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virtue of this feature, many inertial algorithms were introduced in recent years;
see, e.g., [19, 25, 26, 32] for more details. Recently, Mu and Peng [17] pointed out
that the sequence generated by IPPA loses the Fejér monotonicity of the sequence
generated by the proximal point algorithm, and even fluctuates around the exact
solution of the related problem. To overcome this shortcoming, they immediately
proposed an alternated inertial proximal point algorithm and got the convergence
of this algorithm in Rn. Some recent results on alternated inertial can be found
in [10,21,22].

Inspiration by Censor et al. [6] and Mu and Peng [17], we construct several new
alternated inertial algorithms to find solutions of a pseudomonotone variational
inequality and prove their convergence under the condition of the adaptive stepsize
criterion.

2. Preliminaries

Some basic definitions and related lemmas are listed below. Let H be a Hilbert
space and C be a nonempty, closed and convex subset of H. The symbol xn ⇀ x
represents weak convergence of {xn} to x. The metric projection of H onto C is
expressed as PC , i.e., PC(x) := argminy∈C ∥x−y∥, ∀x ∈ H. In addition, PC satisfies

the following property: ⟨PCx−x, PCx−y⟩ ≤ 0, ∀y ∈ C ⇔ ∥y−PCx∥2+∥x−PCx∥2 ≤
∥x− y∥2. Meanwhile, for any x, y ∈ H and σ ∈ R, the following statement holds:

(2.1) ∥σx+ (1− σ)y∥2 = σ∥x∥2 + (1− σ)∥y∥2 − σ(1− σ)∥x− y∥2.

Definition 2.1. For any x, y ∈ H, a mapping A : H → H is said to be (1) monotone
if ⟨Ax−Ay, x− y⟩ ≥ 0; (2) pseudomonotone if ⟨Ay, x− y⟩ ≥ 0 ⇒ ⟨Ax, x− y⟩ ≥ 0;
(3) L-Lipschitz continuous if there exists L > 0 such taht ∥Ax−Ay∥ ≤ L∥x− y∥.

Lemma 2.2 ( [16]). Let C be a nonempty, closed and convex subset of a Hilbert
space H and A : C → H be a pseudomonotone and continuous mapping. Then,
x∗ ∈ V I(C,A) if and only if ⟨Ax, x− x∗⟩ ≥ 0, ∀x ∈ C.

Lemma 2.3 ( [18]). Let C be a nonempty subset of H and {xn} be a sequence in H
such that the following conditions hold: (i) for every x ∈ C, limn→∞ ∥xn−x∥ exists;
(ii) every sequentially weak cluster point of {xn} is in C. Then {xn} converges
weakly to a point in C.

Lemma 2.4 ( [11]). Let H1 and H2 be two real Hilbert spaces. Suppose that A :
H1 → H2 is uniformly continuous on bounded subsets of H1 and Q is a bounded
subset of H1. Then, A(Q) is bounded.

3. Alternated inertial subgradient extragradient methods

In this section, we introduce two iterative algorithms to solve the pseudomonotone
variational inequality based on the subgradient extragradient method by using the
idea of alternated inertial terms and the adaptive stepsize. To begin with, suppose
that the solution set V I(C,A) is nonempty and some standard assumptions are as
follows:

(A1) H is a Hilbert space and C is a nonempty, closed and convex subset of H.
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(A2) The mapping A : H → H is pseudomonotone and L-Lipschitz continuous
but L is unknown.

(A2†) The mapping A : H → H is pseudomonotone onH and uniformly continuous
on bounded subsets of H.

(A3) The mapping A : H → H satisfies the following condition

whenever {xn} ⊂ C and xn ⇀ x, one has ∥Ax∥ ≤ lim inf
n→∞

∥Axn∥.

Based on the above setting conditions, the improved algorithms are of the form:

Algorithm 3.1. Give λ1 > 0, µ ∈ (0, 1) and two nonnegative real numbers se-

quences {αn} and {ξn} satisfying αn ∈ [0, α] ⊂ [0, 1−µ
2 ) and

∑∞
n=1 ξn < +∞.

Choose initial values x0, x1 ∈ H and set n := 1.
Step 1. Compute

(3.1) wn =

{
xn, n = even,
xn + α(xn − xn−1), n = odd.

Step 2. Compute yn = PC(wn − λnAwn). If wn = yn or Ayn = 0, then stop.
Otherwise, go to Step 3.
Step 3. Compute xn+1 = PTn(wn−λnAyn), where Tn := {x ∈ H | ⟨wn−λnAwn−
yn, x− yn⟩ ≤ 0}.
Step 4. Compute

λn+1 =

{
min

{
µ∥wn−yn∥2+∥xn+1−yn∥2

2⟨Awn−Ayn,xn+1−yn⟩ , λn + ξn

}
, if ⟨Awn −Ayn, xn+1 − yn⟩ > 0,

λn + ξn, otherwise.

Set n := n+ 1 and return Step 1.

Algorithm 3.2. Give l, µ ∈ (0, 1), γ > 0 and a nonnegative real numbers sequence

{αn} satisfying αn ∈ [0, α] ⊂ [0, 1−µ
2 ). Choose initial values x0, x1 ∈ H and set

n := 1.
Step 1. Compute

wn =

{
xn, n = even,
xn + α(xn − xn−1), n = odd.

Step 2. Compute yn = PC(wn−λnAwn), where λn := γlmn and mn is the smallest
nonnegative integer m satisfying γlm ∥Awn −Ayn∥ ≤ µ ∥wn − yn∥ . If wn = yn or
Ayn = 0, then stop. Otherwise, go to Step 3.
Step 3. Compute xn+1 = PTn(wn−λnAyn), where Tn := {x ∈ H | ⟨wn−λnAwn−
yn, x− yn⟩ ≤ 0}, and set n := n+ 1 and return Step 1.

Remark 3.3. In the past, when dealing with the pseudomonotone variational in-
equality (see, e.g., [27, 28]), the assigned mapping was always endowed with the
sequentially weakly continuity, (for each sequence {xn} with xn ⇀ x implies Axn
converges weakly to Ax). It is worth noting that a weak condition setting, Condi-
tion (A3), is taken into consideration on the mapping A. In fact, if A is sequentially
weakly continuous, Condition (A3) holds under the weak lower semicontinuity of
the norm. On the contrary, it is not true. Some existing examples, which suffice to
illustrate this point can be found in [29].
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Remark 3.4. If wn = yn or Ayn = 0 for some n (that is, Algorithms 3.1 and 3.2
stop at the n-th iteration), then yn is a solution of the VI. This stop criterion is also
considered in many other subgradient extragradient algorithms; see, e.g., [27–29].

3.1. Convergence of Algorithm 3.1.

Lemma 3.5 ( [15, 24]). Assume that Conditions (A1) and (A2) hold. Then the
adaptive stepsize {λn} in Algorithm 3.1 is well-defined and has the following prop-
erty: limn→∞ λn = λ with λ ∈ [min{ µ

L , λ1}, λ1 + ξ], and ξ =
∑∞

n=1 ξn.

Lemma 3.6 ( [29]). Suppose that Conditions (A1) and (A2) hold. For any n ≥ 1
and x∗ ∈ V I(C,A), the sequence {xn} generated by Algorithm 3.1 has the following
property: ∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 −

(
1− µ λn

λn+1

) (
∥wn − yn∥2 + ∥xn+1 − yn∥2

)
.

Lemma 3.7. Suppose that Conditions (A1) and (A2) hold. The sequence {xn}
generated by Algorithm 3.1 has the following properties:

(I) For any n ≥ 1 and x∗ ∈ V I(C,A),

∥x2n+2 − x∗∥2

≤∥x2n − x∗∥2 −
(
1− µ

λ2n+1

λ2n+2

)(
∥w2n+1 − y2n+1∥2 + ∥x2n+2 − y2n+1∥2

)
− (1 + α2n+1)

(
1− µ

λ2n

λ2n+1
− 2α2n+1

)(
∥x2n − y2n∥2 + ∥x2n+1 − y2n∥2

)
.

(II) limn→∞ ∥x2n − x∗∥ exists and the sequence {x2n} is bounded.

Proof. (I) According to V I(C,A) and Algorithm 3.1, it is obvious that V I(C,A) ⊂
C ⊂ Tn. Setting n := 2n+ 1 and x∗ ∈ V I(C,A), we have from Lemma 3.6 that

(3.2)

∥x2n+2 − x∗∥2

≤∥w2n+1 − x∗∥2 −
(
1− µ

λ2n+1

λ2n+2

)(
∥x2n+2 − y2n+1∥2 + ∥y2n+1 − w2n+1∥2

)
.

Applying (2.1) to (3.1), we obatin

(3.3)
∥w2n+1 − x∗∥2 =(1 + α2n+1) ∥x2n+1 − x∗∥2 − α2n+1 ∥x2n − x∗∥2

+ α2n+1 (1 + α2n+1) ∥x2n+1 − x2n∥2 .

Besides, using Lemma 3.6 again, and setting n := 2n, we have

(3.4)

∥x2n+1 − x∗∥2

≤∥x2n − x∗∥2 −
(
1− µ

λ2n

λ2n+1

)(
∥x2n+1 − y2n∥2 + ∥y2n − x2n∥2

)
.

Adding (3.3) and (3.4), we see that

(3.5)

∥w2n+1 − x∗∥2

≤∥x2n − x∗∥2 + α2n+1 (1 + α2n+1) ∥x2n+1 − x2n∥2

− (1 + α2n+1)

(
1− µ

λ2n

λ2n+1

)(
∥x2n+1 − y2n∥2 + ∥y2n − x2n∥2

)
.
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Further, put (3.5) into (3.2), we obtain

∥x2n+2 − x∗∥2

≤∥x2n − x∗∥2 −
(
1− µ

λ2n+1

λ2n+2

)(
∥w2n+1 − y2n+1∥2 + ∥x2n+2 − y2n+1∥2

)
− (1 + α2n+1)

(
1− µ

λ2n

λ2n+1
− 2α2n+1

)(
∥x2n − y2n∥2 + ∥x2n+1 − y2n∥2

)
.

(II) Using Lemma 3.5 and αn ∈ [0, α] ⊂ [0, 1−µ
2 ), we observe that 1 − µ λ2n

λ2n+1
−

2α2n+1 ≥ 1− µ λ2n
λ2n+1

− 2α and

lim
n→∞

(
1− µ

λ2n+1

λ2n+2

)
= 1− µ > 0, lim

n→∞

(
1− µ

λ2n

λ2n+1
− 2α

)
= 1− µ− 2α > 0.

Therefore, there exists a nonnegative integer N such that 1 − µ λ2n
λ2n+1

− 2α > 0,

n ≥ N . In the light of Lemma 3.6, we have ∥x2n+2 − x∗∥ ≤ ∥x2n − x∗∥, n ≥ N,
which implies that limn→∞ ∥x2n − x∗∥ exists and {x2n} is bounded. □

Lemma 3.8. Assume that Conditions (A1) and (A2) hold and {xn} is generated
by Algorithm 3.1. Then all weak cluster points of {x2n} are contained in V I(C,A).

Proof. First, using Lemma 3.7 and setting n → ∞, we obtain

(3.6) lim
n→∞

∥x2n − y2n∥ = lim
n→∞

∥x2n+1 − y2n∥ = 0.

In view of the Lipschitz continuity of A, we have

(3.7) lim
n→∞

∥Ax2n −Ay2n∥ ≤ lim
n→∞

L∥x2n − y2n∥ = 0.

Further, without loss of generality, we assume that a subsequence {x2ni} of {x2n}
converges weakly x̃ ∈ H. It follows from limn→∞ ∥x2n − y2n∥ = 0 that {y2ni} also
converges weakly to x̃. Since C is closed and convex subset in H and {y2ni} is
contained in C, then x̃ ∈ C. Using the definition of yn and w2n = x2n, we have
⟨x2ni − λ2niAx2ni − y2ni , x − y2ni⟩ ≤ 0, ∀x ∈ C. Equivalently, we can derive the
following form

(3.8)
1

λ2ni

⟨x2ni − y2ni , x− y2ni⟩+ ⟨Ax2ni , y2ni −x2ni⟩ ≤ ⟨Ax2ni , x−x2ni⟩, ∀x ∈ C.

Since A is Lipschitz continuous, then {Ax2ni} is bounded. Furthermore, letting
i → ∞ in inequality (3.8), we obtain

(3.9) lim inf
i→∞

⟨Ax2ni , x− x2ni⟩ ≥ 0, ∀x ∈ C.

Moreover, by (3.6), (3.7) and (3.9), we obtain

⟨Ay2ni , x−y2ni⟩ = ⟨Ay2ni −Ax2ni , x−x2ni⟩+ ⟨Ax2ni , x−x2ni⟩+ ⟨Ay2ni , x2ni −y2ni⟩

and

(3.10) lim inf
i→∞

⟨Ay2ni , x− y2ni⟩ ≥ 0, ∀x ∈ C.
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Next, choose a decreasing positive numbers sequence {θi} such that limi→∞ θi = 0.
For each i ≥ 1, we can always find the smallest positive integer Mi such that

(3.11) ⟨Ay2nj , x− y2nj ⟩+ θi ≥ 0, ∀j ≥ Mi,

where the existence of Mi follows from (3.10). Meanwhile, since {θi} is decreasing,
then {Mi} is increasing. On the other hand, for each i, suppose Ay2nMi

̸= 0, other-

wise, y2nMi
is a solution of VI. Setting z2nMi

=
Ay2nMi

∥Ay2nMi
∥2 , one get ⟨Ay2nMi

, z2nMi
⟩ =

1 for each i. Naturally, it follows from (3.11) that ⟨Ay2nMi
, x+θiz2nMi

−y2nMi
⟩ ≥ 0.

By the fact that the mapping A is pseudomonotone, we have

(3.12) ⟨A(x+ θiz2nMi
), x+ θiz2nMi

− y2nMi
⟩ ≥ 0.

Suppose Ax̃ ̸= 0 (otherwise, x̃ is a solution). By means of Condition (A3), we obtain
0 < ∥Ax∗∥ ≤ lim inf i→∞ ∥Ay2ni∥. Since {y2nMi

} ⊂ {y2ni} and θi → 0 as i → ∞, we
obtain

0 ≤ lim sup
i→∞

∥∥∥θiz2nMi

∥∥∥ = lim sup
i→∞

(
θi

∥Ay2ni∥

)
≤ lim supi→∞ θi

lim inf i→∞ ∥Ay2ni∥
= 0,

which implies that limi→∞ θiz2nMi
= 0. Further, for all x ∈ C, we have

(3.13)
⟨Ax, x− x̃⟩ = lim inf

i→∞
⟨Ax, x− y2nMi

⟩

≥ lim inf
i→∞

⟨Ax−A(x+ θiz2nMi
), x+ θiz2nMi

− y2nMi
⟩ − lim inf

i→∞
θi⟨Ax, z2nMi

⟩ = 0.

As a consequence, we have x̃ ∈ V I(C,A) by Lemma 2.2. □

Theorem 3.9. Assume that Conditions (A1), (A2), and (A3) hold. The sequence
{xn} generated by Algorithm 3.1 converges weakly to a point in V I(C,A).

Proof. Based on the results in Lemmas 3.7 and 3.8, we can obtain that the whole
sequence {x2n} converges weakly to a point in V I(C,A) by Lemma 2.3. In addition,
suppose that {x2n} converges weakly to x̃ ∈ V I(C,A) and {x2n} converges weakly
to x̄ ∈ V I(C,A). Then x̃ = x̄ by Remark 5.1.12 in [23], which implies that x̃ is
unique. Last, for all y ∈ H, we get

|⟨x2n+1 − x̃, y⟩| ≤ |⟨x2n − x̃, y⟩|+ |⟨x2n+1 − x2n, y⟩|
≤ |⟨x2n − x̃, y⟩|+ ∥x2n+1 − x2n∥∥y∥ → 0, as n → ∞

Therefore, {x2n+1} converges weakly to x̃ in V I(C,A). In summary, {xn} converges
weakly to a point x̃ ∈ V I(C,A). This completes the proof. □

3.2. Convergence of Algorithm 3.2.

Lemma 3.10 ( [12]). Suppose that Conditions (A1) and (A2†) hold.

(I) The Armijo line-search stepsize sequence {λn} in Algorithm 3.2 is well-
defined and λn ≤ γ for all n ≥ 1.

(II) For any n ≥ 1 and x∗ ∈ V I(C,A), the sequence {xn} generated by Algorithm
3.2 has the following property:

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 − (1− µ)
(
∥wn − yn∥2 + ∥xn+1 − yn∥2

)
.
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Lemma 3.11. Suppose that Conditions (A1) and (A2†) hold. The sequence {xn}
generated by Algorithm 3.2 has the following properties:

(I) For any n ≥ 1 and x∗ ∈ V I(C,A),

∥x2n+2 − x∗∥2 ≤ ∥x2n − x∗∥2 − (1− µ)
(
∥w2n+1 − y2n+1∥2 + ∥x2n+2 − y2n+1∥2

)
− (1 + α2n+1) (1− µ− 2α2n+1)

(
∥x2n − y2n∥2 + ∥x2n+1 − y2n∥2

)
.

(II) limn→∞ ∥x2n − x∗∥ exists and {x2n} is bounded.

Proof. The proof is similar to that of Lemma 3.7. □
Lemma 3.12. Assume that Conditions (A1) and (A2†) hold and the sequence {xn}
is generated by Algorithm 3.2. Then all weak cluster points of {x2n} are contained
in the solution set V I(C,A).

Proof. By means of Lemma 3.11, there exists a subsequence {x2ni} of {x2n} that
converges weakly to a point in H, and limn→∞ ∥x2n−y2n∥ = 0. Following the exists
proof as in [12, Lemma 3.2], we have lim inf i→∞⟨Ax2ni , x − x2ni⟩ ≥ 0, ∀x ∈ C.
Combining the uniformly continuity of A and the proofs of Lemma 3.8, we also
assert that all weak cluster points of {x2n} are contained in V I(C,A). □

Theorem 3.13. Assume that Conditions (A1), (A2†), and (A3) hold. The sequence
{xn} generated by Algorithm 3.2 converges weakly to a point in V I(C,A).

Proof. Using the method of Theorem 3.9, it follows from Lemmas 3.11 and 3.12 that
{xn} generated by Algorithm 3.2 converges weakly to a point in V I(C,A). This
completes the proof. □

4. Alternated inertial subgradient extragradient methods with
relaxed terms

Under two different adaptive stepsize rules, two modified subgradient extragradi-
ent algorithms are given by combining the alternated inertial method, and the even
sequence generated by Algorithm 3.1 (or Algorithm 3.2) has Fejér monotonicity.
Theoretically, the weak convergence theorems are proved under the weak constraint
assumption for A. But, the shortcoming is that the coefficient αn in the alternated
inertial is always between 0 and 1−µ

2 , and even approaches 0 due to the value of µ.
To solve this problem, we introduce the following relaxed algorithms to weaken the
constraint.

Algorithm 4.1. Give λ1 > 0, µ ∈ (0, 1), α ∈ [0, 1], θ ∈ (0, 13), and a nonnegative
real numbers sequences {ξn} satisfying

∑∞
n=1 ξn < +∞. Choose initial values x0,

x1 ∈ H and set n := 1.
Step 1. Compute

wn =

{
xn, n = even,
xn + αn(xn − xn−1), n = odd.

Step 2. Compute yn = PC(wn − λnAwn). If wn = yn or Ayn = 0, then stop.
Otherwise, go to Step 3.
Step 3. Compute un = PTn(wn − λnAyn), where Tn := {x ∈ H | ⟨wn − λnAwn −
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yn, x− yn⟩ ≤ 0}.
Step 4. Compute xn+1 = (1− θ)xn + θun. Update

λn+1 =

{
min

{
µ∥wn−yn∥2+∥un−yn∥2

2⟨Awn−Ayn,un−yn⟩ , λn + ξn

}
, if ⟨Awn −Ayn, un − yn⟩ > 0,

λn + ξn, otherwise,

and set n := n+ 1 and return Step 1.

Algorithm 4.2. Given l, µ ∈ (0, 1), γ > 0, α ∈ [0, 1], and θ ∈ (0, 13). Choose initial
values x0, x1 ∈ H and set n := 1.
Step 1. Compute

wn =

{
xn, n = even,
xn + αn(xn − xn−1), n = odd.

Step 2. Compute yn = PC(wn−λnAwn), where λn := γlmn and mn is the smallest
nonnegative integer m satisfying γlm ∥Awn −Ayn∥ ≤ µ ∥wn − yn∥ . If wn = yn or
Ayn = 0, then stop. Otherwise, go to Step 3.
Step 3. Compute un = PTn(wn − λnAyn), where Tn := {x ∈ H | ⟨wn − λnAwn −
yn, x− yn⟩ ≤ 0}.
Step 4. Compute xn+1 = (1− θ)xn + θun and set n := n+ 1 and return Step 1.

Similarly, the corresponding convergence theorems are given below and verified
with the lemmas and proofs in Section 3.

Theorem 4.3. Assume that Conditions (A1), (A2), and (A3) hold. The sequence
{xn} generated by Algorithm 4.1 converges weakly to a point in V I(C,A).

Proof. Let x∗ ∈ V I(C,A). From xn+1 and (2.1), we have

(4.1)
∥xn+1 − x∗∥2 = (1− θ)∥xn − x∗∥2 + θ∥un − x∗∥2 − θ(1− θ)∥xn − un∥2

= (1− θ)∥xn − x∗∥2 + θ∥un − x∗∥2 − 1− θ

θ
∥xn+1 − xn∥2.

Further, it follows from Lemma 3.6 that

(4.2) ∥un − x∗∥2 ≤ ∥wn − x∗∥2 −
(
1− µ

λn

λn+1

)
(∥wn − yn∥2 + ∥un − yn∥2).

Applying (4.2) to (4.1), we obtain

(4.3)

∥xn+1 − x∗∥2 ≤(1− θ)∥xn − x∗∥2 + θ∥wn − x∗∥2

− θ
(
1− µ

λn

λn+1

)
Πn − 1− θ

θ
∥xn+1 − xn∥2,

where Πn = ∥wn − yn∥2 + ∥un − yn∥2. Setting n := 2n+ 1 yields

(4.4)

∥x2n+2 − x∗∥2 ≤(1− θ)∥x2n+1 − x∗∥2 + θ∥w2n+1 − x∗∥2

− θ
(
1− µ

λ2n+1

λ2n+2

)
Π2n+1 −

1− θ

θ
∥x2n+2 − x2n+1∥2.

In addition, using the definition of wn and setting n := 2n in (4.3), we have

(4.5)
∥w2n+1 − x∗∥2

=(1 + α)∥x2n+1 − x∗∥2 − α∥x2n − x∗∥2 + α(1 + α)∥x2n+1 − x2n∥2
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and

(4.6)

∥x2n+1 − x∗∥2 ≤(1− θ)∥x2n − x∗∥2 + θ∥w2n − x∗∥2

− θ
(
1− µ

λ2n

λ2n+1

)
Π2n − 1− θ

θ
∥x2n+1 − x2n∥2

=∥x2n − x∗∥2 − θ
(
1− µ

λ2n

λ2n+1

)
Π2n − 1− θ

θ
∥x2n+1 − x2n∥2.

So, (4.5) and (4.6) are applied to (4.4) to obtain

∥x2n+2 − x∗∥2

≤(1 + θα)∥x2n+1 − x∗∥2 − θα∥x2n − x∗∥2 + θα(1 + α)∥x2n+1 − x2n∥2

− θ
(
1− µ

λ2n+1

λ2n+2

)
Π2n+1 −

1− θ

θ
∥x2n+2 − x2n+1∥2

≤∥x2n − x∗∥2 −
((1− θ)(1 + θα)

θ
− θα(1 + α)

)
∥x2n+1 − x2n∥2

− (1 + θα)θ
(
1− µ

λ2n

λ2n+1

)
Π2n − θ

(
1− µ

λ2n+1

λ2n+2

)
Π2n+1 −

1− θ

θ
∥x2n+2 − x2n+1∥2.

By Lemma 3.5, α ∈ [0, 1], µ ∈ (0, 1) and θ ∈ (0, 13), we obtain (1−θ)(1+θα)
θ − θα(1 +

α) > 0, limn→∞
(
1 − µλ2n+1

λ2n+2

)
= 1 − µ > 0, and limn→∞

(
1 − µ λ2n

λ2n+1

)
= 1 − µ > 0.

In other words, there exists a nonnegative integer N0 such that 1− µ λ2n
λ2n+1

> 0 and

1 − µλ2n+1

λ2n+2
> 0 for all n ≥ N0. Then, ∥x2n+2 − x∗∥ ≤ ∥x2n − x∗∥, n ≥ N0, which

implies that limn→∞ ∥x2n − x∗∥ exists and {x2n} is bounded. In addition, similar
to the proofs of Lemma 3.8 and Theorem 3.9, it is easy to see that {xn} generated
by Algorithm 4.1 converges weakly to a point in V I(C,A). □

Theorem 4.4. Assume that Conditions (A1), (A2†), and (A3) hold. The sequence
{xn} generated by Algorithm 4.2 converges weakly to a point in V I(C,A).

Proof. Fix x∗ ∈ V I(C,A). It follows from Lemma 3.10 that

(4.7) ∥un − x∗∥2 ≤ ∥wn − x∗∥2 − (1− µ)(∥wn − yn∥2 + ∥un − yn∥2).

Further, (4.7) is merged into (4.1), we have

(4.8)
∥xn+1 − x∗∥2

≤(1− θ)∥xn − x∗∥2 + θ∥wn − x∗∥2 − θ(1− µ)Ψn − 1− θ

θ
∥xn+1 − xn∥2,

where Ψn = ∥wn − yn∥2 + ∥un − yn∥2. Let n := 2n+ 1 and n := 2n. We obtain

(4.9)
∥x2n+2 − x∗∥2 ≤(1− θ)∥x2n+1 − x∗∥2 + θ∥w2n+1 − x∗∥2

− θ(1− µ)Ψ2n+1 −
1− θ

θ
∥x2n+2 − x2n+1∥2

and

(4.10) ∥x2n+1 − x∗∥2 ≤ ∥x2n − x∗∥2 − θ(1− µ)Ψ2n − 1− θ

θ
∥x2n+1 − x2n∥2.
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So, (4.5) and (4.10) are applied to (4.9) to see that

∥x2n+2 − x∗∥2

≤(1 + θα)∥x2n+1 − x∗∥2 − θα∥x2n − x∗∥2 + θα(1 + α)∥x2n+1 − x2n∥2

− θ(1− µ)Ψ2n+1 −
1− θ

θ
∥x2n+2 − x2n+1∥2

≤∥x2n − x∗∥2 −
((1− θ)(1 + θα)

θ
− θα(1 + α)

)
∥x2n+1 − x2n∥2

− (1 + θα)θ(1− µ)Ψ2n − θ(1− µ)Ψ2n+1 −
1− θ

θ
∥x2n+2 − x2n+1∥2.

By Lemma 3.5, α ∈ [0, 1], µ ∈ (0, 1) and θ ∈ (0, 13), we have
(1−θ)(1+θα)

θ −θα(1+α) >
0 and 1 − µ > 0. Hence, ∥x2n+2 − x∗∥ ≤ ∥x2n − x∗∥, n ≥ 1, which implies that
limn→∞ ∥x2n − x∗∥ exists and {x2n} is bounded. Naturally, using the proofs as in
Lemma 3.12 and Theorem 3.13, we obtain that {xn} generated by Algorithm 4.2
converges weakly to a point in V I(C,A). □

5. Some significant remarks

Remark 5.1. In Algorithms 3.1 and 4.1, the adaptive stepsize sequence {λn} has
two remarkable characteristics. First, the selected stepsize in a large number of ex-
isting algorithms is usually a fixed constant or a non-increasing sequence. However,
the stepsize {λn} in our algorithms is generated adaptively and can be increased
with the number of iterations. The other is to insert a summable nonnegative real
numbers sequence {ξn} into the calculation of {λn}. In fact, the limit of such a se-
quence {ξn} is equal to 0 as n → ∞, which means that this sequence is nonincreasing
if n is large enough.

Derived from Remark 5.1, the following cases can be used as a minor modification
or a special case of {λn} in Algorithms 3.1 and 4.1.

Case 1: The adaptive stepsize sequence {λn} is updated in the following form

λn+1 =

{
min

{
µ∥wn−yn∥
∥Awn−Ayn∥ , λn + ξn

}
, if Awn ̸= Ayn,

λn + ξn, otherwise.

From Liu and Yang [15], the same conclusion as Lemma 3.5 is obtained, i.e., the
sequence {λn} has the property that limn→∞ λn = λ with λ ∈ [min{µ

L , λ1}, λ1 + ξ]
and ξ =

∑∞
n=1 ξn. Meanwhile, using the same method in [29], Lemma 3.6 is still

valid for such a stepsize sequence. Further, the conclusions in Theorems 3.9 and 4.3
are still obtained.

Case 2: For {λn} defined in Algorithm 3.1 and Case 1, if ξn ≡ 0, then {λn}
is converted to a non-increasing stepsize sequence with a lower bound min{µ

L , λ1},
which directly indicates that the limit of {λn} exists. The sequence {λn} in this
case is also widely used in iterative algorithms to solve VI. For more information,
see the literatures [12,29,30]. Naturally, the same weak convergence is proved when
such stepsize sequence {λn} is added to Algorithms 3.1 and 4.1.

Case 3: In Algorithms 3.1 and 4.1, {λn} is a constant sequence, i.e., λn ≡ λ
with λ > 0. Inevitably, the Lipschitz constant L of the involved mapping A must
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be known. In this case, our results can be still established under the following
circumstances.

• λ ∈ (0, 1
L) and {αn} ⊂ [0, α] ⊂ [0, 1−λL

2 ) in Algorithm 3.1;

• λ ∈ (0, 1
L) in Algorithm 4.1.

Remark 5.2. Two different types of stepsize selection in our algorithms have dif-
ferent characteristics. The first one is {λn} in Algorithms 3.1 and 4.1 as described
in Remark 5.1, and the other is the Armijo line-search rule in Algorithms 3.2 and
4.2, which is to find a suitable stepsize in each iteration (for this reason, the pro-
jection value yn will be repeatedly calculated until λn is found). It is worth noting
that under the Armijo line-search rule, mapping A only needs to satisfy uniformly
continuity that is a weaker condition of the L-Lipschitz continuous mapping.
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