Publications

  • See My Google Scholar and My arXiv.

  • * means Corresponding Author.

  • These materials are presented to ensure a timely dissemination of scholarly and technical work. The copyright of these papers is owned by their publishers. Misuse of any of the posted below may result in plagiarism. By downloading any material from this site, you are assumed to agree with these terms.

2021

  1. Bing Tan, Jingjing Fan, Songxiao Li*. Self-adaptive inertial extragradient algorithms for solving variational inequality problems. Comput. Appl. Math. 2021, 40(1), Article ID 19. [Link]

  2. Bing Tan, Liya Liu, Xiaolong Qin*. Self adaptive inertial extragradient algorithms for solving bilevel pseudomonotone variational inequality problems. Jpn. J. Ind. Appl. Math. 2021, https://doi.org/10.1007/s13160-020-00450-y. [Link]

  3. Liya Liu, Bing Tan, Abdul Latif*. Approximation of fixed points for a semigroup of Bregman quasi-nonexpansive mappings in Banach spaces. J. Nonlinear Var. Anal. 2021, 5(1):9–22. [Link]

  4. Zheng Zhou*, Bing Tan, Songxiao Li. An accelerated hybrid projection method with a self-adaptive step-size sequence for solving split common fixed point problems. Math. Methods Appl. Sci. 2021, https://doi.org/10.1002/mma.7261. [Link]

2020

  1. Bing Tan, Shanshan Xu, Songxiao Li*. Inertial shrinking projection algorithms for solving hierarchical variational inequality problems. J. Nonlinear Convex Anal. 2020, 21(4):871–884. [Link]

  2. Bing Tan, Sun Young Cho*. An inertial Mann-like algorithm for fixed points of nonexpansive mappings in Hilbert spaces. J. Appl. Numer. Optim. 2020, 2(3):335–351. [Link]

  3. Bing Tan*, Shanshan Xu. Strong convergence of two inertial projection algorithms in Hilbert spaces. J. Appl. Numer. Optim. 2020, 2(2):171–186. [Link]

  4. Bing Tan*, Songxiao Li. Strong convergence of inertial Mann algorithms for solving hierarchical fixed point problems. J. Nonlinear Var. Anal. 2020, 4(3):337–355. [Link]

  5. Bing Tan, Shanshan Xu, Songxiao Li*. Inertial hybrid and shrinking projection algorithms for solving variational inequality problems. J. Nonlinear Convex Anal. 2020, 21(10):2193–2206. [Link]

  6. Bing Tan, Zheng Zhou, Xiaolong Qin*. Accelerated projection-based forward-backward splitting algorithms for monotone inclusion problems. J. Appl. Anal. Comput. 2020, 10(5):2184–2197. [Link]

  7. Bing Tan, Zheng Zhou, Songxiao Li*. Strong convergence of modified inertial Mann algorithms for nonexpansive mappings. Mathematics 2020, 8(4), Article ID 462. [Link]

  8. Bing Tan, Shanshan Xu, Songxiao Li*. Modified inertial hybrid and shrinking projection algorithms for solving fixed point problems. Mathematics 2020, 8(2), Article ID 236. [Link]

  9. Liya Liu, Bing Tan, Sun Young Cho*. On the resolution of variational inequality problems with a double-hierarchical structure. J. Nonlinear Convex Anal. 2020, 21(2):377–386. [Link]

  10. Jingjing Fan, Xiaolong Qin*, Bing Tan. Tseng's extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds. Appl. Anal. 2020, https://doi.org/10.1080/00036811.2020.1807012. [Link]

  11. Zheng Zhou*, Bing Tan, Songxiao Li. A new accelerated self-adaptive stepsize algorithm with excellent stability for split common fixed point problems. Comput. Appl. Math. 2020, 39(3), Article ID 220. [Link]

  12. Zheng Zhou*, Bing Tan, Songxiao Li. An inertial shrinking projection algorithm for split common fixed point problems. J. Appl. Anal. Comput. 2020, 10(5):2104–2120. [Link]

  13. Yinglin Luo, Meijuan Shang*, Bing Tan. A general inertial viscosity type method for nonexpansive mappings and its applications in signal processing. Mathematics 2020, 8(2), Article ID 288. [Link]