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ABSTRACT

This paper proposes a new inertial subgradient extragradient
method for solving equilibrium problems with pseudomono-
tone and Lipschitz-type bifunctions and fixed point prob-
lems for nonexpansive mappings in real Hilbert spaces. Pre-
cisely, we prove that the sequence generated by proposed
algorithm converges strongly to a common solution of equi-
librium problems and fixed point problems. We use an effec-
tive self-adaptive step size rule to accelerate the convergence
process of our proposed iterative algorithm. Moreover, some
numerical results are given to show the effectiveness of the
proposed algorithm. The results obtained in this paper extend
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and improve many recent ones in the literature.

1. Introduction

We consider the following equilibrium problem (shortly, EP), also called Ky
Fan’s inequality due to his significant contribution [1] in 1972. Let C be a
nonempty closed convex subset of a real Hilbert space H and f : H x H — R
be a bifunction, then the equilibrium problem is stated as follows: find x* € C
such that

flx*y) =0,

We denote by EP(f, C) the solution set of EP(1).

The EP has a wide range of applications in the field of mathematics. For
example, it can be applied to solve variational inequality problems, fixed point
problems, saddle point problems and Nash equilibrium problems (see, e.g. [2-17]
and the references therein). At the same time, two momentous methods have
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been proposed to solve the EP: proximal point method (shortly, PPM) [18,19]
and auxiliary problem principle [20].

The PPM was originally proposed by Martinet [21] to solve variational
inequality problem, and later Moudafi [18] applied it to solve monotone equi-
librium problems. However, the PPM is limited by the inability to solve pseu-
domonotone equilibrium problem. In order to overcome this shortcoming, Flam
et al. [22] and Tran et al. [23] successively introduced a proximal-like method
which is also called the extragradient method (shortly, EGM). Precisely, the
algorithm in Tran et al. [23] is as follows:

u()EC,

1
v, = argmin {)»f(un,}/) + EHJ’ - Un”z} )
yeC

. 1 2

Upq) = argmin {?»f(vn,y) + 5 ly =l } ,
yeC

where A > 0 is a suitable parameter, f is a pseudomonotone bifuction. They

proved a weak convergence theorem of the iterative sequence {u,} generated by

the above extragradient method. Since then, the EGM has attracted the attention

of many authors, see, e.g. [24-34] and the references therein.

On the other hand, it is well known that the inertial technology can speed
up the convergence rate of the related algorithms, so many authors apply it to
various fields (see, e.g. [15,29,35-46] and the references therein). For instance,
Thong and Hieu [42] applied inertial technology to solve the variational inequal-
ity problem in Hilbert space, Yao et al. [43] conducted a convergence analysis of
the inertial iteration in the split feasibility problem, and Tan et al. [40] introduced
inertial algorithm for solving split variational inclusion problem. For the equilib-
rium problem, Rehman et al. [29] proposed the following algorithm with inertia
term for solving pseudomonotone equilibrium problem in real Hilbert space:

where f is a pseudomonotone operator satisfying the Lipschitz-type condi-
tion on Hilbert space H. Rehman et al. [29] merged the inertial method and
the EGM involving a new self-adaptive step size rule to obtain the weak con-
vergence result of the generated sequence. Nevertheless, the self-adaptive rule in
Algorithm 1 requires the Lipschitz constants L; and L, to be known in advance.
We naturally think of improving this rule so that no prior knowledge of Lips-
chitz constants is needed. Furthermore, since weak convergence is not as good
as strong convergence, we also consider a strong convergence theorem about
equilibrium problems in Hilbert spaces.

In recent years, the fixed point problem (shortly, FPP) has also been a hot issue
in mathematics research. The FPP is formulated as

findx € H suchthatx € F(T),

where F(T) := {x : x = Tx} is the set of fixed points of T. At the same time, many
researchers have proposed multifarious related methods for finding a common
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Algorithm 1

Initialization: Choose u_1,ug € H, p € (0,1), 0 < 0 < min{

=30 11,
(1-6)2° 2L;> 2L, 1

w € (0,0), Lo > 0, and a nondecreasing sequence 0 < 6, <6 < %
Iterative Steps: Given u,_1, u, and A, are known for n > 0.
Step 1. Evaluate

. 1 2
vy = argmin { A,f (ty, y) + Elly —tll” ¢
yeC

where t, = u, + 0,(uy — uy—1). If t, = v,; STOP. Otherwise go to next step.
Step 2. Evaluate

1
Upy1 = argmin {/Mnf(vn,y) + =y — tn”Z} .
yeC 2

Step 3. Next, the step size sequence A, is updated as follows:

Ant1

= min {G,

/Lf(Vm Upt1) }
f(tm Uni1) _f(tna vn) — Lty — Vn||2 — Lallupyr — Vn||2 +1)°

Set n := n + 1 and return back to Iterative steps,

solution that belongs to the intersection of EP(f, C) and F(T) (see, e.g. [47-52]
and the references therein). For example, Yang et al. [50] proposed the following
algorithm:

where f is a pseudomonotone operator satisfying the Lipschitz-type condi-
tion, T is a quasi-nonexpansive mapping and T}, is a half-space, which was first
introduced by Censor et al. [53]. Under appropriate assumptions, Yang et al. [50]
obtained that the sequence {u,} generated by Algorithm 2 converges strongly to
a common solution of the EP and FPP. It is worth noting that the strong conver-
gence theorem about Algorithm 2 does not need to know the Lipschitz constant,
which is the main point of our consideration.

Motivated by the above works, in this paper, we prove a strong convergence
theorem of inertial subgradient extragradient method for solving the EP and
FPP in Hilbert spaces. Compared with Algorithm 2, we introduce a new param-
eter to improve the step size, which is meaningful through numerical examples.
In order to obtain a strong convergence theorem, we add a contraction map-
ping to the iterative sequence, which is different from the sequence {u,11} in
Algorithm 2. In addition, the inertial technology is applied to accelerate the
convergence speed of the proposed algorithm. Finally, several numerical experi-
mental results show that our algorithm does have better convergence than other
existing related algorithms.
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Algorithm 2

Initialization: Take A9 > 0, ug € H, u € (0,1).

Iterative Steps: Given the current iterate uy,, calculate u, 1 as follows:
Step 1. Compute

. 1 2
vy = argmin  Auf (un, y) + E”)’ —unll” ¢ .
yeC

Step 2. Choose z,, € 3>f (uy, V) such that u, — Az, — v, € Nc(v,), compute
. 1 2
wy = argmin | Anf (vy, ) + Elly —unl”¢,
yeTy,
where
Tp={xeH:{u, —Ipzy — vy, x — vy;) < 0}.

Step 3. Compute t,, = apug + (1 — ap) Wy, tnt1 = Bawn + (1 — By) Tt, and

)Mn—i-l
min iff(un) Wn) _f(una Vi)
1% ””n_Vn||2+ ||Wn_Vn||2 }
= — SAnts —f(vp, wy) > 0,
{2fwmm»<ﬂwmw—ﬂwmw ! S
As otherwise.

Set n := n + 1 and return to Step 1,

2. Preliminaries

We first recall some basic concepts and facts.
For any x, y, z € 'H, it is well known that

lx+ 1 < lIxl* + 20, x + y) (2)
and
lax + By + vzll* = allx|* + Blyl* + v lzl?
—afllx —ylI* —aylx—z|* = Byly —zI®,  (3)

where o, 8,y € [0,1] with a+8+y =1.
Let C be a nonempty closed convex subset of a real Hilbert space H. A
bifunction f : H x ‘H — R is said to be:

(i) monotone on C if

fu,v)+f(v,u) <0, YuveC. (4)
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(ii) pseudomonotone on C if
fu,v)>0= f(v,u) <0, VuveC (5)

(iii) satisfying a Lipschitz-type condition on C if there exist two positive con-
stants ¢y, ¢ such that

fuv)+fv,w) > f(u,w) — c1l|u — vI? = allv=w|? Yuv,weC.

(6)

For every point x € H, it is well known that there exists a unique nearest point
in C, denoted by Pcx such that |[x — Pcx|| < |[x — y|l, ¥ y € C. Pc is called the
metric projection of H onto C. In addition, the following inequality holds:

(Pc(u) — u,v—Pc(u)) =0, VveC.
For any u, v € 'H, the subdifferential 0,f («, v) of f(u, -) at v is defined by

Ofu,v)={xeH: f(uy —f(uv) > (x,y—v), Vy e H}. (7)

Let T : H — H be amapping with F(T) # (), where F(T) is set of the fixed points
of T. Then

(i) T is called nonexpansive if
Tu —Tv|| < |lu—7v|, YuveH.

(ii) I—T is called demiclosed at zero if {u,} C H,u, — uand || Tu, — u,|| — 0
implies u € F(T).

In order to obtain the main results of this paper, we need the following lemmas.

Lemma 2.1 ([54]): Let C be a nonempty closed convex subset of a real Hilbert
space H and h : H — R U {400} be a proper, convex and lower semicontinuous
function on 'H. Assume either that h is continuous at some point of C, or that there
is an interior point of C where h is finite. Then, x* is a solution to the following con-
vex problem min{h(x) : x € C} if and only if 0 € 0h(x*) + Nc(x*), where dh(-)
denotes the subdifferential of h and N¢(x*) is the normal cone of C at x*.

Lemma 2.2 ([55]): Let T : H — 'H be a nonexpansive mapping and H be a real
Hilbert space. Let {x,} be a sequence in H and x be a point in 'H. Suppose that
Xy, — xand x, — Tx, — 0asn — oo. Then x € F(T).

Lemma 2.3 ([56]): Let {d,} be a sequence of non-negative real number such that
there exists a subsequence {d,,j} of {d,} such that d,,j < dp,+1 forall j € N. Then
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there exists a non-decreasing sequence {my} C N such that limy_, oo my = 00 and
the following properties are satisfied by all (sufficiently large) number k € N:

dmy < dm+1 and  di < dpy41.
In fact, my, is the largest number n in the set {1,2, ..., k} such that d,, < d,11.

Lemma 2.4 ([57]): Let {d,} be a sequence of nonnegative real numbers such that
dpy1 < (1 —ap)dy +apby +cyy Yn>0,

where {a,}, {b,} and {c,} satisfy:

(@) {an} C[0,1],> 72, ay = 00;
(b) limsup,_, . b, <0;
(€ ca>=0(n>0),> 72 ¢y < 00.

Then lim,_, o d, = 0.

3. Main results

In this section, we propose a modified subgradient extragradient method for
finding a common element of the solution sets of the equilibrium problem (EP)
and the fixed point problem (FPP) in Hilbert spaces. The advantage of our
method is that we use a new parameter to improve the step size in the proposed
algorithm, and the proof of the convergence theorem does not require estimating
the Lipschitz constants. In order to get a strong convergence result, we need the
following assumptions.

Assume that the feasible set C is a nonempty closed convex subset of a real
Hilbert space H, the bifuction f : H x H — R is pseudomonotone and satis-
fies the Lipschitz-type condition on H, f(u, -) is subdifferentiable on H for any
u € H.Let T : H — H be anonexpansive mapping, g : H — H be a contraction
mapping with a constant p € [0,1) and the solution set EP(f,C) N F(T) # @.
Suppose that the sequences {o,,}, {8} and {6,,} satisfy the following conditions:

(C1) {an} C(0,1),limy— 0oy, =0and )y o2, oy = 00;

(C2) 0 <liminf,_ oo{Bs} <limsup,_,  Bn < I;

(C3) {6,} C [0,0) for some 6 > 0 such that lim,_, (%”t” — tu—1|| = 0 (see
[44,45] for more details), where t, € H is a sequence in the following
Algorithm.

Now, we introduce the following algorithm.

Remark 3.1: Based on Algorithms 1, 2 and other related results, our algorithm
has some improvements in the following:
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Algorithm 3

Initialization: Let 7y > 0, u € (0,1), k € (0,1] and ¢y, t; € H.
Iterative steps: Given the current iterates f,,_; and t, (n > 1).
Step 1. Evaluate

) 1
vy, = argmin {r,,f(un,y) + 5”)’ - un”z} )
yeC

where u, = t, + 0,(ty, — t,—1). If v, = uy, then stop. Otherwise go to Step 2.
Step 2. Choose z, € 95f (uy, vy) such that u, — t,z, — v, € Nc(v,,). Compute

1
wy = arg min {kfnf(Vn,}/) + 5”)’ - un||2} )
yeTy,
where
Tn = {xGH: <un—TnZn—Vn,x—Vn> SO}

Step 3. Calculate

th1 = ang(tn) + Butn + (1 — By — o) Twy,

and

Tn+1
min iff(um Wp) _f(”na Vi)

12 ||un_Vn||2+||Wn—Vn”2
{Ef(u"’ W”) _f(um Vn) _f(Vn) Wn)’ T”} ’ _f(vn’ Wn) >0,

Tu otherwise.

(8)

Set n:= n + 1 and return back to Step 1.

(1) Following the self-adaptive rule in Algorithm 2, we can prove that the main
theorem of this paper does not require knowledge of Lipschitz constants. On
this basis, we improve the variable u in Algorithm 1, which is analogous to
k in our algorithm. If k = 1, it is the general situation; whereas if k € (0, 1),
the convergence process of our algorithm can be improved by the difference
of the value of k, and it is reflected in the numerical example.

(2) In Algorithm 1, there is a relationship between the value of « and the inertia
term, which may limit the convergence effect. We separate this value from
the inertia term, which will improve the convergence speed of Algorithm 3.

(3) We combine inertial subgradient extragradient method and viscosity itera-
tive method to deal with fixed point problems and equilibrium problems, our
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proposed iterative algorithm is new and different from Algorithm 2. Under
some appropriate assumptions imposed on the parameters, we prove that the
sequence generated by Algorithm 3 converges strongly to a common solution
of the equilibrium problems and fixed point problems.

Lemma 3.1: The sequence {t,} generated by (8) is non-increasing and

lim 7, > min{ ——, 11 ¢ .
n—>00 2 max{cy, ¢z}

Proof: From (8), it is clear to get the sequence {7, } is non-increasing. In addition,
since f satisfies the Lipschitz-type condition on H, we have

[ ||un_Vn||2+”Wn_Vn||2 < m ||un_Vn||2+||Wn_Vn||2
zf(”nawn) _f(umvn) _f(VnaWn) ~ 2cllun — Vn”2 +c2llve — Wn||2
n

~ 2max{cy, 2}

Therefore, {1,} is a non-increasing sequence and lower bounded. Moreover, there
. . _ . M
exits limy, soo Tp = T > mm{—ZmaX{Cl’cz}, 71}. [ |

Lemma 3.2: Let {uy}, {v,} and {w,} be the sequences generated by Algorithm 3.
Then

Iwn — pII* < luw — plI* — (1 — k) luy — wall*

T, T
_k<1_:u - )”un_vnnz_k(l_ﬂ - )”Wn_vnllz:
Tn+1 Tn+1

forall p € EP(f,C).

Proof: From Lemma 2.1 and the definition of {w,}, we have

1
0ed {kfnf(vn’y) + 5”)’ - unllz} (W) + NTn(Wn)x V)’ €Ty

It follows that there exist s, € 0>f (v, wy) and s, € N, (w,,) such that
ktusy +wy, —u, +5, = 0.
That is
(un — Wn,y — Wn) = kTulsp,y — Wn) + S,y — wa), Vy € Ty
Since s, € Nt,(wy,), we obtain (s,,y — wy,) < 0. Then

ktu(snsy — wn) = (U — W,y — wy), Vye Ty )
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In addition, by the definition of subdifferential and s, € 9f (v, wy,), we get
FOy) = fnwn) = (sp,y — wn), Vy € T (10)
Combining (9) and (10) we have
ktn(f (V> y) = f (Vs Wn)) = (i — Wy, y — wn),  Vy € Ty (11)
Lety:=p e EP(f,C) C C C Ty, then
ktn(f (Vs p) = f (Vs Wn)) = (U — Wi p — Wh). (12)

Asv, € Cwehavef(p,v,) > 0. By the pseudomonotonicity of f we get f (v,,, p) <
0. Thus (12) can be transformed into

(n — Wn, Wn — p) = kTuf (Vi Wn). (13)
Similarly, since z,, € 95f (up, vy,), we obtain
fn,2) = f(un,v) = (20,2 — V), VzeH.
Let z := w,, then
S s wa) = f (s V) = (20, W — V). (14)

By definition of T, and w,, € T}, we have (u, — 142, — vy, Wy — v,,) < 0. This
implies that

Tu{Zps Wy — Vi) = (Uy — Vi Wy — V). (15)
Combining (14) and (15), we get

Tn(f(una Wn) _f(un» Vi) = {Up — Vi, Wy — V). (16)

From (8), we obtain
"
Tt (f Gty W) = f Ctons V) = Vs W) = = (Il — vall* + Wy — vull),

or equivalently

Tn

Tn+1

Tn(f(una W) _f(”n’ V) _f(Vna wy)) <

n
S Ulun — VallZ 4 Wy — vall%).

(17)
Substituting (17) into (16), then

Tn

"
(U — Vis Wy — V) < Tuf (Vn, wp) + S Ulun — vall> + lwy — vall®). (18)

Tn+1

Adding (13) and (18) we get
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1
(Un — Vi, Wy — V) < %(“n — Wn> Wn _P>
Tn W
+ =t — vall* + lwa —vall®). (19
Tpt1 2
On the other hand,
2ty — Vi Wi — V) = ity — vall* + Wi — vall® = Nuw — wall 00
2ty — Wy, Wy — p) = lun — plI* = llwn — plII* — llun — wall®.

Combining (19) and (20), we obtain

Iwn — pI* < llun — pII* — (1 = k) lun — wyll?

T T
—k<1—u - )nun—vnnz—k(l—u - )nwn—vnuz.
Tn+l Tn+1

The proof is completed. |

Lemma 3.3: The sequence {t,} generated by Algorithm 3 is bounded.

Proof: From Lemma 3.1 and k € (0, 1], # € (0, 1), we obtain

1—k>0, lim k(l—u T

n—00 Tnt+1

> > 0. (21)
Combining (21) and Lemma 3.2, for all p € EP(f, C) N F(T), we have

lwn —pll < llun —pll. (22)

Moreover,
||“n _P” = ”tn + en(tn - tn—l) —P||

On
=< It —P|| +ay s — |ty — th1ll.

(077}

Since 2—”||tn — ty—1ll = 0 as n — o0, there exists a constant M > 0 such that

fT:||tn — t,_1|| < M. That is,
lun — pll < lltn — pll + anM. (23)
Therefore,
tnt1 — pll = lleng(tn) + Butn + (1 — Bn — an) Twy — pli
< anllg(tn) — pll + Bullts — pll + (1 = B — cn) | Twy, — pll

< aulig(tn) — g(p) +&(p) — pll + Bulltn — pll
+ (1 = Bn —an)llwa —pll
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< anplits = pll + anllg(®) — pll + Bulltn — pl
+ (1 = Bn —an)|lun — pll
= anplltn — pll 4+ anlig(p) — pll + Ballts — pll
+ (1 = Bu — an)(ltn — pll + 2nM)
= (A —an(1 = p)llts — pll + anlgp) —pll + anM

-pll+M
=1 —ay,(1—p)lts _P” +a,(1 - p) ”g(P)l _p/!
- max{”tn ol Ig®) —pll +M}
1—p
5---§max{||to—p||, IIg(p)—p||+M}‘
l1—p
It follows that the sequence {t,} is bounded. [ |

Lemma 3.4: Let p € EP(f,C) N F(T). Then the sequence {t,} generated by
Algorithm 3 satisfies:

dpv1 < (1 —ay)d, + anb,, Vn=>0,

g(P)=pstnt1—p) + 20tnt1=pll O

2
Whered}’l = ”tl’l _P”z’an == an(l - p)abl’l == < I—p I—p o ||t1’l -

tn—l”-

Proof: In fact, for all p € EP(f,C) N F(T),

Ity — pII* = tn + On(tn — tamr) — plI*

= Ity — plI* + 20 (tn — potu — tn—1) + On2 Ity — tu—1ll*

< tn — pI* + 26ulltn — plllitn — tu—1ll + 6,2 N1tn — tu—1ll*

= |ltn _P||2 + Onlltn — ta—1ll (2||tn _P” + Onlltn — ZLn—l”)

< Ity — plI* + Onlltn — ta—1 M1, (24)
where My := sup,,.{21t, — pll + 64llty — ta—1l}. Furthermore, since T is non-
expansive mapping, we have || Tw;, — p|| < [|w,, — pll. Combining (22) and (24),
we get

ITwn — plI* < llwn — pI* < llun — plI?

< |ty — plI* + Onlltn — tu—1llM;. (25)

Therefore,
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Itns1 — pII> = long(tn) + Butn + (1 — B — atn) Twy 1>
= (an(g(tn) — p) + Bu(tn — P)
+ (1= Bu— o) (Twy — p)s tns1 — P)
= ap(g(tn) — &) +8(P) — pstnr1 — p) + Bultn — pstur1 — p)
+ (1= By —an)(Tw, — p,tyr1 — p)
< anplitn — plllitats — pll + @n(g(p) — Py tus1 — p)
+ Bulltn — pllitars — pll + (1 = Bn — &) llwn — plllitns1 — pl
< (anp + B)lltn — plllltns1 — pll + () — s tus1 — p)
+ (1= Bn — a)(ltn — pll + Onllts — tacr D lItas1 —
< [1— a1 = p)litn — plllita1 — pll
+ (1= Bn — an)Oulltn — tu_t1lllltns1 — pll
+ an(g(p) = Py tat1 — p)

N | —

< =[1 = au(1 = P)I[lItn — PI* + ltus1 — pII*]

+ Onlltn = ta1lllitnsr — Pl + o (g(P) = ps tat1 — p)

—

1
< =[1 = au(1 = P)]lIty — plI* + L —pl?

\S]

+ Oty — tu1lllltn+1 — pll + @u(g(P) — ps tus1 — P)- (26)
That is,

a1 — pll* < [1 — au(1 — p)]Ity — pII* + 20,0ty — ta—1lllItus1 — pll
+ 20,(g(P) — pstut1 — P)

=[1 - an(1 — )]ty — plI* + @n(1 — p)

{2<g(p) —Prtnt1 — P)

l1—p
2||tng1 — pll On
+ S
1—p oy
So the proof is completed. |

Lemma 3.5: Let p € EP(f,C) N F(T). Then the sequence {t,} generated by
Algorithm 3 satisfies:

T T
(1—ﬁn—an){k<1—u - )||un—vn||2+k(1—u . )nwn—vnn2
Tntl Tn+1

+ ﬂnnTwn—tnnz}

< llta — plI* = ltust1 — pII? +aan+an<1—ﬂn—an> ||tn—tn 1My,
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for some My, M, > 0.

Proof: From (3), (24), Lemma 3.2 and the definition of {t,11}, we have

Itns1 — pII> = long(tn) + Butn + (1 = By — ) Twy — p|1?
= llan(g(tn) = p) + Bultn — p) + (1 — B — ) (Twy, — p)||
= anllg(ta) — pII* + Bullts — plI* + (1 = By — ) | Twy, — p|I?
— onBullg(tn) — tull® — atn(1 — By — &) l|g(tn) — Tw,l|®
— Bu(1 = B — )| Twy — t1?
< anllg(ta) — plI* + Bulltn — pII* + (1 — B — ) wa — pII?
— Bu(1 = Bn — an) | Twy — t)?
< anllg(tn) — pII* + Bulltn — pII* = Bu(l — Bu — ) | Twy, — t1?

+ (1 — B — an) {nun —pl* = A = k) luy — wall*

T, T
_k(l_ﬂ “ >||un_Vn||2_k(1_//« ! >||Wn_Vn||2}
Tn+1 Tn+1

< aullg(tn) — plI* + Bulltn — plI* — Bu(l — By — at) | Twy — 1

+ (1 = Bn —an) {Iltn — PP + Onlltn — a1 | My

T T
—k(l—u - )nun—vnnz—k(l—u - )nwn—vnuz}
Tn+l Tn+1

< ayllg(ty) — plI* + (1 — ap) Itx — plI*
+ (1 - lgn - an)gn”tn - tn—IHMl

— (1= Bn—an) {k<1 - uf” ) [

n+1

T
+ k(l — MK - ) lwn — Vn||2 + BullTwy, — tnllz} .
Tn+1

Hence,

T T
<1—ﬂn—an){k<1—u . )||un—vn||2+k(1—u . )nwn—vnu2
Tn+1 Tn+1

+ ﬂnnTwn—tnnz}

0
< lltw — plI* = lltnt1 — pII* + anMs + 0ty (1 — By — an>a—”||tn — ty1|IMy,

n

where M := sup, . {Ig(tn) — pI> — lIta — pII%}. u
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Theorem 3.1: Let {t,} be a sequence generated by Algorithm 3, then {t,} converges
strongly to an element p = Ppp(f,c)nr(T) © §(P)-

Proof: Let p = Ppp(f,c)nr(r) © §(p), we consider the following two cases:

Case 1: There exists an N € N such that |t,41 — pl|® < |[t, — pl|* for
all n> N. It follows that lim, . [|t, — p||* exists. First, we prove that
limy,, o ||th+1 — tull = 0. Indeed, applying Lemma 3.5, we can get

T T
(1—ﬂn—an>{k(1—u - >||un—vn||2+k(1—u - )nwn—vnu2
T Tn+1

n+1

+ ﬂn||Twn—rn||2}

0

< Ntu — plI* = lltns1 — plI* + @nMs + (1 — B — an>a—”||tn — ty1||M;.
n

(27)

Let n — oo, then «, — 0 and %||tn — ty—1ll = 0. In addition, from the

definition of {8,}, we have lim,_, oo (1 — B, — @,) > 0. Taking the limit of (27),
we obtain

lim || Twy — o]l =0, lim [Jup — vull =0, lim [Jw, — vul| = 0. (28)
n— 00 n— 00 n— 00
Since ||wy — Uyl < Wy — vull + [vu — unll, we infer that
lim ||w, — uy,|| = 0. (29)
n— oo
Furthermore,

tnt1 — tall = llatng(tn) + Butn + (1 — Bn — o) Twn — ty|
< anllg(ty) — tull + (1 = Bp — an) [ Twp — tall.
It follows that
Lm ([tn1 — tal] = 0. (30)

Since {t,} is bounded, there exists a subsequence {t,, } C {t,} such thatt,, — g
as k — oo. Next we prove that g € EP(f, C) N F(T). In fact,

”Vl’lk - tnk” = ”Vnk - unk” + ”ui’lk - tnk”

Mg
= ”Vl’lk - unk” +ank ' _”tnk - tnk—IH-
Oy

Thus limy_, o0 |V, — tu |l = 0, we get v, — g. From (11) and (18), we have

kfnkf(vnk:)/)

Z kfnkf(vnka Wnk) + (l’lnk - Wnk,)/ - Wnk>
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T M 2 2
_(”unk - Vnk” + ”Wnk - Vnk” )
Tng+1 2

= k |:<unk - Vnk’ Wnk - Vnk> -

+ <unk - Wnk’y - Wnk>-

Since k > 0,limj_, o T4, = T > 0, we obtain

0 <limsupf(vy,y) =f(qy), VYyeC.

k— o0

That is g € EP(f, C). Furthermore,

||Wnk - tnk” = ”Wnk - unk” + ||unk - tnk”

O,
= ”Wnk - unk” + Ay Ol_”tnk - tnk—1“>
N

and
”Twnk - Wl’lk” S ”Twnk - tnkH + ”tnk - unk“ + ”unk - Wnk”'

Takingk — oowehavew,, — qand||Tw,, — wy, || — 0.Bythe demiclosedness
of the mapping I—T and Lemma 2.2, we obtain g € F(T). Hence g € EP(f,C) N
F(T). Combining with the definition of p, then

lim sup(g(p) — p, tn — p) = liin sup(g(p) — p> b, — p) = (€(p) —p,q—p) < 0.

n— oo
(31)
Therefore,

lim sup(g(p) — p, tut1 — p) < limsup(g(p) — p, tntr1 — tu)

n—00 n—0o0

+ lim sup(g(p) — p, tn — p)

n— 00
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= {gP) —pq—p)
<0. (32)

Combining (32), Lemma 3.4 with Lemma 2.4, we conclude that ||t, — p|| — O as
n — oo. It follows that {t,,} converges strongly to p.

Case 2: There exists a subsequence {lIitn; — pII} C {lltn — plI} such that lItn; —
pll < lltnj+1 — pll for all j € N. From Lemma 2.3, there exists a non-decreasing
sequence my of N such that limy_, o, my = oo and

ltm, — Pl < ltmer1 —pll and |l — pll < lltmy1 —pIl, VkeN. (33)
As proved in Case 1, we can get
Hm [[fys1 — || = .
k—o00
Similarly, we can conclude that

lim sup(g(p) — p, tm+1 — p) < O. (34)

k— 00

Applying Lemma 3.4 and (33), we have

ltmer1 =PI < [1 = @1 — )] 1w, — pII?

2 —p,t —
(1 p){ &) 1p_n;k+1 p)
2|It —pll 6
+ || Wik-&-l P” ﬂ”tmk . tmk1||}
- P Amy

<[1 = am @ = p)] ltmer1 — plI?

2 —p,t —
(1= p) { &) = ps 41 — P)
IL—p
2|l tm+1 — Pl Oy
——||tm, — by — .
1—/) . ” my my 1”
It follows that
2(g() = prtme1 — ) | 2lltm+1 — pll Om
2 k k k
t — < — |t — i —11|-
ltmer — pII> < — T o = b

(35)
Since p € [0, 1), limy_, zﬂﬂtmk — tm—1ll = 0 and {||t,;,, — pll} is bounded. It
mp
follows from (34) and (35) that

im tyys1 — pll = 0. (36)
k—o00
Combining (36) and (33),
lim |tz —pll < lim ||ty41 —pll = 0.
k—o0 k—o0

Hence, t, — p as n — oo. This finishes the proof. |
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Remark 3.2: It is easy to see that the condition lim,_, s %lltm —ty_1]l = 0 of
(C3) can be implemented easily in the numerical computation as the value of
Ity — t,—1ll is known before choosing 6,.. Indeed, the parameter 6, can be chosen
such that

Sn }
min{ ————, 0, if ty # tu_1,
{ ”tn - tn—l”

0, otherwise,

O =

where 0 is a constant such that 0 < # < 1 and {§,} is a positive sequence such
that lim,,— oo S ),

Op

Next, on the basis of Theorem 3.1, we get a corollary of the variational inequal-
ity problem in Hilbert spaces. The classical variational inequality problem for an
operator A : H — 'H is as follows: find u* € C such that

(Au*,v —u*) >0, VveC.

The solution set abbreviated as VI(C, A). Now, we give the following assumptions
for solving the variational inequality problem:

(A1) The operator A : H — 'H is pseudomonotone, i.e.
(Au,v —u) > 0 = (Av,u—v) <0, VYu,veH.

(A2) The operator A : H — H is L-Lipschitz continuous if there exists a con-
stant L > 0 such that

[Au — Av|| < Lllu—v|, YuveH.

(A3) The operator A : ' H — H is sequentially weakly continuous, i.e. {Au,}
converges weakly to Au for every sequence {u,} converges weakly to u.

Let f(u,v) = (Au,v — u), VY u,v € C, the equilibrium problem becomes the
variational inequality problem with L = 2¢; = 2¢,. Moreover, we have

1

Vn = argmin {fnf(umy) + —||)’ - unuz} = Pc(un — thAuy),
yeC 2

where Pc is called the metric projection of H onto C. Therefore, we naturally get

the following algorithm.

Corollary 3.1: Assume that the feasible set C is a nonempty closed and convex
subset in a real Hilbert space H. Let T : H — 'H be a nonexpansive mapping, g :
‘H — H be a contraction with a constant p € [0, 1) and the solution set VI(C, A) N
F(T) be nonempty. Suppose that the conditions (C1-C3) and (A1-A3) hold. Then
the sequence {t,} generated by Algorithm 4 converges strongly to an element p =

Pyvic,aynecr o g(p).
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Algorithm 4

Initialization: Let 7y > 0, u € (0,1), k € (0,1] and ¢y, t; € H.
Iterative steps: Given the current iterates f,,_; and t, (n > 1).
Step 1. Evaluate

vn = Pc(uy — 14Auy),

where u, = t, + 0,(ty, — ta—1). If v, = uy, then stop. Otherwise go to Step 2.
Step 2. Compute

wy = Pr, (U, — kt,Avy),
where
T, ={xeH: (u, — t,Auy — vy, x — vy,) < 0}

Step 3. Calculate

tht1 = ang(tn) + Butn + (1 — By — o) Twy,

and
2 2
Uy — vl + llwn — v
mi w(llun nll W nll )’ o, bt (At — Avy, W — V)
2{Auy — Avy, Wy — Vi)
tntl = >0
Tus otherwise.

Set n:= n + 1 and return back to Step 1.

4. Numerical experiments

In this section, we provide some numerical examples to illustrate the computa-
tional efficiency of the proposed algorithms compared to some iterative schemes
in the literature. All the programs were implemented in MATLAB 2018a on
a personal computer with RAM 8.00 GB. We apply the formula described in
Remark 3.2 to update the inertial parameter in the related algorithms, including
0, in Algorithm 1.

Example 4.1: Assume that the operator F is defined by

Fx) :( (d + (2 = D) (1 +x) )

—xf —x1 (% — 1)2

Setf(x,y) = (F(x),y — x),Vx,y € C,where C := {x € R?2:-10<x;<10,i=
1,2}. The problem EP(f,C) has a unique solution x* = (0,—1)T. Note that
the operator F is pseudomonotone rather than monotone (see [58, Exam-
ple 6.7]) and thus the bifunction f is pseudomonotone. We apply the pro-
posed Algorithm 3 to solve the pseudo-monotone equilibrium problem EP(f, C).
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10
S
107
10
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Number of iterations

Figure 1. The numerical behavior of the proposed Algorithm 3 with different parameter k for
Example 4.1.

Take oy = 1/(10n + 1), By = 0.5(1 — ap), 6 = 0.6, 8, = 1/(10n + 1), 71 =
0.1, . =0.1, k={0.7,0.8,0.9,1}, g(x) = 0.1 and Tx = x for the porposed
Algorithm 3. The maximum number of iterations 1000 is used as a stopping cri-
terion. Figures 1 and 2 show the numerical behavior D,, = ||x, — x*||* and the
corresponding step size variations of our Algorithm 3 with different parameters
k, respectively.

Example 4.2: Let the bifunction f : C x C — R be given by
flo,y) = (Mx+Ny+cy—x), VxyeC,

where the feasible set C is defined by C={x e R" : —5<x; <5,i=1,2,...,m},
c € R™ and M,N € R™*™. The matrix M is symmetric positive semi-definite
and the matrix (N — M) is symmetric negative semi-definite with Lipschitz-type
constants ¢; = ¢; = ||[M — NJ||/2 (see [23, Section 6]). The matrices M, N are
taken randomly (see [59, Example 5.1]). We use the proposed Algorithm 3 to
solve the equilibrium problem (EP) with f and C given above, and compare it
with the Algorithm 3.1 introduced by Yang and Liu [50] (shortly, YL Alg. 3.1)
and the Algorithm 2.1 suggested by Shehu et al. [60] (shortly, SSTT Alg. 2.1).
The parameters of all algorithms are set as follows. In all algorithms, we choose
a,=1/(n+1), 71 =0.1, u = 0.5and Sx = Tx = x. Take 8, = 0.1 for YL Alg.
3.1.Selectar = 0.1and T = 0.1 for SSTT Alg. 2.1.Setf = 0.4,8, = 100/(n + 1),
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Figure 2. The step size of the proposed Algorithm 3 with different parameters k for Example 4.1.

Table 1. Numerical results of all algorithms for Example 4.2.

m=>5 m =20 m = 50 m = 100

Algorithms En CPU En CPU En CPU En CPU

Our Alg. 3 261 x107% 448 197 x1077 403 1.09x107% 695 958x 10" 12.69
YL Alg. 3.1 234%x 107 626 6.02x10"7 677 204x107% 924 409x107% 1512
SSTTAIg.2.1  1.14x107Y 481 210x107% 455 279%x107% 799 442x10"% 1449

Bn = 0.5(1 — ap), g(x) = 0.1x and k = 0.8 for the proposed Algorithm 3. Since
we do not know the exact solution of the problem, the function E, = ||x, —
xn—1||? is used to measure the computational error of all algorithms at nth step.
We apply the maximum number of iterations 100 as a common stopping crite-
rion. The numerical results of all algorithms in different dimensions are shown
in Figure 3 and Table 1, where ‘CPU’ denotes the execution time in seconds.

Finally, we consider an example in an infinite-dimensional Hilbert space
H = L?([0, 1]) with inner product (x,y) == fol x(t)y(t)dt, ¥V x,y € H and norm
xll = (fy x> dt)!/2, ¥ x € H.

Example 4.3: Letr, R be two positive real numbers such thatR/(d + 1) < r/d <
r < R for some d > 1. Assume that the feasible set C is defined by C = {x € H :
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Figure 3. The numerical behavior of the proposed Algorithm 3 for Example 4.2, m = 100.

||| < r}. The operator A : H — 'H is given by
Alx) = (R—|x]Dx, VxeH.

Note that the operator A is pseudo-monotone rather than monotone (see [61,
Example 4.2]). For the experiment, we choose R = 1.5, = 1,d = 1.1. The solu-
tion to the variational inequality problem with A and C given above is x*(t) = 0.
We compare the proposed Algorithm 4 with the Algorithms 3.1 and 3.2 intro-
duced by Thong and Hieu [62] (shortly, TH Alg. 3.1 and TH Alg. 3.2), and
the Algorithms 3.1-3.3 proposed by Tan et al. [41] (shortly, TCY Alg. 3.1, TCY
Alg. 3.2, and TCY Alg. 3.3). Seta, = 1/(n+ 1), u =05, 171 =1, Tx =Sx = x
and f(x) = g(x) = 0.1x for all algorithms. Choose B, = 0.5(1 — «,) for Our
Algorithm 4, TH Alg. 3.1, TH Alg. 3.2, and TCY Alg. 3.3. Take 6 = 0.3, §,, =
100/(n + 1)%,and k = 0.8 for the suggested Algorithm 4, TCY Alg. 3.1, TCY Alg.
3.2,and TCY Alg. 3.3. Choose B = 0.5 for TCY Alg. 3.2 and TCY Alg. 3.3. Select
£, = 1+ 1/(n+ 1) for the Algorithms 3.1-3.3 propsoed by Tan et al. [41]. The
maximum number of iterations 50 is used as a common stopping criterion. We
use Dy, = ||x,(t) — x*(¢)||* to measure the error of all algorithms at the nth iter-
ation step, and ‘CPU’ to denote the execution time of the algorithms in seconds.
The numerical results of all algorithms with four different initial points xy = x;
are given in Table 2.

Remark 4.1: We have the following observations for Examples 4.1-4.3.
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Table 2. Numerical results of all algorithms for Example 4.3.

x1 = 100t* x1 = 100 et X1 = 100log(t) x1 = 100sin(t)

Algorithms Dy CPU Dy CPU Dy CPU Dy CPU

OurAlg.4  636x107% 2082 224x10°% 2339 191x107Y 2102 1.01x107Y 2093
THAIg.3.1 157 x 10°% 1927 590 x 107% 1831 415x107% 1786 189x 1079 1849
THAIg.3.2 413 x107% 1690 230x 107 1667 3.85x107% 1637 187 x1072 16.52
TCYAlg.3.1 366 x 10" 2571 629x10""7 2068 1.12x107'® 2016 513x10""7 2150
TCYAIg.3.2 539x107"° 2137 173x107'® 2084 176x107'® 2001 581 %107 2119
TCYAlg.33 7.12x 1072 2076 446 x 1072 2021 447 x1073 1979 456 x 1073 2122

e It can be seen from Figures 1 and 2 that the proposed Algorithm 3 can
obtain a faster convergence speed and accuracy when choosing the appropriate
parameter k.

e From the information in Figure 3 and Table 1, it can be known that the pro-
posed Algorithm 3 has a higher accuracy and a less execution time than the
algorithms presented in the literature [50,60] for the same stopping criterion,
and these results are not related to the size of the dimension.

e From Table 2, it can be seen that the proposed Algorithm 4 can obtain a
higher accuracy than the algorithms introduced by Thong and Hieu [62], and
this result is independent of the choice of the initial values. However, our
Algorithm 4 requires more execution time than the compared algorithms in
[62], due to the fact that we need to spend extra time to calculate the iner-
tial parameters in infinite-dimensional Hilbert spaces. On the other hand, our
Algorithm 4 has lower accuracy and requires less computation time compared
to Algorithms 3.1-3.3 proposed by Tan et al. [41] (see the numerical results for
x1 = 100t* and x; = 100 sin(¢) in Table 2). The reason for this phenomenon
can be explained by the fact that the step size used by Tan et al. [41] is non-
monotonic, while our Algorithm 4 uses a non-increasing step size. In our
future work we will consider using this non-monotonic type of step size to
speed up the convergence of the algorithm.

5. Conclusions

In this paper, we propose a new inertial self-adaptive subgradient extragradi-
ent method for solving pseudomonotone equilibrium problems and fixed point
problems in Hilbert spaces. Under suitable conditions, the sequence generated
by the proposed algorithm strongly converges to the common solution of equi-
librium problems and fixed point problems. Particularly, we add a new variable k
that can control the step size, and it is reflected in Figures 1 and 2 that this variable
can effectively accelerate the convergence rate. In addition, we apply our main
results to deal with the variational inequality problem. By comparing with other
related results [50,60,62], our algorithms do have a better convergence effects.
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