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reduced to a so-called hierarchical variational inequality problem: find x∗ ∈ Fix(T )
such that ⟨A (x∗) , x− x∗⟩ ≥ 0, ∀x ∈ Fix(T ). We note that HFPP (1.1) has the
iteration algorithm xn+1 = PFix(T ) (Sxn) based upon relation (1.2). It will converge
if a fixed point of the operator PFix(T ) ◦ S exists, and if S is averaged, not just
nonexpansive. But calculating PFix(T ) ◦ S in this case is usually not easy. It would
be nice if we could devise an algorithm that uses T itself, rather than PFix(T ) ◦ S.
For this purpose, Moudafi [19] introduced the following Mann iteration algorithm
for solving HFPP (1.1):

(1.4) xn+1 = (1− νn)xn + νn (λnSxn + (1− λn)Txn) , ∀n ≥ 0,

where {νn} and {λn} are two sequences in (0, 1). It should be noted that {xn}
generated by (1.4) converges weakly to a solution of problem HFPP (1.1). It is
worth mentioning that some algorithms in signal processing and image reconstruc-
tion may be written as the Mann iteration. The main feature of its corresponding
convergence theorems provides a unified frame for analysing various specific algo-
rithms. In practical applications, many problems, such as, quantum physics and
image reconstruction, are in infinite dimensional spaces. To investigate these prob-
lems, norm convergence is usually preferable to the weak convergence. In 2008,
Takahashi, Takeuchi and Kubota [27] established strong convergence of the Mann
iteration with the aid of projections.

(1.5)


yn = νnxn + (1− νn)Txn,

Cn+1 = {u ∈ Cn : ∥yn − u∥ ≤ ∥xn − u∥} ,
xn+1 = PCn+1x0, ∀n ∈ N.

They proved that the sequence {xn} generated by (1.5) converges strongly to a fixed
point of a nonexpansive mapping T . This method is now referred as the shrinking
projection method. In recent years, many authors studied these projection-based
methods in various spaces; see, e.g., [8, 9, 22,24,28].

In general, the convergence rate of Mann algorithm is slow. Fast convergence
of algorithm is required in many practical applications. In particular, an inertial
type extrapolation was first proposed by Polyak [21] as an acceleration process.
In recent years, some authors have constructed different fast iterative algorithms
by inertial extrapolation techniques, such as, inertial Mann algorithms [16], inertial
forward-backward splitting algorithms [15], and fast iterative shrinkage-thresholding
algorithm (FISTA) [5].

In 2008, Mainge [16] introduced the following inertial Mann algorithm by unifying
the Mann algorithm and the inertial extrapolation:

(1.6)

{
wn = xn + δn (xn − xn−1) ,

xn+1 = (1− λn)wn + λnT (wn) , n ≥ 1.

Note that the iterative sequence {xn} generated by (1.6) converges weakly to a fixed
point of T under some assumptions.

Recently, based on the projection method and the hybrid method, Malitsky and
Semenov [17] introduced a new hybrid method without extrapolation step for solving
variational inequality problems, and proved a strong convergence theorem. Their
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numerical experiments show that this method has a competitive performance. For
related works, see [6, 11,12,25,30].

Inspired and motivated by the above works. In this paper, by combining iterative
methods (1.4), (1.5) and (1.6), we introduce two new inertial shrinking projection al-
gorithms for solving HFPP (1.1). Two strong convergence theorems are established
in the framework of real Hilbert spaces. We also give three numerical examples
to illustrate the computational performance of our proposed algorithms over some
previously known algorithms in [11,29].

2. Preliminaries

Throughout this paper, we denote the weak and strong convergence of a sequence
{xn} to a point x ∈ H by xn ⇀ x and xn → x, respectively. Let ωw(xn) denote the
set of all weak limits of {xn}. For any x ∈ H, there exists a unique nearest point in
C, denoted by PCx such that ∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C, where PC is called the
metric projection of H onto C. Moreover, PCx is characterized by the properties
PCx ∈ C and ⟨PCx − x, PCx − y⟩ ≤ 0, ∀y ∈ C. This characterization implies the
following inequality

(2.1) ∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2, ∀x ∈ H, and y ∈ C.

Lemma 2.1 ( [13]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x, y, z ∈ H and a ∈ R,

{
u ∈ C : ∥y − u∥2 ≤ ∥x− u∥2 + ⟨z, u⟩+ a

}
is convex and closed.

Lemma 2.2 ( [4]). Let C be a nonempty closed convex subset of a real Hilbert space
H, and T : C → H be a nonexpansive mapping. Let {xn} be a sequence in C and
x ∈ H such that xn ⇀ x and Txn − xn → 0 as n → +∞. Then x ∈ Fix(T ).

Lemma 2.3 ( [12]). Let {an} and {ξn} be nonnegative real sequences, assume that
ν ∈ [0, 1), ζ ∈ R+ and for all n ∈ N the following inequality holds: an+1 ≤ νan+ζξn,
∀n ≥ 1. If

∑∞
n=1 ξn < +∞, then limn→∞ an = 0.

Lemma 2.4 ([18]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Let {xn} ⊂ H, u ∈ H and q = PCu. If ωw (xn) ⊂ C and ∥xn − u∥ ≤ ∥u − q∥,
∀n ∈ N , then {xn} converges strongly to q.

3. The inertial shrinking projection algorithm

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
S, T : C → C be two nonexpansive mappings. Assume that Ω = Ψ

∩
Fix(S) ̸= ∅.

Let

(3.1)
{δn} ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞),

{νn} ∈ [ν, 1), ν ∈ (0, 1), {λn} ∈ [λ1, λ2] ⊂ (0, 1).
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Set x−1, x0 ∈ C arbitrarily. Define a sequence {xn} by the following:

(3.2)


wn = xn + δn (xn − xn−1) ,

yn = (1− νn)wn + νn (λnSwn + (1− λn)Twn) ,

Cn+1 =
{
u ∈ Cn : ∥yn − u∥2 ≤ ∥wn − u∥2

}
,

xn+1 = PCn+1x0, n ≥ 0.

Then the sequence {xn} defined by (3.2) converge strongly to x∗ = PΩx0.

Proof. Obviously, Ψ is closed and convex, since Ψ = Fix
(
PFix(T ) ◦ S

)
̸= ∅ and

Fix(S) is also closed and convex. Therefore, Ω is closed and convex and hence PΩx0
is well defined.
Step 1. We show that Ω ⊂ Cn+1 for all n. From Lemma 2.1 we know that Cn+1 is
closed and convex. For all z ∈ Ω we have

(3.3)

∥yn − z∥2 ≤ (1− νn) ∥wn − z∥2 + νn

(
λn ∥Swn − z∥2

+(1− λn) ∥Twn − z∥2 − λn (1− λn) ∥Swn − Twn∥2
)

≤∥wn − z∥2 − νnλn (1− λn) ∥Swn − Twn∥2 .
So z ∈ Cn+1 for each n ≥ 0 and hence Ω ⊂ Cn+1 ⊂ Cn, ∀n ≥ 0.
Step 2. We show that {xn} converges weakly to x∗ ∈ Fix(T ). From xn = PCnx0,
this together with the fact that Ω ⊂ Cn implies ∥xn − x0∥ ≤ ∥z − x0∥ , ∀z ∈ Ω. In
particular, {xn} is bounded and

(3.4) ∥xn − x0∥ ≤ ∥x∗ − x0∥ , where x∗ = PΩx0.

The fact xn+1 ∈ Cn+1 ⊂ Cn, we have ∥xn − x0∥ ≤ ∥xn+1 − x0∥, this implies that
limn→∞ ∥xn − x0∥ exists. Using (2.1), we have

(3.5) ∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2 , ∀n ≥ 0.

Therefore, combining (3.4) and (3.5) we have

N∑
n=1

∥xn+1 − xn∥2 ≤
N∑

n=1

(
∥xn+1 − x0∥2 − ∥xn − x0∥2

)
≤ ∥x∗ − x0∥2 − ∥x1 − x0∥2 ,

which implies that
∑∞

n=1 ∥xn+1 − xn∥2 is convergent and hence

(3.6) lim
n→∞

∥xn+1 − xn∥ = 0.

Next, by the definition of wn in (3.2) and δ1 ≤ δn ≤ δ2, ∀n, we have

∥wn − xn∥ = δn ∥xn − xn−1∥ ≤ max {|δ1| , |δ2|} ∥xn − xn−1∥ → 0.

Therefore, ∥wn − xn+1∥ ≤ ∥wn − xn∥+ ∥xn − xn+1∥ → 0. Since xn+1 = PCn+1x0 ∈
Cn+1, by the definiton of Cn+1, it follows that ∥yn − xn+1∥2 ≤ ∥wn − xn+1∥2 → 0.
Furthermore, we have ∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥ → 0. Again, since

(3.7) ∥wn − yn∥ ≤ ∥wn − xn∥+ ∥xn − yn∥ → 0,

from (3.1), (3.3) and (3.7), we have

νnλn (1− λn) ∥Swn − Twn∥2 ≤ ∥wn − z∥2 − ∥yn − z∥2 ≤ K ∥wn − yn∥ ,
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where K := supn≥0 {∥wn − z∥+ ∥yn − z∥}. From (3.7), we get

(3.8) lim
n→∞

∥Swn − Twn∥ = 0.

Further, from (3.2), (3.7) and (3.8), we have

(3.9) ∥Twn − wn∥ ≤ 1

νn
∥yn − wn∥+ λn ∥Swn − Twn∥ → 0.

Therefore, ∥Swn − wn∥ ≤ ∥Swn − Twn∥+ ∥Twn − wn∥ → 0. Since

(3.10)
∥Txn − xn∥ ≤ ∥Txn − Twn∥+ ∥Twn − wn∥+ ∥wn − xn∥

≤ 2 ∥wn − xn∥+ ∥Twn − wn∥ → 0.

Thus, it follows from (3.10) and Lemma 2.2 that every weak limit point of {xn} is
a fixed point of the mapping T , i.e., ωw (xn) ⊂ Fix(T ). Therefore, {xn} converges
weakly to x∗ ∈ Fix(T ). Further, {wn} converges weakly to x∗ ∈ Fix(S).
Step 3. We show that x∗ ∈ Ψ. From (3.2), we have yn −wn = νn(λn(Swn −wn) +
(1− λn) (Twn − wnt)), Therefore,

1

νnλn
(wn − yn) = (I − S)wn +

(
1− λn

λn

)
(I − T )wn.

For all u ∈ Fix(T ) and using monotonicity of I − S, we have

(3.11)

⟨
wn − yn
νnλn

, wn − u

⟩
= ⟨(I − S)wn − (I − S)u,wn − u⟩

+ ⟨(I − S)u,wn − u⟩

+
1− λn

λn
⟨wn − Twn, wn − u⟩

≥ ⟨(I − S)u,wn − u⟩

+
1− λn

λn
⟨wn − Twn, wn − u⟩ .

Using (3.1), (3.7) and (3.9) in (3.11), we have

lim
n→∞

⟨u− Su,wn − u⟩ ≤ 0, ∀u ∈ Fix(T ).

By the fact that {wn} weakly converges to x∗, we have ⟨(I − S)u, x∗ − u⟩ ≤ 0,
∀u ∈ Fix(T ). Since Fix(T ) is convex, λu+ (1− λ)x∗ ∈ Fix(T ) for λ ∈ (0, 1),

⟨(I − S)(λu+ (1− λ)x∗), x∗ − (λu+ (1− λ)x∗)⟩
= λ⟨(I − S)(λu+ (1− λ)x∗), x∗ − u⟩,

which implies ⟨(I − S)(λu + (1 − λ)x∗), x∗ − u⟩ ≤ 0, ∀u ∈ Fix(T ). Taking limits
λ → 0+, we have ⟨(I−S)x∗, x∗−u⟩ ≤ 0, ∀u ∈ Fix(T ), that is, x∗ ∈ Ψ. Thus x∗ ∈ Ω.
Step 4. We show that xn → x∗, where x∗ = PΩx0. Combining ωw (xn) ⊂ Ω, (3.4)
and Lemma 2.4, we get that {xn} converge strongly to x∗ ∈ Ω, where x∗ = PΩx0. □
Remark 3.2. (i) The term (xn − xn−1) in (3.2) introduces an inertial step that

produces acceleration with proper choice of δn. It should be noted that in
(3.2) that the term δn is a generalized term that was defined by the expression

n−1
n+3 in [3, 7] and tn−1

tn+1
(where t1 = 1, tn+1 =

1+
√

1+4t2n
2 ) [5].
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(ii) The conditions (3.1) on {δn}, {νn} and {λn} in the inertial shrinking pro-
jection algorithm (3.2) are obviously relaxed. Theorem 3.1 does not need the

conditions
∑∞

n=0 λn < +∞ and limn→∞
∥wn−yn∥

νnλn
= 0 in [19]. In fact, these two

conditions are very strong, which prohibits the implementation of the related
algorithms.

4. The inertial shrinking projection algorithm without
extrapolating step

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let
S, T : C → C be two nonexpansive mappings. Assume that Ω = Ψ

∩
Fix(S) ̸= ∅.

Let

(4.1)

{δn} ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), {λn} ∈ [λ1, λ2] ⊂ (0, 1)

{νn} ⊆ (0, ν], ν ∈
(
0,

1

1 + σ

)
, σ ∈ (0, 1), lim

n→∞
inf νn > 0.

Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the following:

(4.2)


wn = xn + δn (xn − xn−1) ,

yn+1 = (1− νn)wn + νn (λnSyn + (1− λn)Tyn) ,

Cn+1 =
{
u ∈ Cn : ∥yn+1 − u∥2 ≤ (1− νn) ∥wn − u∥2 + νn∥yn − u∥2

}
,

xn+1 = PCn+1x0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (4.2) converge strongly to x∗ ∈ Ω,
where x∗ = PΩx0.

Proof. As the same in Theorem 3.1, we have PΩx0 is well defined. From Lemma
2.1 we can easily observe that Cn+1 is closed and convex. For all z ∈ Ω we have

(4.3)

∥yn+1 − z∥2 ≤ (1− νn) ∥wn − z∥2

+ νn

(
λn ∥Syn − z∥2 + (1− λn) ∥Tyn − z∥2

−λn (1− λn) ∥Syn − Tyn∥2
)

≤ (1− νn) ∥wn − z∥2 + νn ∥yn − z∥2 ,

which implies that u ∈ Cn+1 and hence Ω ⊂ Cn+1 for all n ≥ 0. Using the same
arguments in Theorem 3.1, we can get that the sequence {xn} is bounded. Further,
we can prove that

(4.4)
∞∑
n=1

∥xn+1 − xn∥2 < +∞, and lim
n→∞

∥xn+1 − xn∥ = 0.

and

(4.5) lim
n→∞

∥wn − xn∥ = 0, and lim
n→∞

∥wn − xn+1∥ = 0.
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On the other hand, by the definition of wn in (4.2), we have

(4.6)

∥wn − xn+1∥2 ≤∥xn − xn+1∥2 + δ2n∥xn − xn−1∥

+ δn

[
∥xn − xn+1∥2 + ∥xn − xn−1∥2

]
≤ (1 + δn) ∥xn − xn+1∥2 + δn (1 + δn) ∥xn − xn−1∥2 .

From (4.6), the fact that xn+1 ∈ Cn+1 and (4.1), we obtain

∥yn+1 − xn+1∥2 ≤ (1− νn)
[
(1 + δn) ∥xn − xn+1∥2 + δn (1 + δn) ∥xn − xn−1∥2

]
+ νn

[
∥yn − xn∥2 + ∥xn − xn+1∥2 + 2 ⟨yn − xn, xn − xn+1⟩

]
≤φ∗ ∥yn − xn∥2 +

(
δ2 +

1 + 2σ2

σ2

)
∥xn − xn+1∥2(4.7)

+ δ2(1 + δ2) ∥xn − xn−1∥2 ≤ φ∗ ∥yn − xn∥2 + ξn,

where φ∗=νn(1+σ) < 1 and ξn=
(
δ2+

1+2σ2

σ2

)
∥xn − xn+1∥2+δ2(1+δ2) ∥xn − xn−1∥2.

Since
∑∞

n=1 ∥xn+1 − xn∥2 < +∞, we have
∑∞

n=1 ξn < ∞. Therefore, applying
Lemma 2.3 in (4.7), we have

(4.8) lim
n→∞

∥yn − xn∥ = 0.

From (4.4) and (4.8), we obtain

(4.9) ∥yn+1 − xn∥ ≤ ∥yn+1 − xn+1∥+ ∥xn+1 − xn∥ → 0.

Combining (4.5) and (4.8), we have

(4.10) ∥yn − wn∥ ≤ ∥yn − xn∥+ ∥xn − wn∥ → 0.

It follows from (4.5) and (4.9), we obtain

(4.11) ∥yn+1 − wn∥ ≤ ∥yn+1 − xn∥+ ∥xn − wn∥ → 0.

It follows from (4.10) and (4.11) that

(4.12) lim
n→∞

∥wn − yn+1 − νn (wn − yn)∥ = 0.

From (4.3), we have

νnλn (1− λn) ∥Syn − Tyn∥2 ≤∥wn − z∥2 − ∥yn+1 − z∥2

+ νn

(
∥yn − z∥2 − ∥wn − z∥2

)
≤L ∥wn − yn+1∥+M ∥yn − wn∥ ,

where L := supn≥0 {∥wn − z∥+ ∥yn+1 − z∥} ,M := supn≥0 {∥wn − z∥+ ∥yn − z∥}.
Using (4.1), (4.10) and (4.11), we have

(4.13) lim
n→∞

∥Syn − Tyn∥ = 0.

Further, from (4.2), we have

νn ∥Tyn − yn∥ ≤ ∥yn+1 − wn∥+ νn ∥wn − yn∥+ νnλn ∥Tyn − Syn∥ ,



878 B. TAN, S. XU, AND S. LI

which implies

(4.14) ∥Tyn − yn∥ ≤ 1

νn
∥yn+1 − wn∥+ ∥wn − yn∥+ λn ∥Tyn − Syn∥ .

Hence, it follows from (4.1), (4.10), (4.11) and (4.13) that limn→∞ ∥Tyn − yn∥ = 0.
From (4.13), we have limn→∞ ∥Syn − yn∥ = 0. The rest of the proof is similar to
the proof of Theorem 3.1. □
Remark 4.2. It should be noted that Algorithm (4.2) is different from Algorithm
(3.2). Note that the conditions (4.1) of our Algorithm (4.2) are different from Dong
et al. Algorithm (5.3).

5. Numerical experiments

In this section, we do several computational experiments in support of the con-
vergence of our proposed algorithms and compare with some existing algorithms in
literatures. All the programs are performed in MATLAB2018a on a PC Desktop
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.800 GHz, RAM 8.00 GB. First, we
introduce three algorithms, which solve our proposed problems.

In [29], Yao, Cho and Liou obtained the following theorem.

Theorem 5.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f : C → H be a ρ-contraction with ρ ∈ [0, 1), namely, ∥fx − fy∥ ≤ ρ∥x − y∥
for all x, y ∈ C. Let S, T : C → C be two nonexpansive mappings with F (T ) ̸= ∅.
Suppose that the following conditions are satisfied:

(C1) limn→∞ νn = 0 and
∑∞

n=1 νn = ∞;

(C2) limn→∞
ζn
νn

= 0;

(C3) limn→∞
|νn−νn−1|

νn
= 0 and limn→∞

|ζn−ζn−1|
ζn

= 0 or

(C4)
∑∞

n=1 |νn − νn−1| < ∞ and
∑∞

n=1 |ζn − ζn−1| < ∞.

Set x−1, x0 ∈ C arbitrarily. Define a sequence {xn} by the following:

(5.1)

{
yn = ζnSxn + (1− ζn)xn,

xn+1 = PC [νnf (xn) + (1− νn)Tyn] , ∀n ≥ 1.

Then the sequence {xn} defined by (5.1) converges strongly to a point x∗ ∈ F(T ).

Recently, Dong et al [11] obtained the following theorems.

Theorem 5.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let
S, T : C → C be two nonexpansive mappings. Assume that Ω = Ψ

∩
Fix(S) ̸= ∅. Let

{δn} ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), {νn} ∈ [ν, 1), ν ∈ (0, 1), {λn} ∈ [λ1, λ2] ⊂
(0, 1). Set x−1, x0 ∈ C arbitrarily. Define a sequence {xn} by the following:

(5.2)



wn = xn + δn (xn − xn−1) ,

yn = (1− νn)wn + νn (λnSwn + (1− λn)Twn) ,

Cn =
{
u ∈ C : ∥yn − u∥2 ≤ ∥wn − u∥2

}
,

Qn = {u ∈ C : ⟨xn − u, x0 − xn⟩ ≥ 0} ,
xn+1 = PCn∩Qnx0, n ≥ 0.
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Then the sequence {xn} defined by (5.2) converge strongly to x∗ ∈ Ω, where x∗ =
PΩx0.

Theorem 5.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let
S, T : C → C be two nonexpansive mappings. Assume that Ω = Ψ

∩
Fix(S) ̸= ∅. Let

{δn} ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0,∞), νn ⊂ (0, ν), ν ∈ (0, 12 ], {λn} ∈ [λ1, λ2] ⊂
(0, 1). Set x−1, x0, y0 ∈ C arbitrarily. Define two sequences {xn} and {yn} by the
following:

(5.3)



wn = xn + δn (xn − xn−1) ,

yn+1 = (1− νn)wn + νn (λnSyn + (1− λn)Tyn) ,

Cn =
{
u ∈ C : ∥yn+1 − u∥2 ≤ (1− νn) ∥wn − u∥2 + νn∥yn − u∥2

}
,

Qn = {u ∈ C : ⟨xn − u, x0 − xn⟩ ≥ 0} ,
xn+1 = PCn∩Qnx0, n ≥ 0.

Then the sequences {xn} and {yn} defined by (5.3) converge strongly to x∗ ∈ Ω,
where x∗ = PΩx0.

Let C ⊂ H be a nonempty closed convex set of a real Hilbert space H. We
consider the variational inequality problem:

(5.4) find x∗ ∈ C such that ⟨A (x∗) , x− x∗⟩ ≥ 0, ∀x ∈ C.

where A : H → H is a mapping. Denote by VI(C,A) the solution of the variational
inequality problem (5.4). Define T : H → H by T := PC and S : H → H by
S := I − γA, where 0 < γ < 2/L (L is the Lipschitz constant of the mapping A).
From (1.1)–(1.3) we get Fix (PC(I − γA)) = VI(C,A). Therefore, the variational
inequality problem (5.4) is a special case of the hierarchical fixed point problem
HFPP (1.1).

Example 5.4. Taking A : R2 → R2 as follows:

A(x, y) = (2x+ 2y + sin(x),−2x+ 2y + sin(y)), ∀x, y ∈ R.

Let C =
{
x ∈ R2| − 10e ≤ x ≤ 10e

}
, where e = (1, 1)⊤. It is not hard to check that

A is Lipschitz continuous with constant L =
√
26 and 1-strongly monotone [10].

Therefore the variational inequality (5.4) has a unique solution x∗ = (0, 0)⊤.
Our parameter settings are as follows. In Algorithm (5.1), set ζn = (n+ 1)−2,

νn = (n+ 1)−1, f(x) = 0.5x and γ = 0.9/L. In Algorithm (3.2), Algorithm
(4.2), Algorithm (5.2) and Algorithm (5.3), set δn = 0.4, λn = 0.9, νn = 0.4
and γ = 0.9/L. Let x−1 = x0, y0 be randomly generated by the MATLAB function
k×rand(m,1) (where, Case I: k = 1, Case II: k = −1, Case III: k = 10, Case IV:
k = −10). Denote by En = ∥xn − x∗∥2 the error of the iterative algorithms. Maxi-
mum iteration 5000 or En < 10−3 as a common stopping criterion. Our numerical
results are shown in Table 1 and Figure 1.

Further, we performed a parameter analysis on the proposed Algorithm (3.2).
Figure 2(a) shows the effect of inertial parameter on the convergence rate when
λn = 0.9, νn = 0.4, and Figure 2(b) shows the effect of choosing different λn and νn
when δn = tn−1

tn+1
.
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Table 1. Compare the number of iterations for Example 5.4

Cases Alg. (3.2) Alg. (4.2) Alg. (5.2) Alg. (5.3) Alg. (5.1)

I 98 127 668 1725 > 5000
II 82 139 930 1520 > 5000
III 144 192 4005 > 5000 > 5000
IV 120 197 2992 > 5000 > 5000
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Figure 1. Convergence behavior of {En} for Example 5.4

Example 5.5. Consider the linear operator A(x) = Mx + q, where q ∈ Rm and
M = NN⊤ + U +D, where N is a m ×m matrix, U is a m ×m skew-symmetric
matrix, and D is a m × m diagonal matrix with its diagonal entries being non-
negative (hence M is positive symmetric definite). The feasible set C is given by
C = {x ∈ Rm : −5 ≤ xi ≤ 5, i = 1, . . . ,m} . It is clear that A is monotone and Lip-
schitz continuous with constant L = ∥M∥. In this experiment, all entries of N,U
are generated randomly and uniformly in [−5, 5] and D is generated randomly in
[1, 5]. Let q = 0, then, the solution set is x∗ = {0}. Setting m = 2, our other pa-
rameters and stopping criterion are the same as in Example 5.4. Numerical results
are reported in Table 2 and Figure 3.
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Figure 2. Parameter analysis for Example 5.4

Table 2. Compare the number of iterations for Example 5.5

Cases Alg. (3.2) Alg. (4.2) Alg. (5.2) Alg. (5.3) Alg. (5.1)

I 83 125 440 978 > 5000
II 67 108 346 1073 > 5000
III 147 162 2890 > 5000 > 5000
IV 145 194 2025 3354 > 5000
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Figure 3. Convergence behavior of {En} for Example 5.5
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Example 5.6. Let us consider the following nonlinear optimization problem via

(5.5)
minF (x) = 1 + x21 − e−x2

2

s.t. − 5e ≤ x ≤ 5e,

where x = (x1, x2)
⊤ ∈ R2, e = (1, 1)⊤. Observe that ∇F (x) =

(
2x1, 2x2e

−x2
2
)⊤

and the optimal solution for F (x) is x∗ = (0, 0)⊤. Taking A(x) = ∇F (x), it is easy
to check that A(x) is monotone and Lipschizt continuous with constant L = 2 on
the closed and convex subset C =

{
x ∈ R2 : −5e ≤ x ≤ 5e

}
. Our parameters and

stopping criterion are the same as in Example 5.4. Numerical results are reported
in Table 3 and Figure 4.

Table 3. Compare the number of iterations for Example 5.6

Cases Alg. (3.2) Alg. (4.2) Alg. (5.2) Alg. (5.3) Alg. (5.1)

I 80 92 753 3284 > 5000
II 74 86 433 1098 > 5000
III 85 131 1479 > 5000 > 5000
IV 167 265 2998 > 5000 > 5000
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Figure 4. Convergence behavior of {En} for Example 5.6

Remark 5.7. Example 5.4–Example 5.6 show that our proposed Algorithm (3.2)
and Algorithm (4.2) have better convergence behaviors than Algorithm (5.1), Al-
gorithm (5.2) and Algorithm (5.3). In addition, Algorithm (3.2) and Algorithm
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(4.2) has the dual advantages of small oscillation and fast convergence. Figure 2
shows that the Algorithm (3.2) has a faster convergence rate when δn = tn−1

tn+1
and

λn = 0.9, νn = 0.6.
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[20] A. Moudafi and P. E. Maingé, Towards viscosity approximations of hierarchical fixed-point
problems, Fixed Point Theory Appl. 2006 (2006), 95453.

[21] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Com-
put. Math. Math. Phys. 4 (1964), 1964.

[22] X. Qin and S. Y. Cho, Convergence analysis of a monotone projection algorithm in reflexive
Banach spaces, Acta Math. Sci. 37 (2017), 488–502.

[23] X. Qin and N. M. An, Smoothing algorithms for computing the projection onto a Minkowski
sum of convex sets, Comput. Optim. Appl. 74 (2019), 821–850.



884 B. TAN, S. XU, AND S. LI

[24] X. Qin, A. Petrusel and J. C. Yao, CQ iterative algorithms for fixed points of nonexpansive
mappings and split feasibility problems in Hilbert spaces, J. Nonlinear Convex Anal. 19 (2018),
157–165.

[25] X. Qin and J. C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear
Convex Anal. 20 (2019), 1497–1506.

[26] D. R. Sahu, J. C. Yao, M. Verma and K. K. Shukla, Convergence rate analysis of proximal
gradient methods with applications to composite minimization problems, Optimization, (2020),
in press.

[27] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods
for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008),
276–286.

[28] W. Takahashi, C. F. Wen and J. C. Yao, The shrinking projection method for a finite family
of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point
Theory 19 (2018), 407–419.

[29] Y. Yao, Y. J. Cho and Y. C. Liou, Iterative algorithms for hierarchical fixed points problems
and variational inequalities, Math. Comput. Modelling 52 (2010), 1697–1705.

[30] X. Zhao, K. F. Ng, C. Li and J. C. Yao, Linear regularity and linear convergence of projection-
based methods for solving convex feasibility problems, Appl. Math. Optim. 78 (2018), 613–641.

Manuscript received August 1, 2019

revised December 10, 2019

B. Tan
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology
of China, Chengdu 611731, China

E-mail address: bingtan72@gmail.com

S. Xu
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu
611731, China

E-mail address: xss0702@gmail.com

S. Li
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology
of China, Chengdu 611731, China

E-mail address: jyulsx@163.com


