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1 | INTRODUCTION

As one of the important generalized forms of convex feasibility problems, the split feasibility problem (shortly, SFP) was
introduced by Censor and Elfving! in 1994 and used to model inverse problems in phase retrievals and medical image
reconstruction. In fact, the SFP is also used in signal recovery, computer tomography, radiation therapy treatment plan-
ning, and so forth; for further detail, see previous works?>* and the references therein. At the same time, many good
algorithms and excellent convergence results have been produced in the study of the approximate solution of the SFP,
among which the CQ method given by Byrne? is the most familiar iterative method. Further research, the feasible sets
in the SFP are often considered as other forms, such as the fixed point set of nonlinear mappings, the solution set of
variational inequality problems, the solution set of equilibrium problems, and the solution set of inclusion problem. Con-
sequently, Moudafi® introduced the split monotone variational inclusion problem (shortly, SMVIP) that is formulated as
follows:
Find x € H;, such that 0 € f1(x) + Bi(x) and 0 € f2(Ax) + B,(Ax),

where H; and H, are Hilbert spaces, f; : H; — H; and f, : H, — H, are single-valued mappings, B; : H; — 2M
and B, : H, — 2™ are set-valued maximal monotone mappings, A : H; — H, is a bounded linear operator. By
means of Byrne's CQ method, Moudafi suggested the following iterative algorithm: for arbitrary x; € Hy, y >0, X411 =
Jf] T =y 1), — AA*U — sz(l — v [2)Ax,), n>1, where in is resolvent operator of B; and is defined by Jff = I +yB)™!
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fory>0andi = 1, 2, A* is the adjoint operator of A and I is an identity mapping. Meanwhile, the generated sequence
{x,} converges weakly to a solution of the SMVIP under mild assumptions. It should be emphasized that the SMVIP also
covers many split problems, such as the split variational inclusion problem, the split variational inequality problem and
the split feasibility problem; for more detail, see Section 5.

Specifically, in this case that fi =0 =f, By = N¢, and B, = Ng, (N¢, and Ny, are normal cone of C; and Qy, respectively),
the SMVIP is viewed as the SFP, that is,

find x € C; such that Ax € Qy, 1

where C; and Q; are nonempty closed convex subsets of H; and H,, respectively. From the perspective of optimization
problems, the SFP can also be described as a constrained optimization problem as follows:

1 )
f?élc?z”Ax Py (Ax)||”.

For convenience, take the objective function F(x) = %lle — Pg,(Ax)||*. Obviously, F is continuously differentiable, its
gradient is given by VF(x) = A* (I — Pg, ) A(x), and VF is ||A||?-Lipschitz continuous. The gradient projection method is
used to deal with this problem and the following iterative scheme is generated:

Xns1 = Pc, (I = AA* (I =Pg ) A) Xp, n > 1, ()

7 j”z > Generally, suppose that H; := RN, H, := RM, A is areal M by N matrix, and A* = AT

(AT is the transposition of A). So VF is p(ATA)-Lipschitz continuous (p(ATA) is the spectral radius of the matrix ATA) and
Algorithm (2) is exactly the CQ algorithm proposed by Byrne.> Thanks to the iterative form generated by the gradient
projection method, Lopez et al” constructed an adaptive step size sequence {4,,} to replace A in Algorithm (2), that is, A, :=

|I;§§cx;?|2 witho, € (0,4). This variable step size increases the practicability of the algorithm in applications, especially

when it is not easy or possible to calculate the norm of A and the spectral radius of ATA. Recently, Yao et al® introduced
a weakly convergent algorithm for solving the SMVIP by using the idea of this step size. But a common flaw in previous
studies>®8 is that they can only guarantee the weak convergence of the algorithm. Naturally, an interesting question is
how to construct a strongly convergent algorithm with an adaptive step size criterion that approximates the solution of
the SMVIP.

In fact, the strong convergence of iterative sequences is better than the weak convergence for some applications in an
infinite-dimensional Hilbert space, for example, CT reconstruction and machine learning. One of the most familiar strong
convergence algorithms is the viscosity algorithm introduced by Moudafi® in 2000 which is implemented by using a con-
traction mapping embedded in the Krasnosel'skii-Mann iterative algorithm. Further, Marino and Xu'® proposed a general
viscosity algorithm by combining a contraction mapping and a strongly positive bounded linear operator. Meanwhile, the
generated sequence converges strongly to the unique solution of a variational inequality, which is also the solution of a
convex minimization problem. In addition, Yamada!! introduced the hybrid steepest descent method for solving a vari-
ational inequality problem over the fixed point set of a nonexpansive mapping. The resulting sequence also converges
in norm to the unique solution of a variational inequality. Inspiration from the above work, Tian!? suggested a strongly
convergent algorithm by combining a contraction mapping and a Lipschitz continuous and strongly monotone mapping.

On the other hand, based on the idea of the implicit discretization of a differential system of the second-order in time,
Alvarez and Attouch!® gave an implicit weakly convergent algorithm to approximate a solution of the variational inclusion
problem:

where A is a constant in <0

0 € Xu41 — Xn — n(Xn — Xu-1) + ¥nB(Xn11),
which can also be expressed as the following explicit iterative form:
Xny1 = ]i (X + an(Xn — Xp-1)) (IPPA)

where B : H — 2™ is a maximal monotone mapping, Jﬁ is the resolvent operator of B, for y,, > y > 0. Such an algorithm is
called the inertial proximal point algorithm (for short, IPPA), and a,(x, —x, 1) is referred to as the inertial extrapolation
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term of IPPA. By means of this design, the iterative sequence {x,} can quickly converge to a solution of the variational
inclusion problem. At the same time, the inertial technique plays an important role in accelerating the convergence speed
of the algorithm for solving other mathematical problems, such as the variational inequality problem,'*!> the fixed point
problem,'®-!8 the inclusion problem,'-2? and references therein.

Based on the above results, two novel strongly convergent inertial algorithms are proposed for solving the split mono-
tone variational inclusion problem in infinite-dimensional Hilbert spaces. To be more precise, our contribution in this
paper is twofold. The first one is that these two algorithms combine the hybrid steepest descent method and the inertial
method. Thus, the strong convergence and fast convergence behavior of the suggested algorithms are guaranteed and
implemented. The second one is that a variable step size is chosen in our algorithms, which is generated adaptively by
calculating each iteration. Furthermore, this step size criterion effectively overcomes the case that the operator norm is
not easy to calculate in the iteration process.

The rest of the article is organized as follows. Section 2 introduces some basic definitions and useful lemmas to explain
the subsequent proofs. In Section 3, we give two new algorithms, namely, Algorithms 1 and 2. Then in Section 4, the
main results are presented and the corresponding proofs are given. In addition, some theoretical applications to other
split problems are presented in Section 5. Finally, in Section 6, some numerical experiments including signal recovery
problems are given to characterize the validity of Algorithms 1 and 2 and to compare known algorithms.

2 | PRELIMINARIES

This section will provide some relevant definitions and useful lemmas for the proofs in Sections 3 and 4. First of all, assume
that H is a Hilbert space embedded with the inner product (-, -) and the induced norm || - || and C is a nonempty, closed
and convex subset of H. The notations x, - x and x, — x represent strong convergence and weak convergence of the
sequence {x, } to x, respectively. The symbol Fix(T) denotes all fixed points of a mapping T. Let B : H — 2 be a set-valued
mapping with domain D(B) = {x € H : B(x) # @} and graph G(B) = {(x,w) € H X H : x € D(B),w € B(x)}. Recall that
a mapping B : H — 2’ is monotone if and only if (x—y,w—v) > 0 for any w € B(x) and v € B(y). Further, a monotone
mapping B : H — 2’ is maximal, that is, G(B) is not properly contained in the graph of any other monotone mapping.
In this case, B is a maximal monotone mapping if and only if for any (x,w) € G(B) and (y,v) € H X H, (x—y,w—v)>0
implies ve B(y).

Definition 1. The metric projection of H onto C is denoted by Pc, that is, Pcx = argmin cc[lx — yl|, Vx € H.
Meanwhile, the following conclusions are also true.

(Pcx —x,Pex = y) < 0,¥y € C < ||y — Pex||* + [Ix = Pex||* < [lx = ylI*. (3)
For more details, see Goebel and Reich.?? In addition, for any x, y € H and 4 € R, the following properties are available.

[+ wlI2 = 1Ixl1? + 1¥11* + 246, p) < Qe + 2(nx + y), “4

1A% + (1 = AyllI* = Allxll* + @ = DlIvl? = 20 = Dllx = 1> (5)
Definition 2. For any x,y € H, recall that a mapping T : H — H is said to be
(1) L-Lipschitz continuous with L > 0, if
ITx — Tyll < Lilx — yl|.

In particular, if L = 1, it is nonexpansive. If L € [0, 1), it is contraction.

(2) firmly nonexpansive, if
| Tx — Ty||> < (Tx — Ty, x — y).

(3) k-averaged with x €(0, 1), if there exists an identity mapping I : H — H and a nonexpansive mapping S :

H — H such that

T=00-x)I+«S.

(4) n-strongly monotone, if there exists # > 0 such that

nllx = ylI* < (Tx = Ty,x — y).
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(5) 9-inverse strongly monotone, if there exists 9 > 0 such that

9| Tx — Ty||> < (Tx — Ty,x — y).
Remark 1. (i) The 9-inverse strongly monotone mapping is %-Lipschitz continuous mapping. (ii) If T is d-inverse
strongly monotone, then aT is g-inverse strongly monotone for a > 0.

Lemma 1 (Crombez?*%). Let T : H — H be a nonexpansive mapping. For arbitrary x,y € H,
1
(c=Tx)=(y =Ty, Ty—Tx) < EH(X -T0) - (y = Tyl

and consequently if p € Fix(T), then
(x—Tx,p—Tx) < %llx — Tx||%.
Lemma 2 (Zhou and Qin?%). Let C be a nonempty, closed, and convex subset of H and T : C — C be a nonexpansive map-

ping with Fix(T) # @. I — T is demiclosed at zero, that is, for any sequence {x,} C C, satisfying x, — x* and x, — T(x,) — 0,
then x* € Fix(T).

Lemma 3 (Moudafi® and Byrne?’). (I) T is averaged if and only if its complement I — T is 9-inverse strongly monotone
for some § > % ; (ID If T is averaged and N is a nonexpansive, then (1 — a)T + aN is averaged for some a € (0, 1).

Lemma4 (Moudafi®). Let f : H — H beamappingand B : H — 2 be a maximal monotone mapping. The following
properties hold.

(1) 0€ef(x*)+B(x")ifand only ifx* = J}(I — y f)x*, i.e, x* € Fix(JZI — v ), fory > 0;
(2) If f : H - H is 9-inverse strongly monotone, then Jf(I — v f)is average for y € (0, 29).

Remark 2. From Lemma 4 (1), the solution set of the split monotone variational inclusion problem is characterized
as that of the fixed point problem, that is,

Q={x* €M, : x* € Fix(J,"(I —y /1)) and Ax* € Fix(J,*(I -y f2))} for y > 0.

This implies that the solution set Q is closed and convex.

The following lemma is an improvement of Lemma 3.1 in Yamada!! and Lemma 2.5 in Thong et al?® and also plays an
important role in the convergence analysis of our algorithms.

Lemma 5. Let D : H — H be a L-Lipschitz continuous and n-strongly monotone mapping with L, n> 0. For any
p € (0, 1), define a mapping K,(x) = (I — puD)x, Vx € H. If0 < y < min { i i—'z’ }, the following inequality holds:

1K, () — K,(»)| < <1 -p <1 —\/1—pu(2n- ﬂL2)>> llx — yll, Vx,y € H,
then K, is a contraction mapping.

Proof. Foranyx,y € H,setD, = uD —I. We have

ID,.x — DuylI* = p?||Dx — Dy||* — 2u(Dx — Dy,x — y) + |Ix — y||?
< WL Ix = ylI> = 2unllx = ylI> + [Ix = ylI?
=1 —2un + p’L?)|Ix — ylI>.
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Since 0 < u < min { %, i—'z’ }, then 0 < 1 — 2un + u?L? = 1 — u(2n — uL?) < 1. Further,

”pr_pr” < ”(1 - P)(x— y)” + p”Dux_Duy”
<A =plx =yl +pV1—=puR2n— ul?|x - yll
= (1=p (1= VI= 4@ =uID) ) I =l

Bype(0,1)and0<1—u(2n—ul?)<1,weget0<1—p (1 —V1-—pun- uL2)> < 1; this implies that the mapping
K, is contraction. O

In particular, if D : H — H is a L-Lipschitz continuous and #-strongly monotone mapping with L > >0 in Lemma 5,
then the following lemma can be obtained by the above proof process.

Lemma 6. Let D : H — H be a L-Lipschitz continuous and n-strongly monotone mapping with L > n > 0. For any
p€(0, 1), define a mapping K,(x) = (I — puD)x, Vx € H. IfO < p < % the following inequality holds:

1K, 00 = Kyl < (1= p (1= V1= u@n = uI?)) ) Ibe = vl V. y € T,

and then K, is a contraction mapping.

Lemma 7 (He and Yang?®). Suppose that {S,} and {c,} are sequences of nonnegative real numbers such that
Spy1 £ (A —ap)Sp+apb, and Spy < Sy —cp+dy,n 21,

where {a,}, {b,}, and {d,} are real sequences with 0<a, <1.If >, a, = oo, limd, = 0, and I}imcn,c = 0 implies
n—oo —00

limsupb,, < 0 ({ny}is any subsequence of {n}). The sequence {S,} converges to 0 as n — .

k— o0

3 | PROPOSED ALGORITHMS

In this section, we state two adaptive algorithms with an inertial extrapolation term for finding approximate solutions of
the SMVIP. Suppose that the solution set Q of the SMVIP is nonempty. To begin with, the relevant assumptions are set as
follows:

(A1) H;, H, are two Hilbert spaces and A : H; — H; is a bounded linear operator with adjoint operator A*;

(A2) fi: H; —» H;isad;-inverse strongly monotone mapping and f, : H, — H, is a 9,-inverse strongly monotone
mapping;

(A3) B; : H; — 2" and B, : H, — 2’ are two set-valued maximal monotone mappings;

(A4) h : H; - H; is a L-Lipschitz continuous mapping with L; > 0;

(A5) D : H; — H,isa L,-Lipschitz continuous and #-strongly monotone mapping with L, # > 0.

Meanwhile, setting W; = Jf ‘I -yf1)and W, = JfZ(I — v /f2). In order to ensure the convergence of the proposed
algorithms, the following control conditions need to be satisfied:

(C1) {B,}c(0,1)such thatlim,..p, =0and .., fn = oo;
(Cz) {an} - [07 1)’ {O-Vl} - [a’ b] C (Oa 1) and hmn—mo;_n”xn - xn—l” = Oa
(C3) 0<y<29withd = min{9;1,9,};

(C4) 0<tl<f=1- \/1—;4(211—;4L§)and0<;4<min{$,2—”}.

2

Lemma 8. The adaptive step size sequence {1} defined by (6) and (7) is well defined.
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Proof. From Lemma 3 (I) and Lemma 4 (2), we have that W, is average and I — W, is 8-inverse strongly monotone for
9> % Taking x* € Q, that is, x* € Fix(W;), Ax* € Fix(W). According to the definition of (6), we have

[A*(I = W)Aup|||lup — x*|| > (A" — Wo)Auy, Uy, — x*) = (I — Wa)Au,, Au, — Ax*) > ’§”(I - WZ)AunHZ‘

So, when Au,, & Fix(W>), we get ||A*(I — W)Au,||>0. This means that the sequence {4, } in (6) is well defined. Similarly,
{A,}in (7) is also well defined. O

Lemma9. Ify, =u, in Algorithm 1, then u,, is a solution of SMVIP, that is, u,, € Q.

Proof. Since W7 and W, are average, it is easy to get that W; and W, are nonexpansive. For any x* € Q, that is,
x* € Fix(W7) and Ax* € Fix(W>), it follows from Lemma 1 that

20,(I — W1)Au,, Auy, —Ax*) = 20,{I — W1)Au,,, WrAu, —Ax*) + 24| — WZ)Aunll2
> —Anlld = W2)Auy||I* + 24,111 — W2)Auy,||?
= |l — Wa)Auy||*.

Algorithm 1
Require: Take arbitrary starting points x,, x; in H,. Choose sequences {a,} C [0, 1), {o,} and {f,} in (0,1) and y, 7, u > 0.
1: Setn =1 and compute u, = x, + a,(x, — x,_;) and adaptive step size

oullT= Wy, .
i { Sl WoAw P = 4y, & Fix(Ws), ©

lA*(T=W)) Au, |12’

0, otherwise.
2: Compute y, = W, (un - LAY — VVZ)Aun) .
3. If y, = u,, then stop. Otherwise, compute x,,, = p,7h(y,) + U — p,uD)y,.
4. Setn :=n+1andreturn 1.

Algorithm 2
Require: Two arbitrary starting points x,, x; in H,. Choose sequences {a,} C [0, 1), {c,} and {f,} in (0,1)and y, 7, u > 0.
1: Setn =1 and compute u, = x,, + a,(x, — x,_,), 2z, = W;(u,), and adaptive step size

o, ll(I-Wy)Az, | .
. { 20 Az, & Fix(W,), o

14" (I=Wy)Az, P

0, otherwise.
2. Compute y, = z, — 4,A*(I — W,)Az,.
3. If y, = z, = u,, then stop. Otherwise, compute x,,; = f,th(y,) + I — B,uD)y,.
4: Setn :=n+ 1 and return 1.

Further, we have

lyn = X1 < llun — AnA*T — Wa)Au, — x*||?
= |lun — x*||* = 240(A* T = Wa)AUn, uy — x*) + A2 ||A*T = Wa)Au,||

= lltn = X" = 24a(( — W2)AUy, Au, — AX*) + A3 [|A*(I — Wa)Au,||* ®
< |lun _x*”Z - (1 =op)|ld = WZ)AunHZ-
Hence,
lyn = Wiwall < llun — 2A* T — W2)Au, — yull = AlIA*T — Wo)Au,||. 9
By virtue of (8), (9), and y, = uy, limy— o ||(I — W)yl = lim,—||(I = W2)Au,|| = 0, which implies that u,, belongs
to Q. In particular, if 4, = 0, the above results also hold. O

Lemma 10. Ify, =z, =u, in Algorithm 2, then u, is a solution of SMVIP, that is, u, € Q.
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Proof. Obviously, when 4, = 0, u, € Q. On the other hand, using the proof of Lemma 8, we know that I— W, is
d-inverse strongly monotone for § > % In the same way, [ — W, is t-inverse strongly monotone for & > % For any
x*€Q, using Lemma 1 and y, =z, =u,, we get

0= (Un = Zn, Un — X*) + (Zn — Yn, Zn — X°)
= (Up — Willy, up — X*) + (A" (I — W2)AZp, Zn — X7)
= (up — Willy, Uy, — X*) + A {(I — W)Az,, Az, — AX")
2 0l = Wunl|? + 49| = W2)Az,||.

Then, lim, . ||(I — Wy)u,|| = lim,_ || — W>)AZ,|| = 0, which implies that u, € Q. O

4 | CONVERGENCE ANALYSIS

In what follows, the convergence analysis of Algorithms 1 and 2 are proved. Moreover, some nontrivial corollaries have
also been proposed for solving the split monotone variational inclusion problem and extend the existing results.

Lemma 11. The iterative sequence {x,} generated by Algorithms 1 and 2 is bounded.
Proof. For any x* € Q, from (8) and Algorithm 1, we get

17 = X1 < lltn = X1 = An 1 = 0| = W) Aug||*.
This implies that ||y, —x*||< ||u, —x*||. Using Lemma 5 and Condition (C4) to get

IXn+1 = X" < Bullth(yn) — Th(x™) + Th(x*) — uDx*|| + [|I = BauD)yn — (I = BuuD)x")|
< PuLallyn — XN + Bullth(x™) — uDx* || + (1 = Br0)llyn — X7||
<1 = Bn(@ = cLD)NIXn = X" || + Brullrh(X") — uDx*|| + anllxn — Xp- |

Bullh(x*) — uDX* || + an||Xn — Xpn—1]l
Bn(0 — 7L1) '

<1 = a0 — TLD)NIXn — X7 || + (0 — TL1)

In view of 0 < 7L; <0 and lim,,_,w;—" [IX, — x4-1]| = 0, there exists a non-negative constant M > 0 such that

M/2 = max lITh(x*) — uDx*|| , ap|lxn — Xp-1ll
0 — 1Ly Pn(0 — tL1)

Therefore, the above inequality can be characterized as follows:
xn+1 = X < [1 = Bn(6 — zLONIXn = X*|| + fn(0 — TL1)M < max {||x, —x"[,M} < ... <max{|lxo—x"||,M}. (10)
In addition, by applying the same method as in (8) to Algorithm 2, we also have
1yn = X117 < 1120 = X*|I* = A1 = o) | — W2)AZ,]|%. 1)
Since W is nonexpansive, then ||z, — x*|| < ||u,, — x*||. Similarly, we can also obtain the same relation (10) above. To

sum up, the sequence {x,} generated by Algorithms 1 and 2 is bounded. Furthermore, if 4, = 0, the above conclusion
still holds. O

Theorem 1. The iterative sequence {x,} generated by Algorithm 1 converges in norm to a point x* = Pg o (I — uD +
Th)(x*), which is also a unique solution of the following variational inequality

{((uD — th)x*,x —x*) > 0, Vx € Q. (12)
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Proof. It follows from Remark 2 that Pg is well defined. Using Lemma 5, we have that I — uD is contraction mapping
with coefficient 1 — 0. Further, for any x,y € H,

I = uD + th)x — (I — uD + th)yl| < zLillx — yll + (1 = O)llx — yll = A = (0 — zL)|Ix — .

By the control condition (C4), we know 0 < zL; < 6. Thus, Py o (I — uD + th) is a contraction mapping with coefficient
1—(6 —rL,). By virtue of Banach contraction principle, there exists a unique fixed point x*, that is, x* = Poo(I — uD +
th)(x*). Furthermore, such a solution x* is also equivalent to ((uD — th)x*,x — x*)>0, Vx € Q by (3). Besides, from u,
and (4), we obtain

llun — X I = (X0 + @n(n = Xno1) = X*|1 < [1%0 — X 1?4 200 (U — X*, X0 — Xn1)

13)

< 10 = X 11 + 2a0nlun = X* (1112 = X1l

Because W, is averaged, there exists a constant k € (0, 1) and a nonexpansive mapping S such that Wy = (1—x)I+«S.
By means of (5), (8), and A, =u,, — 4,A*(I — W,)Au,,, we have

llyn = X117 = II(1 = K)A, + KSA, —x*||?

< 1A = x*|1? = 2k = ©)[|d = S)AqI? (14)
< lun = X112 = A1 = o) |0 = W)Au,|I> — 2k — || = S)Aull*.

Set H, = 1,(1 — op)||d = W2)Au,||? + 2x(1 — x)||d — S)A,||%. From (4) and (13), we have

[%ns1 = X*11* = 1| Bat(A(yn) — h(X*)) + Ba(zh(x*) — uDx*) + (I = fuuD)yn — (I — fupuD)x*||?
< [BatLillyn = X* 1l + (1 = Bu)llyn = X*N1]* + 2Bu(th(x*) = uDX*, X1 — X°)
< (1= Bu(0 = TL))IXn — X |I* + 2Ba(Th(X*) — uDX*, Xpy1 — x*)
+ (1 = Bu(0 — 7L1)) Qatnllun — x*[[1%n — Xpr | — Han).

15)

Hence, the above inequality leads to the following relations:
Sp1 <1 -ay)S,+ayb, and S,;1 <SS, —¢c,+d,,n>1,
where

Sp = |lxn — X*HZ’ an = Pn(0@ — tL1), ¢y = (1 — (0 — tL1))Hy;

_ 2a,(1 = ap)llun = x*||l1xn = Xp-1|l + 2Bp(rh(x*) = uDx*, Xp41 — X*) .
- Pn(0 = 7L1) ’
dn = 20,(1 — ap)llun — X" |[[IXn = Xp-1 |l + 28u{Th(x*) — uDX", Xppy1 — X).

b

Since {x,} isbounded in Lemma 11, so {u,} and {y,} are also bounded. And then we have lim, .o, = 0, Y, @y = o0,
lim,,_..d, = 0 by Conditions (C1) and (C2). After that, we need to show that limy_b,, < 0 when limj_c, = 0 for
any real number sequence {n;} of {n}. For this purpose, suppose that limy_...c,, = 0, it follows from the definition of
Hy, that limy_, oo ||(I — W2)Auy, || = 0 and limy_,[|(I — S)Ap, || = 0. Furthermore,

||Ynk - unk” < ||Ynk - Ank” + ”Ank - unk”
=kl = An |l + An NIA*UT = W2)Auy, ||
<kl = SAn |l + A AT — W2)Aup, || - 0, as k — oo,

and

lun, = Wittn, || < lltn, = yull + lyn, = Watkn || < lltbn, =y |l + An [|ANNIIT = W2)AUp, || = 0, as k — co.
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On the other hand, from the boundedness of {x,, }, there exists a subsequence {x,, } of {x,, } such that x, weakly
converges X and lim sup,_, . ((th — uD)x*, X, —x*) = lim;_ o {(th — uD)x*,x,_—X"). i%y virtue of limy_ |[up, _ X, |l =
limy_ o @y, |[Xn, — Xn 11| = 0 and the bounded linear operator A, we obtain u;k_ — X and Au,_— AX.Itfollows from
Lemma 2 that X € Fix(W;) and AXx € Fix(W,), i.e., X € Q. Subsequently, we have that limiﬁoo(([rh — uD)x*, Xy, —Xx") =
((th — uD)x*,% — x*) < 0 by (3). In addition, ‘

”xnk+l _xnk” < ”xnk+1 - Ynk” + ”ynk - unk” + ”un,c _xnk”

< Bu lth(yn,) — uDyn || + llyn, — tn, |l + |lttn, — X, || = 0, ask — co.

As a consequence, lim sup, _, .{(th — uD)x*,x, 41 —x*) < 0 and

. an(L = ap)lun = X[l = Xn-all . [t = X 1X0 — X1 |
lim < lim =
n—eo Pn(0 — 7L1) n-co Pn(0@ —tLy)

0.

This means that lim sup, _, b, < 0. It follows from Lemma 7 that lim,,_,, ||x, —x*|| = 0; that is, the iterative sequence
{x,} converges in norm to x* and x* = Pgo(I — uD + th)(x*). Besides, when 4, = 0, the above strong convergence of
{x,} is still valid. The proof is completed. O

Theorem 2. The sequence {x,} generated by Algorithm 2 converges in norm to a point x* = Pgo(I — uD + th)(x*), which
is also a unique solution of the variational inequality (12).

Proof. For any x* € Q, using the same approach as (14), we have

lzn = x*[1> = [I(1 = K)uy + kSuy — x*||?
< (A = ©)llun = x*|1* + k||Sup — x*[1> = 261 — ©)||d — S)un]|? (16)
< Nlun = x*|1> = 261 = )| — S)un|l*.

Further, combining (11), (13), (15), and (16), we get

X1 = X*I1* < (1 = a(0 = zLa))||yn — X*||* + 2Bn(Th(X*) — uDx*, Xp1 — X*)
<A = Bu(0 = TLD))1Zn — X |1* + 2Pa(Th(X") — puDX*, Xpi1 — X*)
= (1 = Bu(0 — TL1)) An(1 = o) — W2)AzZ,]|?
< (A = Bu(6 = TL)) 1% — X*||* + 2Bn(Th(x") — uDx*, Xn41 — X*)
+ (1= Bu(0 — 7L1)) Qatnllun — x* || 1xn = Xn1ll — En),

where
Ep = 21 — ol = WAz, 1> + 2x(1 — ©)|| — S)u||>.

Iflim,_ E, = 0, we have lim,_. . ||(I — W»)Az,|| = lim,_ || — S)u,|| = 0. Further,
I = WDugll = llug — zull = [ = S)unll — 0, as n - co.

Following the same proof of Theorem 1, we can prove lim,,_, ||x, —x*|| = 0, which implies that the iterative sequence
{x,} converges in norm to x* and x* = Pgo(I — uD + th)(x*). The proof is completed. O

Remark 3.

(I) Algorithms 1 and 2 includes Algorithm 2.1 in Yao et al® and Algorithm (8) in Moudafi.® These conclusions
have been promoted from weak convergence to strong convergence under the condition of an adaptive step
size sequence {4, }.

(IT) The hybrid steepest descent method involving Lipschitz continuous mappings and strongly monotone map-
pings is set in our algorithms and is a broader method including the viscosity method, the Halpern method,
and the Mann-type method.
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(IIT) From Condition (C2), the coefficient «, of the inertial extrapolation term is easy to find realistically. For
example, setting the sequence {a,} is constructed as follows:

. Pn
mn<| a&, —7 ¢, X Xn—1,
@ = { {o g} m# o

a, otherwise.

Since the value of ||x, — X, — 1 || is known in each iteration of Algorithms 1 and 2, {p, } can be chosen by p,, = o(8,)
and a €[0,1). On the other hand, from Condition (C1), we consider the sequence {f,} generated by g, =
nPwith(0 < p < 1), then {a,} is obtained by a,, = n~9with (g > p). For more detail, see Zhou et al.!®

(IV) When a, = 0, Algorithms 1 and 2 are reduced to the case without inertial extrapolation terms, as well as
Theorems 1 and 2 are also guaranteed under the same conditions.

In what follows, from the definition of the Lipschitz continuous mapping, we know that the Lipschitz continuous
mapping includes the contraction mapping. Hence, the following corollary is obtained.

Corollary 1. Let h : H; — H; be a contraction mapping with coefficient £ € [0, 1). If Condition (C4) is replaced with

0<7E<0=1-4/1-un—- ,uLg) and 0 < u < min { i % } the strong convergence of {x,} is still guaranteed in
2
Algorithms 1 and 2.

When 7 = 0, Step 3 in Algorithm 1 is reduced to the same form as in Yamada.!! Then, the following corollary holds.

Corollary 2. Assume that (A1)-(A3), (A5), and (C1)-C4) hold. Take any initial points xo,x; € H,, the sequence {x,} is
generated by the following way: u,, y, are constructed as in Algorithm 1. If u,, =y, then stop. Otherwise, calculate

Xn41 = Yn — BntD(yn), n > 1. 17)

The iterative sequence {x,} generated by the above algorithm converges in norm to a point x* = Pgo(I — uD)(x*), which
is a unique solution of the following variational inequality

(Dx*,x —x*) > 0, Vx € Q.

In this case that D : H; — H; is an identity mapping, h : H; — H; is a contraction mapping and y = = = 1, Step 3 in
Algorithm 1 is taken as the viscosity algorithm in Moudafi.® Thus, the following corollary is produced by Lemma 6 and
Theorem 1.

Corollary 3. Assume that (A1)-(A3) and (C1)-(C3) hold. Let h : H, — H; be a contraction mapping with coefficient
E€/0, 1). Take any initial points x, X, € H1, the sequence {x,} is generated by the following way: u,, y, are constructed
as in Algorithm 1. If u, =y, then stop. Otherwise, calculate

Xn41 = Prh(yn) + (1 = fu)yn, n > 1. (18)

The sequence {x,} converges in norm to a point x* = Pgoh(x*), which is a unique solution of the following variational
inequality
(x* —h(x"),x—x") >0, Vx € Q.

Proposition 1. In Corollary 3, if contraction mapping h is a constant mapping, the formula (18) is replaced with
Xp+1 = Put + (1 = Bo)yn, n 2 1.

Then the sequence {x,} converges strongly to a point x* = Pg(u).

In addition, when D : H; — H; is an identity mapping, 4 = 1 and = = 0, Algorithm 1 degenerates to a Mann-type
algorithm and its strong convergence is obtained by Lemma 6 and Theorem 1.



ZHOU ET AL. W l L EY 8845

Corollary 4. Assume that (A1)-(A3) and (C1)-(C3) hold. Take any initial points xy,x; € Hi, {x,} is generated by the
following scheme: u,, y, are constructed as in Algorithm 1. If u,, =Yy, then stop. Otherwise, calculate

Xpt1 = A = fu)yn, n > 1.

Then {x,} converges in norm to a point x* = Pg(0), which is the minimum-norm element of Q.

Remark 4. The special settings in the above Corollaries can also be implemented in Algorithm 2, and the correspond-
ing strong convergence is still satisfied.

5 | THEORETICAL APPLICATIONS

In this section, our results in Sections 3 and 4 will be applied to other split problems, and also extend and generalize
the known results. These conclusions are also helpful for their further research in the future. Moreover, some examples
in practical applications are considered and solved by our algorithms. For the sake of simplicity, let h : H; — H; be a
L,-Lipschitz continuous mapping with L; >0 and D : H; — H; be a L,-Lipschitz continuous and 5-strongly monotone
mapping with L,, # > 0. The related lemmas and theorems are given below.

5.1 | Split variational inclusion problems

As one of the important special cases of the SMVIP, the split variational inclusion problem has a wide range of application
background, such as split minimization problems, split feasibility problems, split equilibrium problems and so on. In other
words, when f; =0 and f> =0, the SMVIP is reduced to the split variational inclusion problem. For the sake of convenience,
we denote by I the solution set of the split variational inclusion problem, that is, I' = {x* € H; : 0 € B{'(x*)and0 €
B;l(Ax*)}. Therefore, the results in Theorems 1 and 2 are applied to the split variational inclusion problem. Before this,
the following important properties need to be reviewed. For any y >0, & represents the resolvent mapping of B; and
defined as Jf "= T +yB)™, (i = 1,2). Then Jf " is a single-valued and firmly nonexpansive mapping and Fix(J;g N =
B7'(0) = {x* € D(B) : 0 € Bi(x")}.

Theorem 3. Let H,, H, be two Hilbert spaces and A . Hy — H, be a bounded linear operator with adjoint operator A*.

Let By : H; — 2" and B, : H, — 2™ be two set-valued maximal monotone mappings. Choose arbitrary initial points

X0, X1 € M1, {x,} is constructed by the following process:

Uy = Xp + an(Xy — Xp-1)s
v =3 (U = AnA* (T =) Ay )

Xpg1 = Pnth(yn) + U = fupD)yn, n 2 1,

where

B
A= (-7, ) Au,||?”

_ 7B 2
_ | el A, g Fix(p),
An = 4
0, otherwise.

Suppose that Conditions (C1), (C2), and (C4) hold. Ify,, = u,, then stop and u,, € I'. Otherwise, the sequence {x, } converges
in norm to a point x* = Pro(I — uD + th)(x*), which is a unique solution of the following variational inequality

((uD — th)x*,x —x*)y > 0,Vx €T. (19)
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Theorem 4. Let H,, H,, A, A*, B;, and B, be the same as those in Theorem 3. Put any initial points xo,x; € H,, the
sequence {x,} is generated by the following way:

Un = Xp + on(Xn — Xn-1),

Zn =T, (Un),

Yn =2Zn — AnATI — sz)Azn,

Xni1 = Ppth(yn) + (I — BupD)yn, n 2 1,

where

llA*(I—1;2)Az, 12 .
0, otherwise.

- _ B2 2
An = { R Az, & Fix()),
n=

Suppose that Conditions (C1), (C2), and (C4) hold. If y,, =z, = uy, then stop and u, €. Otherwise, the sequence {x,}
converges in norm to a point x* = Pro(I — uD + th)(x*), which is a unique solution of the variational inequality (19).

5.2 | Split variational inequality problems

Let C be a nonempty closed convex subset of a Hilbert space H;. Define the normal cone N¢(x) of C at a point x € C by
Ncx)={z€H; : (2, y—x) <0,VyeC}.

Obviously, u = I +yN¢c)™'x < x—u € Ne(u) < (x —u,y—u) < 0,Vy € C < u = Pcx, which implies that
(I + yN¢)™ = Pc. Let C; and Q; be nonempty closed convex subsets of Hilbert spaces H; and H,, respectively. Therefore,
when B; = N¢, and B, = Ng, in SMVIP, the following split variational inequality problem is obtained:

find x* € Cy, (f1(x"),x —x*) >0,Vx € C; and (f2(Ax"),y — Ax") >0,Vy € Q.
This is equivalent to the following form:
find x* € C1, x" € Fix(Pc,(I —y f1)) and Ax* € Fix(Po,(I —yf>)), forany y > 0.

Meanwhile, we denote by ¥ the solution set of the above problem. In particular, if the mapping f; is 9;-inverse strongly
monotone and y €(0,28,), then Pc (I — y f1) is average. Indeed, from Remark 1 (ii), Lemma 3 (I) and y €(0, 29,), the
mapping I — yf; is average. Furthermore, Pc, is firmly nonexpansive, which means that P¢, is average. So, Pc, (I —y f1) is
average. Then, the following results can be obtained from our Theorems 1 and 2.

Theorem 5. Let H,, H,, C;, and Q; be the same as above. Let A : H, — H; be a bounded linear operator with adjoint
operator A*. Let f1 : Hy — H; be d;-inverse strongly monotone mapping and f, : H, — H; be 9,-inverse strongly
monotone mapping. Select arbitrary initial points Xy, x; € Hy, {x,} is generated by the following scheme:

Up = X + ap(Xy — Xpo1),
Y =Pc,(I =y f1) (Un — 2nA*I = Po,(I — y f2)Auy) . (20)
Xn41 = Puth(yn) + U = fupD)y,, n > 1,

where

IA*U—Pq, U—7 ) AU, I

0, llI=Pg, I=y fr))Auy |I? .

I i Auy & Fix(Po,(I ~ 1 f2)),

.=
0, otherwise.

Suppose that Conditions (C1)-(C4) are satisfied. If y, = u,, then stop and u, € ¥. Otherwise, the sequence {x,} converges
in norm to a point x* = Pyo(I — uD + th)(x*), which is a unique solution of the following variational inequality:

{((uD — th)x*,x —x*) > 0,Vx € V. (21)
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Theorem 6. Let H,, H,, C;, Q;, A, A%, f1, and f, be the same as those in Theorem 5 and A, be the same as in Algorithm
20. Take any initial points xo,Xx, € H1, the sequence {x,} is generated by the following process:

Up = Xn + an(Xn — Xn-1),

Zn = Pc,(I — v f1)(un),

Yn =Zn — A = Po,(I = v f2))AzZy,
Xn+1 = Pnth(yn) + I = fupD)yn, n 2 1,

where

4 (I=Pq, =7 Az, |>°

llU=Pg, U=7 [,)Az,|? .
= | i e At € Fix(Po,( = 1.£2)),
0, otherwise.

Suppose that Conditions (C1)-(C4) are satisfied. If y, =z, =uy,, then stop and u, € ¥. Otherwise, the sequence {x,}
converges in norm to a point x* = Pyo(I — uD + th)(x*), which is a unique solution of the variational inequality (21).

5.3 | Split feasibility problems

From (1), we know that the SFP is a special case of the SMVIP. According to Section 5.2, we have (I + yN¢,)™ = P¢, and
(I + yNg,)™' = Pg,. Meanwhile, the solution set for SFP is called ®. Thus, the following algorithms and theorems can be
derived for finding the solution of the split feasibility problem.

Theorem 7. Let Hy, Hy, Ci, Q;, A, and A* be the same as above. Select arbitrary initial points xo,x; € Ha, {x,} is
generated by the following scheme:

Up = Xp + ap(Xn — Xp-1),
yn = Pc, (un — AnA*(I - PQl)Aun) >
Xp41 = Pnth(yp) + A = ppuD)yn, n 2 1,

where
o llI-Pg) JAu, |2

An = { l4*(I=Pg, Auy 1>’ Al & Q1

0, otherwise.

Assume that Conditions (C1), (C2), and (C4) hold. If y,, = uy,, then stop and u,, € ®. Otherwise, the sequence {x,} converges
in norm to a point x* = Pgo(I — uD + th)(x*), which is a unique solution of the following variational inequality

{((uD — th)x*,x —x*) > 0, Vx € ©. (22)

Theorem 8. Let Hy, H,, C;, Q;, A, and A* be the same as those in Theorem 7. Take any initial points xy,x; € Hy, the
sequence {x,} is generated by the following process:

Up = Xp + an(Xn — Xn-1),

Zn = Pc, (Uy),

Yn =2Zn — A" (I = Pg,)AZn,

Xn+1 = Pnth(yn) + I = fupD)yn, n > 1,

where

IA*(—Pg, Az, I?°
0, otherwise.

0, lI—Py DAz, ||
o { o0 Po ol pz, ¢ Q.
-

Assume that Conditions (C1), (C2), and (C4) hold. If y,, =z, = uy, then stop and u, € ®. Otherwise, the sequence {x,}
converges in norm to a point x* = Pgoo(I — uD + th)(x*), which is a unique solution of the variational inequality (22).
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As an important part of the split monotone variational inclusion problem, the split feasibility problem is widely used
to solve practical problems in various situations and many excellent results have been obtained. In what follows, two
examples in L2 spaces and in signal recovery problem are introduced.

Example 5.1. (The split feasibility problem in infinite-dimensional Hilbert spaces). Assume that H; = H, =

1/2
L%([0,1]) with the inner product {x,y) := /01 x(H)y(t)dt and the induced norm ||x|| := ( fo1 |x(t)|2dt> , for any
x,y € L*([0, 1]). Consider the following nonempty closed and convex subsets C; and Q; in L([0, 1]):

1 1

C; :=4x e Ly(0, 1])|/x(t)dt <1% and Q, :={y e Lo, 1])|/|y(t)—sin(t)|2dt§ 16
0 0

Suppose that A : L2([0, 1]) — L*([0, 1]) is the Volterra integration operator that is defined by (Ax)(t) = fot x(s)ds, Vt €
[0,1], x € H;. Hence, A is a bounded linear operator and the norm ||A|| = % Moreover, the adjoint operator A* of A

is defined by (A*x)(t) = /tl x(s)ds. In addition, its projections on sets C; and Q; have explicit forms (see Bauschke and
Combettes® for more detail), that is,

_J1-a+x,a>1; B sin() + 2= p 5 16;
PCl(x)_{x, a<l, and PQl(y)_{y Vb b <16

wherea := /01 x(t)dtandb := fol |y(t)—sin(t)|? dt. Naturally, x() = 0 is a solution; that s, the solution set is nonempty.

Example 5.2. (The split feasibility problem in signal recovery problems). It is well known that compressed sens-
ing is one of the effective methods to recover clean signals from polluted signals. In this context, the following
underdetermined system problem need to be considered and resolved:

y=Ax+e¢,

where y € RM is the observed noise data, A € RV is a bounded linear observation operator, x € RN with k (k < N)
nonzero elements is the original and clean data that needs to be restored, and ¢ is the noise observation encountered
during data transmission. An important consideration of this problem is that the signal x is sparse, that is, the number
of nonzero elements in the signal x is much smaller than the dimension of the signal x. To solve this situation, a
classical model, convex constraint minimization problem, is used to describe the above problem, that is,

min l||y—Ax||2 subject to ||x||; <¢, (23)
xeRN 2

where ¢ is a positive constant and || - ||; is #; norm. It is worth noting that this problem is related to the least abso-
lute shrinkage and selection operator problem. More precisely, the problem (23) is equivalent to the split feasibility
problem when C; = {x € RN : ||z||; <t} and Q; = {y}.

Remark 5. (I) All of the above theorems can be derived from the proof of Theorems 1 and 2.
(II) The above theorems generalizes many important results that are available, such as the split feasibility
problem,>7 the split variational inclusion problem,3!*? and the split variational inequality problem.33

6 | NUMERICAL EXPERIMENTS

In this section, we provide some numerical examples to demonstrate the effectiveness and realization of convergence
behavior of Theorems 1 and 2. All the programs were implemented in Matlab 2018a on a Intel(R) Core(TM) i5-8250U
CPU @1.60 GHz computer with RAM 8.00 GB.
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Theorem 9. (Moudafi®). Assume that (A1)-(A3) and (C3) hold. Let [ be the spectral radius of A*A and 0 < A < 1/1. For
any x; € H,, the iterative sequence {x,} is generated by the following iterative scheme:

Susr =10 = 1 12) (0 = AU = T = 7 f))A%, ) 2 1, (24)

Then {x,} converges weakly to a point x* € Q.

Theorem 10 (Yao et al.®). Assume that (A1)-(A3) and (C3) hold. For any initial points xy, x; € Hj, the iterative sequence
{x,} is generated by the following iterative scheme:

Up = Xp + apn(Xp — Xp—_1),

25)
Surt = I = 1) (tn = AnA” (= T2 =y o)At ) 2 1.

where

L min{a 6—”} if x, # Xn_1,

’ ”xn_ n—1 ”2

a, if x, = Xp-1,

and

allU=I2 A=y fy)Au, P . B

,if -T2 - Au, % 0,

An = UA*(I_]EZ(I_sz))A“n”z ( Y ( ny)) n #
A, otherwise,

If0 < ay < @y, a €[0,1) and {e,} Cly, that is, Yoo | apllXn — Xn-1ll*> < 00, 2 > 0, 6,€(0,1) and 0 < lim inf,_ o, <

limsup,_, 0, < 1. The sequence {x,} converges weakly to a point x* € Q.

Example 6.1. Assume that A,A;,A, : R™ — R™ are created from a normal distribution with mean zero and unit
variance. Let B; : R™ — R™ and B, : R™ — R™ be defined by B;(x) = AJA;1x and B,(y) = A5A,y, respectively. Con-
sider the problem of finding a point X = (%, ... ,X»)' € R™ such that B;(X) = (0, ... ,0)T and By(AX) = (0, ... ,0).
It is easy to check that the solution of the problem mentioned above is x* = (0, ... ,0)T. The parameters of all algo-
rithms are set as follows. Set f; = f, = 0 for all algorithms. Takey = 1, , = 1/(n + 1), 6, = 0.5, « = 0.5 and
en = 1/(n+ 1)? for the proposed Algorithms 1 and 2 and Algorithm (25). Select h(x) = 0.5x, D(x) = 0.5x, = = 1 and
u = 2 for the proposed Algorithms 1 and 2. Choose 4 = 0.5/[|A*A|| for Algorithm (24). The start points with the ini-
tial values xp = x; = 20rand(n, 1). D, = ||x, — x*|| is used to measure the iteration error of all the algorithms. The
stopping condition is D, < 107>. Table 1 and Figure 1 describe the numerical behavior of all algorithms with different
dimensions.

Example 6.2. We apply the same algorithms and parameters as in Example 6.1 to solve Example 5.1. The stopping
condition is either D, = ||(I — Pc, )xn||2 +||A*T = Po,)AX, ||2 < 107> or maximum number of iterations which is set to
49. Table 2 and Figure 2 show the numerical behavior of all algorithms with four different initial values xp =x;.

Example 6.3. We now consider using the proposed iterative schemes to solve Example 5.2. In our numerical exper-
iments, the matrix A € RM*N ig created from a standard normal distribution with zero mean and unit variance and
then orthonormalizing the rows. The clean signal x € RN contains k (k< N) randomly generated *1 spikes. The

m =50 m = 100 m = 200 m = 400 TABLE 1 Numerical results of
Algorithms Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) Example 6.1
Our Alg. 1 27 0.0113 30 0.0313 32 0.0744 35 0.3091
Our Alg. 2 28 0.0116 33 0.0341 33 0.0754 33 0.2872

Yao et al. Alg® 32 0.0107 36 0.0342 39 0.0917 43 0.3693
Moudafi Alg.® 81 0.0518 96 0.1883 110  0.5751 128  2.7578
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FIGURE 1 Numerical behavior of all algorithms with different dimensions in Example 6.1 [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Numerical results of x =200log(t) x, =1000sin(f)  x, =200022  x; = 10003 + 2¢)

Example 6.2 Algotithms Iter. Time (s) Iter. Time (s) Iter. Time(s) Iter. Time (s)
Our Alg. 1 10 8.0815 23 26.2392 36 21.0198 40 32.0593
Our Alg. 2 11 8.444 20 24.3155 33 18.6057 35 30.3805
Yao et al. Alg.8 19 27.1521 49 68.845 49 32.4184 49 44.4225
Moudafi Alg.6 49 9.964 49 10.0659 49 8.4375 49 9.672

observation y is formed by y = A x + ¢ with white Gaussian noise e of variance 10~*. The recovery process starts with
the initial signals Xy = x; = 0 and ends after 1000 iterations. We use the mean squared error MSE = (1/N)||x* — x||*
(x* is an estimated signal of x) to measure the restoration accuracy of all algorithms. In our test, we set M = 512,
N = 1024 and k = 50. The parameters of all algorithms are the same as those set in Example 6.1. The recovery results

of the suggested algorithms are shown in Figure 3.

Remark 6. Based on the results presented in Examples 6.1-6.3, it is easy to get the following observations.

(1) For different initial values, our algorithms are effective under the excitation of the inertial extrapolation term and

the hybrid steepest descent method.

(2) It can be seen from the figures and tables that the convergence behavior of our algorithms is better than that of
the existing algorithms in Moudafi® and Yao et al,® and these results have nothing to do with the choice of initial

values and the size of the dimension.
(3) The adaptive step size is added to our algorithms and

the convergence behavior is also maintained.
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FIGURE 2 Numerical behavior of all algorithms with different initial values in Example 6.2 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 The original signal and the signal recovered by our algorithms [Colour figure can be viewed at wileyonlinelibrary.com]

7 | CONCLUSION

In this article, the main contribution is to introduce two novel inertial iterative algorithms for solving the split monotone
variational inclusion problem. Furthermore, the suggested algorithms employ the hybrid steepest descent method, which
involves a L-Lipschitz continuous mapping and a strongly monotone mapping. The strong convergence of the proposed
algorithms is given through the adaptive step size criterion, which overcomes the fact that the norm of the operator is
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not easy to calculate in practical applications. The numerical experiment also shows the convergence behavior of our
algorithms and their superiority over existing algorithms.
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