dimensional spaces. To investigate these prob-
lems, norm convergence is usually preferable to the weak convergence. Therefore,
modifying the Mann iteration method to obtain strong convergence is an important
research topic; see, e.g., [1, 8, 9, 11, 12] and the references therein. In this paper, we
mainly focus on the projection type algorithms. Let us review some classic results.
In 2003, Nakajo and Takahashi established strong convergence of the Mann itera-
tion with the aid of projections, see [22]. This method is now referred as the hybrid
projection method. Inspired by Nakajo and Takahashi [22], Takahashi, Takeuchi
and Kubota [28] also proposed a projection-based method and obtained strong con-
vergence results, which is now called the shrinking projection method. In recent
years, many authors studied these projection-based methods in various spaces and
problems, see, for instance [10,27,29,30] and the references therein. In general, the
convergence rate of Mann algorithm is slow. Fast convergence of algorithm is re-
quired in many practical applications. In particular, an inertial type extrapolation
was first proposed by Polyak [23] as an acceleration process. In recent years, some
authors have constructed different fast iterative algorithms by inertial extrapolation
techniques; see, e.g., [5,15,17,18,25,31]. Recently, based on the projection method
and the hybrid method, Malitsky and Semenov [19] introduced a new hybrid method
without extrapolation step for solving variational inequality problems, and proved
a strong convergence theorem. Their numerical experiments show that this method
has a competitive performance.

Inspired and motivated by the above works, in this paper, based on inertial ideas
and the projection type algorithms, we propose two inertial hybrid and shrinking
projection algorithms for strict pseudo-contractions in Hilbert spaces and analyze
the convergence of the proposed algorithms. In addition, we also propose two new
inertial hybrid and shrinking projection algorithms without extrapolating step for
nonexpansive mappings in Hilbert spaces. This paper is organized as follows. Sec-
tion 2 gives the mathematical preliminaries. Section 3 presents two algorithms for
strict pseudo-contractions and analyzes their convergence. Section 4 proposes two
new algorithms without extrapolating step for nonexpansive mapping and analyzes
their convergence. Finally, in the last section, we provide some numerical experi-
ments to illustrate the convergence behavior of the proposed algorithms.

2. Preliminaries

Throughout this paper, we denote the strong and weak convergence of a sequence
{xn} to a point x ∈ H by xn → x and xn ⇀ x, respectively. Let ωw {xn} denote
the set of all weak limits of {xn}. There exists a unique nearest point in C, denoted
by PCx, such that PC(x):= argminy∈C ∥x − y∥ for any x ∈ H, where PC is called
the metric projection of H onto C. PCx is characterized by the properties

(2.1) PCx ∈ C and ⟨PCx− x, PCx− y⟩ ≤ 0, ∀y ∈ C.

This characterization implies the following inequality

(2.2) ∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2, ∀x ∈ H, ∀y ∈ C.

We give some special cases with simple analytical solutions:
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(i) The Euclidean projection of x0 onto a halfspace H−
a,b = {x : ⟨a, x⟩ ≤ b} is

given by PH−
a,b
x = x− [⟨a,x⟩−b]+

∥a∥2 a.

(ii) The Euclidean projection of x0 onto an Euclidean ball B[c, r] = {x : ∥x− c∥ ≤
r} is given by PB[c,r]x = c+ r

max{∥x−c∥,r}(x− c).

(iii) The Euclidean projection of x0 onto a box Box[ℓ, u] = {x : ℓ ≤ x ≤ u} is given
by PBox[ℓ,u]xi = min {max {xi, ℓi} , ui} .

Lemma 2.1 ([6]). Let C be a nonempty closed convex subset of a real Hilbert space
H, T : C → H be a nonexpansive mapping. Let {xn} be a sequence in C and x ∈ H
such that xn ⇀ x and Txn − xn → 0 as n→ +∞. Then x ∈ Fix(T ).

Lemma 2.2 ([16]). Let C be a nonempty closed and convex subset of a real Hilbert
space H. Given x, y, z ∈ H and a ∈ R. {v ∈ C : ∥y − v∥2 ≤ ∥x− v∥2 + ⟨z, v⟩+ a}
is convex and closed.

Lemma 2.3 ([20]). Let C be a closed convex subset of H, {xn} ⊂ H and u ∈ H. Let
q = PCu. If ωw {xn} ⊂ C and satisfies the condition ∥xn − u∥ ≤ ∥u− q∥, ∀n ∈ N .
Then xn → q.

Lemma 2.4 ([13]). Let {an} and {ξn} be nonnegative real sequences, α ∈ [0, 1),
β ∈ R+. For all n ∈ N the following inequality holds: an+1 ≤ αan + βξn, ∀n ≥ 1.
If

∑∞
n=1 ξn < +∞, then limn→∞ an = 0.

Proposition 2.5 ([21]). Assume that C is a closed convex subset of a Hilbert space
H. Let T : C → C be a self-mapping of C.

(i) If T is a τ -strict pseudo-contraction, then T satisfies the Lipschitz condition

(2.3) ∥Tx− Ty∥ ≤ 1 + τ

1− τ
∥x− y∥, ∀x, y ∈ C.

(ii) If T is a τ -strict pseudo-contraction, then the mapping I − T is demiclosed
(at 0). That is, if {xn} is a sequence in C such that xn → x∗ and (I −
T )xn → 0, then (I − T )x∗ = 0.

(iiii) If T is a τ -strict pseudo-contraction, then Fix(T ) is closed and convex so
that the projection PFix(T ) is well defined.

3. Inertial hybrid and shrinking projection algorithms

In this section, by combining the inertial extrapolation with the hybrid method
and the shrinking method, respectively, we introduce two inertial hybrid and shrink-
ing projection algorithms for strict pseudo-contractions in Hilbert spaces and ana-
lyze their convergence.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H
and T : C → C be a τ -strict pseudo-contraction for some 0 ≤ τ < 1 such that
Fix(T ) ̸= ∅. Let

(3.1) δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂ (0, 1).
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Set x−1, x0 ∈ C arbitrarily. Define a sequence {xn} by the following algorithm:

(3.2)



wn = xn + δn (xn − xn−1),
yn = ψnwn + (1− ψn)Twn,

Cn =
{
z ∈ C : ∥yn − z∥2 ≤ ∥wn − z∥2

+(1− ψn) (τ − ψn) ∥wn − Twn∥2
}
,

Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 0.

Then the iterative sequence {xn} defined by (3.2) converges strongly to PFix(T )x0.

Proof. Our proof is divided into three steps.
Step 1. We show that Fix(T ) ⊂ Cn∩Qn. First observe that Cn is convex by Lemma
2.2. Next we show that Fix(T ) ⊂ Cn for all n ≥ 0. Indeed, for all u ∈ Fix(T ), we
have

∥yn − u∥2 ≤ ψn ∥wn − u∥2 + (1− ψn)
(
∥wn − u∥2 + τ ∥wn − Twn∥2

)
− ψn (1− ψn) ∥wn − Twn∥2

= ∥wn − u∥2 + (1− ψn) (τ − ψn) ∥wn − Twn∥2 .
Thus u ∈ Cn for all n ≥ 0. For n = 0, we have Fix(T ) ⊂ C = Q0. Assume that
Fix(T ) ⊂ Qn−1, combining the fact that xn = PCn−1∩Qn−1x0 and (2.1), we obtain
⟨xn − z, xn − x0⟩ ≤ 0, ∀z ∈ Cn−1∩Qn−1. As Fix(T ) ⊂ Cn−1∩Qn−1 by the induction
assumption, this together with the definition of Qn implies that Fix(T ) ⊂ Qn and
hence Fix(T ) ⊂ Cn ∩Qn for all n ≥ 0.
Step 2. We show that ∥xn+1 − xn∥ → 0. From the definition of Qn and Fix(T ) ⊂
Qn, we have ∥xn − x0∥ ≤ ∥u− x0∥ , for all u ∈ Fix(T ). In particular, {xn} is
bounded and

(3.3) ∥xn − x0∥ ≤ ∥x∗ − x0∥ , where x∗ = PFix(T )x0.

From the fact that xn+1 ∈ Qn, we have ∥xn − x0∥ ≤ ∥xn+1 − x0∥. Using (2.2), we
have

(3.4) ∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2 .
Therefore, combining (3.3) and (3.4) we obtain

N∑
n=1

∥xn+1 − xn∥2 ≤
N∑

n=1

(
∥xn+1 − x0∥2 − ∥xn − x0∥2

)
≤ ∥x∗ − x0∥2 − ∥x1 − x0∥2 ,

which implies that
∑∞

n=1 ∥xn+1 − xn∥2 is convergent. Therefore,

(3.5) lim
n→∞

∥xn+1 − xn∥ = 0.

Next, from (3.1), (3.5) and the definition of wn, we get

(3.6) ∥xn − wn∥ = δn ∥xn − xn−1∥ ≤ δ2 ∥xn − xn−1∥ → 0.

It follows from (3.5) and (3.6) that

(3.7) ∥xn+1 − wn∥ ≤ ∥xn+1 − xn∥+ ∥xn − wn∥ → 0.
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Step 3. We show that xn → x∗, where x∗ = PFix(T )x0. By the fact xn+1 ∈ Cn we
get

(3.8) ∥xn+1 − yn∥2 ≤ ∥xn+1 − wn∥2 + (1− ψn) (τ − ψn) ∥wn − Twn∥2 .

Moreover, by the definition of yn, we get that

(3.9)
∥xn+1 − yn∥2 = ψn ∥xn+1 − wn∥2 + (1− ψn) ∥xn+1 − Twn∥2

− ψn (1− ψn) ∥wn − Twn∥2 .

Combining (3.1), (3.8) and (3.9), we deduce that

(3.10) ∥xn+1 − Twn∥2 ≤ ∥xn+1 − wn∥2 + τ ∥wn − Twn∥2 .

On the other hand, we have
(3.11)

∥xn+1 − Twn∥2 = ∥xn+1 − wn∥2 + ∥wn − Twn∥2 + 2 ⟨xn+1 − wn, wn − Twn⟩ .

Combining (3.10) and (3.11) we obtain

(3.12) (1− τ) ∥wn − Twn∥2 ≤ −2 ⟨xn+1 − wn, wn − Twn⟩ .

It follows from (3.7) and (3.12), we obtain

(3.13) ∥wn − Twn∥ ≤ 2

1− τ
∥xn+1 − wn∥ → 0.

On the other hand, by (2.3) and (3.6), we have

(3.14) ∥Txn − Twn∥ ≤ 1 + τ

1− τ
∥xn − wn∥ → 0.

Therefore, combining (3.6), (3.13) and (3.14), we obtain

(3.15) ∥Txn − xn∥ ≤ ∥Txn − Twn∥+ ∥Twn − wn∥+ ∥wn − xn∥ → 0.

By (3.15) and Proposition 2.5 (ii), it follows that every weak limit point of {xn} is
a fixed point of T , i.e., ωw {xn} ⊂ Fix(T ). This fact, with the inequality (3.3) and
Lemma 2.3, ensures the strong convergence of {xn} to PFix(T )x0. This completes
the proof. □

Theorem 3.2. Let C be a nonempty closed convex subset of a Hilbert space H
and T : C → C be a τ -strict pseudo-contraction for some 0 ≤ τ < 1 such that
Fix(T ) ̸= ∅. Let

(3.16) δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂ (0, 1).

Set x−1, x0 ∈ C arbitrarily. Define a sequence {xn} by the following algorithm:

(3.17)



wn = xn + δn (xn − xn−1),
yn = ψnwn + (1− ψn)Twn,

Cn+1 =
{
z ∈ Cn : ∥yn − z∥2 ≤ ∥wn − z∥2

+(1− ψn) (τ − ψn) ∥wn − Twn∥2
}
,

xn+1 = PCn+1x0, n ≥ 0.

Then the iterative sequence {xn} defined by (3.17) converges strongly to PFix(T )x0.
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Proof. Our proof is divided into three steps.
Step 1. We show that Fix(T ) ⊂ Cn+1 for all n ≥ 0. According to Step 1 in

Theorem 3.1, for all u ∈ Fix(T ), we have ∥yn − u∥2 ≤ ∥wn − u∥2+
(1− ψn) (τ − ψn) ∥wn − Twn∥2 . So u ∈ Cn+1 for each n ≥ 0 and thus Fix(T ) ⊂
Cn+1.
Step 2. We show that ∥xn+1 − xn∥ → 0. From xn = PCnx0, this together
with the fact Fix(T ) ⊂ Cn further implies ∥xn − x0∥ ≤ ∥u− x0∥ , for all u ∈
Fix(T ). In particular, {xn} is bounded and ∥xn − x0∥ ≤ ∥x∗ − x0∥ , where x∗ =
PFix(T )x0. The fact xn+1 ∈ Cn+1 ⊂ Cn, we have ∥xn − x0∥ ≤ ∥xn+1 − x0∥,
this implies that limn→∞ ∥xn − x0∥ exists. Using (2.2), we have ∥xn − xn+1∥2 ≤
∥xn+1 − x0∥2 − ∥xn − x0∥2 , ∀n ≥ 0. This implies that ∥xn+1 − xn∥ → 0. Also,
we have ∥xn − wn∥ → 0 and ∥xn+1 − wn∥ → 0.
Step 3. We show that xn → x∗, where x∗ = PFix(T )x0. This result can be easily
proved by using a similar way as Step 3 in Theorem 3.1. We leave the proof for the
reader to verify. □

Remark 3.3. (i) We know that τ -strict pseudo-contraction contains nonexpan-
sive. In fact, 0-strict pseudo-contraction is nonexpansive. Recently, Dong et
al. [14] introduced an inertial hybrid projection algorithm for nonexpansive
mappings.

(ii) When δn = 0, the Algorithm (3.2) transformed into a hybrid projection algo-
rithm for strict pseudo-contraction introduced by Marino and Xu [21]. When
δn = 0 and T is nonexpansive, the Algorithm (3.2) transformed into a hybrid
projection algorithm proposed by Nakajo and Takahashi [22], the Algorithm
(3.17) transformed into a shrinking projection algorithm proposed by Taka-
hashi, Takeuchi and Kubota [28].

(iii) The conditions (3.1) on {δn} and {ψn} in the Algorithm (3.2) are obviously
relaxed. To the best of our knowledge, the conditions of convergence of the
Algorithm (3.2) are the weakest among the inertial algorithms.

4. Inertial hybrid and Shrinking projection algorithms without
extrapolating step

In this section, we introduce two inertial hybrid and shrinking projection algo-
rithms without extrapolating step for nonexpansive mapping in Hilbert spaces and
analyze their convergence.

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Let

(4.1) δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂
(

σ

1 + σ
, 1

)
, σ ∈ (0, 1).
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Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the following
algorithm:

(4.2)



wn = xn + δn (xn − xn−1),
yn+1 = ψnwn + (1− ψn)Tyn,

Cn =
{
z ∈ C : ∥yn+1 − z∥2 ≤ ψn ∥wn − z∥2 + (1− ψn) ∥yn − z∥2

−ψn (1− ψn) ∥wn − Tyn∥2
}
,

Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (4.2) converge strongly to PFix(T )x0.

Proof. First observe that Cn is convex by Lemma 2.2. Next we show that Fix(T ) ⊂
Cn for all n ≥ 0. Indeed, for all u ∈ Fix(T ), we have

∥yn+1 − u∥2 ≤ψn ∥wn − u∥2 + (1− ψn) ∥yn − u∥2 − ψn (1− ψn) ∥wn − Tyn∥2 .
Thus u ∈ Cn for all n ≥ 0. Using a similar way in Theorem 3.1, we can get that
Fix(T ) ⊂ Cn ∩Qn for all n ≥ 0. Furthermore, we can prove that

(4.3) ∥xn − x0∥ ≤ ∥x∗ − x0∥ , where x∗ = PFix(T )x0,

and

(4.4)
∞∑
n=1

∥xn+1 − xn∥2 < +∞, lim
n→∞

∥xn+1 − xn∥ = 0,

and

(4.5) lim
n→∞

∥wn − xn∥ = 0, lim
n→∞

∥wn − xn+1∥ = 0.

On the other hand, by the definition of wn in (4.2), we have

(4.6)

∥wn − xn+1∥2 ≤∥xn − xn+1∥2 + δ2n∥xn − xn−1∥

+ δn

[
∥xn − xn+1∥2 + ∥xn − xn−1∥2

]
≤ (1 + δn) ∥xn − xn+1∥2 + δn (1 + δn) ∥xn − xn−1∥2 .

Combining (4.1), (4.2), (4.4), (4.6) and the fact xn+1 ∈ Cn, we obtain
(4.7)

∥yn+1 − xn+1∥2 ≤ψn ∥wn − xn+1∥2 + (1− ψn) ∥yn − xn+1∥2

≤ψn

[
(1 + δn) ∥xn − xn+1∥2 + δn (1 + δn) ∥xn − xn−1∥2

]
+ (1− ψn)

[
(1 + σ2) ∥yn − xn∥2 +

(
1 +

1

σ2

)
∥xn − xn+1∥2

]
≤φ∗ ∥yn − xn∥2 + ξn,

where φ∗ = (1 − ψn)(1 + σ) < 1 and ξn = (δ2 + 1+2σ2

σ2 ) ∥xn − xn+1∥2 + δ2(1 +

δ2) ∥xn − xn−1∥2. Since
∑∞

n=1 ∥xn+1 − xn∥2 < +∞, then
∑∞

n=1 ξn <∞. Therefore,
applying Lemma 2.4 in (4.7), we obtain

(4.8) lim
n→∞

∥yn − xn∥ = 0.
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Combining (4.4) and (4.8), we get that

(4.9) ∥yn+1 − xn∥ ≤ ∥yn+1 − xn+1∥+ ∥xn+1 − xn∥ → 0.

Combining (4.5) and (4.8), we have

(4.10) ∥yn − wn∥ ≤ ∥yn − xn∥+ ∥xn − wn∥ → 0.

It follows from (4.5) and (4.9), we obtain

(4.11) ∥yn+1 − wn∥ ≤ ∥yn+1 − xn∥+ ∥xn − wn∥ → 0.

By the definition of yn+1 and (4.11), we deduce that

(4.12) ∥Tyn − wn∥ ≤ 1

1− ψn
∥yn+1 − wn∥ → 0.

Therefore, combining (4.5), (4.8) and (4.12), we obtain

(4.13)
∥Txn − xn∥ ≤ ∥Txn − Tyn∥+ ∥Tyn − wn∥+ ∥wn − xn∥

≤ ∥yn − xn∥+ ∥Tyn − wn∥+ ∥wn − xn∥ → 0.

By (4.13) and Lemma 2.1, it follows that every weak limit point of {xn} is a fixed
point of T , i.e., ωw {xn} ⊂ Fix(T ). This fact, with the inequality (4.3) and Lemma
2.3, ensures the strong convergence of {xn} to PFix(T )x0. This completes the proof.

□

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Let

(4.14) δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂
(

σ

1 + σ
, 1

)
, σ ∈ (0, 1).

Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the following
algorithm:

(4.15)



wn = xn + δn (xn − xn−1),
yn+1 = ψnwn + (1− ψn)Tyn,

Cn+1 =
{
z ∈ Cn : ∥yn+1 − z∥2 ≤ ψn ∥wn − z∥2 + (1− ψn) ∥yn − z∥2

−ψn (1− ψn) ∥wn − Tyn∥2
}
,

xn+1 = PCn+1x0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (4.15) converge strongly to PFix(T )x0.

Proof. This result can be easily proved by using a similar way as Theorem 4.1. We
leave the proof for the reader to verify. □

Remark 4.3. (i) It should be pointed out that Algorithm (4.2) and Algorithm
(4.15) are different from Algorithm (3.2) and Algorithm (3.17). In fact, the
idea of Algorithm (4.2) and Algorithm (4.15) came from Malitsky and Semenov
[19].

(ii) When δn = 0, the Algorithm (4.2) is transformed into a new hybrid projec-
tion algorithm introduced by Dong et al. [13]. It should be noted that our
conditions (4.1) are weaker than the conditions of Dong et al. [13].
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Changing the definitions of yn+1 and Cn in Algorithm (4.2) and Algorithm (4.15),
respectively, we get the following Theorem 4.4 and Theorem 4.5.

Theorem 4.4. Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Let

δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂
(

σ

1 + σ
, 1

)
, σ ∈ (0, 1).

Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the following
algorithm:

(4.16)



wn = xn + δn (xn − xn−1),
yn+1 = ψnyn + (1− ψn)Twn,

Cn =
{
z ∈ C : ∥yn+1 − z∥2 ≤ ψn ∥yn − z∥2 + (1− ψn) ∥wn − z∥2

−ψn (1− ψn) ∥yn − Twn∥2
}
,

Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qnx0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (4.16) converge strongly to PFix(T )x0.

Theorem 4.5. Let C be a nonempty closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅. Let

δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), ψn ⊂
(

σ

1 + σ
, 1

)
, σ ∈ (0, 1).

Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the following
algorithm:

(4.17)



wn = xn + δn (xn − xn−1),
yn+1 = ψnyn + (1− ψn)Twn,

Cn+1 =
{
z ∈ Cn : ∥yn+1 − z∥2 ≤ ψn ∥yn − z∥2 + (1− ψn) ∥wn − z∥2

−ψn (1− ψn) ∥yn − Twn∥2
}
,

xn+1 = PCn+1x0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (4.17) converge strongly to PFix(T )x0.

Remark 4.6. It is important to highlight that, in expression form, Algorithm (4.16)
and Algorithm (4.17) are different from Algorithm (3.2) and Algorithm (3.17) for
nonexpansive mappings. However, through a simple calculation of Cn and Cn+1

in Algorithm (4.16) and Algorithm (4.17), we can induce that Algorithm (3.2) and
Algorithm (3.17) for nonexpansive mappings. That is to say, Algorithm (4.16)
and Algorithm (4.17) are equivalent to Algorithm (3.2) and Algorithm (3.17) for
nonexpansive mappings, respectively.

5. Numerical experiments

In this section, we provide two numerical examples to illustrate the computational
performance of our proposed Algorithm (3.2), Algorithm (3.17), Algorithm (4.2)
and Algorithm (4.15). All the programs are performed in MATLAB2018a on a PC
Desktop Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.800 GHz, RAM 8.00 GB.
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Example 5.1. For any nonempty closed convex set C ⊂ RN , we consider the
following variational inequality problem (in short, VI):

(5.1) find x∗ ∈ C such that ⟨f (x∗) , x− x∗⟩ ≥ 0, ∀x ∈ C,

where f : RN → RN is a mapping. Denote by VI(C, f) the solution of the variational
inequality (5.1). Define T : RN → RN by T := PC(I − γf), where 0 < γ <
2/L, L is the Lipschitz constant of the mapping f . Xu [32] showed that T is an
averaged mapping, that is, T can be written as the average of the identity I and a
nonexpansive mapping. It follows that Fix(T ) = VI(C, f). Therefore, we can solve
VI (5.1) by finding the fixed point of T .

Taking f : R2 → R2 as follows:

f(x, y) = (2x+ 2y + sin(x),−2x+ 2y + sin(y)), ∀x, y ∈ R.

The feasible set C is given by C =
{
x ∈ R2| − 10e ≤ x ≤ 10e

}
, where e = (1, 1)T.

It is not hard to check that f is Lipschitz continuous with constant L =
√
26 and

1-strongly monotone. Therefore the VI (5.1) has a unique solution x∗ = (0, 0)T.
Our parameters are set as follows. In all algorithms, set ψn = 0.5, γ = 0.9/L.

Denote by En = ∥xn − x∗∥2 the error of iterative algorithms and En < 10−3 a com-
mon stopping criterion. Let x−1 = x0, y0 be randomly generated by the MATLAB
function k×rand(2,1) (where, Case I: k = 5, Case II: k = 10, Case III: k = 50, Case
IV: k = 100). The numerical results are reported in Table 1 and Fig. 1. In Table 1,
“Iter.” denote the number of iterations. Table 1 shows the convergence behavior
of iteration error En of our algorithms under different initial values and different
inertial parameter. The convergence process of En with different initial values and
inertial parameter are shown in Fig. 1.

Table 1. Computational results for Example 5.1

Algorithm Case δn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Alg. (3.2)

Case I Iter.

242 269 228 190 337 265 288 300 124 216
Alg. (4.2) 203 100 138 161 82 68 125 97 160 103
Alg. (3.17) 33 37 30 30 33 29 29 34 44 39
Alg. (4.15) 26 29 26 25 25 26 23 25 24 24
Alg. (3.2)

Case II Iter.

1117 770 635 728 769 621 808 610 916 669
Alg. (4.2) 450 179 245 454 290 277 285 242 320 418
Alg. (3.17) 54 45 46 38 45 36 51 51 51 52
Alg. (4.15) 33 32 33 33 33 30 33 29 28 29
Alg. (3.2)

Case III Iter.

1442 1917 1171 1851 1352 1333 1821 2118 1851 2224
Alg. (4.2) 669 829 1273 556 706 795 588 562 448 873
Alg. (3.17) 59 55 54 60 55 57 55 58 62 63
Alg. (4.15) 40 37 37 42 44 36 33 34 30 38
Alg. (3.2)

Case IV Iter.

2728 1840 1349 1618 2322 1649 1447 1691 2380 4035
Alg. (4.2) 831 720 488 469 653 860 1056 391 664 1175
Alg. (3.17) 66 50 60 63 62 51 62 59 61 57
Alg. (4.15) 41 42 40 36 38 35 34 44 38 41

Example 5.2. Suppose thatH = L2([0, 1]) with inner product ⟨x, y⟩ :=
∫ 1
0 x(t)y(t)dt

and norm ∥x∥ := (
∫ 1
0 |x(t)|2dt)1/2. Let C := {x ∈ H : ∥x∥ ≤ 1} be the unit ball.
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Figure 1. Convergence behavior of iteration error {En} for Exam-
ple 5.1

Define an operator f : C → H by

f(x)(t) =

∫ 1

0
(x(t)−G(t, v)g(x(v))) dv + h(t), t ∈ [0, 1], x ∈ C,

where

G(t, v) =
2tvet+v

e
√
e2 − 1

, g(x) = cosx, h(t) =
2tet

e
√
e2 − 1

.

It is known that f is monotone and L-Lipschitz continuous with L = 2 and x∗ = {0}
is the solution of the corresponding variational inequality problem.

We use Algorithm (3.2) and Algorithm (4.2) to solve Example 5.2. Our param-
eters and stopping criteria are set the same as in Example 5.1. Numerical results
are reported in Table 2 and Fig. 2. In Table 2, “Iter.” and “Time(s)” denote the
number of iterations and the CPU time in seconds, respectively.



2204 B. TAN, S. XU, AND S. LI

Table 2. Computational results for Example 5.2

Alg. (3.2), δn = 0 Alg. (3.2), δn = 0.5 Alg. (4.2), δn = 0 Alg. (4.2), δn = 0.5

Cases Initial values Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

I
x−1 = cos(t)
x0 = y0 = sin(t)

38 26.7584 70 49.6868 31 23.8894 23 17.2378

II
x−1 = 5 t2

x0 = y0 = 52t/4
95 68.2707 91 62.0445 88 64.5869 36 26.3965

III
x−1 = 5 sin(t)
x0 = y0 = et

120 80.4324 124 82.2207 46 32.5016 54 40.3045

IV
x−1 = 10 et/2

x0 = y0 = 5t2/2
203 135.1466 246 168.6629 286 206.6866 192 138.6253
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Figure 2. Convergence behavior of iteration error {En} for Exam-
ple 5.2

Remark 5.3. (i) In Example 5.1 and Example 5.2, we find that Algorithm (3.17)
and Algorithm (4.15) have less oscillating behavior and enjoy faster conver-
gence rates than Algorithm (3.2) and Algorithm (4.2), respectively. In ad-
dition, it should be noted that the choice of initial values will not affect the
computational performance of our algorithms.
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(ii) From Table 1 we get that inertial parameters have different effects on our
algorithms. That is to say, algorithms with inertial term are not necessarily
faster than those without inertial term. It should be mentioned that under
the correct choice of inertial parameters, Algorithm (3.2), Algorithm (3.17),
Algorithm (4.2) and Algorithm (4.15) have faster convergence rates than those
without inertial term. See Table 1 and Fig. 1.

(iii) From Table 1 and Table 2, when δn = 0, it should be pointed out that Al-
gorithm (4.2) and Algorithm (4.15) have faster convergence rates than Algo-
rithm (3.2) and Algorithm (3.17), respectively. In fact, as shown in Table 1
and Table 2, in most cases Algorithm (4.2) and Algorithm (4.15) are better
than Algorithm (3.2) and Algorithm (3.17), respectively. It should be high-
lighted that research on the Algorithm (4.2) and the Algorithm (4.15) is very
preliminary.
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