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where JBi
γ is the resolvent operator of Bi and is defined by JBi

γ = (I + γBi)
−1

for i = 1, 2. Inspired by the CQ algorithm in [3], the following weakly convergent
algorithm was introduced by Moudafi [17] to approximate a solution of the SMVIP:

(1.1) xn+1 = JB1
γ (I − γf1)

(
xn − λA∗(I − JB2

γ (I − γf2))Axn
)
, n ≥ 1,

where A∗ is the adjoint of A and λ ∈ (0, 1/L) with the spectral radius L of A∗A.
Two important special cases need to be emphasized. One is that f1 ≡ f2 ≡ 0,
the SMVIP is equivalent to the split variational inclusion problem. Furthermore,
Algorithm (1.1) is transformed into the algorithm proposed by Byrne [5] to solve
the split variational inclusion problem. The other is that B1 = NC and B2 = NQ,
where C and Q are nonempty closed convex subsets of H1 and H2, respectively,
NC and NQ are normal cones of C and Q, respectively, the SMVIP degenerates
into the split variational inequality problem. For more study on these problems,
see [2, 5, 7, 17,21,26].

More specifically, when f1 ≡ f2 ≡ 0, B1 = NC and B2 = NQ, the SMVIP is
equivalent to the split feasibility problem (for short, SFP). To solve such problems,
Byrne [3] proposed an important algorithm, namely CQ algorithm, by the idea of
the fixed point algorithm. In addition, from the perspective of the optimization
problem, the SFP can be regarded as a constrained optimization problem. In the
meantime, López et al. [13] suggested a modified CQ algorithm with an adaptive
step size, which makes it easy to implement in practical applications where it is
impossible or inconvenient to estimate the operator norm. Furthermore, some new
iterative algorithms are considered to solve the SFP in Yao et al. [23] and Zhou et
al. [27], and strong convergence of their algorithms are guaranteed.

Recall that the mapping T : H1 → H1 is said to be

(1) k-strictly pseudo-contractive if there exists k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− Tx− (y − Ty)∥2, ∀x, y ∈ H1.

(2) k-demicontractive if there exists k ∈ (−∞, 1) and Fix(T ) ̸= ∅ such that

∥Tx− p∥2 ≤ ∥x− p∥2 + k∥Tx− x∥2, ∀p ∈ Fix(T ), ∀x ∈ H1,

or equivalently

⟨x− p, x− Tx⟩ ≥ 1− k

2
∥x− Tx∥2, ∀p ∈ Fix(T ), ∀x ∈ H1.

Obviously, when the fixed point set is nonempty, the class of k-strictly pseudo-
contractive mappings is contained in the class of k-demicontractive mappings. Due
to the wide application background of fixed point problems, these mappings have
also been extensively studied and considered in many mathematical problems, for
more detail, see [19, 23, 27, 28] and the references therein. Simultaneously, the
improvement of the convergence speed of the algorithm on the above problems
and other interesting problems are often studied by adding inertial method in
[1, 11,14,18,27,28].

Motivated by [13,17,19,23,27], we will study the common solution of split mono-
tone variational inclusion and fixed point problem of demicontractive mappings
(shortly, SMVIFP) in infinite-dimensional Hilbert spaces, that is formulated to find
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a point x∗ ∈ H1 such that

0 ∈ f1(x
∗) +B1(x

∗), x∗ ∈ Fix(T ) and 0 ∈ f2(Ax
∗) +B2(Ax

∗),

where H1 and H2 are Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 are set-
valued maximal monotone mappings, f1 : H1 → H1 and f2 : H2 → H2 are single-
valued inverse strongly monotone mappings, T : H1 → H1 is a demicontractive
mapping, and A : H1 → H2 is a bounded linear operator. Meanwhile, assume
that the solution set Γ of this problem is nonempty. Under effects of an adaptive
step size and the inertial method, two modified iterative algorithms are proposed
for approximating the solution of the SMVIFP, and their strong convergence is
obtained under mild conditions. Moreover, the effectiveness of our algorithms is
illustrated in terms of numerical experiments.

The remainder of this paper is organized as follows. Section 2 provides some use-
ful definitions and lemmas. Two new inertial algorithms for solving the SMVIFP
and their convergence theorems are proposed in Sect. 3. In Sect. 4, some corollaries
and remarks arise from our results are given. Finally, in Sect. 5, the validity and au-
thenticity of the convergence behavior of the proposed algorithms are demonstrated
by some applicable numerical examples.

2. Preliminaries

In this section, some required definitions and lemmas are stated for the proofs
in Sect. 3. Assume that H is a real Hilbert space with the inner product ⟨· , ·⟩ and
the induced norm ∥ · ∥ induced by the inner product, and C is a nonempty closed
convex subset of H. The symbols xn → x and xn ⇀ x represent strong convergence
and weak convergence of the sequence {xn} to x, respectively. The fixed point set
of a mapping T is denoted by Fix(T ), i.e., Fix(T ) = {x | x = Tx}. The metric
projection PC of H onto C, is defined by PCx := argminy∈C ∥x− y∥, ∀x ∈ H. It is
known that

(2.1) ⟨PCx− x, PCx− y⟩ ≤ 0, ∀y ∈ C ⇔ ∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2.
Recall that B : H → 2H is a set-valued mapping with domain D(B) := {x ∈ H |
B(x) ̸= ∅} and graph Graph(B) := {(x,w) ∈ H × H | x ∈ D(B), w ∈ B(x)}. A
mapping B : H → 2H is monotone if and only if ⟨x−y, w−v⟩ ≥ 0 for any w ∈ B(x),
v ∈ B(y). Further, a monotone mapping B : H → 2H is maximal, that is, Graph(B)
is not properly contained in the graph of any other monotone mapping. In this case,
B is a maximal monotone mapping if and only if for any (x,w) ∈ Graph(B) and
(y, v) ∈ H ×H, ⟨x− y, w − v⟩ ≥ 0 implies v ∈ B(y).

Definition 2.1. For any x, y ∈ H, a mapping T : H → H is said to be

(1) firmly nonexpansive, if

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩,
or equivalently

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥x− Tx− (y − Ty)∥2.
(2) quasi-nonexpansive if Fix(T ) ̸= ∅ and

∥Tx− p∥ ≤ ∥x− p∥, ∀p ∈ Fix(T ).
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(3) directed if Fix(T ) ̸= ∅ and

∥Tx− p∥2 ≤ ∥x− p∥2 − ∥Tx− x∥2, ∀p ∈ Fix(T ).

(4) L-Lipschitz continuous with L > 0, if

∥Tx− Ty∥ ≤ L∥x− y∥.
In particular, if L = 1, it is nonexpansive. If L ∈ [0, 1), it is contraction.

(5) ϖ-averaged with ϖ ∈ (0, 1), if there exists a nonexpansive mapping S : H →
H and an identity mapping I : H → H such that

T = (1−ϖ)I +ϖS.

(6) η-strongly monotone, if there exists η > 0 such that

η∥x− y∥2 ≤ ⟨Tx− Ty, x− y⟩.
(7) ϑ-inverse strongly monotone, if there exists ϑ > 0 such that

ϑ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩.

The study of the above mappings has appeared in many important literatures,
for more detail, see [27,28]. The following crucial properties deserve our attention.

Remark 2.2. (I) The classes of quasi-nonexpansive mappings and directed
mappings are contained in the class of k-demicontractive mappings.

(II) The class of firmly nonexpansive mappings is included in the class of k-
strictly pseudo-contractive mappings.

(III) T is firmly nonexpansive mapping if and only if T is 1
2 -averaged, i.e., T =

1
2(I + S).

(IV) If T is ϑ-inverse strongly monotone, then ωT is ϑ
ω -inverse strongly monotone

for ω > 0.

(V) If T is averaged, then T is nonexpansive.

Definition 2.3. Let T be a mapping from H to H with Fix(T ) ̸= ∅. The com-
plement I − T is said to be demiclosed at zero if for an any sequence {xn} in H
satisfying xn ⇀ x∗ and (I − T )xn → 0, then x∗ ∈ Fix(T ).

Lemma 2.4 ([25]). Let T : C → C be a nonexpansive mapping with Fix(T ) ̸= ∅.
Then I − T is demiclosed at zero.

Lemma 2.5 ([15, 24]). Let T : C → H be a k-strictly pseudo-contractive mapping
with Fix(T ) ̸= ∅. Then I − T is demiclosed at 0 and Fix(T ) is closed and convex.

Lemma 2.6 ([22]). Let T : C → H be a k-demicontractive mapping. Then Fix(T )
is closed and convex.

Lemma 2.7 ( [9]). Let T : H → H be a k-demicontractive mapping and Tµ :=
(1− µ)I + µT . For any µ ∈ (0, 1− k),

∥Tµx− x∗∥2 ≤ ∥x− x∗∥2 − µ(1− k − µ)∥(I − T )x∥2, ∀x ∈ H, x∗ ∈ Fix(T ).
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Remark 2.8. From Lemma 2.7, it is obvious that Tµ is nonexpansive and

x∗ ∈ Fix(T ) ⇔ x∗ ∈ Fix(Tµ).

Lemma 2.9 ([4, 17]). (I) The composite of finitely many averaged mappings is
averaged;

(II) If the mappings {Ti}Ni=1 are averaged and have a nonempty common fixed
point, then

N∩
i=1

Fix(Ti) = Fix (T1 · · ·TN ) ;

(III) T is averaged ⇔ its complement I − T is ϑ-inverse strongly monotone for
some ϑ > 1

2 .

For any x, y ∈ H, the following equalities hold.

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩ ≤ ∥x∥2 + 2⟨y, x+ y⟩,(2.2)

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.(2.3)

Lemma 2.10 ( [8]). Let T : H → H be a nonexpansive mapping. For any x, y ∈ H,

⟨(x− Tx)− (y − Ty), T y − Tx⟩ ≤ 1

2
∥(x− Tx)− (y − Ty)∥2

and consequently if y ∈ Fix(T ), then

⟨x− Tx, y − Tx⟩ ≤ 1

2
∥x− Tx∥2.

Definition 2.11 ([16]). Let (X , d) be a metric space. f : X → X is said to be
a Meir-Keeler contraction mapping if for each ε > 0, there exists a number δ > 0
such that

ε ≤ d(x, y) < ε+ δ ⇒ d(f(x), f(y)) < ε, ∀x, y ∈ X .

Remark 2.12. It is clear that the class of Meir-Keeler contraction mappings con-
tains the class of contraction mappings. Besides, more examples and generalizations
of Meir-Keeler contraction mappings can be found in [20,27,28].

Lemma 2.13 ( [20]). Let C be a closed convex subset of a Banach space B. f :
C → C is a Meir-Keeler contraction mapping if and only if for each ε > 0, there
exists a number δ ∈ (0, 1) such that

∥x− y∥ ≥ ε ⇒ ∥f(x)− f(y)∥ ≤ δ∥x− y∥, ∀x, y ∈ C.

Lemma 2.14 ([17]). Let f : H → H be a mapping and B : H → 2H be a maximal
monotone mapping. The following properties hold.

(I) 0 ∈ f(x∗) +B(x∗) if and only if x∗ = JB
γ (I − γf)x∗, i.e., x∗ ∈ Fix(JB

γ (I −
γf)), for γ > 0;

(II) If f : H → H is ϑ-inverse strongly monotone, then JB
γ (I − γf) is average

for γ ∈ (0, 2ϑ).
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Remark 2.15. From Lemma 2.6 and Lemma 2.14 (I), the solution set of the SMV-
IFP is described in the following form

Γ = {x∗ ∈ H1 | x∗ ∈ Fix(JB1
γ (I − γf1)) ∩ Fix(T )

and

Ax∗ ∈ Fix(JB2
γ (I − γf2))}

and it is closed and convex.

Lemma 2.16 ( [10]). Let {Pn} and {cn} be two nonnegative real numbers sequences
such that

Pn+1 ≤ (1− an)Pn + anbn

and

Pn+1 ≤ Pn − cn + dn, n ≥ 1,

where {bn}, {dn} and {an} are real sequences with 0 < an < 1. If
∑∞

n=1 an = ∞,
limn→∞dn = 0, and limk→∞cnk

= 0 implies lim supk→∞ bnk
≤ 0 ({nk} is any

subsequence of real numbers of {n}). The sequence {Pn} converges to 0 as n → ∞.

3. Inertial algorithms and their convergence analysis

In this section, two algorithms are presented for finding the common solution
of the split monotone variational inclusion and fixed point problem. The common
advantage is that the strong convergence of the proposed algorithms are guaran-
teed under reasonable constraints. Until then, suppose that the solution set Γ is
nonempty and the following assumptions are satisfied:

(A1) H1, H2 are two real Hilbert spaces and A : H1 → H2 is a bounded linear
operator with the adjoint operator A∗;

(A2) f1 : H1 → H1 is an ϑ1-inverse strongly monotone mapping and f2 : H2 → H2

is an ϑ2-inverse strongly monotone mapping;
(A3) B1 : H1 → 2H1 and B2 : H2 → 2H2 are two set-valued maximal monotone

mappings;
(A4) f : H1 → H1 is a Meir-Keeler contraction mapping;
(A5) T : H1 → H1 is a k-demicontractive mapping and I − T is demiclosed at 0.

For convenience, set K1 = JB1
γ (I − γf1) and K2 = JB2

γ (I − γf2), then Γ =
{x∗ ∈ H1 | x∗ ∈ Fix(K1) ∩ Fix(T ) and Ax∗ ∈ Fix(K2)} for γ > 0. Under the
premise that Conditions (A1)-(A5) hold, two inertial algorithms employing a Meir-
Keeler contraction mapping and an adaptive step size selection are presented. Some
important lemmas will be given and can be used to show the convergence of the
proposed algorithms.
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Algorithm 1

Initialization: Put αn ∈ [0, α] ⊂ [0, 1), σn ∈ [a, b] ⊂ (0, 1), θn ∈ (0, 1),
µ ∈ (0, 1− k) and any initial guesses x0, x1 ∈ H1.
Compute xn+1 by the following way:

(3.1)


un = xn + αn(xn − xn−1),

yn = K1(un − λnA
∗(I −K2)Aun),

xn+1 = θnf(yn) + (1− θn)((1− µ)I + µT )yn, n ≥ 1,

where

(3.2) λn = σnτn and τn :=


∥(I −K2)Aun∥2

∥A∗(I −K2)Aun∥2
, Aun /∈ Fix(K2),

0, otherwise,

and the following control conditions are met:

(C1): limn→∞ θn = 0 and
∑∞

n=1 θn = ∞;

(C2): limn→∞
αn

θn
∥xn − xn−1∥ = 0;

(C3): 0 < γ < 2ϑ with ϑ = min{ϑ1, ϑ2}.

Algorithm 2

Initialzation: Put αn ∈ [0, α] ⊂ [0, 1), σn ∈ [a, b] ⊂ (0, 1), θn ∈ (0, 1),
µ ∈ (0, 1− k) and any initial guesses x0, x1 ∈ H1.
Compute xn+1 by the following way:

(3.3)


un = xn + αn(xn − xn−1),

yn = un − λn[(I −K1)un +A∗(I −K2)Aun],

xn+1 = θnf(yn) + (1− θn)((1− µ)I + µT )yn, n ≥ 1,

where

(3.4) λn = σnτn and τn :=


min

{
1

2
,

∥(I −K2)Aun∥2

2∥A∗(I −K2)Aun∥2

}
, Aun /∈ Fix(K2),

1

2
, otherwise,

and Conditions (C1)-(C3) are met.

Lemma 3.1. The step size sequence {λn} defined by (3.2) or (3.4) is well-defined.

Proof. From Lemma 2.9 (III) and Lemma 2.14 (II), we have that K2 is average and

I − K2 is ϑ̃2-inverse strongly monotone for ϑ̃2 > 1/2. For any x∗ ∈ Γ, we have
x∗ ∈ Fix(K1)

∩
Fix(T ) and Ax∗ ∈ Fix(K2). Further, we get

∥A∗(I −K2)Aun∥∥un − x∗∥ ≥ ⟨A∗(I −K2)Aun, un − x∗⟩
= ⟨(I −K2)Aun, Aun −Ax∗⟩

≥ ϑ̃2∥(I −K2)Aun∥2.
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If Aun /∈ Fix(K2), we get ∥A∗(I −K2)Aun∥ > 0. This means that {λn} generated
by (3.2) and (3.4) is well-defined. □

3.1. The convergence analysis of Algorithm 1.

Lemma 3.2. For any x∗ ∈ Γ, the results below hold in Algorithm 1:

(E1) ∥yn − x∗∥2 ≤ ∥un − x∗∥2 − λn(1 − σn)∥(I − K2)Aun∥2 for some Aun /∈
Fix(K2).

(E2) The sequences {xn}, {yn} and {un} are bounded.

Proof. Proof of (E1). For any x∗ ∈ Γ, we have x∗ ∈ Fix(K1)
∩
Fix(T ) and

Ax∗ ∈ Fix(K2). Since K1 and K2 are averaged in Lemma 2.14 (II), then are also
nonexpansive. Hence, by Lemma 2.10, we get

(3.5)

2λn⟨(I −K2)Aun, Aun −Ax∗⟩ = 2λn⟨(I −K2)Aun,K2Aun −Ax∗⟩
+ 2λn∥(I −K2)Aun∥2

≥ − λn∥(I −K2)Aun∥2

+ 2λn∥(I −K2)Aun∥2

= λn∥(I −K2)Aun∥2.

Further, from (3.5) and the definition of λn in (3.2), we have

(3.6)

∥yn − x∗∥2 ≤ ∥un − λnA
∗(I −K2)Aun − x∗∥2

= ∥un − x∗∥2 − 2λn⟨A∗(I −K2)Aun, un − x∗⟩
+ λ2

n∥A∗(I −K2)Aun∥2

= ∥un − x∗∥2 − 2λn⟨(I −K2)Aun, Aun −Ax∗⟩
+ λ2

n∥A∗(I −K2)Aun∥2

≤ ∥un − x∗∥2 − λn(1− σn)∥(I −K2)Aun∥2.

Proof of (E2). If for any ε > 0, ∥xn − x∗∥ ≤ ε, then {xn} is a bounded
sequence. On the contrary, ∥xn − x∗∥ ≥ ε, there exists a number δ ∈ (0, 1) by
Lemma 2.13 such that ∥f(xn)−f(x∗)∥ ≤ δ∥xn−x∗∥. Moreover, from (3.6) and the
definition of λn in (3.2), we get λn(1− σn)∥(I −K2)Aun∥2 ≥ 0, which means that
∥yn−x∗∥ ≤ ∥un−x∗∥. This inequality also satisfies when Aun belongs to Fix(K2).
It follows from Remark 2.8 that

∥xn+1 − x∗∥ ≤ θn∥f(yn)− f(x∗)∥+ θn∥f(x∗)− x∗∥
+ (1− θn)∥((1− µ)I + µT )yn − x∗∥

≤ (1− θn(1− δ))∥yn − x∗∥+ θn∥f(x∗)− x∗∥
≤ (1− θn(1− δ))∥xn − x∗∥+ θn∥f(x∗)− x∗∥
+ (1− θn(1− δ))αn∥xn − xn−1∥

≤ (1− θn(1− δ))∥xn − x∗∥

+ θn(1− δ)

(
∥f(x∗)− x∗∥

1− δ
+

αn∥xn − xn−1∥
θn(1− δ)

)
.
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In view of δ ∈ (0, 1) and Conditions (C1) and (C2), we obtain limn→∞
αn∥xn−xn−1∥

θn(1−δ) =

0. Therefore, there exists a non-negative constant M such that

M/2 = max

{
∥f(x∗)− x∗∥

1− δ
,
αn∥xn − xn−1∥

θn(1− δ)

}
.

Hence,

∥xn+1 − x∗∥ ≤ max{∥xn − x∗∥,M} ≤ · · · ≤ max{∥x1 − x∗∥,M}.
This implies that {xn} is bounded, so are {yn} and {un}. □
Theorem 3.3. The sequence {xn} generated by Algorithm 1 converges in norm a
point x∗ = PΓ ◦ f(x∗), i.e.,

⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Γ.

Proof. It is obvious that the solution set Γ is closed and convex, that is, PΓ is well-
defined. Since K1 is averaged, there exists a constant ϖ ∈ (0, 1) and a nonexpansive
mapping S such that K1 = (1−ϖ)I+ϖS. First of all, suppose that Aun /∈ Fix(K2)
for any n ≥ 1 and ∆n = un−λnA

∗(I−K2)Aun, it follows from (2.3) and (3.6) that

(3.7)

∥yn − x∗∥2 = ∥(1−ϖ)∆n +ϖS∆n − x∗∥2

≤ ∥∆n − x∗∥2 − 2ϖ(1−ϖ)∥(I − S)∆n∥2

≤ ∥un − x∗∥2 − λn(1− σn)∥(I −K2)Aun∥2

− 2ϖ(1−ϖ)∥(I − S)∆n∥2.

Let Hn = λn(1 − σn)∥(I − K2)Aun∥2 + 2ϖ(1 − ϖ)∥(I − S)∆n∥2. Using (2.2), we
get

(3.8)
∥un − x∗∥2 ≤ ∥xn − x∗∥2 + 2αn⟨un − x∗, xn − xn−1⟩

≤ ∥xn − x∗∥2 + 2αn∥un − x∗∥∥xn − xn−1∥.

Further, from (3.7), (3.8) and Lemma 2.7, we can obtain

(3.9)

∥θn(f(yn)− f(x∗)) + (1− θn)(((1− µ)I + µT )yn − x∗)∥2

≤ θn∥f(yn)− f(x∗)∥2 + (1− θn)∥((1− µ)I + µT )yn − x∗∥2

≤ (1− θn(1− δ2))∥yn − x∗∥2 − µ(1− θn)(1− k − µ)∥(I − T )yn∥2

≤ (1− θn(1− δ))∥xn − x∗∥2 + 2(1− θn(1− δ))αn∥un − x∗∥∥xn − xn−1∥
− (1− θn(1− δ))Hn − µ(1− θn)(1− k − µ)∥(I − T )yn∥2.

By (2.2) and (3.9), we get

∥xn+1 − x∗∥2

≤ ∥θn(f(yn)− f(x∗)) + (1− θn)(((1− µ)I + µT )yn − x∗)∥2

+ 2θn⟨f(x∗)− x∗, xn+1 − x∗⟩
≤ (1− θn(1− δ))∥xn − x∗∥2 + 2(1− θn(1− δ))αn∥un − x∗∥∥xn − xn−1∥
+ 2θn⟨f(x∗)− x∗, xn+1 − x∗⟩ − (1− θn(1− δ))Hn

− µ(1− θn)(1− k − µ)∥(I − T )yn∥2.
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Set ∆n = ∥xn − x∗∥2, an = θn(1− δ), cn = (1− an)Hn + µ(1− θn)(1− k − µ)∥(I −
T )yn∥2, dn = 2(1 − an)αn∥un − x∗∥∥xn − xn−1∥ + 2θn⟨f(x∗) − x∗, xn+1 − x∗⟩ and
bn = dn/an. It is easy to check that

∆n+1 ≤ (1− an)∆n + anbn and ∆n+1 ≤ ∆n − cn + dn, n ≥ 1.

By δ ∈ (0, 1), Conditions (C1) and (C2) and the boundedness of {xn} and {un},
the following observations are satisfied:

(3.10) {an} ⊂ (0, 1),
∞∑
n=1

an = ∞ and lim
n→∞

dn = 0.

In addition, suppose that liml→∞ cnl
= 0 for any subsequence {nl} of {n}, we have

lim
l→∞

Hnl
= lim

l→∞
∥(I − T )ynl

∥ = 0.

Using the definition of λn and Hn we get liml→∞ ∥(I − K1)unl
∥ = liml→∞ ∥(I −

S)∆nl
∥ = 0. Besides,

∥ynl
− unk

∥ ≤ ∥ynl
−∆nl

∥+ ∥∆nl
− unl

∥
≤ κ∥(I − S)∆nl

∥+ λnl
∥A∥∥(I −K2)Aunl

∥ → 0, as l → ∞,

and

∥unl
−K1unl

∥ ≤ ∥unl
− ynl

∥+ ∥ynl
−K1unl

∥
≤ ∥unl

− ynl
∥+ λnl

∥A∥∥(I −K2)Aunl
∥ → 0, as l → ∞.

Furthermore, liml→∞ ∥unl
− xnl

∥ = liml→∞ αnl
∥xnl

− xnl−1∥ = 0. Since the bound-
edness of {xn}, there exists a subsequence {xnlj

} of {xnl
} such that xnlj

⇀ x̄

and lim supl→∞⟨f(x∗) − x∗, xnl
− x∗⟩ = limj→∞⟨f(x∗) − x∗, xnlj

− x∗⟩. Then,

unlj
⇀ x̄, ynlj

⇀ x̄ and Aunlj
⇀ Ax̄ by the linearity of A. Since I − T is

demiclosed at 0 and K1, K2 are nonexpansive, we get x̄ ∈ Fix(K1)
∩
Fix(T ) and

Ax̄ ∈ Fix(K2) by Definition 2.3 and Lemma 2.4. More precisely, x̄ ∈ Γ and
limj→∞⟨f(x∗) − x∗, xnlj

− x∗⟩ = ⟨f(x∗) − x∗, x̄ − x∗⟩ ≤ 0 by (2.1). On the other

hand,

∥xnl+1 − ynl
∥ ≤ θnl

∥f(ynl
)− ynl

∥+ (1− θnl
)∥((1− µ)I + µT )ynl

− ynl
∥

= θnl
∥f(ynl

)− ynl
∥+ (1− θnl

)µ∥(I − T )ynl
∥ → 0, as l → ∞,

and

∥xnl+1 − xnl
∥ ≤ ∥xnl+1 − ynl

∥+ ∥ynl
− unl

∥+ ∥unl
− xnl

∥ → 0, as l → ∞.

So, we have

lim sup
l→∞

⟨f(x∗)− x∗, xnl+1 − x∗⟩ ≤ 0 and lim
n→∞

αn∥un − x∗∥∥xn − xn−1∥
θn(1− δ)

= 0,

which shows that lim supl→∞ bnl
≤ 0. Thus, ∥xn − x∗∥ → 0 as n → ∞ by Lemma

2.16, that is to say, {xn} converges in norm to x∗ = PΓ◦f(x∗). In the case that Aun
belongs to Fix(K2), the same result can be obtained by using the above method.
This completes the proof. □
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3.2. The convergence analysis of Algorithm 2.

Lemma 3.4. For any x∗ ∈ Γ, the following conclusions hold in Algorithm 2:

(L1) ∥yn − x∗∥2 ≤ ∥un − x∗∥2 −Wn for some Aun /∈ Fix(K2), where

Wn = (λn − 2λ2
n)∥(I −K1)un∥2 + λn∥(I −K2)Aun∥2 − 2λ2

n∥A∗(I −K2)Aun∥2.
(L2) The sequences {xn}, {yn} and {un} are bounded.
(L3) Assume that an = θn(1 − δ), dn = 2(1 − an)αn∥un − x∗∥∥xn − xn−1∥ +

2θn⟨f(x∗)−x∗, xn+1−x∗⟩ and cn = (1− an)Wn+µ(1− θn)(1− k−µ)∥(I −
T )yn∥2, we have

∥xn+1 − x∗∥2 ≤ (1− an)∥xn − x∗∥2 − cn + dn.

Proof. Proof of (L1). Similarly, for any x∗ ∈ Γ, using the same way in (3.5), we
have

2 ⟨Aun −Ax∗, (I −K2)Aun⟩ ≥ ∥(I −K2)Aun∥2

and 2 ⟨un − x∗, (I −K1)un⟩ ≥ ∥(I −K1)un∥2. So

(3.11)

2 ⟨un − x∗, (I −K1)un +A∗(I −K2)Aun⟩
= 2 ⟨un − x∗, (I −K1)un⟩+ 2 ⟨Aun −Ax∗, (I −K2)Aun⟩
≥ ∥(I −K1)un∥2 + ∥(I −K2)Aun∥2,

and

(3.12)

∥yn − x∗∥2 = ∥un − x∗∥2 + λ2
n∥(I −K1)un +A∗(I −K2)Aun∥2

− 2λn ⟨un − x∗, (I −K1)un +A∗(I −K2)Aun⟩
≤ ∥un − x∗∥2 + (2λ2

n − λn)∥(I −K1)un∥2

+ 2λ2
n∥A∗(I −K2)Aun∥2 − λn∥(I −K2)Aun∥2.

Proof of (L2). From the definition of λn in (3.4), we get

(λn − 2λ2
n)∥(I −K1)un∥2 ≥ 0 and λn∥(I −K2)Aun∥2 − 2λ2

n∥A∗(I −K2)Aun∥2 ≥ 0,

which means that ∥yn − x∗∥ ≤ ∥un − x∗∥. Using the same method as in Lemma 3.2
(E2), we also obtain that {xn} is bounded, so are {yn} and {un}.

Proof of (L3). Combining (3.8) and (3.12), we get

(3.13) ∥yn − x∗∥2 ≤ ∥xn − x∗∥2 + 2αn∥un − x∗∥∥xn − xn−1∥ −Wn.

Applying the same method as in Theorem 3.3 to (3.13), we obtain

∥xn+1 − x∗∥2 ≤ (1− θn(1− δ))∥xn − x∗∥2 + 2θn⟨f(x∗)− x∗, xn+1 − x∗⟩
− (1− θn(1− δ))Wn − µ(1− θn)(1− k − µ)∥(I − T )yn∥2

+ 2(1− θn(1− δ))αn∥un − x∗∥∥xn − xn−1∥
= (1− an)∥xn − x∗∥2 − cn + dn.

The proof is completed. □
Theorem 3.5. The sequence {xn} formed by Algorithm 2 converges in norm a
point x∗ = PΓ ◦ f(x∗), i.e.,

⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Γ.
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Proof. Let ∆n = ∥xn − x∗∥2 and bn = dn/an. It follows from Lemma 3.4 (L3) that

∆n+1 ≤ (1− an)∆n + anbn and ∆n+1 ≤ ∆n − cn + dn, n ≥ 1.

Naturally, {an} and {dn} also satisfy (3.10). In the same way, assume that liml→∞ cnl
=

0 for any subsequence {nl} of {n}, we have

lim
l→∞

Wnl
= lim

l→∞
∥(I − T )ynl

∥ = 0.

Using the definition of λn and Wn, we get

lim
l→∞

∥(I −K1)unl
∥ = lim

l→∞
∥(I −K2)Aunl

∥ = 0.

Furthermore,

lim
l→∞

∥ynl
− unl

∥ ≤ lim
l→∞

λnl
(∥(I −K1)unl

∥+ ∥A∥∥(I −K2)Aunl
∥) = 0

and liml→∞ ∥unl
− xnl

∥ = liml→∞ αnl
∥xnl

− xnl−1∥ = 0. Combining the above
results with the proof in Theorem 3.3, it can also be obtained that the sequence
{xn} converges in norm to a point x∗ = PΓ ◦ f(x∗). This completes the proof. □

According to Remark 2.12, the following propositions are obtained by Theorems
3.3 and 3.5.

Proposition 3.6. Let f : H1 → H1 be a contraction mapping in Algorithms 1 and
2. The sequence {xn} converges in norm to x∗ = PΓ ◦ f(x∗), i.e.,

⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Γ.

Further, if the mapping f is a zero mapping, Algorithms 1 and 2 can be reduced
to

(3.14)


un = xn + αn(xn − xn−1),

yn = K1(un − λnA
∗(I −K2)Aun),

xn+1 = (1− θn)((1− µ)I + µT )yn, n ≥ 1,

and

(3.15)


un = xn + αn(xn − xn−1),

yn = un − λn[(I −K1)un +A∗(I −K2)Aun],

xn+1 = (1− θn)((1− µ)I + µT )yn, n ≥ 1,

respectively. Here {αn}, {σn}, {θn} and µ are defined as in Algorithm 1, Conditions
(C1)-(C3) are satisfied, and the adaptive step size λn in (3.14) and (3.15) is selected
as in (3.2) and (3.4), respectively.

Proposition 3.7. Assume that (A1)-(A3) and (A5) hold. The sequence {xn} gen-
erated by the algorithms (3.14) and (3.15) converges in norm to a point x∗ = PΓ(0),
i.e., the minimum-norm element of Γ.
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4. Some important corollaries and remarks

In what follows, some important corollaries arise from Theorems 3.3 and 3.5 are
given and these results are easily verified using the previous proof procedure and
related lemmas. First of all, the SMVIP is a special case that the mapping T is a
identity mapping in the SMVIFP, it is easy to obtain the following corollaries.

Corollary 4.1. Assume that (A1)-(A4) hold. For any x0, x1 ∈ H1, the sequence
{xn} is defined by the following algorithm

un = xn + αn(xn − xn−1),

yn = K1(un − λnA
∗(I −K2)Aun),

xn+1 = θnf(yn) + (1− θn)yn, n ≥ 1,

where λn is defined as (3.2) and Conditions (C1)-(C3) are satisfied. Suppose that
the solution set of the split monotone variational inclusion problem is nonempty and
is represented by Ψ. Then the sequence {xn} converges in norm to x∗ = PΨ ◦f(x∗),
i.e., ⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Ψ.

Corollary 4.2. Assume that (A1)-(A4) hold. For any x0, x1 ∈ H1, the sequence
{xn} is defined by the following algorithm

un = xn + αn(xn − xn−1),

yn = un − λn[(I −K1)un +A∗(I −K2)Aun],

xn+1 = θnf(yn) + (1− θn)yn, n ≥ 1,

where λn is defined as (3.4) and Conditions (C1)-(C3) are satisfied. Suppose that
the solution set Ψ of the SMVIP is nonempty. Then the sequence {xn} converges
in norm to x∗ = PΨ ◦ f(x∗), i.e., ⟨f(x∗)− x∗, x− x∗⟩ ≤ 0, ∀x ∈ Ψ.

For further discussion, the SMVIP also generalizes the split variational inclusion
problem, the split variational inequality problem and the split feasibility problem.
In the same way, the main results in Theorems 3.3 and 3.5 can be applied to these
problems. These results also promote some existing work, such as Moudafi [17],
Byrne et al. [5], Censor et al. [7], Long et al. [21] and Anh et al. [2]. Moreover, all
applications of these problems are also covered in the split monotone variational in-
clusion problem. In addition, there are some special cases about the demicontractive
mapping that should be noted:

Case 1: The k-strictly pseudo-contractive mapping with nonempty fixed point sets
is the k-demicontractive mapping and the complement of the k-strictly
pseudo-contractive mapping is demiclosed at 0 since Lemma 2.5.

Case 2: The directed mapping is the −1-demicontractive mapping and includes
the firmly nonexpansive mapping with nonempty fixed point sets.

Case 3: The quasi-nonexpansive mapping is the 0-demicontractive mapping and
includes the nonexpansive mapping with nonempty fixed point sets.

Hence, when T is one of the above cases in Algorithms 1 and 2, the strong conver-
gence of iterative sequence {xn} is still true. That is to say, Theorems 3.3 and 3.5
generalize the known results in Shehu and Ogbuisi [19] and Kazmi and Rizvi [12].

The following remarks are some interesting explanations and considerations of
the inertial coefficient αn and adaptive step size λn in our algorithms.
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Remark 4.3. (I) Since the norm of (xn−xn−1) is known in each iteration, the above
conditional constraints on the inertial extrapolation term are easy to achieve in
practical applications. Further, the coefficient αn can be considered in the following
form:

(4.1) αn :=

min

{
α,

βn
∥xn − xn−1∥

}
, xn ̸= xn−1,

α, otherwise,

where α ∈ [0, 1) and limn→∞
βn

θn
= 0. For more detail, see [27].

(II) In particular, when αn = 0, the proposed algorithms become the case without
inertial extrapolation term, that is, un = xn in (3.1) and (3.3). But, our results in
Theorems 3.3 and 3.5 are still correct.

Remark 4.4. By virtue of (3.11), we have modified (3.12) as follows:

∥yn − x∗∥2 = ∥un − x∗∥2 + λ2
n∥(I −K1)un +A∗(I −K2)Aun∥2

− 2λn ⟨un − x∗, (I −K1)un +A∗(I −K2)Aun⟩
≤ ∥un − x∗∥2 + λ2

n∥(I −K1)un +A∗(I −K2)Aun∥2

− λn∥(I −K1)un∥2 − λn∥(I −K2)Aun∥2.

In the same way, set adaptive step size

(4.2) λn = σnτn and τn :=
∥(I −K1)un∥2 + ∥(I −K2)Aun∥2

∥(I −K1)un +A∗(I −K2)Aun∥2
.

When (4.2) replaces (3.4) in Algorithms 2, the strong convergence of {xn} is still
satisfied.

5. Numerical examples

In this section, we provide some numerical examples to demonstrate the effec-
tiveness and realization of Algorithms 1 and 2. All the programs were implemented
in Matlab 2018a on a Intel(R) Core(TM) i5-8250U CPU @1.60 GHz computer with
RAM 8.00 GB. Our results compare the existing conclusions below. Firstly, let H1

and H2 be real Hilbert spaces and A : H1 → H2 be a bounded linear operator
with the adjoint operator A∗. Let f1 : H1 → H1 be a ϑ1-inverse strongly mono-
tone mapping and f2 : H2 → H2 be a ϑ2-inverse strongly monotone mapping. Let
B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone mappings.

Theorem 5.1 ( [19]). Let T : H1 → H1 be a k-strictly pseudo-contractive mapping
and Γ ̸= ∅. For any x1 ∈ H1, {xn} is generated by the following process

(SO)


wn = (1− θn)xn,

yn = JB1
γ (I − γf1)

(
wn + λA∗ (JB2

γ (I − γf2)− I
)
Awn

)
,

xn+1 = (1− µn) yn + µnTyn,

where 0 < γ < 2ϑ1, 2ϑ2 and λ ∈ (0, 1/L), L is the spectral radius of AA∗. Suppose
that {θn} and {µn} are real sequences in (0, 1) satisfying limn→∞ θn = 0,

∑∞
n=1 θn =

∞ and 0 < lim inf µn ≤ lim supµn < 1−k. Then {xn} converges in norm to x∗ ∈ Γ.
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Example 5.2. Assume that A,A1, A2 : Rm → Rm are created from a normal
distribution with mean zero and unit variance. Let B1 : Rm → Rm and B2 : Rm →
Rm be defined by B1(x) = A∗

1A1x and B2(y) = A∗
2A2y, respectively. Consider the

problem of finding a point x̄ = (x̄1, . . . , x̄m)T ∈ Rm such that B1(x̄) = (0, . . . , 0)T

and B2(Ax̄) = (0, . . . , 0)T. Let mapping T be defined by Tx = 0.5x. Obviously,
x∗ = (0, . . . , 0)Tis a solution of this problem. In this example, we compare the
presented algorithms with Algorithm (SO) introduced by Shehu and Ogbuisi [19]. In
the proposed Algorithms 1 and 2, take f1 = f2 = 0, γ = 1, θn = 1/(n+1), σn = 0.5,
µ = 0.9, f(x) = 0.1x, and αn is defined as (4.1) with α = 0.5 and βn = 1/(n+ 1)2.
Choose f1 = f2 = 0, γ = 1, θn = 1/(n + 1), λ = 0.5/∥A∗A∥ and µn = 0.9 for
Algorithm (SO). The start points with the initial values x0 = x1 = 5rand(m, 1).
The stopping condition isDn = ∥xn − x∗∥ < 10−5. Table 1 shows that the numerical
results of all algorithms with four different dimensions.

Table 1. Numerical results for Example 5.2

Algorithms
m = 100 m = 200 m = 500 m = 1000

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 1 15 0.0199 16 0.0428 16 0.2158 16 1.3006
Our Alg. 2 19 0.0212 20 0.0540 20 0.2633 20 1.5697
Alg. (SO) 23 0.0408 25 0.1343 24 0.8310 25 6.9339

Example 5.3. Assume that H1 = H2 = L2([0, 1]) with the inner product ⟨x, y⟩ :=∫ 1
0 x(t)y(t) dt and the induced norm ∥x∥ :=

( ∫ 1
0 |x(t)|2 dt

)1/2
, for any x, y ∈ L2([0, 1]).

Consider the following nonempty closed and convex subsets C1 and Q1 in L2([0, 1]):

C1 :=
{
x ∈ L2([0, 1]) |

∫ 1

0
x(t) dt ≤ 1

}
and

Q1 :=
{
y ∈ L2([0, 1]) |

∫ 1

0
|y(t)− sin(t)|2 dt ≤ 16

}
.

Suppose that A : L2([0, 1]) → L2([0, 1]) is the Volterra integration operator, and

is defined by (Ax)(t) =
∫ t
0 x(s) ds, ∀t ∈ [0, 1], x ∈ H1. So, A is a bounded linear

operator with the norm ∥A∥ = 2/π. Moreover, the adjoint operator A∗ of A is

defined by (A∗x)(t) =
∫ 1
t x(s) ds. Meanwhile, its projections on sets C1 and Q1

have explicit forms, i.e.,

PC1(x) =

{
1− a+ x , a > 1 ;

x , a ≤ 1 ,
and PQ1(y) =

{
sin(·) + 4(y−sin(·))√

b
, b > 16 ;

y , b ≤ 16 ,

where a :=
∫ 1
0 x(t) dt and b :=

∫ 1
0 |y(t) − sin(t)|2 dt. Let the operator T be defined

by Tx = x. The parameters of all algorithms are set the same as in Example 5.2.
The function Dn = ∥xn+1 − xn∥2 is used to measure the error of the n-th iteration
step. The maximum number of iterations 50 is a common stopping criterion for
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all algorithms. Figure 1 shows the numerical behavior of all algorithms with four
different initial values.
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(c) x0 = x1 = 500 sin(t)
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Figure 1. Numerical behavior of all algorithms for Example 5.3

Example 5.4. In signal recovery problems, the following underdetermined system
problem is often considered and resolved:

(5.1) y = Ax+ ε ,

where y ∈ RM is the observed noise data, A ∈ RM×N is a bounded linear obser-
vation operator, x ∈ RN with k (k ≪ N) non-zero elements is the original and
clean data that needs to be restored, and ε is the noise observation encountered
during data transmission. The difficulty is that the signal x is sparse, that is, the
number of non-zero elements in the signal x is much smaller than the dimension
of the signal x. Thus, the problem (5.1) can be expressed as the following convex
constraint minimization problem:

(5.2) min
x∈RN

1

2
∥y −Ax∥2 subject to ∥x∥1 ≤ t ,

where t is a positive constant and ∥ · ∥1 is ℓ1 norm. More precisely, the problem
(5.2) is equivalent to the split feasibility problem when C1 =

{
x ∈ RN : ∥x∥1 ≤ t

}
and Q1 = {y}. In this numerical experiment, the matrix A ∈ RM×N is created
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from a standard normal distribution with zero mean and unit variance and then
orthonormalizing the rows. The clean signal x ∈ RN contains k (k ≪ N) randomly
generated ±1 spikes. The observation y is formed by y = Ax + ε with white
Gaussian noise ε of variance 10−4. The recovery process starts with the initial
signals x0 = x1 = 0 and ends after 1000 iterations. We use the mean squared
error MSE = (1/N) ∥x∗ − x∥2 (x∗ is an estimated signal of x) to measure the
restoration accuracy of all algorithms. Set M = 512, N = 1024, k = 20 and T is
an identity mapping in suggested Algorithms 1 and 2. The other parameters of the
proposed algorithms are the same as those in Example 5.2. The recovery results of
the suggested algorithms are shown in Fig. 2.
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Figure 2. The original signal and the signal recovered by our algorithms

Through the above experiment results on Examples 5.2–5.4, the following con-
clusions can be easily obtained.

(1) For different dimensions and initial values, Table 1 and Fig. 1 show that
our algorithms are stable, efficient and easy to implement without using
operator norms.

(2) From Table 1, under the same error accuracy, the number of iterations and
CPU time of our algorithms is less than that of Algorithm (SO).

(3) From Fig. 1, under the same number of iterations, the error of our algo-
rithms is much lower than Algorithm (SO).

(4) Figure 2 shows the original signal and the signal recovered by our algorithms,
and verifies the usability of our algorithms in signal recovery problems.

6. Conclusions

In this paper, two strongly convergent algorithms with the Meir-Keeler contrac-
tion mapping and the inertial method are proposed for finding the common so-
lution of the split monotone variational inclusion and the fixed point problem of
demicontractive mappings. More importantly, an adaptive step size independent
of the operator norm is considered in our algorithms, which solves the problem
that the operator norm cannot be estimated in practical applications. Our results
also improve the existing results in many mathematical problems, such as the split
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monotone variational inclusion problem, the split variational inclusion problem, the
split variational inequality problem and the split feasibility problem. Moreover,
the convergence performance of our algorithms is demonstrated by some numerical
experiments including signal recovery problems.
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