Publications

  • See My Publons, Scopus, ResearchGate, ORCID, MathSciNet, Google Scholar and arXiv.

  • * means Corresponding author.

  • These materials are presented to ensure a timely dissemination of scholarly and technical work. The copyright of these papers is owned by their publishers. Misuse of any of the posted below may result in plagiarism. By downloading any material from this site, you are assumed to agree with these terms.

My collaborators

2021

  1. Bing Tan, Xiaolong Qin*, Jen-Chih Yao. Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications. Journal of Scientific Computing. 2021, 87(1), Article ID 20. [Link] [Cite]

    Tan, B., Qin, X., Yao, J.C.: Strong convergence of self-adaptive inertial algorithms for solving split variational inclusion problems with applications. J. Sci. Comput. 87, Article ID 20 (2021)

  2. Bing Tan, Xiaolong Qin*, Jen-Chih Yao. Two modified inertial projection algorithms for bilevel pseudomonotone variational inequalities with applications to optimal control problems. Numerical Algorithms. 2021, https://doi.org/10.1007/s11075-021-01093-x. [Link] [Cite]

    Tan, B., Qin, X., Yao, J.C.: Two modified inertial projection algorithms for bilevel pseudomonotone variational inequalities with applications to optimal control problems. Numer. Algorithms https://doi.org/10.1007/s11075-021-01093-x (2021)

  3. Bing Tan, Sun Young Cho*. Self-adaptive inertial shrinking projection algorithms for solving pseudomonotone variational inequalities. Journal of Nonlinear and Convex Analysis. 2021, 22(3), 613–627. [Link] [Cite]

    Tan, B., Cho, S.Y.: Self-adaptive inertial shrinking projection algorithms for solving pseudomonotone variational inequalities. J. Nonlinear Convex Anal. 22, 613-627 (2021)

  4. Bing Tan, Sun Young Cho*. Inertial extragradient methods for solving pseudomonotone variational inequalities with non-Lipschitz mappings and their optimization applications. Applied Set-Valued Analysis and Optimization. 2021, 3(2), 165–192. [Link] [Cite]

    Tan, B., Cho, S.Y.: Inertial extragradient methods for solving pseudomonotone variational inequalities with non-Lipschitz mappings and their optimization applications. Appl. Set-Valued Anal. Optim. 3, 165-192 (2021)

  5. Bing Tan, Jingjing Fan, Songxiao Li*. Self-adaptive inertial extragradient algorithms for solving variational inequality problems. Computational & Applied Mathematics. 2021, 40(1), Article ID 19. [Link] [Cite]

    Tan, B., Fan, J., Li, S.: Self-adaptive inertial extragradient algorithms for solving variational inequality problems. Comput. Appl. Math. 40, Article ID 19 (2021)

  6. Bing Tan, Sun Young Cho*. Strong convergence of inertial forward–backward methods for solving monotone inclusions. Applicable Analysis. 2021, https://doi.org/10.1080/00036811.2021.1892080. [Link] [Cite]

    Tan, B., Cho, S.Y.: Strong convergence of inertial forward--backward methods for solving monotone inclusions. Appl. Anal. https://doi.org/10.1080/00036811.2021.1892080 (2021)

  7. Bing Tan, Liya Liu, Xiaolong Qin*. Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems. Japan Journal of Industrial and Applied Mathematics. 2021, https://doi.org/10.1007/s13160-020-00450-y. [Link] [Cite]

    Tan, B., Liu, L., Qin, X.: Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems. Jpn. J. Ind. Appl. Math. https://doi.org/10.1007/s13160-020-00450-y (2021)

  8. Liya Liu, Bing Tan, Abdul Latif*. Approximation of fixed points for a semigroup of Bregman quasi-nonexpansive mappings in Banach spaces. Journal of Nonlinear and Variational Analysis. 2021, 5(1), 9–22. [Link] [Cite]

    Liu, L., Tan, B., Latif, A.: Approximation of fixed points for a semigroup of Bregman quasi-nonexpansive mappings in Banach spaces. J. Nonlinear Var. Anal. 5, 9-22 (2021)

  9. Jingjing Fan*, Bing Tan, Songxiao Li. An explicit extragradient algorithm for equilibrium problems on Hadamard manifolds. Computational & Applied Mathematics. 2021, 40(2), Article ID 68. [Link] [Cite]

    Fan, J., Tan, B., Li, S.: An explicit extragradient algorithm for equilibrium problems on Hadamard manifolds. Comput. Appl. Math. 40, Article ID 68 (2021)

  10. Zheng Zhou*, Bing Tan, Songxiao Li. An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems. Mathematical Methods in the Applied Sciences. 2021, 44(8), 7294–7303.  [Link] [Cite]

    Zhou, Z., Tan, B., Li, S.: An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems. Math. Methods Appl. Sci. 44, 7294-7303 (2021)

2020

  1. Bing Tan*, Songxiao Li. Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems. Journal of Nonlinear and Variational Analysis. 2020, 4(3), 337–355. [Link] [Cite]

    Tan, B., Li, S.: Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems. J. Nonlinear Var. Anal. 4, 337-355 (2020)

  2. Bing Tan, Shanshan Xu, Songxiao Li*. Inertial shrinking projection algorithms for solving hierarchical variational inequality problems. Journal of Nonlinear and Convex Analysis. 2020, 21(4), 871–884. [Link] [Cite]

    Tan, B., Xu, S., Li, S.: Inertial shrinking projection algorithms for solving hierarchical variational inequality problems. J. Nonlinear Convex Anal. 21, 871-884 (2020)

  3. Bing Tan, Shanshan Xu, Songxiao Li*. Inertial hybrid and shrinking projection algorithms for solving variational inequality problems. Journal of Nonlinear and Convex Analysis. 2020, 21(10), 2193–2206. [Link] [Cite]

    Tan, B., Xu, S., Li, S.: Inertial hybrid and shrinking projection algorithms for solving variational inequality problems. J. Nonlinear Convex Anal. 21, 2193-2206 (2020)

  4. Bing Tan, Zheng Zhou, Xiaolong Qin*. Accelerated projection-based forward-backward splitting algorithms for monotone inclusion problems. Journal of Applied Analysis and Computation. 2020, 10(5), 2184–2197. [Link] [Cite]

    Tan, B., Zhou, Z., Qin, X.: Accelerated projection-based forward-backward splitting algorithms for monotone inclusion problems. J. Appl. Anal. Comput. 10, 2184-2197 (2020)

  5. Bing Tan, Sun Young Cho*. An inertial Mann-like algorithm for fixed points of nonexpansive mappings in Hilbert spaces. Journal of Applied and Numerical Optimization. 2020, 2(3), 335–351. [Link] [Cite]

    Tan, B., Cho, S.Y.: An inertial Mann-like algorithm for fixed points of nonexpansive mappings in Hilbert spaces. J. Appl. Numer. Optim. 2, 335-351 (2020)

  6. Bing Tan*, Shanshan Xu. Strong convergence of two inertial projection algorithms in Hilbert spaces. Journal of Applied and Numerical Optimization. 2020, 2(2), 171–186. [Link] [Cite]

    Tan, B., Xu, S.: Strong convergence of two inertial projection algorithms in Hilbert spaces. J. Appl. Numer. Optim. 2, 171-186 (2020)

  7. Bing Tan, Zheng Zhou, Songxiao Li*. Strong convergence of modified inertial Mann algorithms for nonexpansive mappings. Mathematics. 2020, 8(4), Article ID 462. [Link] [Cite]

    Tan, B., Zhou, Z., Li, S.: Strong convergence of modified inertial Mann algorithms for nonexpansive mappings. Mathematics 8, Article ID 462 (2020)

  8. Bing Tan, Shanshan Xu, Songxiao Li*. Modified inertial hybrid and shrinking projection algorithms for solving fixed point problems. Mathematics. 2020, 8(2), Article ID 236. [Link] [Cite]

    Tan, B., Xu, S., Li, S.: Modified inertial hybrid and shrinking projection algorithms for solving fixed point problems. Mathematics 8, Article ID 236 (2020)

  9. Liya Liu, Bing Tan, Sun Young Cho*. On the resolution of variational inequality problems with a double-hierarchical structure. Journal of Nonlinear and Convex Analysis. 2020, 21(2), 377–386. [Link] [Cite]

    Liu, L., Tan, B., Cho, S.Y.: On the resolution of variational inequality problems with a double-hierarchical structure. J. Nonlinear Convex Anal. 21, 377-386 (2020)

  10. Jingjing Fan, Xiaolong Qin*, Bing Tan. Tseng's extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Applicable Analysis. 2020, https://doi.org/10.1080/00036811.2020.1807012. [Link] [Cite]

    Fan, J., Qin, X., Tan, B.: Tseng's extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Appl. Anal. https://doi.org/10.1080/00036811.2020.1807012 (2020)

  11. Zheng Zhou*, Bing Tan, Songxiao Li. A new accelerated self-adaptive stepsize algorithm with excellent stability for split common fixed point problems. Computational & Applied Mathematics. 2020, 39(3), Article ID 220. [Link] [Cite]

    Zhou, Z., Tan, B., Li, S.: A new accelerated self-adaptive stepsize algorithm with excellent stability for split common fixed point problems. Comput. Appl. Math. 39, Article ID 220 (2020)

  12. Zheng Zhou*, Bing Tan, Songxiao Li. An inertial shrinking projection algorithm for split common fixed point problems. Journal of Applied Analysis and Computation. 2020, 10(5), 2104–2120. [Link] [Cite]

    Zhou, Z., Tan, B., Li, S.: An inertial shrinking projection algorithm for split common fixed point problems. J. Appl. Anal. Comput. 10, 2104-2120 (2020)

  13. Yinglin Luo, Meijuan Shang*, Bing Tan. A general inertial viscosity type method for nonexpansive mappings and its applications in signal processing. Mathematics. 2020, 8(2), Article ID 288. [Link] [Cite]

    Luo, Y., Shang, M., Tan, B.: A general inertial viscosity type method for nonexpansive mappings and its applications in signal processing. Mathematics 8, Article ID 288 (2020)