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ABSTRACT
This paper proposes a new inertial subgradient extragradient
method for solving equilibrium problems with pseudomono-
tone and Lipschitz-type bifunctions and fixed point prob-
lems for nonexpansive mappings in real Hilbert spaces. Pre-
cisely, we prove that the sequence generated by proposed
algorithm converges strongly to a common solution of equi-
librium problems and fixed point problems. We use an effec-
tive self-adaptive step size rule to accelerate the convergence
process of our proposed iterative algorithm. Moreover, some
numerical results are given to show the effectiveness of the
proposed algorithm. The results obtained in this paper extend
and improve many recent ones in the literature.
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1. Introduction

We consider the following equilibrium problem (shortly, EP), also called Ky
Fan’s inequality due to his signi!cant contribution [1] in 1972. Let C be a
nonempty closed convex subset of a real Hilbert space H and f : H × H → R
be a bifunction, then the equilibrium problem is stated as follows: !nd x∗ ∈ C
such that

f (x∗, y) ≥ 0, ∀ y ∈ C. (1)

We denote by EP(f ,C) the solution set of EP(1).
The EP has a wide range of applications in the !eld of mathematics. For

example, it can be applied to solve variational inequality problems, !xed point
problems, saddle point problems andNash equilibriumproblems (see, e.g. [2–17]
and the references therein). At the same time, two momentous methods have
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been proposed to solve the EP: proximal point method (shortly, PPM) [18,19]
and auxiliary problem principle [20].

The PPM was originally proposed by Martinet [21] to solve variational
inequality problem, and later Mouda! [18] applied it to solve monotone equi-
librium problems. However, the PPM is limited by the inability to solve pseu-
domonotone equilibrium problem. In order to overcome this shortcoming, Flam
et al. [22] and Tran et al. [23] successively introduced a proximal-like method
which is also called the extragradient method (shortly, EGM). Precisely, the
algorithm in Tran et al. [23] is as follows:






u0 ∈ C,

vn = argmin
y∈C

{
λf (un, y) + 1

2
‖y − un‖2

}
,

un+1 = argmin
y∈C

{
λf (vn, y) + 1

2
‖y − un‖2

}
,

where λ > 0 is a suitable parameter, f is a pseudomonotone bifuction. They
proved a weak convergence theorem of the iterative sequence {un} generated by
the above extragradient method. Since then, the EGM has attracted the attention
of many authors, see, e.g. [24–34] and the references therein.

On the other hand, it is well known that the inertial technology can speed
up the convergence rate of the related algorithms, so many authors apply it to
various !elds (see, e.g. [15,29,35–46] and the references therein). For instance,
Thong andHieu [42] applied inertial technology to solve the variational inequal-
ity problem in Hilbert space, Yao et al. [43] conducted a convergence analysis of
the inertial iteration in the split feasibility problem, and Tan et al. [40] introduced
inertial algorithm for solving split variational inclusion problem. For the equilib-
rium problem, Rehman et al. [29] proposed the following algorithm with inertia
term for solving pseudomonotone equilibrium problem in real Hilbert space:

where f is a pseudomonotone operator satisfying the Lipschitz-type condi-
tion on Hilbert space H. Rehman et al. [29] merged the inertial method and
the EGM involving a new self-adaptive step size rule to obtain the weak con-
vergence result of the generated sequence. Nevertheless, the self-adaptive rule in
Algorithm 1 requires the Lipschitz constants L1 and L2 to be known in advance.
We naturally think of improving this rule so that no prior knowledge of Lips-
chitz constants is needed. Furthermore, since weak convergence is not as good
as strong convergence, we also consider a strong convergence theorem about
equilibrium problems in Hilbert spaces.

In recent years, the !xed point problem (shortly, FPP) has also been a hot issue
in mathematics research. The FPP is formulated as

!nd x ∈ H such that x ∈ F(T),

where F(T) := {x : x = Tx} is the set of !xed points ofT. At the same time, many
researchers have proposed multifarious related methods for !nding a common
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Algorithm 1
Initialization: Choose u−1, u0 ∈ H, ρ ∈ (0, 1), 0 < σ < min{ 1−3θ

(1−θ)2
, 1
2L1 ,

1
2L2 },

µ ∈ (0, σ ), λ0 > 0, and a nondecreasing sequence 0 ≤ θn ≤ θ < 1
3 .

Iterative Steps: Given un−1, un and λn are known for n ≥ 0.
Step 1. Evaluate

vn = argmin
y∈C

{
λnf (tn, y) + 1

2
‖y − tn‖2

}
,

where tn = un + θn(un − un−1). If tn = vn; STOP. Otherwise go to next step.
Step 2. Evaluate

un+1 = argmin
y∈C

{
µλnf (vn, y) + 1

2
‖y − tn‖2

}
.

Step 3. Next, the step size sequence λn+1 is updated as follows:

λn+1

= min
{
σ ,

µf (vn, un+1)

f (tn, un+1) − f (tn, vn) − L1‖tn − vn‖2 − L2‖un+1 − vn‖2 + 1

}
.

Set n := n + 1 and return back to Iterative steps,

solution that belongs to the intersection of EP(f ,C) and F(T) (see, e.g. [47–52]
and the references therein). For example, Yang et al. [50] proposed the following
algorithm:

where f is a pseudomonotone operator satisfying the Lipschitz-type condi-
tion, T is a quasi-nonexpansive mapping and Tn is a half-space, which was !rst
introduced by Censor et al. [53]. Under appropriate assumptions, Yang et al. [50]
obtained that the sequence {un} generated by Algorithm 2 converges strongly to
a common solution of the EP and FPP. It is worth noting that the strong conver-
gence theorem about Algorithm 2 does not need to know the Lipschitz constant,
which is the main point of our consideration.

Motivated by the above works, in this paper, we prove a strong convergence
theorem of inertial subgradient extragradient method for solving the EP and
FPP in Hilbert spaces. Compared with Algorithm 2, we introduce a new param-
eter to improve the step size, which is meaningful through numerical examples.
In order to obtain a strong convergence theorem, we add a contraction map-
ping to the iterative sequence, which is di"erent from the sequence {un+1} in
Algorithm 2. In addition, the inertial technology is applied to accelerate the
convergence speed of the proposed algorithm. Finally, several numerical experi-
mental results show that our algorithm does have better convergence than other
existing related algorithms.
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Algorithm 2
Initialization: Take λ0 > 0, u0 ∈ H, µ ∈ (0, 1).
Iterative Steps: Given the current iterate un, calculate un+1 as follows:
Step 1. Compute

vn = argmin
y∈C

{
λnf (un, y) + 1

2
‖y − un‖2

}
.

Step 2. Choose zn ∈ ∂2f (un, vn) such that un − λnzn − vn ∈ NC(vn), compute

wn = argmin
y∈Tn

{
λnf (vn, y) + 1

2
‖y − un‖2

}
,

where

Tn = {x ∈ H : 〈un − λnzn − vn, x − vn〉 ≤ 0}.

Step 3. Compute tn = αnu0 + (1 − αn)wn, un+1 = βnwn + (1 − βn)Ttn and

λn+1

=






min if f (un,wn) − f (un, vn){
µ

2
‖un − vn‖2 + ‖wn − vn‖2

f (un,wn) − f (un, vn) − f (vn,wn)
, λn

}
, −f (vn,wn) > 0,

λn, otherwise.

Set n := n + 1 and return to Step 1,

2. Preliminaries

We !rst recall some basic concepts and facts.
For any x, y, z ∈ H, it is well known that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 (2)

and

‖αx + βy + γ z‖2 = α‖x‖2 + β‖y‖2 + γ ‖z‖2

− αβ‖x − y‖2 − αγ ‖x − z‖2 − βγ ‖y − z‖2, (3)

where α,β , γ ∈ [0, 1] with α+β+γ =1.
Let C be a nonempty closed convex subset of a real Hilbert space H. A

bifunction f : H × H → R is said to be:

(i) monotone on C if

f (u, v) + f (v, u) ≤ 0, ∀ u, v ∈ C. (4)
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(ii) pseudomonotone on C if

f (u, v) ≥ 0 =⇒ f (v, u) ≤ 0, ∀ u, v ∈ C. (5)

(iii) satisfying a Lipschitz-type condition on C if there exist two positive con-
stants c1, c2 such that

f (u, v) + f (v,w) ≥ f (u,w) − c1‖u − v‖2 − c2‖v − w‖2, ∀ u, v,w ∈ C.
(6)

For every point x ∈ H, it is well known that there exists a unique nearest point
in C, denoted by PCx such that ‖x − PCx‖ ≤ ‖x − y‖, ∀ y ∈ C. PC is called the
metric projection of H onto C. In addition, the following inequality holds:

〈PC(u) − u, v − PC(u)〉 ≥ 0, ∀ v ∈ C.

For any u, v ∈ H, the subdi"erential ∂2f (u, v) of f (u, ·) at v is de!ned by

∂2f (u, v) = {x ∈ H : f (u, y) − f (u, v) ≥ 〈x, y − v〉, ∀ y ∈ H}. (7)

LetT : H → H be amappingwith F(T) -= ∅, where F(T) is set of the !xed points
of T. Then

(i) T is called nonexpansive if

‖Tu − Tv‖ ≤ ‖u − v‖, ∀ u, v ∈ H.

(ii) I−T is called demiclosed at zero if {un} ⊂ H, un ⇀ u and ‖Tun − un‖ → 0
implies u ∈ F(T).

In order to obtain themain results of this paper, we need the following lemmas.

Lemma 2.1 ([54]): Let C be a nonempty closed convex subset of a real Hilbert
space H and h : H → R ∪ {+∞} be a proper, convex and lower semicontinuous
function onH. Assume either that h is continuous at some point of C, or that there
is an interior point of C where h is !nite. Then, x∗ is a solution to the following con-
vex problem min{h(x) : x ∈ C} if and only if 0 ∈ ∂h(x∗) + NC(x∗), where ∂h(·)
denotes the subdi"erential of h and NC(x∗) is the normal cone of C at x∗.

Lemma 2.2 ([55]): Let T : H → H be a nonexpansive mapping andH be a real
Hilbert space. Let {xn} be a sequence in H and x be a point in H. Suppose that
xn ⇀ x and xn − Txn → 0 as n → ∞. Then x ∈ F(T).

Lemma 2.3 ([56]): Let {dn} be a sequence of non-negative real number such that
there exists a subsequence {dnj} of {dn} such that dnj < dni+1 for all j ∈ N. Then
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there exists a non-decreasing sequence {mk} ⊂ N such that limk→∞ mk = ∞ and
the following properties are satis!ed by all (su#ciently large) number k ∈ N:

dmk ≤ dmk+1 and dk ≤ dmk+1.

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that dn < dn+1.

Lemma 2.4 ([57]): Let {dn} be a sequence of nonnegative real numbers such that

dn+1 ≤ (1 − an)dn + anbn + cn, ∀ n ≥ 0,

where {an}, {bn} and {cn} satisfy:

(a) {an} ⊂ [0, 1],
∑∞

n=1 αn = ∞;
(b) lim supn→∞ bn ≤ 0;
(c) cn ≥ 0 (n ≥ 0),

∑∞
n=1 cn < ∞.

Then limn→∞ dn = 0.

3. Main results

In this section, we propose a modi!ed subgradient extragradient method for
!nding a common element of the solution sets of the equilibrium problem (EP)
and the !xed point problem (FPP) in Hilbert spaces. The advantage of our
method is that we use a new parameter to improve the step size in the proposed
algorithm, and the proof of the convergence theorem does not require estimating
the Lipschitz constants. In order to get a strong convergence result, we need the
following assumptions.

Assume that the feasible set C is a nonempty closed convex subset of a real
Hilbert space H, the bifuction f : H × H → R is pseudomonotone and satis-
!es the Lipschitz-type condition on H, f (u, ·) is subdi"erentiable on H for any
u ∈ H. LetT : H → H be a nonexpansivemapping, g : H → H be a contraction
mapping with a constant ρ ∈ [0, 1) and the solution set EP(f ,C) ∩ F(T) -= ∅.
Suppose that the sequences {αn}, {βn} and {θn} satisfy the following conditions:

(C1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < lim infn→∞{βn} ≤ lim supn→∞ βn < 1;
(C3) {θn} ⊂ [0, θ) for some θ > 0 such that limn→∞

θn
αn

‖tn − tn−1‖ = 0 (see
[44,45] for more details), where tn ∈ H is a sequence in the following
Algorithm.

Now, we introduce the following algorithm.

Remark 3.1: Based on Algorithms 1, 2 and other related results, our algorithm
has some improvements in the following:
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Algorithm 3
Initialization: Let τ1 > 0, µ ∈ (0, 1), k ∈ (0, 1] and t0, t1 ∈ H.
Iterative steps: Given the current iterates tn−1 and tn (n ≥ 1).
Step 1. Evaluate

vn = argmin
y∈C

{
τnf (un, y) + 1

2
‖y − un‖2

}
,

where un = tn + θn(tn − tn−1). If vn = un, then stop. Otherwise go to Step 2.
Step 2. Choose zn ∈ ∂2f (un, vn) such that un − τnzn − vn ∈ NC(vn). Compute

wn = argmin
y∈Tn

{
kτnf (vn, y) + 1

2
‖y − un‖2

}
,

where

Tn := {x ∈ H : 〈un − τnzn − vn, x − vn〉 ≤ 0} .

Step 3. Calculate

tn+1 = αng(tn) + βntn + (1 − βn − αn)Twn,

and

τn+1

=






min if f (un,wn) − f (un, vn){
µ

2
‖un − vn‖2 + ‖wn − vn‖2

f (un,wn) − f (un, vn) − f (vn,wn)
, τn

}
, −f (vn,wn) > 0,

τn, otherwise.
(8)

Set n := n + 1 and return back to Step 1.

(1) Following the self-adaptive rule in Algorithm 2, we can prove that the main
theorem of this paper does not require knowledge of Lipschitz constants. On
this basis, we improve the variable µ in Algorithm 1, which is analogous to
k in our algorithm. If k = 1, it is the general situation; whereas if k ∈ (0, 1),
the convergence process of our algorithm can be improved by the di"erence
of the value of k, and it is re#ected in the numerical example.

(2) In Algorithm 1, there is a relationship between the value ofµ and the inertia
term, which may limit the convergence e"ect. We separate this value from
the inertia term, which will improve the convergence speed of Algorithm 3.

(3) We combine inertial subgradient extragradient method and viscosity itera-
tivemethod to deal with!xed point problems and equilibriumproblems, our
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proposed iterative algorithm is new and di"erent from Algorithm 2. Under
some appropriate assumptions imposed on the parameters, we prove that the
sequence generated byAlgorithm3 converges strongly to a common solution
of the equilibrium problems and !xed point problems.

Lemma 3.1: The sequence {τn} generated by (8) is non-increasing and

lim
n→∞

τn ≥ min
{

µ

2max{c1, c2}
, τ1

}
.

Proof: From (8), it is clear to get the sequence {τn} is non-increasing. In addition,
since f satis!es the Lipschitz-type condition onH, we have

µ

2
‖un − vn‖2 + ‖wn − vn‖2

f (un,wn) − f (un, vn) − f (vn,wn)
≥ µ

2
‖un − vn‖2 + ‖wn − vn‖2

c1‖un − vn‖2 + c2‖vn − wn‖2

≥ µ

2max{c1, c2}
.

Therefore, {τn} is a non-increasing sequence and lower bounded.Moreover, there
exits limn→∞ τn = τ ≥ min{ µ

2max{c1,c2} , τ1}. !

Lemma 3.2: Let {un}, {vn} and {wn} be the sequences generated by Algorithm 3.
Then

‖wn − p‖2 ≤ ‖un − p‖2 − (1 − k)‖un − wn‖2

− k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 − k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2,

for all p ∈ EP(f ,C).

Proof: From Lemma 2.1 and the de!nition of {wn}, we have

0 ∈ ∂

{
kτnf (vn, y) + 1

2
‖y − un‖2

}
(wn) + NTn(wn), ∀ y ∈ Tn.

It follows that there exist sn ∈ ∂2f (vn,wn) and sn ∈ NTn(wn) such that

kτnsn + wn − un + sn = 0.

That is

〈un − wn, y − wn〉 = kτn〈sn, y − wn〉 + 〈sn, y − wn〉, ∀ y ∈ Tn.

Since sn ∈ NTn(wn), we obtain 〈sn, y − wn〉 ≤ 0. Then

kτn〈sn, y − wn〉 ≥ 〈un − wn, y − wn〉, ∀ y ∈ Tn. (9)
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In addition, by the de!nition of subdi"erential and sn ∈ ∂2f (vn,wn), we get

f (vn, y) − f (vn,wn) ≥ 〈sn, y − wn〉, ∀ y ∈ Tn. (10)

Combining (9) and (10) we have

kτn(f (vn, y) − f (vn,wn)) ≥ 〈un − wn, y − wn〉, ∀ y ∈ Tn. (11)

Let y := p ∈ EP(f ,C) ⊂ C ⊂ Tn, then

kτn(f (vn, p) − f (vn,wn)) ≥ 〈un − wn, p − wn〉. (12)

As vn ∈ Cwe have f (p, vn) ≥ 0. By the pseudomonotonicity of f we get f (vn, p) ≤
0. Thus (12) can be transformed into

〈un − wn,wn − p〉 ≥ kτnf (vn,wn). (13)

Similarly, since zn ∈ ∂2f (un, vn), we obtain

f (un, z) − f (un, vn) ≥ 〈zn, z − vn〉, ∀ z ∈ H.

Let z := wn, then

f (un,wn) − f (un, vn) ≥ 〈zn,wn − vn〉. (14)

By de!nition of Tn and wn ∈ Tn, we have 〈un − τnzn − vn,wn − vn〉 ≤ 0. This
implies that

τn〈zn,wn − vn〉 ≥ 〈un − vn,wn − vn〉. (15)

Combining (14) and (15), we get

τn(f (un,wn) − f (un, vn)) ≥ 〈un − vn,wn − vn〉. (16)

From (8), we obtain

τn+1(f (un,wn) − f (un, vn) − f (vn,wn)) ≤ µ

2
(‖un − vn‖2 + ‖wn − vn‖2),

or equivalently

τn(f (un,wn) − f (un, vn) − f (vn,wn)) ≤ τn
τn+1

µ

2
(‖un − vn‖2 + ‖wn − vn‖2).

(17)
Substituting (17) into (16), then

〈un − vn,wn − vn〉 ≤ τnf (vn,wn) + τn
τn+1

µ

2
(‖un − vn‖2 + ‖wn − vn‖2). (18)

Adding (13) and (18) we get
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〈un − vn,wn − vn〉 ≤ 1
k
〈un − wn,wn − p〉

+ τn
τn+1

µ

2
(‖un − vn‖2 + ‖wn − vn‖2). (19)

On the other hand,

2〈un − vn,wn − vn〉 = ‖un − vn‖2 + ‖wn − vn‖2 − ‖un − wn‖2,

2〈un − wn,wn − p〉 = ‖un − p‖2 − ‖wn − p‖2 − ‖un − wn‖2.
(20)

Combining (19) and (20), we obtain

‖wn − p‖2 ≤ ‖un − p‖2 − (1 − k)‖un − wn‖2

− k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 − k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2.

The proof is completed. !

Lemma 3.3: The sequence {tn} generated by Algorithm 3 is bounded.

Proof: From Lemma 3.1 and k ∈ (0, 1],µ ∈ (0, 1), we obtain

1 − k ≥ 0, lim
n→∞

k
(
1 − µ

τn
τn+1

)
> 0. (21)

Combining (21) and Lemma 3.2, for all p ∈ EP(f ,C) ∩ F(T), we have

‖wn − p‖ ≤ ‖un − p‖. (22)

Moreover,

‖un − p‖ = ‖tn + θn(tn − tn−1) − p‖

≤ ‖tn − p‖ + αn · θn
αn

‖tn − tn−1‖.

Since θn
αn

‖tn − tn−1‖ → 0 as n → ∞, there exists a constant M>0 such that
θn
αn

‖tn − tn−1‖ ≤ M. That is,

‖un − p‖ ≤ ‖tn − p‖ + αnM. (23)

Therefore,

‖tn+1 − p‖ = ‖αng(tn) + βntn + (1 − βn − αn)Twn − p‖
≤ αn‖g(tn) − p‖ + βn‖tn − p‖ + (1 − βn − αn)‖Twn − p‖
≤ αn‖g(tn) − g(p) + g(p) − p‖ + βn‖tn − p‖

+ (1 − βn − αn)‖wn − p‖
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≤ αnρ‖tn − p‖ + αn‖g(p) − p‖ + βn‖tn − p‖
+ (1 − βn − αn)‖un − p‖

≤ αnρ‖tn − p‖ + αn‖g(p) − p‖ + βn‖tn − p‖
+ (1 − βn − αn)(‖tn − p‖ + αnM)

≤ (1 − αn(1 − ρ))‖tn − p‖ + αn‖g(p) − p‖ + αnM

= (1 − αn(1 − ρ))‖tn − p‖ + αn(1 − ρ)
‖g(p) − p‖ + M

1 − ρ

≤ max
{
‖tn − p‖, ‖g(p) − p‖ + M

1 − ρ

}

≤ · · · ≤ max
{
‖t0 − p‖, ‖g(p) − p‖ + M

1 − ρ

}
.

It follows that the sequence {tn} is bounded. !

Lemma 3.4: Let p ∈ EP(f ,C) ∩ F(T). Then the sequence {tn} generated by
Algorithm 3 satis!es:

dn+1 ≤ (1 − an)dn + anbn, ∀ n ≥ 0,

where dn = ‖tn − p‖2, an = αn(1 − ρ), bn = 2〈g(p)−p,tn+1−p〉
1−ρ + 2‖tn+1−p‖

1−ρ
θn
αn

‖tn −
tn−1‖.

Proof: In fact, for all p ∈ EP(f ,C) ∩ F(T),

‖un − p‖2 = ‖tn + θn(tn − tn−1) − p‖2

= ‖tn − p‖2 + 2θn〈tn − p, tn − tn−1〉 + θn
2‖tn − tn−1‖2

≤ ‖tn − p‖2 + 2θn‖tn − p‖‖tn − tn−1‖ + θn
2‖tn − tn−1‖2

= ‖tn − p‖2 + θn‖tn − tn−1‖
(
2‖tn − p‖ + θn‖tn − tn−1‖

)

≤ ‖tn − p‖2 + θn‖tn − tn−1‖M1, (24)

whereM1 := supn∈N{2‖tn − p‖ + θn‖tn − tn−1‖}. Furthermore, since T is non-
expansive mapping, we have ‖Twn − p‖ ≤ ‖wn − p‖. Combining (22) and (24),
we get

‖Twn − p‖2 ≤ ‖wn − p‖2 ≤ ‖un − p‖2

≤ ‖tn − p‖2 + θn‖tn − tn−1‖M1. (25)

Therefore,



1340 Z. XIE ET AL.

‖tn+1 − p‖2 = ‖αng(tn) + βntn + (1 − βn − αn)Twn‖2

= 〈αn(g(tn) − p) + βn(tn − p)

+ (1 − βn − αn)(Twn − p), tn+1 − p〉
= αn〈g(tn) − g(p) + g(p) − p, tn+1 − p〉 + βn〈tn − p, tn+1 − p〉

+ (1 − βn − αn)〈Twn − p, tn+1 − p〉
≤ αnρ‖tn − p‖‖tn+1 − p‖ + αn〈g(p) − p, tn+1 − p〉

+ βn‖tn − p‖‖tn+1 − p‖ + (1 − βn − αn)‖wn − p‖‖tn+1 − p‖
≤ (αnρ + βn)‖tn − p‖‖tn+1 − p‖ + αn〈g(p) − p, tn+1 − p〉

+ (1 − βn − αn)(‖tn − p‖ + θn‖tn − tn−1‖)‖tn+1 − p‖
≤ [1 − αn(1 − ρ)]‖tn − p‖‖tn+1 − p‖

+ (1 − βn − αn)θn‖tn − tn−1‖‖tn+1 − p‖
+ αn〈g(p) − p, tn+1 − p〉

≤ 1
2
[1 − αn(1 − ρ)][‖tn − p‖2 + ‖tn+1 − p‖2]

+ θn‖tn − tn−1‖‖tn+1 − p‖ + αn〈g(p) − p, tn+1 − p〉

≤ 1
2
[1 − αn(1 − ρ)]‖tn − p‖2 + 1

2
‖tn+1 − p‖2

+ θn‖tn − tn−1‖‖tn+1 − p‖ + αn〈g(p) − p, tn+1 − p〉. (26)

That is,

‖tn+1 − p‖2 ≤ [1 − αn(1 − ρ)]‖tn − p‖2 + 2θn‖tn − tn−1‖‖tn+1 − p‖
+ 2αn〈g(p) − p, tn+1 − p〉

= [1 − αn(1 − ρ)]‖tn − p‖2 + αn(1 − ρ)

{
2〈g(p) − p, tn+1 − p〉

1 − ρ

+ 2‖tn+1 − p‖
1 − ρ

θn
αn

‖tn − tn−1‖
}
.

So the proof is completed. !

Lemma 3.5: Let p ∈ EP(f ,C) ∩ F(T). Then the sequence {tn} generated by
Algorithm 3 satis!es:

(1 − βn − αn)

{
k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 + k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2

+ βn‖Twn − tn‖2
}

≤ ‖tn − p‖2 − ‖tn+1 − p‖2 + αnM2 + αn(1 − βn − αn)
θn
αn

‖tn − tn−1‖M1,
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for some M1,M2 > 0.

Proof: From (3), (24), Lemma 3.2 and the de!nition of {tn+1}, we have

‖tn+1 − p‖2 = ‖αng(tn) + βntn + (1 − βn − αn)Twn − p‖2

= ‖αn(g(tn) − p) + βn(tn − p) + (1 − βn − αn)(Twn − p)‖2

= αn‖g(tn) − p‖2 + βn‖tn − p‖2 + (1 − βn − αn)‖Twn − p‖2

− αnβn‖g(tn) − tn‖2 − αn(1 − βn − αn)‖g(tn) − Twn‖2

− βn(1 − βn − αn)‖Twn − tn‖2

≤ αn‖g(tn) − p‖2 + βn‖tn − p‖2 + (1 − βn − αn)‖wn − p‖2

− βn(1 − βn − αn)‖Twn − tn‖2

≤ αn‖g(tn) − p‖2 + βn‖tn − p‖2 − βn(1 − βn − αn)‖Twn − tn‖2

+ (1 − βn − αn)

{
‖un − p‖2 − (1 − k)‖un − wn‖2

− k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 − k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2

}

≤ αn‖g(tn) − p‖2 + βn‖tn − p‖2 − βn(1 − βn − αn)‖Twn − tn‖2

+ (1 − βn − αn)

{
‖tn − p‖2 + θn‖tn − tn−1‖M1

− k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 − k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2

}

≤ αn‖g(tn) − p‖2 + (1 − αn)‖tn − p‖2

+ (1 − βn − αn)θn‖tn − tn−1‖M1

− (1 − βn − αn)

{
k
(
1 − µ

τn
τn+1

)
‖un − vn‖2

+ k
(
1 − µ

τn
τn+1

)
‖wn − vn‖2 + βn‖Twn − tn‖2

}
.

Hence,

(1 − βn − αn)

{
k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 + k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2

+ βn‖Twn − tn‖2
}

≤ ‖tn − p‖2 − ‖tn+1 − p‖2 + αnM2 + αn(1 − βn − αn)
θn
αn

‖tn − tn−1‖M1,

whereM2 := supn∈N{‖g(tn) − p‖2 − ‖tn − p‖2}. !
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Theorem3.1: Let {tn} be a sequence generated by Algorithm 3, then {tn} converges
strongly to an element p = PEP(f ,C)∩F(T) ◦ g(p).

Proof: Let p = PEP(f ,C)∩F(T) ◦ g(p), we consider the following two cases:
Case 1: There exists an N ∈ N such that ‖tn+1 − p‖2 ≤ ‖tn − p‖2 for

all n ≥ N. It follows that limn→∞ ‖tn − p‖2 exists. First, we prove that
limn→∞ ‖tn+1 − tn‖ = 0. Indeed, applying Lemma 3.5, we can get

(1 − βn − αn)

{
k
(
1 − µ

τn
τn+1

)
‖un − vn‖2 + k

(
1 − µ

τn
τn+1

)
‖wn − vn‖2

+ βn‖Twn − tn‖2
}

≤ ‖tn − p‖2 − ‖tn+1 − p‖2 + αnM2 + αn(1 − βn − αn)
θn
αn

‖tn − tn−1‖M1.

(27)

Let n → ∞, then αn → 0 and θn
αn

‖tn − tn−1‖ → 0. In addition, from the
de!nition of {βn}, we have limn→∞(1 − βn − αn) > 0. Taking the limit of (27),
we obtain

lim
n→∞

‖Twn − tn‖ = 0, lim
n→∞

‖un − vn‖ = 0, lim
n→∞

‖wn − vn‖ = 0. (28)

Since ‖wn − un‖ ≤ ‖wn − vn‖ + ‖vn − un‖, we infer that

lim
n→∞

‖wn − un‖ = 0. (29)

Furthermore,

‖tn+1 − tn‖ = ‖αng(tn) + βntn + (1 − βn − αn)Twn − tn‖
≤ αn‖g(tn) − tn‖ + (1 − βn − αn)‖Twn − tn‖.

It follows that

lim
n→∞

‖tn+1 − tn‖ = 0. (30)

Since {tn} is bounded, there exists a subsequence {tnk} ⊂ {tn} such that tnk ⇀ q
as k → ∞. Next we prove that q ∈ EP(f ,C) ∩ F(T). In fact,

‖vnk − tnk‖ ≤ ‖vnk − unk‖ + ‖unk − tnk‖

= ‖vnk − unk‖ + αnk ·
θnk
αnk

‖tnk − tnk−1‖.

Thus limk→∞ ‖vnk − tnk‖ = 0, we get vnk ⇀ q. From (11) and (18), we have

kτnkf (vnk , y)

≥ kτnkf (vnk ,wnk) + 〈unk − wnk , y − wnk〉
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≥ k
[
〈unk − vnk ,wnk − vnk〉 −

τnk
τnk+1

µ

2
(‖unk − vnk‖2 + ‖wnk − vnk‖2)

]

+ 〈unk − wnk , y − wnk〉.

Since k > 0, limk→∞ τnk = τ > 0, we obtain

0 ≤ lim sup
k→∞

f (vnk , y) = f (q, y), ∀ y ∈ C.

That is q ∈ EP(f ,C). Furthermore,

‖wnk − tnk‖ ≤ ‖wnk − unk‖ + ‖unk − tnk‖

≤ ‖wnk − unk‖ + αnk ·
θnk
αnk

‖tnk − tnk−1‖,

and

‖Twnk − wnk‖ ≤ ‖Twnk − tnk‖ + ‖tnk − unk‖ + ‖unk − wnk‖.

Taking k → ∞wehavewnk ⇀ q and ‖Twnk − wnk‖ → 0. By the demiclosedness
of the mapping I−T and Lemma 2.2, we obtain q ∈ F(T). Hence q ∈ EP(f ,C) ∩
F(T). Combining with the de!nition of p, then

lim sup
n→∞

〈g(p) − p, tn − p〉 = lim sup
k→∞

〈g(p) − p, tnk − p〉 = 〈g(p) − p, q − p〉 ≤ 0.

(31)
Therefore,

lim sup
n→∞

〈g(p) − p, tn+1 − p〉 ≤ lim sup
n→∞

〈g(p) − p, tn+1 − tn〉

+ lim sup
n→∞

〈g(p) − p, tn − p〉
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= 〈g(p) − p, q − p〉
≤ 0. (32)

Combining (32), Lemma 3.4 with Lemma 2.4, we conclude that ‖tn − p‖ → 0 as
n → ∞. It follows that {tn} converges strongly to p.

Case 2: There exists a subsequence {‖tnj − p‖} ⊂ {‖tn − p‖} such that ‖tnj −
p‖ < ‖tnj+1 − p‖ for all j ∈ N. From Lemma 2.3, there exists a non-decreasing
sequencemk of N such that limk→∞ mk = ∞ and

‖tmk − p‖ ≤ ‖tmk+1 − p‖ and ‖tk − p‖ ≤ ‖tmk+1 − p‖, ∀ k ∈ N. (33)

As proved in Case 1, we can get

lim
k→∞

‖tmk+1 − tmk‖ = 0.

Similarly, we can conclude that

lim sup
k→∞

〈g(p) − p, tmk+1 − p〉 ≤ 0. (34)

Applying Lemma 3.4 and (33), we have

‖tmk+1 − p‖2 ≤
[
1 − αmk(1 − ρ)

]
‖tmk − p‖2

+ αmk(1 − ρ)

{
2〈g(p) − p, tmk+1 − p〉

1 − ρ

+
2‖tmk+1 − p‖

1 − ρ

θmk

αmk
‖tmk − tmk−1‖

}

≤
[
1 − αmk(1 − ρ)

]
‖tmk+1 − p‖2

+ αmk(1 − ρ)

{
2〈g(p) − p, tmk+1 − p〉

1 − ρ

+
2‖tmk+1 − p‖

1 − ρ

θmk

αmk
‖tmk − tmk−1‖

}
.

It follows that

‖tmk+1 − p‖2 ≤
2〈g(p) − p, tmk+1 − p〉

1 − ρ
+

2‖tmk+1 − p‖
1 − ρ

θmk

αmk
‖tmk − tmk−1‖.

(35)
Since ρ ∈ [0, 1), limk→∞

θmk
αmk

‖tmk − tmk−1‖ = 0 and {‖tmk − p‖} is bounded. It
follows from (34) and (35) that

lim
k→∞

‖tmk+1 − p‖ = 0. (36)

Combining (36) and (33),

lim
k→∞

‖tk − p‖ ≤ lim
k→∞

‖tmk+1 − p‖ = 0.

Hence, tn → p as n → ∞. This !nishes the proof. !
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Remark 3.2: It is easy to see that the condition limn→∞
θn
αn

‖tn − tn−1‖ = 0 of
(C3) can be implemented easily in the numerical computation as the value of
‖tn − tn−1‖ is known before choosing θn. Indeed, the parameter θn can be chosen
such that

θn =





min

{
δn

‖tn − tn−1‖
, θ

}
, if tn -= tn−1,

θ , otherwise,
where θ is a constant such that 0 < θ < 1 and {δn} is a positive sequence such
that limn→∞

δn
αn

= 0.

Next, on the basis of Theorem 3.1, we get a corollary of the variational inequal-
ity problem in Hilbert spaces. The classical variational inequality problem for an
operator A : H → H is as follows: !nd u∗ ∈ C such that

〈Au∗, v − u∗〉 ≥ 0, ∀ v ∈ C.

The solution set abbreviated as VI(C,A). Now, we give the following assumptions
for solving the variational inequality problem:

(A1) The operator A : H → H is pseudomonotone, i.e.

〈Au, v − u〉 ≥ 0 =⇒ 〈Av, u − v〉 ≤ 0, ∀ u, v ∈ H.

(A2) The operator A : H → H is L-Lipschitz continuous if there exists a con-
stant L>0 such that

‖Au − Av‖ ≤ L‖u − v‖, ∀ u, v ∈ H.

(A3) The operator A : H → H is sequentially weakly continuous, i.e. {Aun}
converges weakly to Au for every sequence {un} converges weakly to u.

Let f (u, v) = 〈Au, v − u〉, ∀ u, v ∈ C, the equilibrium problem becomes the
variational inequality problem with L = 2c1 = 2c2. Moreover, we have

vn = argmin
y∈C

{
τnf (un, y) + 1

2
‖y − un‖2

}
= PC(un − τnAun),

where PC is called the metric projection ofH onto C. Therefore, we naturally get
the following algorithm.

Corollary 3.1: Assume that the feasible set C is a nonempty closed and convex
subset in a real Hilbert space H. Let T : H → H be a nonexpansive mapping, g :
H → H be a contractionwith a constant ρ ∈ [0, 1) and the solution set VI(C,A) ∩
F(T) be nonempty. Suppose that the conditions (C1–C3) and (A1–A3) hold. Then
the sequence {tn} generated by Algorithm 4 converges strongly to an element p =
PVI(C,A)∩F(T) ◦ g(p).
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Algorithm 4
Initialization: Let τ1 > 0, µ ∈ (0, 1), k ∈ (0, 1] and t0, t1 ∈ H.
Iterative steps: Given the current iterates tn−1 and tn (n ≥ 1).
Step 1. Evaluate

vn = PC(un − τnAun),

where un = tn + θn(tn − tn−1). If vn = un, then stop. Otherwise go to Step 2.
Step 2. Compute

wn = PTn(un − kτnAvn),

where

Tn := {x ∈ H : 〈un − τnAun − vn, x − vn〉 ≤ 0}.

Step 3. Calculate

tn+1 = αng(tn) + βntn + (1 − βn − αn)Twn,

and

τn+1 =






min
{

µ(‖un − vn‖2 + ‖wn − vn‖2)
2〈Aun − Avn,wn − vn〉

, τn
}
, if 〈Aun − Avn,wn − vn〉

> 0,
τn, otherwise.

Set n := n + 1 and return back to Step 1.

4. Numerical experiments

In this section, we provide some numerical examples to illustrate the computa-
tional e$ciency of the proposed algorithms compared to some iterative schemes
in the literature. All the programs were implemented in MATLAB 2018a on
a personal computer with RAM 8.00GB. We apply the formula described in
Remark 3.2 to update the inertial parameter in the related algorithms, including
θn in Algorithm 1.

Example 4.1: Assume that the operator F is de!ned by

F(x) =
( (

x21 + (x2 − 1)2
)
(1 + x2)

−x31 − x1 (x2 − 1)2
)
.

Set f (x, y) = 〈F(x), y − x〉, ∀ x, y ∈ C, where C := {x ∈ R2 : −10 ≤ xi ≤ 10, i =
1, 2}. The problem EP(f ,C) has a unique solution x∗ = (0,−1)T. Note that
the operator F is pseudomonotone rather than monotone (see [58, Exam-
ple 6.7]) and thus the bifunction f is pseudomonotone. We apply the pro-
posed Algorithm 3 to solve the pseudo-monotone equilibrium problem EP(f ,C).
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Figure 1. The numerical behavior of the proposed Algorithm 3 with different parameter k for
Example 4.1.

Take αn = 1/(10n + 1), βn = 0.5(1 − αn), θ = 0.6, δn = 1/(10n + 1)2, τ1 =
0.1, µ = 0.1, k = {0.7, 0.8, 0.9, 1}, g(x) = 0.1 and Tx = x for the porposed
Algorithm 3. The maximum number of iterations 1000 is used as a stopping cri-
terion. Figures 1 and 2 show the numerical behavior Dn = ‖xn − x∗‖2 and the
corresponding step size variations of our Algorithm 3 with di"erent parameters
k, respectively.

Example 4.2: Let the bifunction f : C × C → R be given by

f (x, y) = 〈Mx + Ny + c, y − x〉, ∀ x, y ∈ C,

where the feasible set C is de!ned by C= {x∈ Rm : −5≤ xi ≤ 5, i= 1, 2, . . . ,m},
c ∈ Rm and M,N ∈ Rm×m. The matrix M is symmetric positive semi-de!nite
and the matrix (N − M) is symmetric negative semi-de!nite with Lipschitz-type
constants c1 = c2 = ‖M − N‖/2 (see [23, Section 6]). The matrices M, N are
taken randomly (see [59, Example 5.1]). We use the proposed Algorithm 3 to
solve the equilibrium problem (EP) with f and C given above, and compare it
with the Algorithm 3.1 introduced by Yang and Liu [50] (shortly, YL Alg. 3.1)
and the Algorithm 2.1 suggested by Shehu et al. [60] (shortly, SSTT Alg. 2.1).
The parameters of all algorithms are set as follows. In all algorithms, we choose
αn = 1/(n + 1), τ1 = 0.1, µ = 0.5 and Sx = Tx = x. Take βn = 0.1 for YL Alg.
3.1. Selectα = 0.1 and τ = 0.1 for SSTTAlg. 2.1. Set θ = 0.4, δn = 100/(n + 1)2,
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Figure 2. The step size of the proposed Algorithm 3 with different parameters k for Example 4.1.

Table 1. Numerical results of all algorithms for Example 4.2.

m = 5 m = 20 m = 50 m = 100

Algorithms En CPU En CPU En CPU En CPU

Our Alg. 3 2.61 × 10−08 4.48 1.97 × 10−07 4.03 1.09 × 10−06 6.95 9.58 × 10−07 12.69
YL Alg. 3.1 2.34 × 10−07 6.26 6.02 × 10−07 6.77 2.04 × 10−06 9.24 4.09 × 10−06 15.12
SSTT Alg. 2.1 1.14 × 10−07 4.81 2.10 × 10−05 4.55 2.79 × 10−05 7.99 4.42 × 10−05 14.49

βn = 0.5(1 − αn), g(x) = 0.1x and k = 0.8 for the proposed Algorithm 3. Since
we do not know the exact solution of the problem, the function En = ‖xn −
xn−1‖2 is used to measure the computational error of all algorithms at nth step.
We apply the maximum number of iterations 100 as a common stopping crite-
rion. The numerical results of all algorithms in di"erent dimensions are shown
in Figure 3 and Table 1, where ‘CPU’ denotes the execution time in seconds.

Finally, we consider an example in an in!nite-dimensional Hilbert space
H = L2([0, 1]) with inner product 〈x, y〉 :=

∫ 1
0 x(t)y(t) dt, ∀ x, y ∈ H and norm

‖x‖ := (
∫ 1
0 |x(t)|2 dt)1/2, ∀ x ∈ H.

Example 4.3: Let r,R be two positive real numbers such thatR/(d + 1) < r/d <

r < R for some d>1. Assume that the feasible set C is de!ned by C = {x ∈ H :
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Figure 3. The numerical behavior of the proposed Algorithm 3 for Example 4.2,m = 100.

‖x‖ ≤ r}. The operator A : H → H is given by

A(x) = (R − ‖x‖)x, ∀ x ∈ H.

Note that the operator A is pseudo-monotone rather than monotone (see [61,
Example 4.2]). For the experiment, we choose R = 1.5, r = 1, d = 1.1. The solu-
tion to the variational inequality problem with A and C given above is x∗(t) = 0.
We compare the proposed Algorithm 4 with the Algorithms 3.1 and 3.2 intro-
duced by Thong and Hieu [62] (shortly, TH Alg. 3.1 and TH Alg. 3.2), and
the Algorithms 3.1–3.3 proposed by Tan et al. [41] (shortly, TCY Alg. 3.1, TCY
Alg. 3.2, and TCY Alg. 3.3). Set αn = 1/(n + 1), µ = 0.5, τ1 = 1, Tx = Sx = x
and f (x) = g(x) = 0.1x for all algorithms. Choose βn = 0.5(1 − αn) for Our
Algorithm 4, TH Alg. 3.1, TH Alg. 3.2, and TCY Alg. 3.3. Take θ = 0.3, δn =
100/(n + 1)2, and k = 0.8 for the suggestedAlgorithm 4, TCYAlg. 3.1, TCYAlg.
3.2, and TCY Alg. 3.3. Choose β = 0.5 for TCY Alg. 3.2 and TCY Alg. 3.3. Select
ξn = 1 + 1/(n + 1)1.1 for theAlgorithms 3.1–3.3 propsoed by Tan et al. [41]. The
maximum number of iterations 50 is used as a common stopping criterion. We
use Dn = ‖xn(t) − x∗(t)‖2 to measure the error of all algorithms at the nth iter-
ation step, and ‘CPU’ to denote the execution time of the algorithms in seconds.
The numerical results of all algorithms with four di"erent initial points x0 = x1
are given in Table 2.

Remark 4.1: We have the following observations for Examples 4.1–4.3.
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Table 2. Numerical results of all algorithms for Example 4.3.

x1 = 100t4 x1 = 100 et x1 = 100 log(t) x1 = 100 sin(t)

Algorithms Dn CPU Dn CPU Dn CPU Dn CPU

Our Alg. 4 6.36 × 10−08 20.82 2.24 × 10−07 23.39 1.91 × 10−07 21.02 1.01 × 10−07 20.93
TH Alg. 3.1 1.57 × 10−04 19.27 5.90 × 10−04 18.31 4.15 × 10−04 17.86 1.89 × 10−04 18.49
TH Alg. 3.2 4.13 × 10−03 16.90 2.30 × 10−03 16.67 3.85 × 10−03 16.37 1.87 × 10−02 16.52
TCY Alg. 3.1 3.66 × 10−17 25.71 6.29 × 10−17 20.68 1.12 × 10−16 20.16 5.13 × 10−17 21.50
TCY Alg. 3.2 5.39 × 10−19 21.37 1.73 × 10−18 20.84 1.76 × 10−18 20.01 5.81 × 10−19 21.19
TCY Alg. 3.3 7.12 × 10−23 20.76 4.46 × 10−23 20.21 4.47 × 10−23 19.79 4.56 × 10−23 21.22

• It can be seen from Figures 1 and 2 that the proposed Algorithm 3 can
obtain a faster convergence speed and accuracywhen choosing the appropriate
parameter k.

• From the information in Figure 3 and Table 1, it can be known that the pro-
posed Algorithm 3 has a higher accuracy and a less execution time than the
algorithms presented in the literature [50,60] for the same stopping criterion,
and these results are not related to the size of the dimension.

• From Table 2, it can be seen that the proposed Algorithm 4 can obtain a
higher accuracy than the algorithms introduced by Thong and Hieu [62], and
this result is independent of the choice of the initial values. However, our
Algorithm 4 requires more execution time than the compared algorithms in
[62], due to the fact that we need to spend extra time to calculate the iner-
tial parameters in in!nite-dimensional Hilbert spaces. On the other hand, our
Algorithm 4 has lower accuracy and requires less computation time compared
to Algorithms 3.1–3.3 proposed by Tan et al. [41] (see the numerical results for
x1 = 100t4 and x1 = 100 sin(t) in Table 2). The reason for this phenomenon
can be explained by the fact that the step size used by Tan et al. [41] is non-
monotonic, while our Algorithm 4 uses a non-increasing step size. In our
future work we will consider using this non-monotonic type of step size to
speed up the convergence of the algorithm.

5. Conclusions

In this paper, we propose a new inertial self-adaptive subgradient extragradi-
ent method for solving pseudomonotone equilibrium problems and !xed point
problems in Hilbert spaces. Under suitable conditions, the sequence generated
by the proposed algorithm strongly converges to the common solution of equi-
librium problems and !xed point problems. Particularly, we add a new variable k
that can control the step size, and it is re#ected in Figures 1 and 2 that this variable
can e"ectively accelerate the convergence rate. In addition, we apply our main
results to deal with the variational inequality problem. By comparing with other
related results [50,60,62], our algorithms do have a better convergence e"ects.
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