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1. Introduction

Inspired by the split variational inequality problem proposed by Censor et al. [1], Moudafi [2]
introduced a more general form of this problem, that is, the split monotone variational inclusion
problem. It is worth noting that an important special case of the split monotone variation inclusion
problem is the split variational inclusion problem (for short, SVIP), which is to find a zero of a
maximal monotone mapping in one space, and the image of which under a given bounded linear
transformation is a zero of another maximal monotone mapping in another space. As well as, the split
variational inclusion problem is also a generalized form of many problems, such as the split
variational inequality problem, the split minimization problem, the split equilibrium problem, the split
saddle point problem and the split feasibility problem; see, for instance, [2–7] and the references
therein. As applications, these problems are also widely applied to radiation therapy treatment
planning, image recovery and signal recovery; for detail, we refer to [8–10]. In the SVIP, when the
two spaces are the same and the given bounded linear operator is an identity mapping, it is equivalent
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to the well-known common solution problem, i.e., the common solution of two variational inclusion
problems. Naturally, common solution problems of other aspects can be obtained, such as the
variational inequality problem, the minimization problem and the equilibrium problem. In general,
the above common solution problems can be regarded as the distinguished convex feasibility problem.

In particular, finding the zero of a maximal monotone mapping is known as the variational inclusion
problem (for short, VIP), which is a special case of the SVIP. Since the resolvent mapping of the
maximal monotone mapping is an important tool for solving the VIP, the variational inclusion problem
and the split variational inclusion problem has obtained quite a few remarkable results; for example,
see, [11–16]. On the other hand, based on the idea of the time implicit discretization of a second-
order differential equation, Alvarez and Attouch [17] introduced an inertial proximal point algorithm
to approximate a solution of the VIP. Under the effect of the inertial technique, the iterative sequence
of the SVIP and other problems rapidly converges to the approximation solution of the corresponding
problems, such as the split variational inclusion problem [3, 6, 7, 16, 18], the split common fixed point
problem [10, 19], the monotone inclusion problem [20, 21], the fixed point problem [22–24] and the
variational inequality problem [25–28].

From the existing results of the split variational inclusion problem, we find that it is easy to get
the weak convergence property, and sometimes its strong convergence is proved in the case of other
methods, such as the viscosity method, the Halpern method, the Mann-type method, the hybrid steepest
descent method, and so on; for detail, see [3, 4, 6, 15]. Unfortunately, the stepsize sequences in these
existing results often depend on the norm of bounded linear operators. Hence, the work of this paper
can be summarized in two aspects. The first one is to construct new inertial iterative algorithms that
converge strongly to a solution of the SVIP. For this purpose, we consider two projection methods in
our algorithms, namely hybrid projection [29] and shrinking projection [30]. The second one is to
design a new stepsize sequence which does not need prior knowledge of the bounded linear operator
in our algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the split variational
inclusion problem and some preliminaries. Two new iterative algorithms and their convergence
theorems for the SVIP are proposed in Section 3. Theoretical applications on other mathematical
problems are given in Section 4. Finally, in Section 5, the validity and authenticity of the convergence
behavior of the proposed algorithms are demonstrated by some applicable numerical examples.

2. State of problem and preliminaries

2.1. Split variational inclusion problem

Let H1 and H2 be Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone
mappings. Let A : H1 → H2 be a bounded linear operator. The split variational inclusion problem is to
find a point x∗ ∈ H1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Ax∗). (SVIP)

The solution set of the SVIP is denoted by Ω, i.e.,

Ω := {x∗ ∈ H1 : 0 ∈ B1(x∗) and 0 ∈ B2(Ax∗)}.
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2.2. Preliminaries

To standardize, the notations → and ⇀ stand for strong convergence and weak convergence,
respectively. The symbol Fix(S ) denotes the fixed point set of a mapping S , and ωw(xn) represents the
set of weak cluster point of a sequence {xn}. Let H be a Hilbert space with the inner product 〈·, ·〉 and
the norm ‖ · ‖ induced by the inner product. Let B : H → 2H be a set-valued mapping with domain
D(B) = {x ∈ H : B(x) , ∅} and graph G(B) = {(x,w) ∈ H × H : x ∈ D(B),w ∈ B(x)}. Recall that a
mapping B : H → 2H is monotone if and only if 〈x − y,w − v〉 ≥ 0 for any w ∈ B(x) and v ∈ B(y). A
monotone mapping B : H → 2H is maximal, that is, the graph G(B) is not properly contained in the
graph of any other monotone mapping. In this case, B is a maximal monotone mapping if and only if
for any (x,w) ∈ G(B) and (y, v) ∈ H × H, 〈x − y,w − v〉 ≥ 0 implies v ∈ B(y). In addition, the metric
projection from H onto C, denoted PC, is defined as PC x = argminy∈C ‖x − y‖, ∀x ∈ H. Naturally, the
following properties of PC hold:

〈PC x − x, PC x − y〉 ≤ 0,∀y ∈ C ⇔ ‖y − PC x‖2 + ‖x − PC x‖2 ≤ ‖x − y‖2.

Lemma 2.1 ( [31, 32]). The resolvent mapping JB
β of a maximal monotone mapping B with β > 0 is

defined as JB
β (x) = (I + βB)−1(x),∀x ∈ H. The following properties associated with JB

β hold.

(1) The mapping JB
β is single-valued and firmly nonexpansive;

(2) The fixed point set of JB
β is equivalent to

B−1(0) = {x ∈ D(B) : 0 ∈ B(x)}.

Lemma 2.2 ( [33]). Let B : D(B) ⊂ H → 2H be a maximal monotone mapping. For any 0 < β ≤ r, we
have

‖x − JB
β (x)‖ ≤ 2‖x − JB

r (x)‖, ∀x ∈ H.

Definition 2.3. The mapping S : H → H is said to be

(1) nonexpansive if ‖S x − S y‖ ≤ ‖x − y‖, ∀x, y ∈ H;

(2) firmly nonexpansive if ‖S x − S y‖2 ≤ 〈S x − S y, x − y〉, ∀x, y ∈ H.

Remark 2.4. If S is a firmly nonexpansive mapping, then it is also nonexpansive and I − S is a firmly
nonexpansive mapping.

Lemma 2.5 ( [32]). Let C be a nonempty closed convex subset of H and S : C → C be a nonexpansive
mapping with Fix(S ) , ∅. I − S is demiclosed at zero, that is, for any sequence {xn} in C, satisfying
xn ⇀ x and (I − S )xn → 0, then x ∈ Fix(S ).

Lemma 2.6 ( [34]). Let C be a nonempty closed convex subset of H. Let a sequence {xn} in H and
u = PCv, v ∈ H. If ωw(xn) ⊂ C and ‖xn − v‖ ≤ ‖u − v‖, then {xn} converges strongly to u.

3. Self-adaptive inertial hybrid and shrinking projection algorithms

Combining the inertial technique with the projection methods, two types of projection algorithms
are given for approximating a solution of the split variational inclusion problem. Before this, we always
assume that the following conditions are satisfied:
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(C1) H1, H2 are two Hilbert spaces and A : H1 → H2 is a bounded linear operator with the adjoint
operator A∗;

(C2) B1 : H1 → 2H1 and B2 : H2 → 2H2 are two set-valued maximal monotone mappings.

An inertial hybrid projection algorithm and an inertial shrinking projection algorithm are introduced
below and the strong convergence of these algorithms are guaranteed by the following appropriate
parameter conditions:

(P1) {αn} ⊂ [a, b] ⊂ (−∞,∞) and {βn} ⊂ (0,∞) with infn{βn} ≥ β > 0;

(P2) If Azn < B−1
2 0, the stepsize γn =

σn‖(I−JB2
βn

)Azn‖
2

‖A∗(I−JB2
βn

)Azn‖2
with 0 < c ≤ σn ≤ d < 2. Otherwise, γn = 0.

3.1. The strong convergence of inertial hybrid projection algorithm

Algorithm 3.1 Given appropriate parameter sequences {αn}, {βn} and {γn}, for any x0, x1 ∈ H1, the
sequence {xn} is constructed by the following iterative form.

zn = xn + αn(xn − xn−1),

un = JB1
βn

(
zn − γnA∗(I − JB2

βn
)Azn

)
,

Cn = {x ∈ H1 : ‖un − x‖2 ≤ ‖zn − x‖2 − θn},

Qn = {x ∈ H1 : 〈xn − x1, xn − x〉 ≤ 0} ,
xn+1 = PCn

⋂
Qn x1, n ≥ 1,

where
θn = γn

(
2‖(I − JB2

βn
)Azn‖

2 − γn‖A∗(I − JB2
βn

)Azn‖
2
)
.

Lemma 3.1. Assumed that (C1)-(C2) hold. For any γn > 0, βn > 0 and set un = JB1
βn

(zn − γnA∗(I −
JB2
βn

)Azn), n ≥ 1, we have

‖un − x‖2 ≤ ‖zn − x‖2 − γn

(
2‖(I − JB2

βn
)Azn‖

2 − γn‖A∗(I − JB2
βn

)Azn‖
2
)
, ∀x ∈ Ω.

Proof. Choose any x ∈ Ω, we have x ∈ B−1
1 (0) and Ax ∈ B−1

2 (0). Since JB1
βn

, JB2
βn

and I − JB2
βn

are firmly
nonexpansive mappings, we have

‖un − x‖2

≤‖zn − γnA∗(I − JB2
βn

)Azn − x‖2

=‖zn − x‖2 + γ2
n‖A

∗(I − JB2
βn

)Azn‖
2 − 2γn〈zn − x, A∗(I − JB2

βn
)Azn〉

≤‖zn − x‖2 + γ2
n‖A

∗(I − JB2
βn

)Azn‖
2 − 2γn‖(I − JB2

βn
)Azn‖

2

=‖zn − x‖2 − γn

(
2‖(I − JB2

βn
)Azn‖

2 − γn‖A∗(I − JB2
βn

)Azn‖
2
)
.

The proof is complete. �

Theorem 3.2. Assumed that (C1)-(C2) and (P1)-(P2) hold. If the solution set Ω is nonempty, then {xn}

generated by Algorithm 3.1 converges strongly to x∗ = PΩx1 ∈ Ω.
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Proof. Step 1: Firstly, we show that PCn
⋂

Qn is well defined and Ω ⊂ Cn
⋂

Qn.
From the definition of Cn and Qn, it is obvious that the sets Cn and Qn are convex and closed, which

implies that PCn
⋂

Qn is well defined. For any p ∈ Ω, it follows from Lemma 3.1 that Ω ⊂ Cn. In
addition, Q1 = {x ∈ H1 : 〈x1 − x1, x1 − x〉 ≤ 0} = H1, then Ω ⊂ Q1. Further, suppose Ω ⊂ Cn−1

⋂
Qn−1,

using the property of metric projection and xn = PCn−1
⋂

Qn−1 x1, we get

〈xn − x1, xn − x〉 ≤ 0 , ∀x ∈ Cn−1 ∩ Qn−1;

〈xn − x1, xn − p〉 ≤ 0 , ∀p ∈ Ω.

This implies that Ω ⊂ Qn. Hence, Ω ⊂ Cn
⋂

Qn, n ≥ 1.
Step 2: Afterwards, we show that iterative sequence {xn} is bounded and ‖xn+1 − xn‖ → 0 as n→ ∞.
Since Ω is a nonempty closed convex set, there exists a point x∗ = PΩx1 ∈ Ω. Combining xn+1 =

PCn∩Qn x1 with Ω ⊂ Cn ∩ Qn, we have ‖x1 − xn+1‖ ≤ ‖x1 − x∗‖. Accordingly, the sequence {‖x1 − xn‖}

is bounded, i.e., the sequence {xn} is bounded. From the definition of Qn and xn+1 = PCn∩Qn x1 ∈ Qn,
we get xn = PQn x1 and ‖x1 − xn‖ ≤ ‖x1 − xn+1‖. These indicate that limn→∞ ‖x1 − xn‖ exists. Further, it
follows from the property of metric projection PQn that

‖xn − xn+1‖
2 ≤ ‖x1 − xn+1‖

2 − ‖x1 − xn‖
2.

This implies limn→∞ ‖xn − xn+1‖ = 0.
Step 3: Lastly, we prove that the sequence {xn} converges strongly to x∗ = PΩx1.
From the boundedness of {xn}, there exists a subsequence {xnl} of {xn} that converges weakly to q, for

any q ∈ ωw(xn). Furthermore, ‖zn−xn‖ = αn‖xn−xn−1‖ → 0, as n→ ∞. This implies that {zn} is bounded
and znl ⇀ q. From (P2) and Algorithm 3.1, we have ‖un − xn+1‖

2 ≤ ‖zn − xn+1‖
2 − θn ≤ ‖zn − xn+1‖

2. In
addition,

‖un − zn‖ ≤ ‖un − xn‖ + ‖xn − zn‖

≤ ‖un − xn+1‖ + ‖xn − xn+1‖ + ‖xn − zn‖

≤ 2‖zn − xn‖ + 2‖xn − xn+1‖ → 0, n→ ∞.

Hence, the sequence {un} is bounded. Using Lemma 3.1, for any p ∈ Ω,

θn ≤ ‖zn − p‖2 − ‖un − p‖2

≤ (‖zn − p‖ − ‖un − p‖)(‖zn − p‖ + ‖un − p‖)
≤ ‖zn − un‖(‖zn − p‖ + ‖un − p‖)→ 0, n→ ∞.

If Azn < B−1
2 0, from the definition of θn, limn→∞ ‖(I − JB2

βn
)Azn‖ = 0. On the other hand, from the

definition of un and the firmly nonexpansive property of JB1
βn

, we obtain

‖un − JB1
βn

zn‖ ≤ ‖γnA∗(I − JB2
βn

)Azn‖ ≤ γn‖A‖‖(I − JB2
βn

)Azn‖ → 0, as n→ ∞.

Therefore, we also have limn→∞ ‖zn − JB1
βn

zn‖ = 0. Further, using Lemma 2.2 and infn{βn} ≥ β > 0, we
have

‖zn − JB1
β zn‖ ≤ 2‖zn − JB1

βn
zn‖ → 0, ‖(I − JB2

β )Azn‖ ≤ 2‖(I − JB2
βn

)Azn‖ → 0.

Since A is a bounded linear operator, we get Aznl ⇀ Aq. By Remark 2.4 and Lemma 2.5, it follows
that q ∈ Fix(JB1

β ) and Aq ∈ Fix(JB2
β ), that is, q ∈ Ω. Meanwhile, if Azn ∈ B−1

2 0, we can also get the
same result. In summary, we have ωw(xn) ⊂ Ω and ‖xn − x1‖ ≤ ‖x∗ − x1‖. By virtue of Lemma 2.6, we
obtain that {xn} converges strongly to x∗ = PΩx1. �
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3.2. The strong convergence of inertial shrinking projection algorithm

Algorithm 3.2 Given appropriate parameter sequences {αn}, {βn} and {γn}. Choose any x0, x1 ∈ H1

and C1 := H1, the sequence {xn} is constructed by the following iterative process.
zn = xn + αn(xn − xn−1),

un = JB1
βn

(
zn − γnA∗(I − JB2

βn
)Azn

)
,

xn+1 = PCn+1 x1, n ≥ 1,

where
Cn+1 = {x ∈ Cn : ‖un − x‖2 ≤ ‖zn − x‖2 − θn}

and θn is defined as in Algorithm 3.1.

Theorem 3.3. Assumed that (C1)-(C2) and (P1)-(P2) hold. If the solution set Ω is nonempty, then the
sequence {xn} generated by Algorithm 3.2 converges strongly to x∗ = PΩx1 ∈ Ω.

Proof. Firstly, it is obvious that the half space Cn (n ≥ 1) is convex and closed and PCn is well defined.
By Lemma 3.1, we can easily get that the solution set Ω ⊂ Cn. Using xn = PCn x1, xn+1 = PCn+1 x1 and
Cn+1 ⊂ Cn, we have ‖xn−x1‖ ≤ ‖xn+1−x1‖, which implies that {‖xn−x1‖} is nondecreasing. Furthermore,
‖xn − x1‖ ≤ ‖p − x1‖, for any p ∈ Ω, that is, {xn} is bounded. These imply that limn→∞ ‖xn − x1‖ exists.
Similarly to the proof of Theorem 3.2, we can also prove that the sequence {xn} converges strongly to
x∗ = PΩx1. �

4. Theoretical applications

In this section, we give several interesting special cases of the split variation inclusion problem. At
the same time, Algorithms 3.1 and 3.2 are applied to these problems.

4.1. Split variational inequality problems

Let C and Q be nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let
F : H1 → H1 and G : H2 → H2 be given operators, A : H1 → H2 be a bounded linear operator. The
split variational inequality problem is to find a point x∗ ∈ C such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C and 〈G(Ax∗), y − Ax∗〉 ≥ 0, ∀y ∈ Q.

Especially, when H1 = H2, F = G and A = I, the split variational inequality problem is transformed
into the classical variational inequality problem which is to find a point x∗ ∈ C such that 〈F(x∗), x−x∗〉 ≥
0, ∀x ∈ C, and the solution set of the variational inequality problem is represented by VI(F,C). Then,
the split variational inequality problem is formulated as

find x∗ ∈ C such that x∗ ∈ VI(F,C) and Ax∗ ∈ VI(G,Q). (4.1)

Meanwhile, the solution set of problem (4.1) is denoted by Θ. Before this, the normal cone NC(x) of C
at a point x ∈ C is defined as follows:

NC(x) = {z ∈ H : 〈z, v − x〉 ≤ 0, ∀v ∈ C}.
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Further, the set-valued mapping S F related to the normal cone NC(x) is defined by

S F(x) :=
{

F(x) + NC(x), x ∈ C,
∅, otherwise.

In the sense, if F is a α-inverse strongly monotone operator (i.e., for any x, z ∈ C, 〈F(x)−F(z), x− z〉 ≥
α‖F(x)−F(z)‖2), then S F is a maximal monotone mapping. More importantly, x ∈ VI(F,C) if and only
if 0 ∈ S F(x). Let F and G be α-inverse strongly monotone operators. The set-valued mappings S F and
S G are associated with F and G, respectively. The split variational inequality problem is equivalent to
the following form:

find x∗ ∈ H1 such that 0 ∈ S F(x∗) and 0 ∈ S G(Ax∗).

Therefore, the following theorem can naturally arise to solve the split variational inequality problem.

Theorem 4.1. Choose real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and
{βn} ⊂ (0,∞) with infn{βn} ≥ β > 0. For any x0, x1 ∈ H1, let the sequence {xn} be constructed by the
following iterative form. 

zn = xn + αn(xn − xn−1),

un = JS F
βn

(
zn − γnA∗(I − JS G

βn
)Azn

)
,

Cn = {x ∈ H1 : ‖un − x‖2 ≤ ‖zn − x‖2 − θ̂n},

Qn = {x ∈ H1 : 〈xn − x1, xn − x〉 ≤ 0},
xn+1 = PCn

⋂
Qn x1, n ≥ 1,

(4.2)

where θ̂n := γn

(
2‖(I − JS G

βn
)Azn‖

2 − γn‖A∗(I − JS G
βn

)Azn‖
2
)

and

γn :=


σn‖(I − JS G

βn
)Azn‖

2

‖A∗(I − JS G
βn

)Azn‖
2
, Azn < VI(G,Q),

0, otherwise.

If the solution set Θ is nonempty, then the iterative sequence {xn} generated by algorithm (4.2)
converges strongly to x∗ = PΘx1.

Theorem 4.2. Choose real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and
{βn} ⊂ (0,∞) with infn{βn} ≥ β > 0. For any x0, x1 ∈ H1 and C1 := H1, let the sequence {xn} be
generated by the following algorithm.

zn = xn + αn(xn − xn−1),

un = JS F
βn

(
zn − γnA∗(I − JS G

βn
)Azn

)
,

Cn+1 = {x ∈ Cn : ‖un − x‖2 ≤ ‖zn − x‖2 − θ̂n},

xn+1 = PCn+1 x1, n ≥ 1,

(4.3)

where θ̂n and γn are defined as in algorithm (4.2). If the solution set Θ is nonempty, then the sequence
{xn} generated by algorithm (4.3) converges strongly to x∗ = PΘx1.

AIMS Mathematics Volume 7, Issue 4, 4960–4973.



4967

4.2. Split saddle point problems

Let X and Y be Hilbert spaces. A bifunction L : X × Y → R ∪ {−∞,∞} is convex-concave if and
only if L(x, ·) is convex for any x ∈ X and L(·, y) is concave for any y ∈ Y. The operator TL is defined
as follows:

TL(x, y) = (∂1L(x, y), ∂2(−L)(x, y)),

where ∂1 is the subdifferential of L with respect to x and ∂2 is the subdifferential of −L with respect
to y. It is worth noting that TL is maximal monotone if and only if L is closed and proper, for detail,
see, [35]. Naturally, the zeros of TL coincide with the saddle points of L. Therefore, let Xi(i = 1, 2),
Yi (i = 1, 2) be Hilbert spaces. Let A : X1 × Y1 → X2 × Y2 be a bounded linear operator with the
adjoint operator A∗. Let L1 : X1×Y1 → R∪{−∞,∞} and L2 : X2×Y2 → R∪{−∞,∞} be closed proper
convex-concave bifunctions. Then, the split saddle point problem is to find a point (x∗, y∗) ∈ X1 × Y1

such that
(x∗, y∗) ∈ argminmax(x,y)∈X1×Y1

L1(x, y)

and
A(x∗, y∗) ∈ argminmax(z,w)∈X2×Y2

L2(z,w).

For convenience, the solution set of the split saddle point problem is expressed as Φ. Let Hi = Xi ×

Yi (i = 1, 2) and TLi = Bi (i = 1, 2), the split saddle point problem is regarded as a special case of the
split variational inclusion problem, and the following theorems can be derived naturally.

Theorem 4.3. Let real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and {βn} ⊂

(0,∞) with infn{βn} ≥ β > 0. For any initial points x0, x1 ∈ H1, the sequence {xn} is obtained by the
following process. 

zn = xn + αn(xn − xn−1),

un = J
TL1
βn

(
zn − γnA∗(I − J

TL2
βn

)Azn

)
,

Cn = {x ∈ H1 : ‖un − x‖2 ≤ ‖zn − x‖2 − %n},

Qn = {x ∈ H1 : 〈xn − x1, xn − x〉 ≤ 0},
xn+1 = PCn

⋂
Qn x1, n ≥ 1,

(4.4)

where %n := γn

(
2‖(I − J

TL2
βn

)Azn‖
2 − γn‖A∗(I − J

TL2
βn

)Azn‖
2
)

and

γn :=


σn‖(I − J

TL2
βn

)Azn‖
2

‖A∗(I − J
TL2
βn

)Azn‖
2
, Azn < argminmaxy∈H2

L2(y),

0, otherwise.

If the solution set Φ is nonempty, then the iterative sequence {xn} generated by algorithm (4.4)
converges strongly to x∗ = PΦx1.

Theorem 4.4. Let real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and {βn} ⊂

(0,∞) with infn{βn} ≥ β > 0. For any initial points x0, x1 ∈ H1 and C1 := H1, the sequence {xn} is
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constructed by the following iterative form.

zn = xn + αn(xn − xn−1),

un = J
TL1
βn

(
zn − γnA∗(I − J

TL2
βn

)Azn

)
,

Cn+1 = {x ∈ Cn : ‖un − x‖2 ≤ ‖zn − x‖2 − %n},

xn+1 = PCn
⋂

Qn x1, n ≥ 1,

(4.5)

where %n and γn are defined as in algorithm (4.4). If the solution set Φ is nonempty, then {xn} generated
by algorithm (4.5) converges strongly to x∗ = PΦx1.

4.3. Split minimization problems

Let H1 and H2 be Hilbert spaces. Let φ : H1 → R and ψ : H2 → R be proper lower semi-continuous
convex functions, A : H1 → H2 be a bounded linear operator. The split minimization problem is to
find x∗ ∈ H1 such that

x∗ ∈ argminx∈H1
φ(x) and Ax∗ ∈ argminy∈H2

ψ(y).

It is well know that x∗ ∈ argminx∈H1
φ(x) if and only if 0 ∈ ∂φ(x∗), where ∂φ is the subdifferential of φ

defined by
∂φ(x∗) := {x̂ ∈ H1 : φ(x∗) + 〈z − x∗, x̂〉 ≤ φ(z), ∀z ∈ H1} .

Recall that the proximal operator proxφ of φ is defined as follows:

proxβ,φ(x) = argminz∈H1

{
φ(z) +

1
2β
‖z − x‖2

}
, ∀β > 0.

It is very important that proxβ,φ(x) = (I + β∂φ)−1(x) = J∂φβ (x). In addition, ∂φ is a maximal monotone
mapping and proxφ is a firmly nonexpansive mapping. In view of this, when B1 = ∂φ and B2 = ∂ψ

in (SVIP), the split variational inclusion problem is transformed into the split minimization problem.
Based on our Theorems 3.2 and 3.3, we also have the following results.

Theorem 4.5. Given real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and
β > 0. For any x0, x1 ∈ H1, the sequence {xn} is constructed by the following iterative form.

zn = xn + αn(xn − xn−1),

un = proxβ,φ
(
zn − γnA∗(I − proxβ,ψ)Azn

)
,

Cn = {x ∈ H1 : ‖un − x‖2 ≤ ‖zn − x‖2 − χn},

Qn = {x ∈ H1 : 〈xn − x1, xn − x〉 ≤ 0},
xn+1 = PCn

⋂
Qn x1, n ≥ 1,

(4.6)

where χn := γn

(
2‖(I − proxβ,ψ)Azn‖

2 − γn‖A∗(I − proxβ,ψ)Azn‖
2
)

and

γn :=


σn‖(I − proxβ,ψ)Azn‖

2

‖A∗(I − proxβ,ψ)Azn‖
2 , Azn < argminy∈H2

ψ(y),

0, otherwise.

If the solution set Υ of the split minimization problem is nonempty, then {xn} generated by algorithm
(4.6) converges strongly to x∗ = PΥx1.
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Theorem 4.6. Given real numbers sequences {αn} ⊂ [a, b] ⊂ (−∞,∞), {σn} ⊂ [c, d] ⊂ (0, 2) and
β > 0. For any x0, x1 ∈ H1 and C1 := H1, the sequence {xn} is constructed by the following iterative
form. 

zn = xn + αn(xn − xn−1),

un = proxβ,φ
(
zn − γnA∗(I − proxβ,ψ)Azn

)
,

Cn = {x ∈ H1 : ‖un − x‖2 ≤ ‖zn − x‖2 − χn},

Qn = {x ∈ H1 : 〈xn − x1, xn − x〉 ≤ 0},
xn+1 = PCn

⋂
Qn x1, n ≥ 1,

(4.7)

where χn and γn are defined as in algorithm (4.6). If the solution set Υ of the split minimization
problem is nonempty, then the iterative sequence {xn} generated by algorithm (4.7) converges strongly
to x∗ = PΥx1.

Remark 4.7. Through the above results, the split variational inclusion problem, which includes the
split variational inequality problem, the split saddle point problem and the split minimization problem
as special cases, is quite general. Using the same methods as in Theorems 3.2 and 3.3, the strong
convergence of Theorems 4.1–4.6 are obtained under the above corresponding conditions in
Subsections 4.1, 4.2 and 4.3.

5. Numerical example

In this section, a numerical example is provided to illustrate the effectiveness and realization of
convergence behavior of Algorithms 3.1 and 3.2. All codes were written in Matlab 2018a on a Intel(R)
Core(TM) i5-8250U CPU @1.60 GHz computer with RAM 8.00 GB. Our results compare the existing
conclusion below.

Theorem 5.1. (Byrne et al. [4, Algorithm 4.4]) Let H1 and H2 be Hilbert spaces, A : H1 → H2 be a
bounded linear operator with the adjoint operator A∗. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two
set-valued maximal monotone mappings. Take any initial point x1 ∈ H1, δn ∈ (0, 1) and β > 0, the
iterative sequence {xn} is generated by the following iterative scheme.

xn+1 = δnx1 + (1 − δn)JB1
β

(
xn − γA∗(I − JB2

β )Axn

)
, n ≥ 1.

If {δn} satisfies lim
n→∞

δn = 0 and
∑∞

n=1 δn = ∞, 0 < γ < 2/‖A∗A‖, then the iterative sequence {xn}

converges strongly to a point x∗ ∈ Ω.

Example 5.2. Assume that A, A1, A2 : Rm → Rm are created from a normal distribution with mean
zero and unit variance. Let B1 : Rm → Rm and B2 : Rm → Rm be defined by B1(x) = A∗1A1x and
B2(y) = A∗2A2y, respectively. Consider the problem of finding a point x̄ = (x̄1, . . . , x̄m)T

∈ Rm such
that B1(x̄) = (0, . . . , 0)T and B2(Ax̄) = (0, . . . , 0)T . It is easy to see that the minimum norm solution
of the mentioned above problem is x∗ = (0, . . . , 0)T . Our parameter settings are as follows. In our
algorithms 3.1 and 3.2, set αn = 0.5, βn = 1 and σn = 1.5. Take β = 1, δn = 1

n+1 and γn = 1.5
‖A∗A‖ in the

Algorithm 4.4 proposed by Byrne et al. [4]. We use En = ‖xn − x∗‖ to measure the iteration error of all
algorithms. The stopping condition is that the maximum number of iterations is 300 times. Figure 1
describes the numerical behavior of all algorithms in different dimensions.
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(d) m = 200

Figure 1. Numerical behavior of all algorithms in different dimensions.

It can be seen from the above results that our Algorithms 3.1 and 3.2 are efficient and robust.
These results are independent of the selection of initial values and dimensions. Moreover, the
convergence performance and the iteration error of the suggested Algorithm 3.2 are better than the
existing Algorithm 4.4 in [4].

6. Conclusions

In this paper, our innovations are twofold. One is to provide a self-adaptive stepsize selection
which does not require the norm of the bounded linear operator. The other is to propose two types
of projection algorithms (i.e., a hybrid projection algorithm and a shrinking projection algorithm),
which combine inertial technique with the proposed self-adaptive stepsize. Under mild constraints, the
corresponding strong convergence theorems of SVIP are obtained in the framework of Hilbert spaces.
At the same time, our results are also extended to the split variational inequality problem, the split
saddle point problem and the split minimization problem. In terms of numerical experiments, the
effectiveness of our proposed algorithms is showed by comparing with some existing results.
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