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1. Introduction

As an extension of the split feasibility problem, in 2013, Moudafi [12, 13] introduced
the following split equality problem (for short, SEP) that is applied to decomposition
for PDEs [1] and intensity-modulated radiation therapy [4]. It is worth noting that the
split equality problem contains many important optimization problems, such as the
split feasibility problem, the fixed point problem, the variational inequality problem,
the split common fixed point problem and the monotone inclusion problem; see, e.g.,
[5, 15, 22, 21, 27]. Let H1, H2 and H3 be Hilbert spaces and C ⊂ H1, Q ⊂ H2 be
nonempty closed convex subsets. Let A : H1 → H3 and B : H2 → H3 be bounded
linear operators. The split equality problem is to find

x∗ ∈ C, y∗ ∈ Q such that Ax∗ = By∗. (1.1)

In particular, when B = I and H2 = H3, SEP can be considered as well-known
the split feasibility problem (Censor and Elfving introduced in [5]), which is to find
x∗ ∈ C such that Ax∗ ∈ Q. Naturally, x∗ is a solution of this problem if and only if
x∗ is a solution of the equation x∗ = PC(I − γA∗(I − PQ)A)x∗, where PC : H1 → C
and PQ : H2 → Q are metric projection operators, A∗ is the adjoint operator of
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A. By virtue of the fixed point algorithm, Byrne [2] came up with CQ algorithm
to approximate a solution of the split feasibility problem by the recursive procedure
xn+1 = PC(I−γAT(I−PQ)A)xn, where AT is the matrix transposition of A, L is the
largest eigenvalue of matrix ATA and γ ∈ (0, 2/L). Subsequently, Wang [24], Yao,
Liou and Postolache [26] studied the following new iterative algorithm

xn+1 = xn − γn[(I − PC) +A∗(I − PQ)A)]xn, ∀n ≥ 0, (1.2)

where {γn} is a self-adaptive stepsize sequence without prior knowledge of operator
norms. It is worth noting that only the weak convergence of the split feasibility
problem was obtained by Byrne’s algorithm and Algorithm (1.2). To fill this gap,
the Halpern algorithms and the viscosity algorithms were often employed to ensure
strong convergence properties of the algorithms.

Based on the idea of Halpern algorithm (Halpern introduced in [9]), Xu [25] pro-
posed the following modified algorithm and obtained strong convergence of the split
feasibility problem

xn+1 = αnu+ (1− αn)PC(I − γA∗(I − PQ)A)xn, (1.3)

where γ is a constant in (0, 2/‖A‖2) and u is a fixed point. Further, Takahashi [18, 19]
proposed a modified Halpern-type algorithm that uses a sequence {un} converges
strongly to u, and guaranteed the corresponding strong convergence. Moreover, by
using the property of a contraction mapping, Moudafi [14] introduced the viscosity
algorithm to approximate a solution of the fixed point problem. With the active help
of these methods in [9, 14, 24, 26], many excellent results have been produced in other
mathematical problems, such as the fixed point problem [6, 7, 20], the variational
inequality problem [17, 23] and the split common fixed point problem [16, 27, 28].

On the other hand, to approximate the solutions of SEP, Moudafi [13] presented
the following alternating CQ algorithm (for short, ACQA){

xn+1 = PC(xn − γnA∗(Axn −Byn)),

yn+1 = PQ(yn + γnB
∗(Axn+1 −Byn)),

(1.4)

where {γn} is a sequence in (ε,min{ 1
‖A‖2 ,

1
‖B‖2 }−ε) (ε is a small enough nonnegative

real number). Further, Byrne and Moudafi [3] came up with the following simultane-
ous CQ algorithm (for short, SCQA) to solve SEP, for ε < γn <

2
‖A‖2+‖B‖2 − ε,{

xn+1 = PC(xn − γnA∗(Axn −Byn)),

yn+1 = PQ(yn + γnB
∗(Axn −Byn)).

(1.5)

Consistently, the iterative sequences generated by Algorithms (1.4) and (1.5) converge
weakly to a solution of SEP. In addition, both of these algorithms involve metric pro-
jection operators, which are complicated and time-consuming in practical application.

Due to expensive calculation of the projection operators PC and PQ, Moudafi con-
sidered level sets to solve SEP, in which the level set of convex function is easy to im-
plement, that is, C and Q are replaced with level sets of convex and subdifferentiable
functions f : H1 → R and g : H2 → R, respectively, i.e., C = {x ∈ H1 | f(x) ≤ 0}
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and Q = {y ∈ H2 | g(y) ≤ 0}. In this situation, Moudafi [12] suggested the relaxed
alternating CQ algorithm (for short, RACQA){

xn+1 = PCn(xn − γA∗(Axn −Byn)),

yn+1 = PQn(yn + γB∗(Axn+1 −Byn)),

where γ is a constant in (0,min{ 1
‖A‖2 ,

1
‖B‖2 }), Cn = {x ∈ H1 | f(xn) + 〈ξn, x− xn〉 ≤

0}, ξn ∈ ∂f(xn), and Qn = {y ∈ H2 | g(yn) + 〈ηn, y − yn〉 ≤ 0}, ηn ∈ ∂g(yn).
Especially, RACQA still achieved weak convergence property. Inspired and moti-
vated by Moudafi [12, 13, 14] and Takahashi [18, 19], we introduce two modified
self-adaptive-type iterative algorithms to solve the split equality problem (1.1) in
infinite-dimensional Hilbert spaces by the Halpern algorithm and the viscosity algo-
rithm. The corresponding strong convergence theorems are obtained without prior
knowledge of operator norms. Furthermore, some numerical experiments including
signal recovery are used to demonstrate and show the efficiency of our main results.

The rest of this article is built up as follows. Some basic properties and relevant
lemmas will be introduced in Section 2, which will be used in the proof for the con-
vergence of the proposed algorithms. The main results and some corollaries of this
paper are contained in Sections 3 and 4. Moreover, an application to signal recovery
problem is given in Section 5. The last section, in Section 6, some numerical experi-
ments demonstrate the efficiency of our results and compare them with some known
algorithms, i.e., alternating CQ algorithm (ACQA) in Moudafi [13], simultaneous CQ
algorithm (SCQA) in Byrne and Moudafi [3], and self-adaptive viscosity algorithm in
Dong et al. [8].

2. Preliminaries

For the convenience and standard, we use the notations → and ⇀ to represent
strong convergence and weak convergence, respectively. The fixed point set of the
mapping T is represented by F (T ). Some well-known basic properties are as follows.

(P1) PC is denoted metric projection from H onto C, that is, PCx = argminy∈C ‖x−
y‖, ∀x ∈ H. It has such an equivalent form 〈PCx − x, PCx − y〉 ≤ 0,∀y ∈ C,
and can also be converted to ‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2;

(P2) The mapping T : H → H with F (T ) 6= ∅ and I − T is demiclosed at 0, i.e., for
any sequence {xn} ⊂ H, if {xn} weakly converges to x and (I − T )xn strongly
converges to 0, then x ∈ F (T );

(P3) The mapping f : H → H is a contraction with coefficient λ, that is,

‖f(x)− f(y)‖ ≤ λ‖x− y‖, ∀x, y ∈ H, λ ∈ [0, 1);

(P4) ∂f is denoted the subdifferential of convex function f : H → R at x, that is,

∂f(x) = {$ ∈ H | f(y) ≥ f(x) + 〈$, y − x〉, ∀y ∈ H}.
(P5) For any x, y ∈ H, the following properties hold

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;

‖κx+ (1− κ)y‖2 = κ‖x‖2 + (1− κ)‖y‖2 − κ(1− κ)‖x− y‖2, ∀κ ∈ R.



438 ZHENG ZHOU, BING TAN AND SONGXIAO LI

Lemma 2.1. Let the solution set of SEP be nonempty. For any γ > 0, a solution of
SEP is equivalent to a solution of the following equations{

x = x− γ ((I − PC)x+A∗(Ax−By)) ,

y = y − γ ((I − PQ)y −B∗(Ax−By)) .
(2.1)

Proof. Obviously, any solution of SEP is the solution of equations (2.1). On the other
hand, put any element (x, y) in the solution set of equations (2.1), we have{

0 = (I − PC)x+A∗(Ax−By),

0 = (I − PQ)y −B∗(Ax−By).

For any (x∗, y∗) in the solution set of SEP, that is, x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗,
we have

0 = 〈(I − PC)x+A∗(Ax−By), x− x∗〉
= 〈x− PCx, x− PCx〉+ 〈x− PCx, PCx− x∗〉+ 〈Ax−By,Ax−Ax∗〉
≥ ‖x− PCx‖2 + 〈Ax−By,Ax−Ax∗〉,

and

0 = 〈(I − PQ)y −B∗(Ax−By), y − y∗〉 ≥ ‖y − PQy‖2 − 〈Ax−By,By −By∗〉.

Combining the above two formulas, we get

0 ≥ ‖x− PCx‖2 + ‖y − PQy‖2 + ‖Ax−By‖2.

This implies that x ∈ C, y ∈ Q and Ax = By. Hence, (x, y) is also a solution of
SEP. �

Lemma 2.2. [10] Let {θn} and {ηn} be two nonnegative real numbers sequences such
that

θn+1 ≤ (1− δn)θn + δnτn, and θn+1 ≤ θn − ηn + ζn, n ≥ 0,

where {τn}, {ζn} and {δn} are real sequences with 0 < δn < 1. If
∑∞
n=0 δn =∞ and

limn→∞ ζn = 0 and limk→∞ ηnk = 0 implies lim supk→∞ τnk ≤ 0, where {nk} is an
arbitrary subsequence of {n}. The sequence {θn} is convergent to 0 as n→∞.

3. Halpern-type CQ algorithms

In what follows, H1, H2 and H3 are Hilbert spaces, C ⊂ H1 and Q ⊂ H2 are
nonempty closed convex subsets, A : H1 → H3, B : H2 → H3 are bounded linear op-
erators, A∗ and B∗ are the adjoint operators of A and B, respectively. Meanwhile, we
propose two Halpern-type algorithms to approximate a solution of SEP, and assume
that the solution set of SEP is nonempty, i.e.,

Ω = {(x∗, y∗) | x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗} 6= ∅.

In addition, the following assumption is presupposed.
(A1) {un} ⊂ H1, {vn} ⊂ H2 are two convergence sequences such that

un → u ∈ H1 and vn → v ∈ H2.
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3.1. Self-adaptive Halpern-type CQ algorithm (SHCQA). Through the afore-
mentioned Halpern-type algorithm in [18, 19], the iterative sequence {(xn, yn)} is
generated by the following recursive procedure

x̂n = xn − γn [(I − PC)xn +A∗(Axn −Byn)] ,

xn+1 = δnun + (1− δn)x̂n,

ŷn = yn − γn [(I − PQ)yn −B∗(Axn −Byn)] ,

yn+1 = δnvn + (1− δn)ŷn, n ≥ 0.

(3.1)

The corresponding parameters satisfy the following restrictions.
(R1) If Axn 6= Byn, the self-adaptive stepsize

γn = αn min

{
1,

‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

}
with {αn} ⊂ (0, 1) and infn αn(1− αn) > 0. Otherwise, γn = αn;
(R2) {δn} is a real numbers sequence in (0, 1) such that limn→∞ δn = 0 and∑∞
n=0 δn =∞.

Theorem 3.1. Given Assumption (A1) and Conditions (R1)-(R2). For any x0 ∈ H1

and y0 ∈ H2, the sequence {(xn, yn)} generated by Algorithm (3.1) converges strongly
to PΩ(u, v) ∈ Ω.

Proof. Take (x∗, y∗) = PΩ(u, v) ∈ Ω, that is, x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗. Using
projection operator PC , we have

‖x̂n − x∗‖2

=‖xn − x∗‖2 − 2γn〈(I − PC)xn +A∗(Axn −Byn), xn − x∗〉
+ γ2

n‖(I − PC)xn +A∗(Axn −Byn)‖2

≤‖xn − x∗‖2 − 2γn‖(I − PC)xn‖2 − 2γn〈Axn −Byn, Axn −Ax∗〉
+ 2γ2

n

(
‖(I − PC)xn‖2 + ‖A∗(Axn −Byn)‖2

)
.

(3.2)

Similarly, the following inequality is available

‖ŷn − y∗‖2 ≤ ‖yn − y∗‖2 − 2γn‖(I − PQ)yn‖2 + 2γn〈Axn −Byn, Byn −By∗〉
+ 2γ2

n

(
‖(I − PQ)yn‖+ ‖B∗(Axn −Byn)‖2

)
.

(3.3)

On the other hand, we have

2〈Axn −Byn, Byn −By∗〉 − 2〈Axn −Byn, Axn −Ax∗〉 = −2‖Axn −Byn‖2.

Combining (3.2), (3.3) and (R1), we get

‖x̂n − x∗‖2 + ‖ŷn − y∗‖2

≤ ‖xn − x∗‖2 + ‖yn − y∗‖2 − 2γn(1− γn)
(
‖(I − PC)xn‖2 + ‖(I − PQ)yn‖2

)
− 2γn

(
‖Axn −Byn‖2 − γn‖A∗(Axn −Byn)‖2 − γn‖B∗(Axn −Byn)‖2

)
= ‖xn − x∗‖2 + ‖yn − y∗‖2 − Φn.

(3.4)
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From the definition of γn, we have γn(1− γn) ≥ γn(1− αn) > 0 and

γn‖Axn −Byn‖2 − γ2
n(‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2)

≥γn(1− αn)‖Axn −Byn‖2 ≥ 0.

Thus,

Φn = 2γn(1− γn)
(
‖(I − PC)xn‖2 + ‖(I − PQ)yn‖2

)
+ 2γn‖Axn −Byn‖2

− 2γ2
n

(
‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

)
≥ 2γn(1− αn)

[
‖(I − PC)xn‖2 + ‖(I − PQ)yn‖2 + ‖Axn −Byn‖2

]
≥ 0.

(3.5)

In addition, using the convexity of the squared norm and (3.4), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤δn
(
‖un − x∗‖2 + ‖vn − y∗‖2

)
+ (1− δn)

(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
.

Since {un} and {vn} are convergence sequences, there exists a non-negative constant
G such that supn≥0{‖un−x∗‖2, ‖vn−y∗‖2} ≤ G/2. Let θn = ‖xn−x∗‖2 +‖yn−y∗‖2.
The above formula can be converted to

θn+1 ≤ δn
(
‖un − x∗‖2 + ‖vn − y∗‖2

)
+ (1− δn)θn

≤ max{G, θn} ≤ · · · ≤ max{G, θ0}.
(3.6)

This implies that {θn} is bounded, that is, the sequences {xn} and {yn} are bounded.
From (P5), we have

‖xn+1 − x∗‖2 = ‖δnun + (1− δn)x̂n − x∗‖2

≤ ‖(1− δn) (x̂n − x∗) ‖2 + 2δn〈un − x∗, xn+1 − x∗〉
≤ (1− δn)‖x̂n − x∗‖2 + 2δn〈un − x∗, xn+1 − x∗〉,

‖yn+1 − y∗‖2 ≤ (1− δn)‖ŷn − y∗‖2 + 2δn〈vn − y∗, yn+1 − y∗〉.
Combining the above two inequalities and (3.4), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2 ≤ (1− δn)
(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
− (1− δn)Φn

+ 2δn (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) .

For each n ≥ 0, set

ηn = (1− δn)Φn, τn = 2 (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) ,
ζn = 2δn (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) .

Then, the above formula is reduced to the following inequalities:

θn+1 ≤ (1− δn)θn + δnτn and θn+1 ≤ θn − ηn + ζn, n ≥ 0.

By (R2) and the boundedness of {un}, {vn}, {xn}, {yn}, we see that limn→∞ζn = 0
and

∑∞
n=0 δn = ∞. By virtue of Lemma 2.2, this proof remains to show that

limk→∞ηnk = 0 implies lim supk→∞τnk ≤ 0 for any subsequence {nk} of {n}. Let
{ηnk} be a any subsequence of {ηn} such that limk→∞ηnk = 0. This implies that
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limk→∞ Φnk = 0. Hence, suppose that Axn 6= Byn, it follows from (R1) that
limn→∞ γn(1− αn) 6= 0. Further, using (3.5), we obtain

limk→∞‖(I−PC)xnk‖ = limk→∞‖(I−PQ)ynk‖ = limk→∞‖Axnk−Bynk‖ = 0. (3.7)

From the boundedness of {xn} and {yn}, there exists two subsequences {xnkj } of

{xnk} and {ynkj } of {ynk} such that xnkj ⇀ x̄, ynkj ⇀ ȳ and

lim supk→∞〈unk − x∗, xnk − x∗〉 = limj→∞〈unkj − x
∗, xnkj − x

∗〉,

lim supk→∞〈vnk − y∗, ynk − y∗〉 = limj→∞〈vnkj − y
∗, ynkj − y

∗〉.
Since I −PC and I −PQ are demiclosed at 0, we have x̄ ∈ C and ȳ ∈ Q. In addition,
it follows from the bounded linearity of A and B that Axnkj − Bynkj ⇀ Ax̄ − Bȳ.

Using the weak lower semicontinuity of the squared norm, we have ‖Ax̄ − Bȳ‖2 ≤
lim infj→∞‖Axnkj −Bynkj ‖

2 = 0, which implies that (x̄, ȳ) ∈ Ω. On the other hand,

if Axn = Byn, we can also get the same result as above. Besides, from the property
of projection and the strong convergence property of {un} and {vn}, it follows that

lim supk→∞〈unk − x∗, xnk − x∗〉 = limj→∞〈unkj − x
∗, xnkj − x

∗〉
= 〈u− x∗, x̄− x∗〉 ≤ 0,

(3.8)

lim supk→∞〈vnk − y∗, ynk − y∗〉 = limj→∞〈vnkj − y
∗, ynkj − y

∗〉
= 〈v − y∗, ȳ − y∗〉 ≤ 0.

(3.9)

According to (R1) and (3.7), we have

‖x̂nk − xnk‖ ≤ γn(‖(I − PC)xnk‖+ ‖A‖‖Axnk −Bynk‖)→ 0,

‖ŷnk − ynk‖ ≤ γn(‖(I − PQ)ynk‖+ ‖B‖‖Axnk −Bynk‖)→ 0.

Further, we have

‖xnk+1 − xnk‖ ≤ δnk‖unk − xnk‖+ (1− δnk)‖x̂nk − xnk‖ → 0, (3.10)

‖ynk+1 − ynk‖ ≤ δnk‖vnk − ynk‖+ (1− δnk)‖ŷnk − ynk‖ → 0. (3.11)

From (3.8), (3.9), (3.10) and (3.11), we have lim supk→∞〈unk−x∗, xnk+1−x∗〉 ≤ 0 and
lim supk→∞〈vnk−y∗, ynk+1−y∗〉 ≤ 0. This implies that lim supk→∞τnk ≤ 0. By virtue
of Lemma 2.2, we obtain limn→∞θn = 0, which implies that (xn, yn)→ (x∗, y∗). �

Remark 3.2. In order to get the limits in (3.7), we must require infn αn(1−αn) > 0
in (R1), which is to ensure that limn→∞ γn(1 − αn) 6= 0. In addition, the selection
method of αn can also refer to the following forms.

{αn} ⊂ (ε, 1− ε) ⊂ (0, 1) for some ε > 0, or {αn} is a fixed constant in (0, 1).

Remark 3.3. (I) The sequences {un} and {vn} in Theorem 3.1 are easily chosen.

For example, (1) the monotonically decreasing sequence un = n2

(n+1)2u; (2) the mono-

tonically increasing sequence un = (n+1)2

n2 u; (3) the non-monotonically convergent

sequence un = 2n+(−1)n

2n u.
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(II) In particular, when {un} and {vn} are constant sequences, that is, un ≡ u and
vn ≡ v, Algorithm (3.1) is equal to the following Halpern algorithm.

x̂n = xn − γn [(I − PC)xn +A∗(Axn −Byn)] ,

xn+1 = δnu+ (1− δn)x̂n,

ŷn = yn − γn [(I − PQ)yn −B∗(Axn −Byn)] ,

yn+1 = δnv + (1− δn)ŷn, n ≥ 0.

(3.12)

From Remark 3.3 (II), we have the following important corollary of Theorem 3.1.

Corollary 3.4. Assume that Conditions (R1)-(R2) are satisfied. For any x0, u ∈
H1 and y0, v ∈ H2, the sequence {(xn, yn)} generated by Algorithm (3.12) converges
strongly to PΩ(u, v) ∈ Ω.

3.2. Self-adaptive relaxed Halpern-type CQ algorithm (SRHCQA). Here,
we consider using the level sets of two convex functions f : H1 → R and g : H2 → R
instead of closed convex sets C and Q in Theorem 3.1, i.e.,

C = {x ∈ H1 | f(x) ≤ 0}, Q = {y ∈ H2 | g(y) ≤ 0}.

For solving SEP, we construct the corresponding closed convex sets as follows.

Cn = {x ∈ H1 | f(xn) + 〈ξn, x− xn〉 ≤ 0, ξn ∈ ∂f(xn)},

Qn = {y ∈ H2 | g(yn) + 〈ηn, y − yn〉 ≤ 0, ηn ∈ ∂g(yn)}.
Assume that both f and g are subdifferentiable on H1 and H2, respectively, and that
∂f and ∂g are bounded on bounded sets. It is obvious that C ⊂ Cn and Q ⊂ Qn.
Under the above conditions, using the method of Halpern-type algorithm to promote
the relaxed alternating CQ algorithm, the iterative sequence {(xn, yn)} is generated
by the following recursive procedure

x̂n = xn − γn [(I − PCn)xn +A∗(Axn −Byn)] ,

ŷn = yn − γn [(I − PQn)yn −B∗(Axn −Byn)] ,

xn+1 = δnun + (1− δn)x̂n,

yn+1 = δnvn + (1− δn)ŷn, n ≥ 0.

(3.13)

Theorem 3.5. Given Assumption (A1) and Conditions (R1)-(R2). For any x0 ∈ H1

and y0 ∈ H2, the sequence {(xn, yn)} generated by Algorithm (3.13) converges strongly
to PΩ(u, v) ∈ Ω.

Proof. Take (x∗, y∗) = PΩ(u, v) ∈ Ω, that is, x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗.
As similar proof in Theorem 3.1, we obtain that the sequences {xn} and {yn} are
bounded. On the other hand,

Ψn = 2γn(1− γn)(‖(I − PCn)xn‖2 + ‖(I − PQn)yn‖2) + 2γn‖Axn −Byn‖2

− 2γ2
n

(
‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

)
≥ 2γn(1− αn)

[
‖(I − PCn)xn‖2 + ‖(I − PQn)yn‖2 + ‖Axn −Byn‖2

]
≥ 0.

(3.14)
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Similarly, we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤(1− δn)
(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
− (1− δn)Ψn

+ 2δn (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) .
For each n ≥ 0, set

θn = ‖xn − x∗‖2 + ‖yn − y∗‖, ηn = (1− δn)Ψn,

τn = 2 (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) ,
ζn = 2δn (〈un − x∗, xn+1 − x∗〉+ 〈vn − y∗, yn+1 − y∗〉) .

Naturally, we have the following inequalities

θn+1 ≤ (1− δn)θn + δnτn and θn+1 ≤ θn − ηn + ζn, n ≥ 0.

By the boundedness and (R2), we see that limn→∞ ζn = 0 and
∑∞
n=0 δn = ∞. By

Lemma 2.2, this proof remains to show that limk→∞ηnk = 0 implies lim supk→∞ τnk ≤
0 for any subsequence {nk} of {n}. Let {ηnk} be a any subsequence of {ηn} such
that limk→∞ηnk = 0. This implies that limk→∞Ψnk = 0. Hence, suppose that
Axn 6= Byn, it follows from (R1) that limn→∞ γn(1−αn) 6= 0. Using (3.14), we have

limk→∞‖(I − PCn)xnk‖ = limk→∞‖(I − PQn)ynk‖ = limk→∞‖Axnk −Bynk‖ = 0.

Using the boundedness of {xn} and {yn}, there exists two sequences {xnkj } of {xnk}
and {ynkj } of {ynk} such that xnkj ⇀ x̄, ynkj ⇀ ȳ and

lim supk→∞ 〈unk − x∗, xnk − x∗〉 = limj→∞〈unkj − x
∗, xnkj − x

∗〉,

lim supk→∞ 〈vnk − y∗, ynk − y∗〉 = limj→∞〈vnkj − y
∗, ynkj − y

∗〉.
Since ∂f is bounded on bounded sets, there exists a constant ϑ > 0 such that ‖ξnk‖ ≤
ϑ, ∀k ≥ 0. Using the definition of Cn, we get

f(xnk) ≤ 〈ξnk , xnk − PCnkxnk〉 ≤ ϑ‖xnk − PCnkxnk‖ → 0, as k →∞.

By the weak lower semi-continuity of f, we have f(x̄) ≤ lim infj→∞ f(xnkj ) ≤ 0. So

we have x̄ ∈ C. Similarly, we obtain ȳ ∈ Q. In addition, it follows from the bounded
linearity of A and B that Axnkj − Bynkj ⇀ Ax̄ − Bȳ. By virtue of the weak lower

semicontinuity of the squared norm, we have ‖Ax̄ − Bȳ‖2 ≤ lim infj→∞ ‖Axnkj −
Bynkj ‖

2 = 0, which implies that (x̄, ȳ) ∈ Ω. On the other hand, if Axn = Byn, we can

also get the same result as above. Last, using the proof process in Theorem 3.1 and
Lemma 2.2, we obtain limn→∞θn = 0, which implies that (xn, yn)→ (x∗, y∗). �

According to Remark 3.3 (II), Algorithm (3.13) can also be degraded to the fol-
lowing Halpern algorithm.

x̂n = xn − γn [(I − PCn)xn +A∗(Axn −Byn)] ,

ŷn = yn − γn [(I − PQn)yn −B∗(Axn −Byn)] ,

xn+1 = δnu+ (1− δn)x̂n,

yn+1 = δnv + (1− δn)ŷn, n ≥ 0.

(3.15)
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Corollary 3.6. Assume that Conditions (R1)-(R2) are established. For any x0, u ∈
H1 and y0, v ∈ H2, the iterative sequence {(xn, yn)} generated by Algorithm (3.15)
converges strongly to PΩ(u, v) ∈ Ω.

4. Viscosity-type CQ algorithms

In this section, we propose two viscosity-type algorithms to approximate a solu-
tion of SEP, and assume that the solution set of SEP is nonempty. Meanwhile, the
following assumptions are presupposed.
(V1) f : H1 → H1 and g : H2 → H2 are contraction mappings with coefficient

λ1 ∈ [0, 1/
√

2), λ2 ∈ [0, 1/
√

2), respectively.

4.1. Self-adaptive viscosity-type CQ algorithm (SVCQA). According to the
mentioned viscosity-type algorithm in Moudafi [14], the iterative sequence {(xn, yn)}
is generated by the following recursive procedure

x̂n = xn − γn [(I − PC)xn +A∗(Axn −Byn)] ,

xn+1 = δnf(x̂n) + (1− δn)x̂n,

ŷn = yn − γn [(I − PQ)yn −B∗(Axn −Byn)] ,

yn+1 = δng(ŷn) + (1− δn)ŷn, n ≥ 0,

(4.1)

where the corresponding parameters {γn} and {δn} are defined as (R1) and (R2).

Theorem 4.1. Given Assumption (V1) and Conditions (R1)-(R2). For any x0 ∈ H1

and y0 ∈ H2, the iterative sequence {(xn, yn)} generated by Algorithm (4.1) converges
strongly to (x∗, y∗) = PΩ(f(x∗), g(y∗)).

Proof. Take (x∗, y∗) = PΩ(f(x∗), g(y∗)) ∈ Ω, that is, x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗.
From the proof of Theorem 3.1, we can get

‖x̂n − x∗‖2 + ‖ŷn − y∗‖2 = ‖xn − x∗‖2 + ‖yn − y∗‖2 − Φn

≤ ‖xn − x∗‖2 + ‖yn − y∗‖2,
(4.2)

where Φn is defined as in (3.5).
Set λ = max{λ1, λ2}. From (4.2), we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤ δn
(
‖f(x̂n)− x∗‖2 + ‖g(ŷn)− y∗‖2

)
+ (1− δn)

(
‖x̂n − x∗‖2 + ‖ŷn − y∗‖2

)
≤ 2δn

(
‖f(x̂n)− f(x∗)‖2 + ‖f(x∗)− x∗‖2 + ‖g(ŷn)− g(y∗)‖2 + ‖g(y∗)− y∗‖2

)
+ (1− δn)

(
‖x̂n − x∗‖2 + ‖ŷn − y∗‖2

)
≤ 2δn(λ2

1‖x̂n − x∗‖2 + λ2
2‖ŷn − y∗‖2) + 2δn(‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2)

+ (1− δn)
(
‖x̂n − x∗‖2 + ‖ŷn − y∗‖2

)
≤ (1− δn(1− 2λ2))

(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
− (1− δn(1− 2λ2))Φn

+ 2δn(‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2).
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Let θn = ‖xn − x∗‖2 + ‖yn − y∗‖2. Since λ1, λ2 ∈ [0, 1/
√

2) and (R1), we have

θn+1 ≤(1− δn(1− 2λ2))θn − (1− δn(1− 2λ2))Φn

+ 2δn
(
‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2

)
≤(1− δn(1− 2λ2))θn + 2δn(1− 2λ2)

‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2

1− 2λ2

≤max
{
θn,

2(‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2)

1− 2λ2

}
≤ · · · ≤ max

{
θ0,

2(‖f(x∗)− x∗‖2 + ‖g(y∗)− y∗‖2)

1− 2λ2

}
.

This implies that {θn} is bounded, that is, {xn} and {yn} are bounded. On the other
hand, using (P5), we can obtain

‖xn+1 − x∗‖2

=‖δn(f(x̂n)− f(x∗)) + δn(f(x∗)− x∗) + (1− δn)(x̂n − x∗)‖2

≤‖δn(f(x̂n)− f(x∗)) + (1− δn)(x̂n − x∗)‖2 + 2δn〈f(x∗)− x∗, xn+1 − x∗〉
≤δn‖f(x̂n)− f(x∗)‖2 + (1− δn)‖x̂n − x∗‖2 + 2δn〈f(x∗)− x∗, xn+1 − x∗〉
≤(1− δn(1− λ2

1))‖x̂n − x∗‖2 + 2δn〈f(x∗)− x∗, xn+1 − x∗〉.

Similarly,

‖yn+1 − y∗‖2 ≤ (1− δn(1− λ2
2))‖ŷn − y∗‖2 + 2δn〈g(y∗)− y∗, yn+1 − y∗〉.

According to the above formulas, we have

‖xn+1 − x∗‖2 + ‖yn+1 − y∗‖2

≤(1− δn(1− λ2))
(
‖x̂n − x∗‖2 + ‖ŷn − y∗‖2

)
+ 2δn (〈f(x∗)− x∗, xn+1 − x∗〉+ 〈g(y∗)− y∗, yn+1 − y∗〉)

≤(1− δn(1− λ2))
(
‖xn − x∗‖2 + ‖yn − y∗‖2

)
− (1− δn(1− λ2))Φn

+ 2δn (〈f(x∗)− x∗, xn+1 − x∗〉+ 〈g(y∗)− y∗, yn+1 − y∗〉) .

For each n ≥ 0, we also set

ηn = (1− δn(1− λ2))Φn,

τn = 2 (〈f(x∗)− x∗, xn+1 − x∗〉+ 〈g(y∗)− y∗, yn+1 − y∗〉) /(1− λ2),

ζn = 2δn (〈f(x∗)− x∗, xn+1 − x∗〉+ 〈g(y∗)− y∗, yn+1 − y∗〉) .

Then, the above formula is reduced to the following inequalities

θn+1 ≤ (1− δn)θn + δnτn and θn+1 ≤ θn − ηn + ζn, n ≥ 0.

By the boundedness of {xn} and {yn}, and Condition (R2), we see that limn→∞ζn =
0 and

∑∞
n=0 δn = ∞. By virtue of Lemma 2.2, this proof remains to show that

limk→∞ηnk = 0 implies lim supk→∞τnk ≤ 0 for any subsequence {nk} of {n}. Let
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{ηnk} be a any subsequence of {ηn} such that limk→∞ηnk = 0. According to the
proof in Theorem 3.1, if Axn 6= Byn, we have

limk→∞‖(I−PC)xnk‖ = limk→∞‖(I−PQ)ynk‖ = limk→∞‖Axnk−Bynk‖ = 0. (4.3)

By the boundedness of {xn} and {yn}, there exists two sequences {xnkj } of {xnk}
and {ynkj } of {ynk} such that xnkj ⇀ x̄, ynkj ⇀ ȳ and

lim supk→∞〈f(x∗)− x∗, xnk − x∗〉 = limj→∞〈f(x∗)− x∗, xnkj − x
∗〉,

lim supk→∞〈g(y∗)− y∗, ynk − y∗〉 = limj→∞〈g(y∗)− y∗, ynkj − y
∗〉.

Since I − PC and I − PQ are demiclosed at 0, we have x̄ ∈ C and ȳ ∈ Q by (4.3). In
addition, it follows from bounded linearity of A and B that Axnkj−Bynkj ⇀ Ax̄−Bȳ.

Using the weak lower semicontinuity of the squared norm implies ‖Ax̄ − Bȳ‖2 ≤
lim infj→∞‖Axnkj −Bynkj ‖

2 = 0, which implies that (x̄, ȳ) ∈ Ω. On the other hand,

if Axn = Byn, we can also get the same result as above. In addition, from the
property of projection, it follows that

lim supk→∞〈f(x∗)− x∗, xnk − x∗〉 = limj→∞〈f(x∗)− x∗, xnkj − x
∗〉

= 〈f(x∗)− x∗, x̄− x∗〉 ≤ 0,

lim supk→∞〈g(y∗)− y∗, ynk − y∗〉 = limj→∞〈g(y∗)− y∗, ynkj − y
∗〉

= 〈g(y∗)− y∗, ȳ − y∗〉 ≤ 0.

According to (R1) and (4.3), we have

‖x̂nk − xnk‖ ≤ γn(‖(I − PC)xnk‖+ ‖A‖‖Axnk −Bynk‖)→ 0, k →∞,

‖ŷnk − ynk‖ ≤ γn(‖(I − PQ)ynk‖+ ‖B‖‖Axnk −Bynk‖)→ 0, k →∞.
Further, we obtain

‖xnk+1 − xnk‖ = δnk‖f(xnk)− xnk‖+ (1− δnk)‖x̂nk − xnk‖ → 0, k →∞,

‖ynk+1 − ynk‖ = δnk‖g(ynk)− ynk‖+ (1− δnk)‖ŷnk − ynk‖ → 0, k →∞.
Hence, we have lim supk→∞〈f(x∗) − x∗, xnk+1 − x∗〉 ≤ 0 and lim supk→∞〈g(y∗) −
y∗, ynk+1 − y∗〉 ≤ 0, which implies lim supk→∞τnk ≤ 0. By Lemma 2.2, we obtain
limn→∞θn = 0. This implies that (xn, yn)→ (x∗, y∗). �

4.2. Self-adaptive relaxed viscosity-type CQ algorithm (SRVCQA). In this
subsection, we first set the same C, Q, Cn and Qn as in Theorem 3.5. In addition,
the combination of the relaxed CQ algorithm and the viscosity-type algorithm has
the following algorithm

x̂n = xn − γn [(I − PCn)xn +A∗(Axn −Byn)] ,

xn+1 = δnf(x̂n) + (1− δn)x̂n,

ŷn = yn − γn [(I − PQn)yn −B∗(Axn −Byn)] ,

yn+1 = δng(ŷn) + (1− δn)ŷn, n ≥ 0,

(4.4)

where the corresponding parameters {γn} and {δn} are defined as (R1) and (R2).
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Theorem 4.2. Given Assumption (V1) and Conditions (R1)-(R2). For any x0 ∈ H1

and y0 ∈ H2, the iterative sequence {(xn, yn)} generated by Algorithm (4.4) converges
strongly to (x∗, y∗) = PΩ(f(x∗), g(y∗)).

Proof. According to the proof of Theorems 3.5 and 4.1, it follows from Lemma 2.2
that the sequence {(xn, yn)} converges strongly to (x∗, y∗) = PΩ(f(x∗), g(y∗)). �

Remark 4.3. Obviously, when the contraction mappings are constant mappings,
that is, f(x) ≡ u, ∀x ∈ H1 and g(y) ≡ v, ∀y ∈ H2. This shows that the viscosity
algorithm is equivalent to the Halpern algorithm. It follows that the self-adaptive
viscosity-type CQ algorithm (4.1) and the self-adaptive relaxed viscosity-type CQ
algorithm (4.4) are actually Algorithm (3.12) in Corollary 3.4 and Algorithm (3.15)
in Corollary 3.6, respectively.

Remark 4.4. When B = I and H2 = H3, the split equality problem is equiva-
lent to the split feasibility problem. So, based on the previous conclusion, SHCQA,
SHRCQA, SVCQA and SRVCQA are applied to the split feasibility problems and
their strong convergence are also guaranteed under certain conditions.

5. An application to signal recovery

Compressed sensing is a popular and effective method for recovering a clean signal
from a polluted signal. To solve this problem, the following question needs to be
considered:

y = Ax + ε,

where y ∈ RM is the observed noise data, A : RM×N is a bounded linear observation
operator, x ∈ RN with k (k � N) non-zero elements is the original and clean data
that needs to be restored, and ε is the noise observation encountered during data
transmission. An important characteristic of such a problem is that the signal x is
sparse which means that the number of non-zero elements in the signal x is much
smaller than the dimension of the signal x. To overcome this difficulty, a familiar and
practical model of the problem, namely the following model of the convex constraint
minimization problem, is considered to characterize the above problem:

min
x∈RN

1

2
‖y −Ax‖2 subject to ‖x‖1 ≤ t , (5.1)

where t is a positive constant and ‖ · ‖1 is `1 norm. It should be pointed out that this
problem is related to the least absolute shrinkage and selection operator problem.
Note that the problem (5.1) described above can be regarded as a special case of
the split equality problem when C =

{
x ∈ RN | ‖x‖1 ≤ t

}
, Q = {y}, B = I and

H2 = H3. Hence, the proposed algorithms (SHCQA and SVCQA) can be applied to
the approximation solution of (5.1), for more detail, see [11].

6. Numerical experiments

In this section, all codes were written in Matlab R2018b, and ran on a Lenovo
ideapad 720S with 1.6 GHz Intel Core i5 processor and 8GB of RAM. We consider
some numerical experiments to demonstrate the efficiency of our results and compare
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them with the existing alternating CQ algorithm (ACQA) in Moudafi [13], simulta-
neous CQ algorithm (SCQA) in Byrne and Moudafi [3] and the following Dong et al.
algorithm in [8].

Theorem 6.1. [8] Let H1, H2 and H3 be Hilbert spaces, C and Q be two nonempty
closed subsets of H1, H2, respectively. Let A : H1 → H3 and B : H2 → H3 be
bounded linear operators, A∗ and B∗ be the adjoint operators of A, B, respectively.
Let f : H1 → H1 and g : H2 → H2 be two contraction mappings with coefficients

λ1 ∈ (0,
√

2
2 ), λ2 ∈ (0,

√
2

2 ), respectively. For any x0 ∈ H1 and y0 ∈ H2, the iterative
sequence {(xn, yn)} is generated by the following iterative scheme{

xn+1 = δnf(xn) + (1− δn)PC(xn − γnA∗(Axn −Byn)),

yn+1 = δng(yn) + (1− δn)PQ(yn + γnB
∗(Axn −Byn)), ∀n ≥ 0,

(6.1)

where δn ∈ (0, 1) such that limn→∞ δn = 0,
∑∞
n=0 δn =∞ and the stepsize

γn = αn min

{
‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2
,
‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2

}
, αn ∈ (ε, 1− ε) ⊂ (0, 1).

Then the iterative sequence {(xn, yn)} converges strongly to (x∗, y∗) ∈ Ω.

Remark 6.2. From the numerical results of Dong et al. algorithm in [8], they
considered a suitable stepsize selection based on Algorithm (6.1), that is,

γn = 0.65×min

{
‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2
,
‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2

}
.

Based on the above results, we will carry out the following work and obtain the
corresponding numerical results to characterize the effectiveness and superiority of
our algorithms.

(Test environment) According to the setting conditions of SEP, we choose the
following conditions: H1 = H2 = H3 = R3, C = {(x1, x2, x3)T ∈ H1 | x2

2+x2
3−1 ≤ 0},

and Q = {(y1, y2, y3)T ∈ H2 | y2
1 − y2 + 5 ≤ 0}, in addition, A =

[√
5 0 0

0 5 0
0 0 1

]
and

B =
[

1 0 0
0 1 0
0 0 1

]
.

By the above matrixes A and B, we can easily get the corresponding adjoint
operators of A and B, that is, A∗ = AT and B∗ = BT . Under the above assumption,
it is easy to prove that (x∗, y∗) is a unique solution of problem (1.1), where x∗ =
(0, 1, 0)T , y∗ = (0, 5, 0)T . The norm ‖Axn −Byn‖2 as an error estimate and denoted
by En for all of the following examples. Next, we study and analyze our numerical
experiments in such an environment.

Example 6.3. In the above test environment, we will analyze the convergence be-
havior of Algorithm (4.1) (SVCQA) in Theorem 4.1. Firstly, initial points x0, y0

generated randomly in R3,

γn = αn min

{
1,

‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

}
with αn =

99n

100n+ 1
,

and take contraction mappings f(x) = 0.5x, g(y) = 0.5y. We consider the following
four cases of the parameter δn: (a) δn = 1

n+1 , (b) δn = 1
n+10 , (c) δn = 1

n+30 , (d)
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δn = 1
n+50 . The numerical results of Algorithm (4.1) (SVCQA) for any initial points

x0, y0 are shown in Figure 1.
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Figure 1. The numerical results of four parameter choices of SVCQA

Remark 6.4. In Figure 1, we can easily see that all the results are valid and conver-
gent. Under the same number of iterations, the error accuracy of the fourth setting
(d) is better than all other cases for the different parameters δn in Algorithm (4.1).
In view of this, we choose δn = 1

n+50 in Algorithm (4.1).

Example 6.5. For Algorithm (4.1) (SVCQA) in Theorem 4.1, we further consider
the choice of contraction mappings f and g. Firstly, initial points x0, y0 generated
randomly in R3,

γn = αn min

{
1,

‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

}
with αn =

99n

100n+ 1
,

we choose directly the parameter δn = 1
n+50 and consider different contraction map-

pings f(x) = λ1x and g(y) = λ2y, λ = λ1 = λ2 ∈ [0, 1/
√

2) for any x ∈ H1, y ∈ H2.
The numerical results of Algorithm (4.1) (SVCQA) for any initial points x0, y0 are
shown in Figure 2.
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Figure 2. The numerical results of the different contraction map-
pings of SVCQA

Remark 6.6. • In Figure 2, we can see that all the results are valid and conver-
gent. Figure 2 shows that the coefficients λ1 and λ2 of contraction mappings
f and g have better convergence results in the range (0.5, 0.7) for any initial
points under the parameter δn = 1

n+50 .
• By virtue of the numerical results of Examples 5.1 and 5.2, we have analyzed

the different choices of parameters δn and contractions mapping in Algorithm
(4.1) (SVCQA) in Theorem 4.1. Further, we have got the best results, when

δn =
1

n+ 50
, f(x) = 0.6x, g(y) = 0.6y.

Example 6.7. For the four algorithms mentioned in this paper: alternating CQ al-
gorithm (ACQA) in Moudafi [13] (i.e., Algorithm (1.4)), simultaneous CQ algorithm
(SCQA) in Byrne and Moudafi [3] (i.e., Algorithm (1.5)), Dong et al. algorithm in [8]
(i.e., Algorithm (6.1)) and our algorithm (4.1) (SVCQA). We compare the number of
iterations of four algorithms with different initial points at the same iteration error
accuracy. Firstly, we set the corresponding parameters as follows:
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(I) Take γn in ACQA and SCQA as 0.9 min( 1
‖A‖2 ,

1
‖B‖2 ) and 0.9 2

‖A‖2+‖B‖2 , respec-

tively;
(II) Take the parameters in Algorithm (6.1) as δn = 1

n+50 , f(x) = 0.6x, g(y) = 0.6y
and

γn = 0.65 min

{
‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2
,
‖Axn −Byn‖2

‖B∗(Axn −Byn)‖2

}
.

(III) Take the parameters in Algorithm (4.1) (SVCQA) as δn = 1
n+50 , f(x) = 0.6x,

g(y) = 0.6y and

γn = αn min

{
1,

‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2

}
with αn =

99n

100n+ 1
.

For four different initial values, Figure 3 shows the iteration error En of the four
algorithms under the same number of iterations, and Table 1 shows the number of
iterations of the four algorithms at the same iteration error accuracy.
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Figure 3. The numerical results of four algorithms
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Table 1. Number of iterations for different error estimates

Initial point (x0, y0) ‖Axn −Byn‖2
Number of iterations

SVCQA ACQA SCQA Dong et al.

x0 = (0.7922, 0.9595, 0.6557)T

y0 = (0.0357, 0.8491, 0.9340)T

10−2 10 100 52 65
10−3 61 249 129 197
10−4 277 750 373 627

x0 = (0.6787, 0.7577, 0.7431)T

y0 = (0.3922, 0.6555, 0.1712)T

10−2 9 43 21 31
10−3 41 196 100 151
10−4 179 721 349 564

x0 = (0.7060, 0.0318, 0.2769)T

y0 = (0.0462, 0.0971, 0.8235)T

10−2 8 92 47 59
10−3 47 241 124 192
10−4 180 757 366 624

x0 = (0.1190, 0.4984, 0.9597)T

y0 = (0.3404, 0.5853, 0.2238)T

10−2 6 47 27 45
10−3 43 193 104 173
10−4 181 686 343 596

Remark 6.8. From Figure 3 and Table 1, we can see that our proposed algorithm
(4.1) (SVCQA) outperforms alternating CQ algorithm (ACQA), simultaneous CQ
algorithm (SCQA), Dong et al. algorithm (6.1) in both error accuracy and number
of iterations.

Example 6.9. Consider H1 = H2 = L2([0, 2π]) with the inner product 〈x, y〉 :=∫ 2π

0
x(t)y(t)dt and with the associated norm which given by ‖x‖2 :=

(∫ 2π

0
|x(t)|2dt

) 1
2

,

∀x, y ∈ L2([0, 2π]). The closed convex subsets are defined by

C =

{
x ∈ L2([0, 2π]) |

∫ 2π

0

x(t)dt ≤ 1

}
and

Q =

{
y ∈ L2([0, 2π]) |

∫ 2π

0

|y(t)− sin(t)|2 dt ≤ 16

}
.

Let us define a linear continuous operator A : L2([0, 2π])→ L2([0, 2π]) by (Ax)(t) :=
x(t). So (A∗x) (t) = x(t) and ‖A‖ = 1. Now, we solve the split equality problem:
find x∗ ∈ C, y∗ ∈ Q and Ax∗ = By∗, where B = I and H2 = H3. The projection
operators PC and PQ on the sets C and Q, respectively, are written as follows:

PC(x) =

{
1−

∫ 2π
0

x(t)dt

4π2 + x,
∫ 2π

0
x(t)dt > 1,

x,
∫ 2π

0
x(t)dt ≤ 1,

and

PQ(y) =

{
sin(t) + 4√∫ 2π

0
|y(t)−sin(t)|2dt

(y − sin(t)),
∫ 2π

0
|y(t)− sin(t)|2dt > 16,

y,
∫ 2π

0
|y(t)− sin(t)|2dt ≤ 16.
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En = ‖(I − PC)xn‖2 + ‖(I − PQ)Axn‖2 is used to measure the iteration error. The
stopping criterion is maximum number of iterations which is set to 100. Choose
un = x0 and vn = y0 in SHCQA, all the rest of the parameters in SHCQA and
SVCQA are selected as set in Example 6.7. Figure 4 shows the numerical behavior
of SHCQA and SVCQA with four different initial values.
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Figure 4. The numerical results of SHCQA and SVCQA for four
different initial choices

Example 6.10. According to the description of signal recovery problem in Section
5, SHCQA and SVCQA are used to solve the problem (5.1). Therefore, we consider
the following computing environment: The observation y is formed by y = Ax + ε
with white Gaussian noise ε of variance 10−4. The matrix A ∈ RM×N is created
from a standard normal distribution with zero mean and unit variance and then
orthonormalizing the rows. The clean signal x ∈ RN contains k (k � N) randomly
generated ±1 spikes. The recovery process starts with the initial signals x0 = 0, y0 =
0 and ends after 2000 iterations. The mean squared error MSE = (1/N) ‖x∗ − x‖2
(x∗ is an estimated signal of x) to measure the restoration accuracy of our algorithms.
In addition, set M = 256, N = 512 and k = 50. The parameters of SHCQA and
SVCQA are set as in Example 6.9. Figure 5 displays the original signal and the
contaminated signal. The recovery results of the suggested algorithms are shown in
Figure 6.
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Figure 5. Original signal and contaminated signal
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Figure 6. The original signal and the signal recovered by SVCQA
and SHCQA

7. Conclusion

The first conclusion from Sections 3 and 4 is that we propose four self-adaptive CQ
algorithms by using the Halpern algorithm and the viscosity algorithm for solving SEP
under the condition of a self-adaptive stepsize sequence. A point should be stressed
is that such a self-adaptive stepsize sequence does not depend on the prior knowledge
of operator norms. The second conclusion from the numerical results in Section 6
is that the convergence of our algorithm is validity and authenticity. Meanwhile,
our proposed self-adaptive viscosity-type CQ algorithm (4.1) (SVCQA) improves and
extends the existing results.
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